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Abstract. Message authentication codes (MACs) based on universal hash-function families are be-

coming increasingly popular due to their fast implementation. In this paper, we investigate a family

of universal hash functions that has been appeared repeatedly in the literature and provide a detailed

algebraic analysis for the security of authentication codes based on this universal hash family. In

particular, the universal hash family under analysis, as appeared in the literature, uses operation in

the finite field Zp. No previous work has studied the extension of such universal hash family when

computations are performed modulo a non-prime integer n. In this work, we provide the first such

analysis. We investigate the security of authentication when computations are performed over arbi-

trary finite integer rings Zn and derive an explicit relation between the prime factorization of n and

the bound on the probability of successful forgery. More specifically, we show that the probability

of successful forgery against authentication codes based on such a universal hash-function family is

bounded by the reciprocal of the smallest prime factor of the modulus n.
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1 Introduction and related work

Message authentication code (MAC) algorithms can be categorized, based on their se-

curity, into unconditionally and conditionally secure MACs. While the security of the

former category of MACs is unconditional, the latter is only secure against computa-

tionally bounded adversaries. The first unconditionally secure MAC was introduced

by Gilbert et al. in [18]. The first deployment of universal hash-function families

for the design of authentication codes was introduced by Wegman and Carter for the

purpose of designing unconditionally secure authentication [12, 49, 13, 50]. Since

then, the study of unconditionally secure message authentication based on universal

hash-function families has been attracting research attention, both from the design and

analysis viewpoints (see, e.g., [8, 3, 21, 37, 9, 2]).

The use of universal hash-function families is not confined to the design of uncondi-

tionally secure MACs. Cryptographists have realized that universal hash functions can

be used to construct efficient, computationally secure, MACs. Traditional computa-

tionally secure MACs are usually block cipher based (see, e.g., [46, 4, 22, 16, 34, 28]).

Compared to block cipher based MACs, however, universal hash-function families

based MACs usually offer better performances (to date, the fastest MACs are based on

universal hash-function families [47]). The basic idea behind universal hash-function

families based MACs is to compress the message to be authenticated (using a univer-
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sal hash function) and then encrypt the compressed image (e.g., using one-time pad

ciphers, stream ciphers, or pseudorandom functions). Universal hash-function families

based MACs include, but are not limited to, [10, 6, 7, 31, 19, 17, 24].

An important branch of the area of message authentication codes is the study of

their security. In particular, substantial efforts have been devoted to bounding the prob-

abilities of deception (forgeability) of authentication codes. The significance of such

analysis is that it provides a metric for measuring and comparing the reliability of dif-

ferent MAC algorithms. Valuable contributions that investigate the security of different

authentication codes include, but are not limited to, [14, 39, 23, 27, 29, 30, 41, 33, 32,

5, 35].

The security of many universal hash-function families rely on the fact that compu-

tations are performed over finite fields (see, e.g., [18, 50, 38, 15, 21, 26, 19, 17, 2]). In

this work, we investigate a universal hash-function family that belongs to this class of

universal hash families. Unlike previous analysis, however, we will consider the effect

of performing operations over finite integer rings, as opposed to fields, on the security

of authentication codes based on this universal hash family.

To give an example of the universal hash family under study, let a message m be

divided into equal-length blocks mi ∈ Zp, where p is a pre-specified prime integer.

Given the secret hashing keys ki ∈ Zp, compute the hashed image of the message m as

h(m) =
∑

i kimi (mod p). Then, the authentication tag of m is simply an encryption

of its hashed image. There have been multiple proposals in the literature of message

authentication that were based on variants of this approach (see, e.g., [38, 19, 17, 2]).

When the multiplication is performed modulo a prime integer, it has been proven that

such proposals provide message integrity. However, the effect of using non-prime mod-

uli on the security of such proposals has not been previously investigated.

CONTRIBUTIONS. In this paper, we investigate the use of a class of universal hash-

function families that has been used for message authentication. In particular, we will

analyze the security of authentication based on this class of universal hash-function

families when the operations are performed over arbitrary finite integer rings instead

of fields, where they have been shown to be secure. We derive tight bounds on the

probabilities of deception for all choices of finite integer rings Zn. We show the direct

relation between the prime factorization of the modulus n and the security of authen-

tication. More precisely, we prove that the probability of deception is bounded by the

reciprocal of the smallest prime factor of the modulus n.

Since the derivation of the main result is quite lengthy, we attempt to clarify it by

breaking the proof into a series of lemmas (Lemma 5.5 - Lemma 5.10) leading to the

final theorem. One particular result that is generally interesting (not only for this pa-

per) is the result of Lemma 3.1. In Lemma 3.1 we prove what can be viewed as an

extension to Bézout’s lemma for finite integer rings. It is a well-known fact in alge-

bra and number theory that, if gcd(a, n) = d then, there exists an integer x such that

x · a ≡ d (mod n). What we show in Lemma 3.1 is that for an a ∈ Zn\{0} such that

gcd(a, n) = d, not only there exists an element x ∈ Zn such that x · a ≡ d (mod n)
but, further, there exists an invertible element x ∈ Z∗n such that x ·a ≡ d (mod n). This

result is essential to generalize our bounds to any finite integer ring and, to the best of
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our knowledge, has not appeared in the literature of mathematics.

ORGANIZATION. The rest of the paper is organized as follows. Section 2 provides

a list of used notations and relevant definitions. In Section 3, we formally state and

prove our extension to Bézout’s lemma along with some basic properties of the fi-

nite integer ring Zn. Section 4 gives two examples of the use of the studied universal

hash-function family for the construction of computationally secure MACs and the

construction of codes with secrecy. Section 5 is devoted to the security analysis. Sec-

tion 6 provides a summary of the choices of moduli and their security ramifications. In

Section 7 we conclude our paper.

2 Notations and definitions

In this section we list the notations and definitions that are relevant to the presentation

of the paper.

2.1 Notations

The following notations will be used throughout the rest of the paper.

- For the ring Zn := {0, 1, ..., n − 1} with the usual addition and multiplication

modulo n, the subset Z∗n is defined to be the set of integers in Zn that are relatively

prime to n.

- If S is a set, then |S| is defined to be the cardinality of the set. If r is an integer,

then |r| is defined to be the length of r in bits.

- The function ϕ(n) (the Euler totient function) is defined to be the number of

positive integers less than n that are relatively prime to n. Equivalently, ϕ(n) =
|Z∗n|.

- For any two strings a and b, (a || b) denotes the concatenation operation.

- For two integers a and b, we say a | b, read as a divides b, if there exists an integer

c such that b = c× a.

- For two integers a and b, we say a ∤ b, read as a does not divide b, if there is no

integer c such that b = c× a.

- For the rest of the paper, (+) and (×) represent addition and multiplication over

Zn, even if the (mod n) part is dropped for simplicity.

- For any two integers a and b, gcd(a, b) is the greatest common divisor of a and b.

- For an element a in a ring R, the element a−1 denotes the multiplicative inverse

of a in R, if it exists.

- Throughout the rest of the paper, random variables will be represented by bold

font symbols, whereas the corresponding non-bold font symbols represent specific

values that can be taken by these random variables.
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2.2 Definitions

One definition that will be used in the paper is the notion of perfect secrecy in Shan-

non’s information-theoretic sense. An encryption algorithm is said to be information-

theoretically secure if the ciphertext gives no information about the plaintext, i.e., the

ciphertext and the plaintext are statistically independent. Formally, perfect secrecy can

be defined as:

Definition 2.1. [44][Perfect secrecy] For a plaintextm and its corresponding ciphertext

ψ, the cipher is said to achieve perfect secrecy if

Pr(m = m|ψ = ψ) = Pr(m = m)

for all plaintext m and all ciphertext ψ. That is, the a posteriori probability that the

plaintext is m, given that the ciphertext ψ is observed, is identical to the a priori prob-

ability that the plaintext is m.

Another definition that is relevant to this work is the definition of universal hash-

function families. A family of hash functions H is specified by a finite set of keys K.

Each key k ∈ K defines a member of the family Hk ∈ H. As opposed to thinking

of H as a set of functions from A to B, it can be viewed as a single function H :

K×A→ B, whose first argument is usually written as a subscript. A random element

h ∈ H is determined by selecting a k ∈ K uniformly at random and setting h = Hk.

Different notions of universal hash families have appeared in the literature (see, e.g.,

[49, 12, 43, 25, 26, 19]), we give below one such definition.

Definition 2.2. [43, 10] [Universal hash families] Let H = {h : A → B} be a family

of hash functions and let ǫ ≥ 0 be a real number. We say that H is ǫ-almost universal,

denoted ǫ-AU, if for all distinct M,M ′ ∈ A, we have that Prh←H[h(M) = h(M ′)] ≤ ǫ.

3 Preliminaries

For any nonzero integers a and n with gcd(a, n) = d, by Bézout’s lemma [45], there

exist two integers x and y so that ax + ny = d. Otherwise stated, for any nonzero

integers a and n with gcd(a, n) = d, by Bézout’s lemma, there exists an integer x so

that

ax ≡ d (mod n). (3.1)

It is further known that the x satisfying equation (3.1) is not necessarily unique. In

particular, for a nonzero a ∈ Zn, there are d = gcd(a, n) distinct elements in Zn

satisfying equation (3.1), given by

{x0, x0 +
n

d
, x0 + 2

n

d
, · · · , x0 + (d− 1)

n

d
}, (3.2)

where x0 is the smallest integer in Zn satisfying equation (3.1) [45]. The significance

of the following lemma is the statement that at least one of the d elements of the set in

equation (3.2) must be invertible in Zn.



Security of authentication based on universal hashing 5

Lemma 3.1. In any finite integer ring Zn, for any δ ∈ Zn\{0}, if gcd(δ, n) = d, then

there exists an invertible element α ∈ Z∗n such that α× δ ≡ d (mod n).

Proof. Let gcd(δ, n) = d, then by Bézout’s lemma [45], there exists an integer α0 such

that

α0 × δ ≡ d (mod n). (3.3)

Further, all integers in the infinite set

A = {αk|αk = α0 + k
n

d
, ∀ k ∈ Z} (3.4)

are valid solutions to equation (3.3) [45]. The lemma states that, not only there exists

an integer that satisfies equation (3.3), but there exists an invertible element in Zn that

satisfies equation (3.3). We will prove the lemma by finding an integer k such that

αk ∈ A is relatively prime to n.

If gcd(δ, n) = 1 then α0 = δ−1 ∈ Z∗n does exist and is the invertible solution to

equation (3.3). Assume, however, that gcd(δ, n) = d > 1 and write n in its prime

factorization as

n =
ℓ1
∏

i=1

peii

ℓ2
∏

i=1

γ
eγi
i

ℓ3
∏

i=1

ζ
eζi
i . (3.5)

Assume further that δ can be written in its prime factorization form as

δ =
ℓ1
∏

i=1

p
e′i
i

ℓ2
∏

i=1

γ
e′γi
i

ℓ4
∏

i=1

r
eri
i , (3.6)

where e′i ≥ ei, ∀ i = 1, · · · , ℓ1, and e′γi
< eγi

, ∀ i = 1, · · · , ℓ2, with the ζi’s and ri’s

being distinct primes. Then, d =
∏ℓ1

i=1 p
ei
i

∏ℓ2

i=1 γ
e′γi
i and, by Bézout’s lemma, there

exists an α0 such that

α0 × δ ≡ d (mod n). (3.7)

Which is equivalent to

α0 ×

ℓ1
∏

i=1

p
e′i−ei
i

ℓ4
∏

i=1

r
eri
i ≡ 1 (mod

ℓ2
∏

i=1

γ
eγi−e

′

γi

i

ℓ3
∏

i=1

ζ
eζi
i ). (3.8)

Equation (3.8) implies that α0 is relatively prime to
∏ℓ2

i=1 γ
eγi−e

′

γi

i

∏ℓ3

i=1 ζ
eζi
i , which

implies that none of the γi’s nor the ζi’s divides α0. Furthermore, by equation (3.4),

none of the γi’s nor the ζi’s will divide αk for any k ∈ Z. Therefore, to prove that an

αk ∈ A is relatively prime to n, since the prime factorization of n consists only of pi’s,

γi’s, and ζi’s, it suffices to show that none of the pi’s divides αk.

Define
∏ℓ2+ℓ3

i=1 q
eqi
i :=

∏ℓ2

i=1 γ
eγi−e

′

γi

i

∏ℓ3

i=1 ζ
eζi
i , where qi = γi, eqi = eγi

− e′γi
, for

i = 1, · · · , ℓ2 and qℓ2+i = ζi, eqℓ2+i
= eζi , for i = 1, · · · , ℓ3. Then, equation (3.8) can

be rewritten as

α0 ×

ℓ1
∏

i=1

p
e′i−ei
i

ℓ4
∏

i=1

r
eri
i ≡ 1 (mod

ℓ2+ℓ3
∏

i=1

q
eqi
i ), (3.9)
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where none of the qi’s divides any αk for any k ∈ Z.

Now, if none of the pi’s divides α0 then gcd(α0, n) = 1 and we are done. Assume,

however, that some of the pi’s, for i = 1, · · · , ℓ1 divide α0, and let p1 be one such prime

dividing α0. Then α0 can be written as α0 = m1p1, where m1 is relatively prime to all

qi’s (since, otherwise, some of the qi’s will divide α0). Then, from equation (3.4), we

know that

α1 = α0 +
n

d
= m1p1 +

ℓ2+ℓ3
∏

i=1

q
eqi
i (3.10)

also satisfies equation (3.3). Therefore, p1 ∤ α1 since it does not divide
∏ℓ2+ℓ3

i=1 q
eqi
i

(also none of the qi’s divides α1 since none of them divides m1p1).

Assume, however, that some of the other pi’s divide α1, and let p2 be such a prime.

Then α1 can be written as α1 = m2p2 for some m2 relatively prime to p1 and all the

qi’s. Then, by equation (3.4),

α2

(b)
= m2p2 +

ℓ2+ℓ3
∏

i=1

q
eqi
i

(a)
= m1p1 + 2

ℓ2+ℓ3
∏

i=1

q
eqi
i (3.11)

also satisfies equation (3.3). Therefore, by equality (b), p2 ∤ α2 since it does not divide
∏ℓ2+ℓ3

i=1 q
eqi
i and, by equality (a), p1 | α2 iff p1 = 2. Assume that p1 = 2 and write

α2 = m3p1 for an m3 that is relatively prime to p2 and the qi’s, then

α3

(b)
= m3p1 +

ℓ2+ℓ3
∏

i=1

q
eqi
i

(a)
= m2p2 + 2

ℓ2+ℓ3
∏

i=1

q
eqi
i = m1p1 + 3

ℓ2+ℓ3
∏

i=1

q
eqi
i . (3.12)

Thus, since p2 6= 2, p1 ∤ α3 and p2 ∤ α3 by equalities (b) and (a) respectively, and

qi ∤ α3 ∀i by construction.

Assume now that there exists an αk such that pi ∤ αk∀ i = 1, · · · , ℓ1−1 and qi ∤ αk∀i,
but pℓ1

| αk. Then write αk = mkpℓ1
for some mk relatively prime to all qi’s and all

pi’s except possibly pℓ1
. Then αk+1 can be expressed as

αk+1 = mkpℓ1
+

ℓ2+ℓ3
∏

i=1

q
eqi
i = · · ·

(b)
= m2p2+c2

ℓ2+ℓ3
∏

i=1

q
eqi
i

(a)
= m1p1+c1

ℓ2+ℓ3
∏

i=1

q
eqi
i , (3.13)

for some constants ci ∈ N. Recall that all the mi’s are relatively prime to the qi’s by

construction. Therefore, to complete the proof, it suffices to show that there exists an

integer h ≥ 1 such that αk+h is not divisible by any pi. As a function of the pi’s and

the ci’s, we conclude the proof by showing how to iteratively find such an h.

ITERATION 1. Assume that p1 divides the αk+1 in equation (3.13). This implies, by

equality (a), that p1 | c1. However, if p1 | c1 then p1 ∤ (c1 + 1), and αk+2 can be written
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as

αk+2 = mkpℓ + 2

ℓ2+ℓ3
∏

i=1

q
eqi
i = · · ·

(c)
= m3p3 + (c3 + 1)

ℓ2+ℓ3
∏

i=1

q
eqi
i

(b)
= m2p2 + (c2 + 1)

ℓ2+ℓ3
∏

i=1

q
eqi
i

(a)
= m1p1 + (c1 + 1)

ℓ2+ℓ3
∏

i=1

q
eqi
i .

(3.14)

Therefore, by equality (a) in equation (3.14), we get p1 ∤ αk+2.

ITERATION 2. Now, assume that p2 | αk+2. By equality (b) in equation (3.14), this

implies that p2 | (c2 + 1). However, if p2 | (c2 + 1) then p2 ∤ (c2 + 1+ p1), and αk+2+p1

can be written as

αk+2+p1
= mkpℓ + (2 + p1)

ℓ2+ℓ3
∏

i=1

q
eqi
i = · · ·

(c)
= m3p3 + (c3 + 1 + p1)

ℓ2+ℓ3
∏

i=1

q
eqi
i

(b)
= m2p2 + (c2 + 1 + p1)

ℓ2+ℓ3
∏

i=1

q
eqi
i

(a)
= m1p1 + (c1 + 1 + p1)

ℓ2+ℓ3
∏

i=1

q
eqi
i .

(3.15)

Then, by equality (b) in equation (3.15), p2 ∤ αk+2+p1
and, by equality (a) in equation

(3.15), p1 ∤ αk+2+p1
.

ITERATION 3. Similarly, if p3 divides αk+2+p1
in equation (3.15), by equality (c),

p3 | (c3 + 1 + p1). However, if p3 | (c3 + 1 + p1) then p3 ∤ (c3 + 1 + p1 + p1p2) and,

by writing αk+2+p1+p1p2
as

αk+2+p1+p1p2
= mkpℓ + (2 + p1 + p1p2)

∏

i

q
eqi
i

= · · ·

(c)
= m3p3 + (c3 + 1 + p1 + p1p2)

∏

i

q
eqi
i

(b)
= m2p2 + (c2 + 1 + p1 + p1p2)

∏

i

q
eqi
i

(a)
= m1p1 + (c1 + 1 + p1 + p1p2)

∏

i

q
eqi
i , (3.16)

one can see that neither p3 nor p2 nor p1 divides αk+2+p1+p1p2
by equalities (c), (b), and

(a) in equation (3.16), respectively.



8 Basel Alomair, Andrew Clark and Radha Poovendran

ITERATION ℓ1. After the ℓth1 iteration, for an h given by:

h = 1 + β1 + β2p1 + β3p1p2 + · · ·+ βℓ1

ℓ−1
∏

i=1

pi, (3.17)

where βi = 1 if in the ith iteration pi | (mipi + ci
∏

i q
eqi
i ) and zero otherwise, αk+h

will not be divisible by any pi. Hence, we have found, by construction, an αk+h with

gcd(αk+h, n) = 1 that satisfies equation (3.3). The residue of αk+h modulo n is an

invertible element of Zn that satisfies equations (3.3), and the lemma follows. ✷

For any finite integer ring Zn, Zn\Z∗n, the complement of Z∗n, will be the set of

elements that are not relatively prime to n. The following result holds for the set of

integers that are not relatively prime to n.

Lemma 3.2. In any finite integer ring Zn, for any α ∈ Zn\Z∗n and any β ∈ Zn,

α× β ∈ Zn\Z∗n.

The proof of this lemma can be found in [36].

Lemma 3.3. Given an integer k ∈ Z∗n, for an r uniformly distributed over Z∗n, the value

δ given by:

δ ≡ r × k (mod n) (3.18)

is uniformly distributed over Z∗n.

A more general result of Lemma 3.3 can be stated as follows.

Lemma 3.4. Let G be a finite group and X a uniformly distributed random variable

defined on G, and let k ∈ G. Let Y = k ∗X , where ∗ denotes the group operation.

Then Y is uniformly distributed on G.

Therefore, Lemma 3.3 follows directly from this general result in probability theory.

The following is also a general result from number theory.

Lemma 3.5. For any positive integer n with a prime factor p, ϕ(n) ≥ p − 1, with

equality iff n = p.

This Lemma is a standard result for integers and its proof can be found in most

books in number theory (see, e.g., [20]).

4 Examples of constructions

In this section, we give two examples of authentication codes based on the universal

hash-function family under analysis. The first example is a construction of a com-

putationally secure message authentication code (MAC) algorithm, while the second

construction is an example of authentication codes with secrecy.
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4.1 Constructing computationally secure MACs

In computationally secure MACs, the message to be authenticated is first compressed

using a universal hash function and then the compressed image is processed with a

cryptographic function (such as one-time pad ciphers, stream ciphers, or pseudoran-

dom function).

Assume the message to be authenticated can be divided into b blocks, i.e., m =
(m1, · · · ,mb), where mi ∈ Z∗p for i = 1, · · · , b. Let the key of the universal hash

function be k = (k1, · · · , kb), where the ki’s are drawn uniformly at random from the

multiplicative group Z∗p. Then, the compressed image of m is computed as

h(m) =
b

∑

i=1

ki ×mi (mod p). (4.1)

Note that the key need not to be as long as the message, otherwise, such constructions

will be impractical. That is, there are standard techniques so that the same key can be

used to hash messages of arbitrary lengths (see, e.g., [50, 19, 10] for the description of

such techniques).

The security of universal hash-function families based MACs depends on the proba-

bility of message collision. That is, if two distinct messagesm andm′ hash to the same

image (i.e., h(m) = h(m′)), then they will have the same authentication tag. Conse-

quently, for a message-tag pair, if an adversary can come up with a different message

that hashes to the same value, successful forgery can be accomplished with high prob-

abilities. Therefore, the most important security property of universal hash functions

is their probabilities of message collisions.

Carter and Wegman suggested the hash function of equation (4.1) with the primes

p = 216 + 1 or p = 232 − 1 [19]. Halevi and Krawczyk later suggested the same

equation with any prime 232 < p < 232 + 216. They designed their MMH family, one

of the fastest universal hash-function families, with p = 232 + 15, the smallest prime

between 232 and 232 + 216 [19]. Etzel et al. proposed a variant of the MMH family of

[19] that can be faster in some applications [17].

When the hash function is computed modulo a prime integer, equation (4.1) is

known to be (p − 1)−1-AU. In fact, it is shown to be (p − 1)−1-A∆U in [19] (the

notion of ǫ-A∆U is a stronger notion than ǫ-AU; interested readers may refer to [19]

for the precise definition of ǫ-A∆U hash families).

The security proofs of all such constructions rely on the fact that computations are

performed over integer fields, i.e., the moduli must be prime integers. To the best of

our knowledge, no previous work has studied the security of such constructions when

the computations are performed over finite integer rings, i.e., not restricting the moduli

to prime integers. We aim to provide the first such analysis.

4.2 Constructing codes with secrecy

In this section, we describe a construction of codes with secrecy based on the same

principle of Section 4.1; that is, the security of the construction restricts the computa-
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tions to be performed over an integer field. What we will describe here is a generaliza-

tion of the construction appeared in [2], in which we allow operations to be performed

over a finite integer ring instead of a field. (Similar constructions have also appeared in

[38, 1]). As in the computationally secure constructions discussed in Section 4.1, the

codes in [38, 2, 1] demand that operations must be performed over the integer field Zp;

no previous work has studied the probability of deception of such codes when com-

putations are performed over arbitrary finite integer rings. Other codes with secrecy

include, but are not limited to, [40, 42, 48, 15].

Let the legitimate users agree on an ℓ-bit long positive integer n, where ℓ is a se-

curity parameter. The users share a secret key k = k1||k2, where k1 and k2 are drawn

uniformly and independently from Zn and Z∗n, respectively.

For any message m ∈ Z∗n, define ψk1
(m) : Z∗n → Zn and ψk2

(m) : Z∗n → Z∗n as

follows:

ψk1
(m) ≡ k1 +m (mod n), (4.2)

ψk2
(m) ≡ k2 ×m (mod n). (4.3)

Equivalently, the exclusive-or operation can be used instead of the addition operation

in equation (4.2) without affecting the cipher’s security properties [2]. We will refer

to ψk1
(m) and ψk2

(m) as the ciphertext and authentication tag, respectively. Then, as

a function of the key k, the output of the system, ψk(m), is the concatenation of the

ciphertext and the authentication tag. That is,

ψk(m) = ψk1
(m) || ψk2

(m). (4.4)

A block diagram to implement the described authenticated encryption scheme is de-

picted in Figure 1 (a).

Upon receiving a ciphertext ψ′k(m), the legitimate receiver extracts the plaintext m′

as follows:

m′ = ψ′k1
(m)− k1 (mod n). (4.5)

The integrity of the extracted m′ is verified by the following check:

m′ × k2
?
≡ ψ′k2

(m) (mod n). (4.6)

The notations ψ′k(m) and m′ are to reflect the possibility that the received ciphertext

and the extracted plaintext are different than the transmitted ones. The ciphertext is

considered valid if and only if the integrity check of equation (4.6) is passed.

A block diagram describing the decryption and integrity check of the scheme is

shown in Figure 1 (b).

5 Security analysis

This section will be dedicated to analyzing the security of the authentication with se-

crecy detailed in Section 4.2, although the bounds on deception probabilities applies to

both constructions of Section 4.1 and Section 4.2.
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(a) (b)

Figure 1. (a) A block diagram to implement the authenticated encryption scheme, and

(b) A block diagram implementing the decryption and the validity check of the studied

scheme. The addition and multiplication operations are performed over the ring Zn.

The scheme described in Section 4.2 is designed to achieve two security objectives,

confidentiality and integrity. More specifically, by restricting computations to be per-

formed over integer fields, the scheme in Section 4.2 achieves Shannon’s perfect se-

crecy in addition to message integrity [2]. Even though the main emphasis of this work

is to analyze the effect of working with arbitrary finite integer rings on the integrity of

the scheme, we will show in Section 5.1, for completeness of presentation, the effect

on the confidentiality of the scheme when computations are allowed to be performed

over arbitrary integer rings. In Section 5.2 we address the main focus of the paper,

namely, the bounds on the probabilities of successful message forgery.

5.1 Perfect secrecy

Corollary 5.1. If encrypted messages are restricted to belong to Z∗n, the scheme of

Section 4.2 achieves perfect secrecy (in Shannon’s sense).

Corollary 5.1 is a direct consequence of Lemma 3.4. To see this, observe that the

results of equations (4.2) and (4.3) are defined on a group G = Zn × Z∗n.

Remark 5.2. Restricting the message m to be relatively prime to n does not impose

a significant limitation on the system since, for example, any non-trivial message will

satisfy the condition when n is a prime integer. For an arbitrary positive integer n, the

message can be padded to be relatively prime to n. Moreover, the system will still work

without this restriction; however, perfect secrecy is not achieved.

To illustrate how perfect secrecy is violated when messages are not restricted to

the multiplicative group, consider an arbitrary message m ∈ Zn to be encrypted. If
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m ∈ Zn\Z∗n, by Lemma 3.2, the resulting ψk2
will be in Zn\Z∗n. On the other hand,

since k2 ∈ Z∗n, ifm ∈ Z∗n, by Lemma 3.3, the resulting ψk2
will be in Z∗n. Therefore, an

adversary observing the authentication tag ψk2
can determine a subset of the message

space that the encrypted message belongs to (if ψk2
∈ Zn\Z∗n then m ∈ Zn\Z∗n and

if ψk2
∈ Z∗n then m ∈ Z∗n); thus, revealing partial information about the encrypted

message. Otherwise put,

Pr(m = m|ψk2
∈ Z∗n) =

{

1
|Z∗

n|
if m ∈ Z∗n,

0 if m ∈ Zn\Z∗n,
(5.1)

and similarly for the case where ψk2
∈ Zn\Z∗n. Therefore,

Pr(m = m|ψk2
= ψk2

) 6= Pr(m = m) (5.2)

for all plaintext m and all ciphertext ψk2
; a clear violation of Definition 2.1 of perfect

secrecy.

5.2 Message integrity

In what follows, we address message integrity of authentication codes based on the

universal hash family under analysis. Even though the analysis applies to both schemes

described in Section 4, we will use the notations of Section 4.2.

As discussed in Section 4.2, the main purpose of ψk2
is to serve as an authentication

tag (MAC) for the encrypted message m. Thus, there are two cases to be considered,

modifying ψk1
alone, and modifying both ψk1

and ψk2
. Modifying ψk2

alone, since it

serves as a MAC, does not lead to extracting a false plaintext.

• CASE I. MODIFYING THE CIPHERTEXT ONLY

Assume that ψk1
has been modified, by a man in the middle, to ψ′k1

. Since k1

is known to the receiver, this modification will lead to the extraction of an m′

different than the encrypted m; that is, m′ = ψ′k1
− k1 (mod n). Let m′ = m+ δ

(mod n), for some δ ∈ Zn\{0}. To be accepted by the receiver, m′ must satisfy

the following integrity check:

m′ × k2 ≡ (m+ δ)× k2 (mod n) (5.3)

≡ (m× k2) + (δ × k2) (mod n) (5.4)

?
≡ ψk2

(mod n) (5.5)

≡ m× k2 (mod n). (5.6)

Equivalently, the integrity check in equation (5.5) is satisfied if and only if the

following condition holds:

δ × k2 ≡ 0 (mod n). (5.7)
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That is, modification of ψk1
alone will go undetected if and only if it is modified

by a δ that satisfies equation (5.7). Section 5.2.1 provides detailed probabilistic

analysis of equation (5.7).

• CASE II. MODIFYING BOTH THE CIPHERTEXT AND THE MAC

In a different scenario, the adversary may attempt to modify both ψk1
and ψk2

so

that a false message will be validated. Assume that ψk1
has been modified so that

the extracted message becomes m′ = m + δ (mod n), for some δ ∈ Zn\{0}.

Also, assume that ψk2
has been modified to ψ′k2

= ψk2
+ ǫ (mod n), for some

ǫ ∈ Zn\{0}. The integrity of m′ is verified using the received ψ′k2
as follows:

ψk2
+ ǫ ≡ ψ′k2

(mod n) (5.8)

?
≡ m′ × k2 (mod n) (5.9)

≡ (m+ δ)× k2 (mod n) (5.10)

≡ (m× k2) + (δ × k2) (mod n) (5.11)

≡ ψk2
+ (δ × k2) (mod n). (5.12)

Equivalently, the false m′ will be accepted if and only if the following condition

is satisfied:

ǫ ≡ δ × k2 (mod n). (5.13)

That is, modification of ψk1
by a value δ and ψk2

by a value ǫ will go undetected

if and only if δ and ǫ satisfy equation (5.13). Section 5.2.2 provides detailed

probabilistic analysis of equation (5.13).

5.2.1 Analysis of modifying ciphertext only

As derived above, an adversary modifying the ciphertext ψk1
in order to make the

legitimate receiver authenticate a false message is successful if and only if she can

solve the congruence

δ × k2 ≡ 0 (mod n) (5.14)

for an unknown k2 uniformly distributed over Z∗n. To analyze the adversary’s ability

to solve this congruence for an arbitrary finite integer n, we start with the following

lemma.

Lemma 5.3. Let n be any fixed finite integer. For any nonzero elements α and β in Zn,

if n divides α × β, then both α and β must belong to Zn\Z∗n. Formally, the following

one-way implication must hold:

α× β ≡ 0 (mod n) ⇒ {α, β ∈ Zn\Z
∗
n}. (5.15)
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Lemma 5.3 is a corollary of more general results shown by Schwarz in [36]. Given

Lemma 5.3, the adversary’s chances of tampering with the ciphertext ψk1
in a way

undetected by the legitimate receiver is stated in the following theorem.

Theorem 5.4. Any modification of the ciphertext ψk1
alone will be detected by the

legitimate receiver with probability one.

Proof. Recall that the modification of ψk1
will be verified only if

δ × k2 ≡ 0 (mod n). (5.16)

Lemma 5.3, however, states that equation (5.16) can be satisfied only if both δ and k2

belong to Zn\Z∗n. Since, by design, k2 is chosen from Z∗n, equation (5.16) can never

be satisfied. Therefore, any modification of the ciphertext ψk1
will be detected by its

MAC with probability one. ✷

Next, we analyze the possibility of modifying both the ciphertext and MAC, ψk1
and

ψk2
, in order to make the legitimate receiver authenticate a false message.

5.2.2 Analysis of modifying both the ciphertext and the MAC

This section constitutes the main contribution of this paper. All previous results stated

in this paper were either already known or follow directly from known results. The

result of this section, on the other hand, has not appeared in the literature; it will show

the direct relation between the prime factorization of the modulus n and the security

of any authentication code based on the use of the universal hash family discussed in

Section 4.

Recall that the adversary has to find a solution to the congruence

ǫ ≡ δ × k2 (mod n), (5.17)

where n is an arbitrary fixed modulus and k2 is chosen uniformly at random from Z∗n,

in order to make the legitimate receiver authenticate a modified message. To be able to

analyze the adversary’s ability to solve the congruence in equation (5.17), we start by

stating a sequence of lemmas.

The first lemma specifies a necessary and sufficient condition for the existence of a

k2 that satisfies equation (5.17).

Lemma 5.5. Let n be any finite positive integer. Then, for any nonzero ǫ, δ ∈ Zn, there

exists k ∈ Z∗n satisfying

ǫ ≡ k × δ (mod n) (5.18)

if and only if

gcd (ǫ, n) = gcd (δ, n). (5.19)
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Proof. Let gcd (ǫ, n) = gcd (δ, n) = r. By lemma 3.1, there exist two invertible ele-

ments α, β ∈ Zn so that, ǫ ≡ r × α−1 (mod n) and δ ≡ r × β−1 (mod n). Then,

ǫ ≡ r × α−1 (mod n) (5.20)

≡ r × α−1 × β−1 × β (mod n) (5.21)

≡ α−1 × β × δ (mod n). (5.22)

Hence, k ≡ α−1 × β (mod n) satisfies equation (5.18). Further, k ∈ Z∗n by Lemma

3.3. Therefore, equation (5.19) implies equation (5.18).

Now, suppose that ǫ ≡ k × δ (mod n) for some k ∈ Z∗n. Let r = gcd (ǫ, n) and

s = gcd (δ, n) and suppose, without loss of generality, that r > s. Again, by Lemma

3.1, there exist α, β ∈ Z∗n satisfying ǫ ≡ r × α−1 (mod n) and δ ≡ s× β−1 (mod n).
Then,

r × α−1 ≡ ǫ (mod n) (5.23)

≡ k × δ (mod n) (5.24)

≡ k × s× β−1 (mod n), (5.25)

and multiplying both sides by α yields,

r ≡ s× (α× β−1 × k) (mod n). (5.26)

Also, since r | n, there exists an ℓ ∈ Zn such that ℓ · r = n. Multiplying both sides of

equation (5.26) by ℓ yields,

0 ≡ (ℓ× s)× (α× β−1 × k) (mod n). (5.27)

Since s < r by hypothesis, the first factor on the right hand side is strictly less than

n = ℓ · r; hence, (ℓ× s) is a nonzero element in Zn. By Lemma 3.3, the second factor

belongs to Z∗n; a contradiction to Lemma 5.3, which states that for the product of two

nonzero integers to be congruent to zero modulo n, both integers must be in Zn\Z∗n.

Therefore, r = s, and the lemma follows. ✷

Lemma 5.5 specifies a necessary condition for the successful forgery by modifying

the ciphertext by a δ ∈ Zn\{0} and the MAC by an ǫ ∈ Zn\{0}. Namely, gcd(δ, n)
must be equal to gcd(ǫ, n); otherwise, there does not exist a shared key k2 ∈ Z∗n that

could possibly satisfy equation (5.17) for the chosen δ and ǫ.
Assume now that an adversary has chosen nonzero δ and ǫ that satisfy the necessary

condition of Lemma 5.5. Given the value of δ, what is the probability that the chosen

ǫ will satisfy equation (5.17). To be able to answer this question, we introduce the

following set.

Definition 5.6 (The set of common gcd’s).

For any fixed integer δ, define T (δ) to be the set of ǫ’s that satisfy equation (5.17) for

at least one k ∈ Z∗n. That is,

T (δ) := {ǫ ∈ Zn : ∃ k ∈ Z∗n such that ǫ ≡ δ × k (mod n)}. (5.28)
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By Lemma 5.5, this set is equal to the set of ǫ’s in Zn such that gcd(ǫ, n) = gcd(δ, n).
Therefore, it can be written as,

T (δ) = {ǫ ∈ Zn : gcd (ǫ, n) = gcd (δ, n)}. (5.29)

For the rest of the paper, the representations in equations (5.28) and (5.29) of the set

of common gcd’s will be used interchangeably to define the set T (δ).
To be able to quantify the adversary’s probability of successful forgery, we need

to answer the following question: For an ǫ ∈ T (δ), how many possible secret keys

k2’s can satisfy equation (5.17) for the given (δ, ǫ) pair? More importantly, for two

distinct ǫ’s in T (δ), say ǫ and ǫ′, what is the relation between the number of k2’s in

Z∗n that satisfy equation (5.17) for each of them? This question is important since, for

a given δ, an intelligent adversary will choose the ǫ that maximizes her probability of

successful forgery. The following lemma addresses this question.

Lemma 5.7. Fix any δ ∈ Zn and let ǫ, ǫ′ ∈ T (δ). Define the set Kǫ to be the set of

all k’s in Z∗n that satisfy equation (5.17) for the given δ and ǫ. Similarly, define the

set Kǫ′ to be the set of all k’s in Z∗n that satisfy equation (5.17) for δ and ǫ′. That is,

Kǫ := {k ∈ Z∗n : δ × k ≡ ǫ (mod n)} and Kǫ′ := {k ∈ Z∗n : δ × k ≡ ǫ′ (mod n)}.

Then |Kǫ| = |Kǫ′ |, i.e., the sets Kǫ and Kǫ′ have the same cardinality.

Proof. Without loss of generality, assume |Kǫ| < |Kǫ′ | = ℓ, and letKǫ′ = {k1, . . . , kℓ},

for distinct ki’s. Since ǫ ∈ T (δ), there exists an r satisfying r × δ ≡ ǫ (mod n). Also,

since k1 ∈ Kǫ′ , δ ≡ k−1
1 × ǫ′ (mod n). Now, for i = 1, . . . , ℓ, define ri as,

ri = r · k−1
1 · ki. (5.30)

Then, every ri satisfies,

ri × δ ≡ r × k−1
1 × ki × δ (mod n) (5.31)

≡ r × k−1
1 × ǫ′ (mod n) (5.32)

≡ r × δ (mod n) (5.33)

≡ ǫ (mod n). (5.34)

Furthermore, the ri’s are distinct: if ri = rj , then

r × k−1
1 × ki ≡ r × k−1

1 × kj (mod n). (5.35)

Since k−1
1 and r are invertible, by cancellation we have ki = kj , implying that i =

j. Therefore, the set Kǫ contains at least ℓ distinct elements, a contradiction to the

hypothesis that |Kǫ| < |Kǫ′ |. Therefore, |Kǫ| = |Kǫ′ |. ✷

Lemma 5.7 implies that any ǫ which has the same greatest common divisor with n
as δ will have the same number of keys as possible candidates for successful forgery.

That is, from the adversary’s standpoint, there is no advantage of picking one particular

ǫ ∈ T (δ) over the others. The following lemma formalizes this argument.
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Lemma 5.8. Suppose that k is an unknown integer, randomly drawn from Z∗n. Then for

any fixed δ ∈ Zn\{0}, the probability of selecting ǫ satisfying ǫ ≡ k × δ (mod n) is at

most 1/|T (δ)|.

Proof. By the definition of T (δ) and Lemma 5.5, all valid ǫ’s are in T (δ), and any ǫ
in T (δ) is a valid choice. Also, by Lemma 5.7, the number of possible values of k
that map δ to any ǫ is the same, so there is no advantage in picking one ǫ over another,

i.e., the ǫ’s are uniformly distributed in T (δ). Hence, for a given δ ∈ Zn\{0}, the

probability of selecting an ǫ ∈ T (δ) that satisfies equation (5.17) is 1/|T (δ)|. ✷

Lemma 5.8 implies that the adversary’s best strategy for successful forgery is to

choose the δ that minimizes |T (δ)|. (Observe that the cardinality of T (δ) is at least

one since δ ∈ T (δ) for any δ ∈ Zn.) The next two lemmas address the problem of

minimizing |T (δ)|.
We start with a lemma that relates the cardinality of the set T with the Euler totient

function ϕ.

Lemma 5.9. For any integer α that divides n, |T (n/α)| = ϕ(α). More explicitly, the

set T (n/α) can be expressed as,

T (n/α) =
n

α
{β ∈ Zα : gcd(β, α) = 1}. (5.36)

Proof. The fact that α|n implies that gcd(n/α, n) = n/α. Therefore, by the definition

of T in equation (5.29),

T (n/α) = {ǫ ∈ Zn : gcd(ǫ, n) = gcd(n/α, n) = n/α}. (5.37)

Now, for any β ∈ Zα such that gcd(β, α) = 1, using the fact that gcd(ka, kb) =
k gcd(a, b) [11], we get:

gcd(β, α) = 1 ⇐⇒ gcd(
n

α
β,
n

α
α) =

n

α
(5.38)

⇐⇒ gcd(
n

α
β, n) =

n

α
(5.39)

(5.37)
⇐⇒

n

α
β ∈ T (n/α). (5.40)

Furthermore, for distinct β1, β2 ∈ Zα,
n

α
β1 and

n

α
β2 are distinct elements of Zn. This

is because n > max{
n

α
β1,

n

α
β2} (since α > max{β1, β2}). Therefore, there is a one-

to-one correspondence between the set {β ∈ Zα : gcd(β, α) = 1} and the set {γ ∈
Zn : γ ∈ T (n/α)}. ✷

We can now state the relation between the cardinality of T (δ), for any δ, and the

choice of the underlying integer ring. More specifically, the following lemma empha-

sizes the effect of the prime factorization of n on the cardinality of the smallest T (δ).
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Lemma 5.10. If p is the smallest prime factor of n, then |T (δ)| ≥ |T (n/p)| for any

δ ∈ Zn.

Proof. Let δ ∈ Zn and let p be the smallest prime factor of n. By Lemma 5.9,

|T (n/p)| = ϕ(p) = p− 1. Now, recall that:

T (δ) = {ǫ ∈ Zn : gcd (ǫ, n) = gcd (δ, n)}. (5.41)

Then, if gcd(δ, n) = 1, by equation (5.41),

|T (δ)| = |Z∗n| = ϕ(n); (5.42)

and we know, by Lemma 3.5, that

ϕ(n) ≥ p− 1; (5.43)

and, by Lemma 5.9, that

p− 1 = |T (n/p)|. (5.44)

Thus, |T (δ)| ≥ |T (n/p)| for all δ’s that are relatively prime to n.

It remains to show that the same is true for δ’s that are not relatively prime to n. Let

gcd(δ, n) = d > 1, then, by equation (5.41),

T (δ) = T (gcd (δ, n)) = T (d). (5.45)

Therefore, we can assume, without loss of generality, that δ|n (since for any δ such

that gcd(δ, n) = d, T (δ) = T (d) and d|n). Now, write δ = n/α and let α be written

in its prime factorization form as α =
∏

i p
ei
i , where the pi’s are distinct primes. Then,

ϕ(α) =
∏

i(pi − 1)pei−1
i . Since α|n, and p is the smallest prime factor of n, p ≤

pi for any i. Hence, by Lemma 5.9,

|T (δ)| = |T (n/α)| = ϕ(α) ≥ p− 1 = |T (n/p)|. (5.46)

Therefore, for any δ ∈ Zn, |T (δ)| ≥ |T (n/p)|. ✷

We can now state the main theorem analyzing the adversary’s probability of suc-

cessful forgery by modifying both ciphertext ψk1
and the MAC ψk2

.

Theorem 5.11. Let p be the smallest prime factor of n. Then, an adversary modifying

both the ciphertext ψk1
and the MAC ψk2

will be successful with probability at most

1/(p− 1).

Proof. Recall that an adversary modifying ψk1
and ψk2

will be successful only if she

can choose δ, ǫ such that:

ǫ ≡ δ × k2 (mod n). (5.47)

By Lemma 5.8, the probability of choosing δ, ǫ that satisfy equation (5.47) is given by

1/|T (δ)|. To maximize the probability of successful forgery, the adversary can choose

δ that minimizes the size of T (δ). By Lemma 5.10, the best choice of δ that minimizes

T (δ) is δ = n/p, where p is the smallest prime factor of n. Finally, by Lemma 5.9,

|T (n/p)| = p− 1, and the theorem follows. ✷
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6 Choice of integer rings

The described authenticated encryption schemes is designed to achieve two main ob-

jectives, message confidentiality and integrity. In this section we summarize the effect

of the underlying integer ring on the security properties of the scheme.

It has been shown, in Section 5.1, that reducing message space to the multiplicative

group of integers modulo n is a necessary condition for the scheme to achieve perfect

secrecy. Consequently, the choice of the underlying integer ring will be a factor for the

number of possible messages that can be encrypted with perfect secrecy.

In Section 5.2.1, it was shown that an adversary modifying ψk1
only will be success-

ful only if ψk1
is perturbed by an integer δ that satisfies

δ × k2 ≡ 0 (mod n). (6.1)

Moreover, it was shown that choosing k2 from the multiplicative group Z∗n is a suffi-

cient condition to guarantee that no nonzero δ ∈ Zn will satisfy equation (6.1). There-

fore, the choice of the underlying integer ring does not play an important role in the

protection against modifying ψk1
only, other than restricting k2 to be chosen from the

multiplicative group Z∗n.

The choice of the underlying integer ring has its most impact when an adversary

modifies both ψk1
and ψk2

. As discussed in Section 5.2.2, the adversary is successful

in tampering with the message, in a way undetected by the legitimate receiver, only if

she can select ǫ, δ satisfying:

ǫ ≡ δ × k2 (mod n). (6.2)

The proof of Theorem 5.11 describes the following attack on the scheme. Suppose

that the scheme designer chooses a modulus with prime factorization given by n =
pe1

1 · · · pekk , where the pi’s are ordered increasingly. Assuming the adversary is able

to factor n, then she can choose δ = n/p1 to maximize her probability of successful

forgery. The resulting δ × k2 (mod n) will be, from the adversary’s perspective, a

random element in the set of multiples of n/p1 (excluding 0 because k2 is known to

be relatively prime to n). Consequently, by randomly choosing an integer ǫ from the

set {m
n

p1

(mod n), for m = 1, . . . , p1 − 1}, the adversary can tamper with the mes-

sage without detection with probability 1/(p1 − 1). The following numerical example

illustrates the attack.

Example 6.1. Let n = 45 = 32 × 5. According to Theorem 5.11, the adversary can

maximize her probability of successful forgery by choosing δ = n/3 = 15. Moreover,

the secret key k2 is restricted to belong to the multiplicative group Z∗45, that is, k2 ∈
{1, 2, 4, 7, 8, 11, 13, 14, 16, 17, 19, 22, 23, 26, 28, 29, 31, 32, 34, 37, 38, 41, 43, 44}. Th-
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erefore, the resulting δ × k2 (mod 45) := ǫ is equal to

15 × 1 ≡ 15 (mod 45), (6.3)

15 × 2 ≡ 30 (mod 45), (6.4)

15 × 4 ≡ 15 (mod 45), (6.5)

15 × 7 ≡ 15 (mod 45), (6.6)

15 × 8 ≡ 30 (mod 45), (6.7)

15 × 11 ≡ 30 (mod 45), (6.8)

15 × 13 ≡ 15 (mod 45), (6.9)

15 × 14 ≡ 30 (mod 45), (6.10)

15 × 16 ≡ 15 (mod 45), (6.11)

15 × 17 ≡ 30 (mod 45), (6.12)

15 × 19 ≡ 15 (mod 45), (6.13)

15 × 22 ≡ 15 (mod 45), (6.14)

15 × 23 ≡ 30 (mod 45), (6.15)

15 × 26 ≡ 30 (mod 45), (6.16)

15 × 28 ≡ 15 (mod 45), (6.17)

15 × 29 ≡ 30 (mod 45), (6.18)

15 × 31 ≡ 15 (mod 45), (6.19)

15 × 32 ≡ 30 (mod 45), (6.20)

15 × 34 ≡ 15 (mod 45), (6.21)

15 × 37 ≡ 15 (mod 45), (6.22)

15 × 38 ≡ 30 (mod 45), (6.23)

15 × 41 ≡ 30 (mod 45), (6.24)

15 × 43 ≡ 15 (mod 45), (6.25)

15 × 44 ≡ 30 (mod 45). (6.26)

That is, the resulting ǫ will be 15 or 30 with equal probability. (Similarly, one can

show that, by choosing δ = n/5 = 9, the resulting ǫ is uniformly distributed over

{9, 18, 27, 36}). In any case, the resulting ǫ will be uniformly distributed over the

multiples of n/p, where p is a prime factor of n, and the p that minimizes the cardinality

of the set of possible ǫ’s is the smallest prime factor of n.

As an illustration of the importance of the underlying integer ring, in what follows,

we show the best and the worst choices of integer rings in terms of security against

man in the middle attacks.
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6.1 Prime moduli

When the used modulus is a prime integer p, the underlying integer ring Zp becomes a

field. Not surprisingly, the use of a prime modulus gives the best security performances

against message corruption attacks. Since the smallest prime factor of p is p itself, by

Theorem 5.11, the adversary’s probability of successful forgery is 1/(p − 1). That is,

there is no advantage of choosing a δ over another. In other words, no matter what the

value of δ an adversary chooses, the resulting ǫ will be uniformly distributed over the

entire set of nonzero element {1, 2, · · · , p− 1}.

6.2 Even moduli

Even moduli give the worst security against message modification. An active adversary

can take advantage of the even modulus to make the intended receiver authenticate a

false message with probability one. This is due to the fact that the smallest prime factor

of n is 2. Therefore, by Theorem 5.11, the adversary’s probability of successful forgery

is 1/(2 − 1). To illustrate the attack, let the adversary choose δ = n/2. Since k2 ∈ Z∗n,

and n is an even integer, k2 must be an odd integer, which can be written in the form

2r + 1 for some positive integer r. Then,

ǫ ≡ δ × k2 (mod n) (6.27)

≡ (
n

2
)× (2r + 1) (mod n) (6.28)

≡
n

2
(mod n). (6.29)

Therefore, choosing δ = ǫ = n/2 guarantees that the modification will go undetected

with probability one. Consequently, even moduli cannot be used to implement the

described scheme since an active adversary can always perturb both ψk1
and ψk2

in a

way undetected by the legitimate receiver.

7 Conclusion

In this paper, we investigated authentication based on a class of universal hash-function

families that have been appeared in the literature. Although the studied universal hash-

function family has appeared in many places, computations have always been per-

formed modulo prime integers. In this work, we analyzed the security of message

authentication when computations are performed over arbitrary finite integer rings.

We derived a direct relation between the security of authentication and the underly-

ing integer ring Zn. Specifically, we showed that the bound on successful forgery is

proportional to the reciprocal of the smallest prime factor of the used modulus n.
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