J. Appl. Math. & Computing Vol. 22(2006), No. 1 - 2, pp. 21 - 38
Website: http://jamc.net

THE POWER OF PROGRAMMED GRAMMARS
WITH GRAPHS FROM VARIOUS CLASSES

MADALINA BARBAIANI, CRISTINA BIBIRE, JURGEN DASSOW*,
AIDAN DELANEY, SZILARD FAZEKAS, MIHAI IONESCU,
GUANGWU LIU, ATIF LODHI, BENEDEK NAGY

ABSTRACT. Programmed grammars, one of the most important and well
investigated classes of grammars with context-free rules and a mechanism
controlling the application of the rules, can be described by graphs. We
investigate whether or not the restriction to special classes of graphs re-
stricts the generative power of programmed grammars with erasing rules
and without appearance checking, too. We obtain that Eulerian, Hamil-
tonian, planar and bipartite graphs and regular graphs of degree at least
three are pr-universal in that sense that any language which can be gener-
ated by programmed grammars (with erasing rules and without appearance
checking) can be obtained by programmed grammars where the underly-
ing graph belongs to the given special class of graphs, whereas complete
graphs, regular graphs of degree 2 and backbone graphs lead to proper
subfamilies of the family of programmed languages.

AMS Mathematics Subject Classification : 68Q45
Key words and phrases : Programmed grammars and languages, graph
controlled grammars and languages

1. Introduction

It is well-known that context-free grammars and languages are not able to
describe all phenomena which occur in natural and/or programming languages.
On the other hand, context-sensitive grammars and languages are very powerful

Received September 13, 2005. Revised July 19, 2006. *Corresponding author.
The first second and seventh authors are supported by FPI Fellowships from Agncia de Gesti d’Ajuts
Universitaris i de Recerca (Spain) ; the second, fifth and sixth authors are grateful for the FPU Fel-
lowships, they got from the spanish ministry; the fifth and ninth authors are supported by the
grant OTKA T049409 (Hungary), the ninth author also acknowledges the financial support pro-
vided through the European Community’s Human Project under contract HPRN-CT-2002-00275,
SegraVis.

© 2006 Korean Society for Computational & Applied Mathematics and Korean SIGCAM .

21

22 Madalina Barbaiani, Cristina Bibire, Jiirgen Dassow et al.

(up to a morphism they generate all recursively enumerable languages), and
some important decision problems are undecidable for them. Therefore a lot of
grammars have been introduced which only use context-free rules and have a
mechanism which controls the derivation. One of the most important and well
investigated classes of such grammars is formed by the programmed grammars
introduced by Rosenkrantz in 1969 ([12]).

In a programmed grammar with appearance checking, with any context-free
rule p = A — w two sets of rules, the success and the failure field of p, are
associated. If the rule p has to be applied, two situations can occur: if the
nonterminal A occurs in the sentential form, we apply the rule A — w and
continue with a rule of the success field; in the other case we do not change the
sentential form and continue with a rule chosen from the failure field. If all failure
fields are empty, we say that the grammar is without appearance checking.

It has been shown that programmed grammars with erasing rules and appear-
ance checking are as powerful as arbitrary phrase structure grammars (type-0
grammars). On the other hand, if the appearance checking feature is not taken
into consideration one obtains a proper subfamily of the family of recursively
enumerable languages. For results on programmed grammars and languages we
refer to [5], [6], [2], the references mentioned in these books and articles and the
recent papers [8] and [9].

Obviously, a programmed grammar without appearance checking can be de-
scribed by a graph, where the vertices are given by the rules and the edges are
given by the success field, i.e., there is an edge from a rule p to a rule ¢ in the
graph if and only if ¢ is in the success field of p.

In this paper we study the generative power of programmed grammars, where
we require that the associated graph belongs to a class of special graphs. We
motivate this problem as follows:

e In complexity theory the restriction to special graphs can change the
situation drastically. For instance, the problem whether or not a given
arbitrary graph can be coloured with 4 colours is NP-complete; however,
for planar graphs the problem is trivial since any planar graph can be
coloured with 4 colours.

e The restriction to special graphs has already been discussed for gram-
mars controlled by a bicoloured directed graph (see [5]), which are equiv-
alent to programmed grammars with appearance checking. It has been
shown by Pascu and Paun that any language which can be generated
by a grammar controlled by a bicoloured directed graph can be gener-
ated by a grammar controlled by a planar bicoloured directed graph (see
[11] and [5], Lemma 2.2.3), i.e., the restriction to planar graphs do not
decrease the generative power.

e If one considers the transformation of a matrix grammar (without ap-
pearance checking) into a programmed grammar (see [6], Proof of Theo-
rem 2.4), one gets programmed grammars with graphs of a very special

The power of programmed grammars with graphs from various classes 23

form (union of some line graphs and two additional nodes n; and nq,
where, additionally, the final node of any line graph is connected with
the initial node of any line graph and with ny and n; is connected with
the initial node of any line graph). Thus programmed grammars with
graphs of this special type have the same power as programmed gram-
mars. However, this class of special graphs is not investigated in graph
theory. In this paper we shall consider some classes of graphs which are
well-known in the theory of graphs or networks.

e There exist already some papers which study restrictions with respect
to the control mechanism. For instance, programmed grammars are
equivalent to regularly controlled grammars. In the paper [1] it has been
shown that the restriction to special classes of regular languages, e.g.
to non-counting or suffix-closed regular languages, do not decrease the
generative power whereas the restrictions to definite languages restricts
the power to the generation of only context-free languages. Analogous
results are obtained in [4] and [3] for other control mechanisms using
regular languages.

In this paper we study the generative power of programmed grammars, where
we require that the associated graph has certain properties. We obtain that con-
nected, Eulerian, Hamiltonian, planar and bipartite graphs and regular graphs
of degree at least three are pr-universal in the sense that all languages which
can be generated by programmed grammars (with erasing rules and without
appearance checking) can be obtained by programmed grammars where the un-
derlying graph has the given special form. On the other hand, complete graphs,
regular graphs of degree 2 and backbone graphs generate proper subfamilies of
the family of programmed languages.

The paper is organized as follows. In the following section we present the
notation used in the paper. In Section 3 we show the pr-universality of the
classes of connected, Hamiltonian, Eulerian, planar and bipartite graphs. In
Section 4 we study graphs with a restricted degree. In Section 5 we discuss the
power of complete graphs and backbones. In the final Section 6 we discuss the
situation for some classes of grammars nearly related to programmed grammars
with erasing rules and without appearance checking.

2. Definitions

Throughout the paper we assume that the reader is familiar with the basic
notions of the theory of formal grammars and languages including programmed
grammars and languages as well as those of the theory of graphs. For details we
refer to [10], [13], [5], [6], [2] and [7]. In this section we only recall some concepts
and give some notations.

For an alphabet T, a word w € T™* and a letter a € T, we denote the number
of occurrences of a in w by #,(w). The empty word is denoted by A.

A context-free grammar is specified as a quadruple G = (N, T, S, P), where N
is a finite non-empty set called the nonterminal alphabet, T is a finite non-empty

24 Madalina Barbaiani, Cristina Bibire, Jiirgen Dassow et al.

set called the terminal alphabet (N NT = @), S € N is the start symbol, and P
is a finite subset of N x (N UT)* called the set of rules. Rules are also named
as productions.

Let G be a context-free grammar and v,w € (N UT)*. Then v = w is a
direct derivation if and only if there exist vy, ve,w’ € (NUT)* and A € N such
that v = v1 Ave, w = viw'vy and A — w’ € P.

A programmed grammar (without appearance checking) is a six-tuple G =
(N,T,S, Lab, P, Pg) where N, T and S are specified as in a context-free gram-
mar, Lab is an alphabet (of labels), P is a finite set of context-free rules called
the set core productions, and Pg is a finite set of triples r = (¢, p, o), where
q € Lab is the label of r, p € P is a context-free production called the core
production of r, and o is a subset of Lab and is termed the success field of r.
The elements of Pg are called the rules of G.

The language L(G) generated by a programmed grammar G specified as above
is defined as the set of all words w € T™ such that there is a derivation

S = wy =, W1 =y, Wy =py ... =y, Wi = W,

"

where k > 1 and, for 1 < i < k, w;_y = w;_; Asw; | and w; = w; ,v;w; ,
for some words w; ,,w; ; € (NUT)*, r; = (qi, Ai — v4,0;) and, for i < k,
Gi+1 € 0y

We say that the programmed grammar G = (N, T, S, Lab, P, Pg) is in normal
form if and only if r = (¢,p,0) € Pg and v’ = (¢/,p,0’) € Pg imply o = o’.
We note that, for any language L, which can be generated by a programmed
grammar, there is a programmed grammar G’ in normal form such that L =
L(G"). This can be seen as follows: Assume that L = L(G) for some programmed
grammar G = (N, T, S, Lab, P, Pg). If Pg contains two rules r = (¢, A — w,0)
and " = (¢', A — w, 0’) with o # ¢’, then we construct
~ Pl = Pg \ {r'} (we cancel 1),

PE = PLUGY = (¢ A — AL ")), 1" = (¢, A — w,0”)} and
-G"=(NU{A'},T,S,LabU {¢"},PU{A — A"}, PY),
where A’ is a new symbol and ¢” is a new label.

For any derivation uAv —,» uwv in G there is a derivation uAv =,
uA'v =>,» vwv in G”, and conversely. Thus one has L(G) = L(G"). Moreover,
every rule A — w occurs less times in the second components of rules of G than
of G. By repetition of this construction we obtain a programmed grammar in
normal form.

By this normal form result we can assume that there is a one-to-one function
from Lab onto P.

A (finite directed) graph H is specified as a pair (V, E), where V is a finite
set and E C {(«, 8)|a, B € V}. The elements of V and E are called vertices and
edges, respectively. (a,) is called an edge from « to 5. We note that we have
no multiple edges since FE is a set. A graphic representation of a graph can be

The power of programmed grammars with graphs from various classes 25

given as follows: We interpret the vertices as points in a plane, and we draw a
(directed) curve from « to f if there is an edge (¢,).

We state some basic definitions for graphs. We say that the vertices a and
B are incident with the edge e € E if ¢ = («,). The in-degree of a vertex
«, denoted by d;(«), is the number of edges (8, «), and the out-degree d,(«)
is the number of edges («, 3); the degree d(«) is the sum of the in-degree and
out-degree of a.

A walk is an alternating sequence of vertices and edges, with each edge being
incident to the vertices immediately preceding and succeeding it in the sequence,
and which starts and ends with vertices, which are called the initial and terminal
vertices, respectively. A walk is closed if the initial vertex is also the terminal
vertex. A trail is a walk with no repeated edges. A cycle is a closed trail with
at least one edge and with no repeated vertices except that the initial vertex
is the terminal vertex. A path is a walk with no repeated vertices. A line is a
non-closed path which is a trail, too.

A graph is called a cycle or a line if it consists exactly of a cycle or a line,
respectively.

We now define some classes of graphs.

Connected graph: A graph G = (V, E) is called connected if and only
if, for every two different vertices o and 3 there is a walk with starting
vertex « and terminating vertex (8 or there is a walk with starting vertex
[and terminating vertex a.

Hamiltonian graph: A graph G = (V, E) is called Hamiltonian if it con-
tains a cycle which contains any vertex of V.

Eulerian graph: A graph G = (V, E) is said to be an Eulerian graph if
it contains a path which contains every edge of E.

Bipartite graph: A graph G = (V, E) is called a k-partite graph if the
set V' of vertices can be decomposed into k disjoint non-empty sets such
that, for each edge («, 3), @ and (8 belong to different sets of the decom-
position. A bipartite graph is a special case of a k-partite graph with
k=2.

Planar graph: A graph is called a planar graph if its graphic representa-
tion can be drawn in the plane in such a way that there are no “edge
crossings” (i.e., edges intersect only at common vertices).

Regular graph: A graph G = (V,E) is called regular of degree n, if
d(a) = n holds for any vertex a € V.

Complete graph: A graph is called a complete graph if, for every two
vertices a and [, there is an edge from « to 8. (Note that we allow
a=p.)

Backbone graph: A graph G = (V, E) is called a backbone graph if the
following conditions are satisfied:

— G is connected,
— there are subsets V/ C V and E' C E such that (V’, E’) is a cycle,

26 Madalina Barbaiani, Cristina Bibire, Jiirgen Dassow et al.

— for any subsets V C V and E” C E such that (V",E") # (V' E'),
(V" E") is not a cycle.
Whereas the first seven types of graphs are well-known and intensively studied
in the theory of graphs, the last type is motivated by computer networks which
often have the structure of an (undirected) backbone graph.

We now give a description of a programmed grammar by a graph.

Let G = (N,T,S, Lab, P, Pg) be a programmed grammar. We construct
the graph h(G) = (Lab, E), where (q,q') € E if and only if (¢,p,0) € Pg,
(¢',p',0') € Pg and ¢’ € 0. We say that G is a programmed grammar with
graph h(G). If G is in normal form, we can identify Lab and P, and therefore
we sometimes write h(G) = (P, E’) where (p,p’) € E’ if and only if (¢,¢') € E
and (Q7p? 0)7 (q/ap/a OJ) € Fe.

Conversely, given a graph H = (V| E), a set P of context-free productions over
some sets N of nonterminals and 7" of terminals, and a mapping 7 : V — P, we
construct the programmed grammar g(H,S) = (N,T,S,V, P, P;) where Pg =
{(q,7(9),{qd" | (¢,4') € E}) | g € V} and S € N. If we define or draw the graph

= (V, E) equipped with a mapping 7 as above, then we often give the label
7(v) instead of v.

In both cases,

S =y W) =y, Wa... =y, W =W

is a derivation in G if and only if 179 ...7 is a sequence of rules according to
vertices along a walk in H. Control in programmed grammars corresponds to
control by vertex sequences along walks in graphs. Thus, for any programmed
grammar G = (N, T, S, Lab, P, P5) and any graph H with vertices labelled by
(context-free) rules, we have

g(h(G),S) =G and h(g(H,S))=H. (1)

Example 1. We consider the programmed grammar

G= ({SvA,B}a {a7b> C},S, {Q1aQ2aQS7Q4aQ5}aPa {7‘1,7’2,7"3,7”4,7“5})
with
P={S— AB,A — aAb,B — ¢B,A — ab, B — ¢}

and

r = (qus - AB7 {q2})7 To = (QQ,A - a/Ab, {q3})7 r3 = (QS,B i CB,{QQ,Q4}),
ry = (Q47A - Clb, {Q5})7 Ts = (Q57B — C, 0)

Then the associated graph h(G) is

(@) — (= =@ —(—®)

and the generated language is L(G) = {a"b"c" | n > 2}.

The power of programmed grammars with graphs from various classes 27

Let H be a class of graphs. We say that H is pr-universal, if and only if, for any
programmed grammar G (with erasing rules and without appearance checking),
there is a programmed grammar G’ such that h(G’) € H and L(G) = L(G’).

3. Some pr-universal classes of graphs

In this section we present some classes of graphs such that any programmed
language can be obtained from a programmed grammar where the associated
graph belongs to the class.

We start with a simple statement.

Theorem 1. Any language generated by a programmed grammar can be gener-
ated by a programmed grammar with a connected graph.

Proof. We consider the programmed grammar G = (N, T, S, Lab, P, Pg) with
graph h(G) = (P, E) as defined in Section 2. Let F be a new symbol not
contained in N. Then we construct the graph

H=(PU{F — F},EU{(F — F,p) |p€ Pe}U{(p,F — F)|p€ Pa})

and the programmed grammar g(H,S). Obviously, H is connected. Moreover,
it is easy to see that L(g(H,S)) = L(G) (because F' — F' cannot be applied in
a terminating derivation). t

Theorem 2. Any language generated by a programmed grammar can be gener-
ated by a programmed grammar with a Hamiltonian graph.

Proof. We present a constructive proof. Let L = L(G) for some programmed
grammar G = (N, T, S, Lab, P, P;) in normal form with the associated graph
hMG) = {a1,a2,...,a,}, E), where n is the cardinality of P;. We introduce
new nonterminals F;, 1 <14 < n, which are not in N. We now take n new vertices
0B; with rule S — F;. Then we construct the graph

H = ({a17a27"'aan7ﬁ1a527"'7ﬁn}7
EU{(e:,8) [1<i<n}pU{(Biaiv1) [1<i<n}U{(Bn,n)}
Obviously, H is a Hamiltonian graph since the added vertices and edges result
in the (closed) Hamiltonian trail

ai(ai, B1)B1(Br, ag)az(az, B2)B2(B2, a3) - - - (an, Bn) Bu(Bns 1) -

JFrom H we construct a programmed grammar g(H, S) as mentioned in Sec-
tion 2. It is easy to see that g(H,S) and G only differ in the rules S — Fj,
1 < ¢ < n, their associated success fields and the adding of S — F; to the
success field of the rule associated with the vertex «;. Because the added rules
are not applicable (if S does not occur in the current sentential form) or its
application introduces a letter F;, 1 < ¢ < n, which cannot be terminated (since
there is no rule with F; on its left hand-side), we cannot apply these rules in
terminating derivations. Therefore we can only choose rules of the success field
in g(H,S) which can be chosen in G, too. Thus L(g(H,S)) = L(G). O

28 Madalina Barbaiani, Cristina Bibire, Jiirgen Dassow et al.

Now we take a look at the language family generated by programmed gram-
mars with Eulerian graphs. There is a well known, nice and simple characteri-
zation of Eulerian graphs (see [7]) which is recalled in the following lemma.

Lemma 1. A directed connected graph H = (V, E) is Eulerian if and only if
one of the following two possibilities hold:

— the in-degree of every vertex equals its out-degree, or

— there are two vertices « and § with d,(a)) = d;(a) + 1 and d;(8) = d,(8) + 1
and d;(y) = do(7y) for all v € V \ {a, 8}.

Theorem 3. Any language generated by a programmed grammar can be gener-
ated by a programmed grammar with an Eulerian graph.

Proof. Let L = L(G) for some programmed grammar G = (N, T, S, Lab, P, Pg).
Without loss of generality we can assume that G is in normal form. Further, by
Theorem 1 we can assume that G is a programmed grammar with a connected
graph h(G) = {a1,0q,...,an}, E).

We introduce new vertices f31, ..., 3,, where n is the number of vertices in
h(G) and assign to f3; the rule S — F;, 1 < i < n, where Fy, Fy, ..., F, are
new nonterminals which cannot be terminated since there are no rules for them.
We add edges to E in the following way:

— there is an edge from «; to the new vertex §; if and only if there is no edge
from o to o; in E, and

— there is an edge from from ; to «; if and only if there is no edge from o to
aj in E.

By this construction any vertex a;, 1 < i
out-degree n. Consequently, for 1 < ¢ <
coincide.

Let us consider the vertices §;, 1 < i < n. If the in-degree and out-degree
coincide for any f;, then the obtained graph is Eulerian by Lemma 1. Now
assume, that there is a vertex 8, such that d;(3,) > do(0,). We note that

n n
D (dile) + di(Bi)) = Y (dolvi) + do(B))

=1 i=1

< n, has the in-degree n and the
n, in-degree and out-degree of «;

because any edge is counted as input edge as well as output edge. Since the
in-degree and out-degree coincide for any vertex «;, there is a vertex (s such
that d;(8s) < do(8s). We now connect these two vertices by an edge from f, to
Bs. Obviously, the difference of in-degree and out-degree of 3, is decreased by 1
by this procedure, and that of out-degree and in-degree of G, too. Continuing
this construction we finally get a graph H where the in-degree and out-degree
are equal for any vertex.

Let g(H,S) be the programmed grammar obtained from H by the construc-
tion given in Section 2. It is easy to see that L(G) = L(g(H,S)) since the
application of a rule associated with an added vertex yields a non-terminating
derivation.]

The power of programmed grammars with graphs from various classes 29

Theorem 4. FEvery language generated by a programmed grammar can be gen-
erated by a programmed grammar with a planar graph.

Proof. Let a programmed grammar G = (N, T, S, Lab, P, Pg) with graph h(G)
be given. If h(G) is a planar graph, we are done. In the other case, h(G) contains
at least a crossing of edges. Below we present a procedure to substitute a crossing
by a planar subgraph without changing the language and without producing new
crossings. By an iterated application of this construction we finally get a planar
graph.

We now consider a crossing of two edges of h(G) as shown in Figure 1. The

F1GURE 1. Crossing edges

rules associated with o and as are not of importance for our construction. Our
idea is to replace the crossing point by a vertex; however, then coming from o
we can continue with B — u or C — v whereas in the given graph we have to
continue with C' — v. Therefore we introduce four further vertices which control
the derivation such that only the derivations of the original graph/grammar are
non-blocked derivations. Precisely, we use the graph presented in Figure 2.

FIGURE 2. Substitution graph for crossing edges, where A, A;
and A, are new nonterminals associated with the considered
crossing

We now construct a new graph Hi; we substitute the graph shown in Figure 1
by the graph shown in Figure 2. Obviously, H; contains one crossing less than
h(G). Moreover, if we apply the rule of a; and continue with C' — v according
to Figure 1, then we have to apply C — C'AA; and A —)\ according to Figure 2.

30 Madalina Barbaiani, Cristina Bibire, Jiirgen Dassow et al.

A continuation with As — X is impossible, since the sentential form does not
contain As. Therefore the only non-blocked continuation is an application of
A; — X which results in the same sentential form as after the application of the
rule of oy und we continue with C' — v as in Figure 1. Thus the programmed
grammar g(Hy,S) constructed from H; and G generate the same language. O

Theorem 5. Every language generated by a programmed grammar can be gen-
erated by a programmed grammar with a bipartite graph.

Proof. For a given programmed grammar G = (N, T, S, Lab, P, Pg) in normal
form, we construct a programmed grammar G’ with a bipartite graph which
generates the same language as G.

Let r = (¢,p,0) be a rule of Pg. We set

N.={A|AeN, ({,A—w,0')€ Pg,¢ €0c}.

With r and A € N, we associate the new nonterminals A&” and A7(~2), the new
labels g, and g4 ,; with A € N, and 1 <4 < 3, and the rules

tr = (a0 {ga,1 | A€ N},
tarn = (qar1, A— AY {qar2}),
tare = (qar2, ALY — AP {qar3}),
tars = (qars, A A g |s=(¢",A— w,0") € Pg,q" €0, Ac N,}).

Moreover, we introduce a further new nonterminal S’, a new label ¢’ and the
rule

r'=(¢,5 — S, {qs|s=(,S —u,0") € Pg}.
We now define the programmed grammar G’ = (N', T, S’, Lab’, P’, Pg/) by

N = Nu{AW|reP, AcN}Ju{A® |re P, AcN,},
Lat’ = Lab; U Labs,
Lab1 = {q’} U {QA,TJ ‘ re P, Ace Nr} U {qAﬂ«,g ‘ r e PG, A€ NT}
Laby, = {¢ |r€Pe}tU{qar2]|r € Pg, A€ N,},
P = PU{S —>Stu [J{A4— AL, AL - AP AP 4},
rePg
AEN,
Pgr = {rju U {tr.tar1,tar2,tarst
rePg
AEN,

We remark that there is a one-to-one-relation between Lab’ and Pg:.

First we note that any derivation in G’ starts with S’ = S and we have to
apply a rule p, where the core production of p has the left-hand side S. Moreover,
there is a derivation

21 =, 290AZy = 20w2)

The power of programmed grammars with graphs from various classes 31

in G, where r = (¢,p,0), v = (¢, A = w,0') € Pg and ¢’ € o, if and only if
there is a derivation

/ 1)/ 2) 1 ! /
21 =>4, 2242y =>¢, ., 2 AWM 2, s T 2 AP 2, =45 22425 =, 2wy

in G’. This implies L(G’) = L(G).

Furthermore, the graph h(G’) associated with G’ is bipartite with the par-
tition of Lab’ into Lab; and Labs, because the success field of any rule with a
label of Lab; is contained in Laby and the success field of any rule with a label
of Laby is contained in Lab;. O

4. Graphs with restriction of degrees

In this part we are dealing with graphs, whose vertices have degree at most
n or exactly n where n € N.

We discuss first the situation where n = 2. Connected graphs where each
vertex has a degree at most two either form a cycle or any subgraph H, consisting
of all nodes reachable from the node a (by a directed path) forms a line.

Lemma 2. i) Given a programmed grammar whose corresponding graph is a
directed cycle, then its generated language is finite.

i) Any finite language can be generated by a programmed grammar whose
corresponding graph is a cycle.

Proof. 1) Assume that there exists a sentential form which is obtained by a
derivation with more intermediate steps than the number of vertices in the cycle.
This implies that at least one nonterminal is present in the sentential form after
walking through the cycle, meaning that the derivation does not consume more
nonterminals than it produces. Therefore this derivation cannot end, i.e., there
is no word generated by a walk which is longer than the length of the cycle. Now
assume that the derivation terminates before starting the second run through.
Then we have applied a fixed finite sequence of rules, i.e., we have generated a set
L' of words such that #,(w) = #4(w’) for alla € T and all w,w’ € L’. Therefore
L' is a finite set. Since we can start the derivation in any vertex whose core rule
has S on its left-hand side, we can have a finite set of terminating derivations,
i.e., the language generated by this programmed grammar is finite.

ii) Let L = {wy, wa,...,w,} be a finite language over some alphabet T. Then
we consider the programmed grammar

G = ({ShT,S{a|1<i<n}{S —w|1<i<n}
{(¢i, S = wi, {gi+1}) |1 < i <n}U{(gn, S = wn. {@r})})-
Obviously h(G) is a cycle and L(G) = L. O

Using analogous construction we can prove the following statement.

32 Madalina Barbaiani, Cristina Bibire, Jiirgen Dassow et al.

Lemma 3. i) Given a programmed grammar whose corresponding graph is a
line, then its generated language is finite.

i) Any finite language can be generated by a programmed grammar whose
corresponding graph is a line. a

Now we take into consideration the graphs, where each vertex has degree at
most three.

Theorem 6. FEvery language generated by a programmed grammar can be ob-
tained by a programmed grammar having a graph where all vertices have degree
at most three.

Proof. Let G = (N, T, S, Lab, P, Pg) be a programmed grammar with a graph
h(G) such that h(G) contains a vertex a of degree n > 3. Assume that the
in-degree of « is k and the out-degree of « is m, i.e., the situation of Figure 3
holds. Furthermore, let A — v be the rule associated with a.

§ %@

FiGURE 3. Node a with in-degree k and out-degree m

Then we substitute the subgraph of h(G) shown in Figure 3 by the graph H,,
presented in Figure 4 which results in a graph H;. Since all vertices of H,, have
a degree at most 3, the number of vertices with degree > 3 decreases by 1 when
going from H to H;. Furthermore, it is easy to see that L(G) = L(g(H1,5)).
Our construction works if £ > 1 and m > 2 and m is even. The modifications
for the other cases (k=0 or m = 0 or m is odd) are left to the reader.

If H; contains a vertex J of degree > 3, we repeat the above construction with
respect to 3 etc. until we obtain a graph H’ where all vertices have degree at
most 3. The corresponding grammar g(H’, S) satisfies L(G) = L(g(H’,S)). O

The power of programmed grammars with graphs from various classes 33

@)

N

*#AHA\]A—>A}—%A—>v)—>@

(5s)—fa—4]

(3)——{a—4]

]A—>A}—#A—>v)—>@

() 2]

*#AHA}—%A—»A}—%AHMH@

FIGURE 4. Substitution graph where all nodes have a degree at
most 3

It is easy to see that for any n > 3 we have the following consequence: any
language generated by a programmed grammar can be generated by a grammar
for which the graph has no vertex of degree greater than n.

We now consider regular graphs of degree n. If n = 2, then the graph has
to be a cycle, and Lemma 2 gives the generative power of regular graphs of
degree 2.

Theorem 7. Every language generated by a programmed grammar can be ob-
tained by a programmed grammar with o reqular graph of degree 3.

Proof. Let L be a grammar which can be generated by a programmed grammar.
By Theorem 6 we can assume that L = L(G) for some programmed grammar G
where any vertex of the graph h(G) associated with G has a degree < 3.

34 Madalina Barbaiani, Cristina Bibire, Jiirgen Dassow et al.

Let us assume that there is a vertex A — w of degree 2 in h(G), i.e., we have
the situation

a) A—>w , b) A—w or ¢) A—w

We discuss only the situation a); for the other two cases b) and c¢) one can
give analogous constructions. We substitute this subgraph by the graph H’
given in Figure 5 where A; and A, are additional nonterminals. Let H; be the
graph obtained by this substitution. It is easy to see that L(G) = L(g(H1, S)).
Moreover, going from h(G) to H; we decrease the number of vertices with a
degree < 3 by 1.

A=A —{& =]

A— A A—w

A=) A=)

FIGURE 5. Substitution graph H’

Let us now assume that there is a vertex A — w of degree 1 in h(G), i.e., we
have the situation

d) A—w| or e) A—w

We only discuss case d); case e) can be handled analogously. We substitute the
subgraph by the graph H” given in Figure 6, where A; and A, are additional
nonterminals, again. Let H{ be the graph obtained by this substitution. Obvi-
ously, L(G) = L(g(H{,S)). Furthermore, going from H to H{ we decrease the
number of vertices with a degree < 3 by 1.

[A— A F— A > u]

A— A

[A— Ay f— 4y >]

FIGURE 6. Substitution graph H”

By repeated applications of the above methods we finally get a graph Hs such
that L(G) = L(g(Hs, S)) and Hs is a regular graph of degree 3. O

The power of programmed grammars with graphs from various classes 35

Theorem 8. FEvery language generated by a programmed grammar can be ob-
tained by a programmed grammar with a regular graph of degree n > 3.

Proof. Let G be an arbitrary programmed grammar. Then there is a pro-
grammed grammar G’ such that L(G') = L(G) and h(G) is a regular graph
of degree 3. If n > 3, we add to each vertex some additional vertices and edges
analogous to the construction in the proof of Theorem 7 such that a regular
graph of degree n is obtained. The details are left to the reader. O

5. Some non-pr-universal classes of graphs

Again we start with an easy statement which is already implicitly contained
in some papers/books. Since in a context-free grammar any rule can be followed
by any production we have the following statement.

Lemma 4. The family of languages generated by programmed grammars with
complete graphs coincides with the family of context-free languages. O

Theorem 9. The family of languages generated by programmed grammars with
backbone graphs is incomparable with the families of reqular and context-free
languages (and thus it is properly included in the family of languages generated
by programmed grammars).

Proof. The graph associated with the programmed grammar G of Example 1 is
a backbone graph. Its generated language {a™b™c" | n > 2} is not context-free
and thus not regular.

We consider the regular language L = {a™b™ | n > 1,m > 1}. We show that
L cannot be generated by a programmed grammar with a backbone graph which
proves the statement of the theorem.

On the contrary, suppose that there is a programmed grammar G =
(N,T,S, Lab, P, Pg) with a backbone graph h(G) which generates L. After leav-
ing the cycle in a derivation we can only perform a finite number of derivation
steps. Thus there is a number r such that any sentential form with at least r+ 1
nonterminals cannot be terminated by leaving the cycle.

Obviously, there is a number s such that all derivations not running through
the complete cycle consist of at most s derivation steps. Thus all derivations not
running through the complete cycle generate a finite language only.

We now consider derivation running through the complete cycle (this is the
only possibility to generate an infinite language). Let w be the sentential form
if we enter the cycle. Now we run through the cycle and obtain a new sentential
form v. If there is a nonterminal A such that #4(w) < #4(v), we cannot run
r + 1 times through the cycle or after running r + 1 times through the cycle
we have at least r + 1 occurrences of A in the obtained sentential form. In the
former case there are at most finitely many terminating derivations from w; in
the latter case we cannot terminate the derivation. Thus, if #4(w) < #4(v)

36 Madalina Barbaiani, Cristina Bibire, Jiirgen Dassow et al.

for some A, from w we only generate a finite set. If #5(w) > #p(v) for some
B € N, we can perform at most #p(w) runs through the cycle. Thus in this
case we can generate at most a finite set, too.

Therefore assume that #¢(w) = #¢(v) for all C € N. Then we can arbitrar-
ily often go through the cycle. Let ng and mg be the number of terminals of a
and b, respectively, which are introduced by one run through the cycle. Assume
that we go k times through the cycle and finish then the derivation using vertices
outside the cycle. The generated word contains #,(w) 4+ kno+n; occurrences of
a and #p(w) + kmg +my occurrences of b (where the terminating phase outside
the cycle produces n; letters a and my letters b). Since there are only a finite
number of possibilities for w, (ng, mg) and (ni,m;) we cannot obtain any pair
(n,m) as it is necessary in order to generate L. O

6. Discussion of related classes of grammars and languages

Above we have presented some results on the power of programmed grammars
with erasing rules and without appearance checking where the control is done
by restricted classes of graphs. We now discuss modifications of the concept of
programmed grammars.

Programmed grammars without erasing rules and without appearance check-
ing. Going through the proofs one sees that we have only added erasing rules
in the proof of Theorem 4. Thus all the other statements on the power of pro-
grammed grammars given in this paper remains valid for programmed grammars
without erasing rules (and without appearance checking).

Programmed grammars with appearance checking. A programmed grammar
with appearance checking is a sixtuple G = (N, T, S, Lab, P, Pg) where N, T,
S, Lab and P are specified as in a programmed grammar (without appearance
checking) and Py is a finite set of quadruples (¢, A — w, o,) where q € Lab,
A€ N, we (NUT)* and o and ¢ are subsets of Lab. Such a quadruple is
applied to a sentential form z € (N UT)" as follows: If 2 = 21 Az for some
21,29 € (N UT)*, then we get 2/ = zjwzy and continue with a rule which
label is in o; and if there is no occurrence of A in z, then we do not change the
sentential form and continue with a rule which label is in ¢. The modelling of this
type of control of the derivation process by a graph requires coloured edges. Let
q, A — w,o,p) bearule. The edges leading from ¢ to a label belonging to o have
one colour, say green, whereas the edges leading from ¢ to a rule belonging to
¢ have another colour, say red. However, for some graph-theoretical properties,
we have problems with its definition since we have to take into consideration the
colours, e.g., for Hamiltonian graphs it is not clear whether the walk through all
vertices can use edges with different colours or not. If we transform a graph used
for the control into a graph without coloured edges, i.e., we ignore the colours,
then all results on the power of programmed grammars (without appearance
checking) presented in this paper remain valid.

The power of programmed grammars with graphs from various classes 37

This statement also holds for programmed grammar without erasing rules and
with appearance checking. The only critical case is that of planar graphs. Here
we can use a modification of the proof of [5], Lemma 2.2.3 to get a programmed
grammar with a planar graph (as control) which generates the language of a
given programmed grammar. One has to note that this construction requires
appearance checking.

Graph-controlled grammars. Graph-controlled grammars are distinguished
from programmed grammars by that we give in advance sets of initial nodes and
final nodes and the derivation has to start in an initial node and to stop in a final
node. Therefore programmed grammars can be considered as graph-controlled
grammars where the set of initial nodes consists of all nodes S — w (where S
is the axiom) and the set of final nodes is the set of all nodes. Therefore our
constructions present graph-controlled grammars where the control graphs have
the required additional properties. Hence all results on the power of programmed
grammars given in this paper also hold for graph-controlled grammars.

This statement also holds for graph-controlled grammars with or without
appearance checking and with or without erasing rules if one takes into consid-
eration the changes with respect to the programmed grammars given above.

We now discuss a further feature. All proofs in this paper work by the adding
of nodes and edges to the given graphs. However, in some cases the added nodes,
precisely the rules of the added nodes, cannot be used in terminating derivations.
This holds with respect to Theorems 1, 2 and 3. It seems that corresponding
statements cannot be proved by our method for graphs where all nodes are used
in some terminating derivation, because we need connections (between nodes)
which do not exist in the original graph and their adding leads can give new
terminating derivations if all nodes can be successfully applied.

The other results on the power of programming grammars presented in the
paper are valid with requirement that any rule is used in some terminating
derivation, too.

Finally we mention that we have only considered some very well-known classes
of graphs. However, there are some further important classes of graphs which
can be investigated with respect to pr-universality.

Acknowledgement

The authors are very grateful to the referees whose critical remarks lead to a
considerable improvement.

REFERENCES

1. J. Dassow, Subregularly controlled derivations: the context-free case, Rostock. Math. Kol-
loq. 34 (1988), 61-70.

38

2.

10.

11.

12.

13.

Madalina Barbaiani, Cristina Bibire, Jiirgen Dassow et al.

J. Dassow, Grammars with regulated rewriting, In: C. Martin-Vide, V. Mitrana and
Gh. Paun (eds.), Formal Languages and Applications, 249-274, Springer-Verlag, Berlin,
Heidelberg, 2004.

. J. Dassow, Contextual grammars with subregular choice, Fundamenta Informaticae 64

(2005) 109-118.

. J. Dassow and H. Hornig, Conditional grammars with subregular conditions, In: M. Ito

and H. Jiirgensen (eds.), Proc. Internat. Conf. Words, Languages and Combinatorics II,
World Scientific, Singapore, 1994, 71-86.

. J. Dassow and Gh. Paun, Regulated Rewriting in Formal Language Theory, Springer-

Verlag, Berlin, 1989.

. J. Dassow, Gh. Paun and A. Salomaa, Grammars with controlled derivations, In [13], Vol.

II, 101-154.

. R. Diestel, Graph Theory, Second Edition, Springer-Verlag, New York, 2000.
. H. Fernau, Nonterminal complexity of programmed grammars, Theor. Comp. Sci. 296

(2003), 225-251.

. H. Fernau, R. Freund, M. Oswald and K. Reinhardt, Refining the nonterminal complexity

of graph-controlled grammars, In: C. Mereghetti, B. Palano, G. Pighizzini and D. Wotschke
(eds.), Proc. Descriptional Complexity of Formal Systems, Como, 2005, 110-121.

J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (Massachusetts), 1979.

A. Pascu and Gh. Paun, On the planarity of bicolored digraph grammar systems, Discr.
Math. 25 (1979), 195-197

D. J. Rosenkrantz, Programmed grammars and classes of formal languages, JACM 16
(1969), 107-131.

G. Rozenberg and A. Salomaa, Handbook of Formal Languages, Vol. I — III, Springer-
Verlag, Berlin, 1997.

Madalina Barbaiani, Cristina Bibire, Mihai Ionescu and Atif Lodhi

all Research Group on Mathematical Linguistics, Rovira i Virgili University, Tarragona,

Spain

e-mail: {madalina.barbaiani, cristina.bibire, armandmihai.ionescu, atif.lodhi}@estudiants.
urv.cat

Jiirgen Dassow
Fakultat fiir Informatik, Otto-von-Guericke-Universitdat Magdeburg, Germany
e-mail: dassow@iws.cs.uni-magdeburg.de

Aidan Delaney

Research Group on Mathematical Linguistics, Rovira i Virgili University, Tarragona, Spain
and Department of Computer Science, NUI Maynooth, Maynooth, Co. Kildare, Ireland
e-mail: adelaney@cs.may.ie

Szildrd Fazekas and Benedek Nagy

both Research Group on Mathematical Linguistics, Rovira i Virgili University, Tarragona,
Spain and Faculty of Informatics, University of Debrecen, Debrecen, Hungary

e-mail: szilard.zsoltQestudiants.urv.cat , nbenedek@inf.unideb.hu

Guangwu Liu

Research Group on Mathematical Linguistics, Rovira i Virgili University, Tarragona, Spain
and Department of Control Science and Engineering, Huazhong University of Science and
Technology, Wuhan, People’s Republic of China

e-mail: guanwu.liu@estudiants.urv.cat

