
http://wrap.warwick.ac.uk

Original citation:
Englert, Matthias, Özmen, Deniz and Westermann, Matthias. (2014) The power of
reordering for online minimum makespan scheduling. SIAM Journal on Computing,
Volume 43 (Number 3). pp. 1220-1237. ISSN 1095-7111

Permanent WRAP url:
http://wrap.warwick.ac.uk/60729

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Publisher’s statement:
First Published in SIAM Journal on Computing in Volume 43 (Number 3), published by
the Society of Industrial and Applied Mathematics (SIAM)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60729
mailto:publications@warwick.ac.uk

The Power of Reordering
for Online Minimum Makespan Scheduling∗

Matthias Englert† Deniz Özmen‡ Matthias Westermann§

In the classic minimum makespan scheduling problem, we are given an input
sequence of jobs with processing times. A scheduling algorithm has to assign the
jobs to m parallel machines. The objective is to minimize the makespan, which
is the time it takes until all jobs are processed. In this paper, we consider online
scheduling algorithms without preemption. However, we do not require that each
arriving job has to be assigned immediately to one of the machines. A reordering
buffer with limited storage capacity can be used to reorder the input sequence in
a restricted fashion so as to schedule the jobs with a smaller makespan. This is a
natural extension of lookahead.
We present an extensive study of the power and limits of online reordering

for minimum makespan scheduling. As main result, we give, for m identical
machines, tight and, in comparison to the problem without reordering, much
improved bounds on the competitive ratio for minimum makespan scheduling
with reordering buffers. Depending on m, the achieved competitive ratio lies
between 4/3 and 1.4659. This optimal ratio is achieved with a buffer of size Θ(m).
We show that larger buffer sizes do not result in an additional advantage and
that a buffer of size Ω(m) is necessary to achieve this competitive ratio. Further,
we present several algorithms for different buffer sizes.

For m uniformly related machines, we give a scheduling algorithm that achieves
a competitive ratio of 2 with a reordering buffer of size m. Considering that the
best known competitive ratio for uniformly related machines without reordering
is 5.828, this result emphasizes the power of online reordering further more.

1. Introduction

In the classic minimum makespan scheduling problem, we are given an input sequence of
jobs with processing times. A scheduling algorithm has to assign the jobs to m parallel

∗A preliminary version of this article appeared in Proc. of the 49th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 603–612, 2008. This work has been supported by DFG grant WE 2842/1
and by the Centre for Discrete Mathematics and its Applications (DIMAP), EPSRC award EP/D063191/1.

†DIMAP and Department of Computer Science, University of Warwick, UK, englert@dcs.warwick.ac.uk
‡Department of Computer Science, RWTH Aachen University, Germany, deniz.oezmen@rwth-aachen.de
§Department of Computer Science, Technische Universität Dortmund, Germany,
matthias.westermann@cs.uni-dortmund.de

machines. The objective is to minimize the makespan, which is the time it takes until all
jobs are processed. This problem is NP-hard in the strong sense [GJ79]. In this paper, we
consider online scheduling algorithms without preemption. An online algorithm does not
have knowledge about the input sequence in advance. Instead, it gets to know the input
sequence job by job without knowledge about the future.
Extensive work has been done to narrow the gap between upper and lower bounds on

the competitive ratio for online minimum makespan scheduling. Increasingly sophisticated
algorithms and complex analyses were developed. Nevertheless, even for the most basic case
of identical machines, in which each job has the same processing time on every machine,
there is still a gap between the best known lower and upper bounds on the competitive ratio
of 1.880 [Rud01] and 1.9201 [FW00], respectively.
Adding lookahead is a common practice to improve the quality of solutions for online

problems. The impact of lookahead has been studied for various problems, e.g., pag-
ing [KP94, Tor98], the list update problem [Alb98], the k-server problem [BDB94], and
bin packing [Gro95]. However, lookahead alone is not sufficient to improve the quality of
solutions for the minimum makespan scheduling problem. The lookahead window can always
be rendered useless by flooding it with unimportant jobs having arbitrary small processing
times.

However, for many problems, including minimum makespan scheduling, it is reasonable to
not only provide a lookahead to a certain number of future jobs, but additionally to allow
the algorithm to choose one of these jobs for processing next and, therefore, to reorder the
input sequence. The paradigm of online reordering is more powerful than lookahead alone
and has received a lot of attention [Alb04, ATUW01, DS00, ERW07, FMP+04]. It has been
studied, e.g., by Albers [Alb04] and Feder et al. [FMP+04] for the problem of web caching.

We present an extensive study of the power and limits of online reordering for minimum
makespan scheduling. In our model, a reordering buffer can be used to reorder the input
sequence of jobs in a restricted fashion. At each point in time, the reordering buffer contains
the first k jobs of the input sequence that have not been assigned so far. An online scheduling
algorithm has to decide which job to assign to which machine next. Upon its decision, the
corresponding job is removed from the buffer and assigned to the corresponding machine,
and thereafter the next job in the input sequence takes its place.

As main result, we give, for m identical machines, tight and, in comparison to the problem
without reordering, much improved bounds on the competitive ratio for minimum makespan
scheduling with reordering buffers. Depending on m, the achieved competitive ratio lies
between 4/3 and 1.4659. This optimal ratio is achieved with a buffer of size Θ(m). We show
that larger buffer sizes do not result in an additional advantage and that a buffer of size
Ω(m) is necessary to achieve this competitive ratio.

More precisely, for m identical machines, we present the following results.

• We prove a lower bound of rm on the competitive ratio of this problem with m
identical machines and a reordering buffer whose size does not depend on the input
sequence. The precise value of rm is given in Section 1.1. For example, r2 = 4/3 and
limm→∞ rm = W−1(−1/e2)/(1 +W−1(−1/e2)) ≈ 1.4659.1

1W−1 is the lower branch of the Lambert W function, i.e., W−1(−1/e2) is the smallest real solution to
x · ex = −1/e2.

2

• We introduce a fairly simple scheduling algorithm for m identical machines matching
this lower bound with a reordering buffer of size ⌈(1 + 2/rm) ·m⌉+ 2 ≤ ⌈2.5 ·m⌉+ 2.

• We show a lower bound of 3/2 > rm on the competitive ratio of this problem with m
identical machines and a reordering buffer of size at most ⌊m/2⌋. This lower bound
improves to 1 + 1/

√
2 ≈ 1.7071 for a reordering buffer of size at most ⌊m/8⌋ if m ≥ 8.

For m uniformly related machines, i.e., for m machines with different speeds, we give a
scheduling algorithm that achieves a competitive ratio of 2 with a reordering buffer of size
m. Our algorithm and analysis are extremely simple. Considering that the best known
lower and upper bounds on the competitive ratio for uniformly related machines without
reordering are 2.438 and 5.828 [BCK00], respectively, this result emphasizes the power of
online reordering even more.
In addition, we present, for m identical machines, several algorithms for different buffer

sizes. In particular, we show that buffers of size ⌈(2/3+2/(1+ln 3))·m⌉+1 ≈ 1.6197·m+1 and
m+ 1 are sufficient to achieve the competitive ratios 3/2 and 1 + rm/2 ≤ 1.733, respectively.

In the following table, we compare, for m identical machines, the competitive ratios of our
algorithm and the best known lower and upper bounds on the competitive ratio for the case
that reordering is not allowed.

m
our results lower bounds upper bounds

reordering buffer no reordering no reordering

2 1.3333 1.5 [FKT89] 1.5 [Gra66]
3 1.3636 1.6667 [FKT89] 1.6667 [Gra66]
4 1.375 1.7321 [RC03] 1.7333 [CvVW94]
∞ 1.4659 1.8800 [Rud01] 1.9201 [FW00]

Note that our results are tight, i.e., we show matching lower and upper bounds, in contrast
to the problem without reordering for which there are still gaps between the lower and upper
bounds.

1.1. Notations and the value of rm

The processing time or size of a job J is denoted by p(J). The load L(M) of a machine M
is defined as the sum of the sizes of the jobs assigned to machine M . The total scheduled
load T is defined as the sum of the load of all machines. The m machines are denoted by
M0, . . . ,Mm−1.
We frequently make use of the weight wi of a machine Mi which is defined as wi :=

min{rm/m, (rm − 1)/i} or equivalently

wi :=

{

rm
m , if 0 ≤ i < rm−1

rm
·m

rm−1
i , if rm−1

rm
·m ≤ i ≤ m− 1

.

Now, rm is the smallest positive solution to
∑m−1

i=0 wi = ⌈m −m/rm⌉ · rm/m + (rm − 1) ·
∑m−1

i=⌈m−m/rm⌉ 1/i = 1, i.e., we ensure that the weights of all machines sum up to 1.
Unfortunately, we do not know a closed-form formula for rm, but the value can be easily

calculated for any given m. The values of rm for 2 ≤ m ≤ 30 are depicted in Figure 1. We can
derive limm→∞ rm = W−1(−1/e2)/(1 +W−1(−1/e2)), by using limm→∞⌈m−m/x⌉ · x/m =

3

1.32

1.34

1.36

1.38

1.4

1.42

1.44

1.46

5 10 15 20 25 30

r m

m

Figure 1: The values of rm for 2 ≤ m ≤ 30.

(x− 1) and limm→∞
∑m−1

i=⌈m−m/x⌉ 1/i = − ln(1− 1/x). Further, rm is non-decreasing in m.

This follows from the fact that ⌈m−m/x⌉ · x/m+ (x− 1) ·
∑m−1

i=⌈m−m/x⌉ 1/i is monotonically
increasing in x and non-increasing in m. A more detailed argument is given in Appendix A.

1.2. Related work

Minimum makespan scheduling has been extensively studied. See the survey by Pruhs, Sgall,
and Torng [PST04] for an overview. For m identical machines, Graham [Gra66] shows that
the greedy algorithm, which schedules each arriving job on a machine with minimum load,
is (2− 1/m)-competitive. This is optimal for m ≤ 3 [FKT89]. However, better bounds are
known for larger m. For m = 4, the best known lower and upper bounds on the competitive
ratio are 1.7321 [RC03] and 1.7333 [CvVW94], respectively. For large m, the best known
lower bound on the competitive ratio was improved from 1.837 [BKR94] over 1.852 [Alb99]
and 1.854 [GRTW00] to 1.880 [Rud01]. The first upper bound on the competitive ratio
below 2 was 1.986 [BFKV95]. This upper bound was improved to 1.945 [KPT96], then to
1.923 [Alb99], and finally to 1.9201 [FW00].

For uniformly related machines, Aspnes et al. [AAF+97] present the first algorithm that
achieves a constant competitive ratio. Due to Berman, Charikar and Karpinski [BCK00], the
best known lower and upper bounds on the competitive ratio are 2.438 and 5.828, respectively.

In a semi-online variant of the problem the jobs arrive in decreasing order of their processing
time. To the best of our knowledge, only the greedy LPT algorithm, which assigns each job
to a machine with minimum load, was considered in this setting. For m identical machines,
Graham [Gra69] shows that the LPT algorithm achieves a competitive ratio of 4/3− 1/(3m).
For related machines, the LPT algorithm achieves a competitive ratio of 1.66 and a lower
bound of 1.52 on its competitive ratio is known [Fri87]. A detailed and tight analysis for
two related machines is given by Mireault, Orlin, and Vohra [MOV97] and Epstein and
Favrholdt [EF02].

Numerous variants related to online minimum makespan scheduling with reordering buffers
have been studied. Kellerer et al. [KKST97] present, for two identical machines, an algorithm

4

that achieves an optimal competitive ratio of 4/3 with a reordering buffer of size 2, i.e., the
smallest buffer size allowing reordering.2

Subsequently to our work, a variety of related papers appeared. Lan et al. [LCD+12] give,
for m identical machines, a 1.5-competitive algorithm with a buffer of size 1.5m+ 1 and,
for 3 identical machines, a (15/11)-competitive algorithm with a buffer of size 7. For m
uniformly related machines, they present an algorithm that achieves a competitive ratio of
2− 1/m+ ε with a buffer of size m+ 1, where ε > 0 is sufficiently small.

Dósa and Epstein [DE10] study minimum makespan scheduling on two uniformly related
machines with speed ratio s ≥ 1. They show that, for any s > 1, a buffer of size 3 is sufficient
to achieve an optimal competitive ratio and, in the case s ≥ 2, a buffer of size 2 already
allows to achieve an optimal ratio.
Albers and Hellwig [AH12] generalize our results to the problem of minimum makespan

scheduling with job migrations, i.e. where no reordering buffer is available, but a limited
number of job reassignments may be performed. The main result is a deterministic algorithm
that is rm-competitive. For m ≥ 11, the algorithm uses at most 7m migration operations.
For smaller m, 8m to 10m operations may be performed. A number of papers consider
similar models; see, e.g., [CLB+11, DWHG11, TY08, WBC+12].
Dósa and Epstein [DE11] study preemptive scheduling, as opposed to non-preemptive

scheduling, on m identical machines with a reordering buffer. They present a tight bound on
the competitive ratio for any m. This bound is 4/3 for even values of m and slightly lower
for odd values of m. They show that a buffer of size Θ(m) is sufficient to achieve this bound,
but a buffer of size o(m) does not reduce the best overall competitive ratio that is known for
the case without reordering, e/(e− 1).
Epstein, Levin, and van Stee [ELvS11] study the objective to maximize the minimum

load. For m identical machines, they present an upper bound on the competitive ratio of
Hm−1 + 1 for a buffer of size m and a lower bound of Hm for any fixed buffer size. For m
uniformly related machines, they show that a buffer of size m+ 2 is sufficient to achieve the
optimal competitive ratio m.

The paradigm of online reordering has been studied before for several other scheduling
problems. In [ERW07], a reordering buffer of size k is used to minimize the sum of the
distances between consecutive elements in a sequence of points from a metric space. A
randomized online algorithm is presented that achieves a competitive ratio of O(log2 k · log n),
where n denotes the number of distinct points in the metric space. A possible application is
the acceleration of rendering in computer graphics [KRSW04].
Alborzi et al. [ATUW01] consider the similar k-client problem. In this problem, we are

given k clients, each of which generates an input sequence of requests for service in a metric
space. At each point in time, a scheduling algorithm has to decide which client’s request to
serve next. They present a deterministic online algorithm that achieves a competitive ratio
of 2k − 1.

Web caching with request reordering extends the classic paging model by allowing reordering
of requests under the constraint that a request is delayed by no longer than a predetermined
number of time steps. Albers [Alb04] presents a deterministic algorithm that achieves an

2Note that in this and several of the following papers, the model differs from ours in that arriving jobs can
bypass the buffer and may directly be assigned to a machine. This is equivalent to increasing the buffer
size in our model by 1. We express buffer sizes in terms of our model here.

5

optimal competitive ratio of k + 1, where k denotes the cache size. Feder et al. [FMP+04]
introduce a randomized algorithm that achieves an asymptotically optimal competitive ratio
of Θ(log k).

Divakaran and Saks [DS00] consider an online scheduling problem with job set-ups. Each
job has a release time, a processing time, and a type. Processing a job takes its processing
time and in addition a job-type specific set-up time. However, this set-up time is not needed
if the previously processed job was of the same type. The objective is to minimize the
maximum flow time. They present an O(1)-competitive algorithm for this problem.

2. The algorithm for uniformly related machines

We start with the algorithm for uniformly related machines, since this simple algorithm
illustrates the basic structure of all our algorithms. They consist of two different phases.
Initially, the first k − 1 jobs are stored in the reordering buffer where k denotes the buffer
size. Then, the algorithms start with the iteration phase. As long as new jobs arrive, this
phase is iterated. After all jobs have arrived, the algorithms schedule the remaining jobs in
the final phase.
A generic version of the final phase is to schedule the k − 1 jobs remaining in the buffer

optimally on the machines. However, since the minimum makespan scheduling problem
is NP-hard, it is not known how to perform this generic final phase efficiently. Although
efficiency is usually not considered for online algorithms, we provide, for all our algorithms
for identical machines, very simple and efficient alternatives to the generic approach without
deteriorating the competitive ratio. For uniformly related machines, we replace the generic
final phase by the PTAS due to Hochbaum and Shmoys [HS88]. This deteriorates the
competitive ratio from 2 to 2 + ε for any ε > 0.

The algorithm for assigning a sequence of jobs on m uniformly related machines (denoted
by M0, . . . ,Mm−1) uses a reordering buffer of size m. For each 0 ≤ i ≤ m− 1, let αi denote
the speed of machine Mi, i.e., if load T is assigned to machine Mi then the completion time
of machine Mi is T/αi. Suppose that α0 ≤ . . . ≤ αm−1. The objective is to minimize the
makespan, i.e., the maximum completion time. The iteration and final phase are defined as
follows.

• Iteration phase: When a new job arrives, store this new job in the reordering buffer,
and remove a job J of smallest size from the buffer. Let Mi be a machine with load at
most

αi
∑m−1

j=0 αj

· (T +m · p(J))− p(J) ,

where T denotes the total load scheduled so far. (Obviously, there always exists such
a machine.) Then, schedule job J on machine Mi, i.e., the total scheduled load T is
increased by p(J).

• Final phase: The m− 1 remaining jobs in the reordering buffer are virtually scheduled
using the PTAS by Hochbaum and Shmoys [HS88] onm empty machinesM ′

0, . . . ,M
′
m−1,

where, for each 0 ≤ i ≤ m− 1, machine M ′
i has speed αi. With this scheme an (1 + ε)-

approximation is achieved. Then, for each 0 ≤ i ≤ m− 1, schedule the jobs from M ′
i

on the real machine Mi.

6

Theorem 1. For m uniformly related machines, our algorithm achieves the competitive
ratio 2 + ε with a reordering buffer of size m.

Proof. Fix an input sequence of jobs. Let OPT denote the minimum makespan achieved by
an optimal offline algorithm.

At the end of the iteration phase, for each 0 ≤ i ≤ m− 1, the completion time of machine
Mi is at most

1
∑m−1

j=0 αj

· (T + (m− 1) · p(Ji)) ,

where T denotes the total scheduled load at the end of the iteration phase and Ji denotes the
last job scheduled on machine Mi in the iteration phase. Obviously, for each 0 ≤ i ≤ m− 1,

1
∑m−1

j=0 αj

· (T + (m− 1) · p(Ji)) ≤ OPT ,

since m− 1 jobs are stored in the reordering buffer at the end of the iteration phase and the
size of each of these jobs is at least p(Ji).

In the final phase, for each 0 ≤ i ≤ m− 1, the completion time of the machine M ′
i in the

virtual schedule is at most (1 + ε) ·OPT, due to the polynomial time approximation scheme.
As a consequence, the makespan of our algorithm is at most (2 + ε) ·OPT.

3. Lower bounds

In this section, we present lower bounds for m identical machines. As main result, we prove
that no online algorithm can achieve a competitive ratio less than rm with a reordering
buffer whose size does not depend on the input sequence. Further, we show that this general
lower bound can be improved to 3/2 > rm for a reordering buffer of size at most ⌊m/2⌋, and
to 1 + 1/

√
2 ≈ 1.7071 for a reordering buffer of size at most ⌊m/8⌋ if m ≥ 8.

Theorem 2. For m identical machines, no online algorithm can achieve a competitive ratio
less than rm with a reordering buffer whose size does not depend on the input sequence.

Proof. Assume for contradiction that there exists an online algorithm A that achieves a
competitive ratio r < rm with a reordering buffer of size k. Consider the following input
sequence. At first, 1/ε+k jobs of size ε arrive. Since only k of these jobs can be stored in the
reordering buffer, 1/ε of them have to be scheduled on machines. Let M0, . . . ,Mm−1 denote
the m identical machines with L(M0) ≥ · · · ≥ L(Mm−1). Then, there exists a machine Mj

with load at least wj , since otherwise, the total scheduled load would be strictly less than
∑m−1

i=0 wi = 1.
We distinguish two different cases.

• If wj = rm/m, no more jobs arrive. In the optimal schedule, all jobs are evenly
distributed between the machines. Hence, the optimal makespan is at most (1 + k ·
ε)/m+ ε. As a consequence, the competitive ratio of A is at least

rm/m

(1 + (k +m) · ε)/m =
rm

1 + (k +m) · ε ,

which is strictly larger than r if ε is chosen sufficiently small.

7

• If wj = (rm − 1)/j, m− j additional jobs of size 1/j arrive. It is possible, to assign
each of the m − j additional jobs to a different machine and to evenly distribute
the remaining 1/ε + k jobs between the remaining j machines. Hence, the optimal
makespan is at most (1 + k · ε)/j + ε.

If A schedules two jobs of size 1/j on the same machine, the competitive ratio of A is
at least

2/j

(1 + (k + j) · ε)/j =
2

1 + (k + j) · ε ,

which is strictly larger than r if ε is chosen sufficiently small.

Otherwise, i.e., A schedules at least one of the jobs of size 1/j on a machine that
already has load at least (rm − 1)/j, the competitive ratio of A is at least

rm/j

(1 + (k + j) · ε)/j =
rm

1 + (k + j) · ε ,

which is strictly larger than r if ε is chosen sufficiently small.

This concludes the proof of the theorem.

The above general lower bound can be improved for small reordering buffers.

Theorem 3. For m identical machines:

• No online algorithm can achieve a competitive ratio less than 3/2 with a reordering
buffer of size at most ⌊m/2⌋.

• No online algorithm can achieve a competitive ratio less than 1+1/
√
2 with a reordering

buffer of size at most ⌊m/8⌋ if m ≥ 8.

Proof. The following input sequences are similar to the ones used by Faigle, Kern, and
Turán [FKT89] for lower bounds on the problem without reordering.

• Consider an online algorithm A with a reordering buffer of size at most ⌊m/2⌋. The
input sequence consists of at most two consecutive phases.

– In the first phase, m jobs of size 1 arrive. If A scheduled two or more jobs on any
machine, stop. Otherwise, continue with the second phase.

– In the second phase, ⌊m/2⌋ jobs of size 2 arrive.

If the input sequence consists only of the first phase, the competitive ratio of A is at
least 2. Otherwise, at the end of the first phase, the load on at least m− (⌊m/2⌋ − 1)
machines is 1, and hence, the competitive ratio of A is at least 3/2.

• Consider an online algorithm A with a reordering buffer of size at most ⌊m/8⌋. Assume
that m ≥ 8. The input sequence consists of at most three consecutive phases.

– In the first phase, m jobs of size 1 arrive. If A scheduled two or more jobs on any
machine, stop. Otherwise, continue with the second phase.

– In the second phase, m jobs of size 1 +
√
2 arrive. If A scheduled jobs of total

size at least 1 + 2(1 +
√
2) on any machine, stop. Otherwise, continue with the

third phase.

8

– In the third phase, ⌊m/4⌋ jobs of size 2 + 2
√
2 arrive.

If the input sequence consists only of the first phase, the competitive ratio of A is at
least 2. If the input sequence consists only of the first two phases, the competitive

ratio of A is at least 1+2(1+
√
2)

1+(1+
√
2)

= 1 + 1/
√
2.

Otherwise, at the end of the second phase, the load on at least m− 2(⌊m/8⌋ − 1) ≥
m−⌊m/4⌋+2 machines is at least 1+(1+

√
2), since the load on at leastm−(⌊m/8⌋−1)

machines is 1 at the end of the first phase and at least m− (⌊m/8⌋ − 1) jobs of size
1 +

√
2 are scheduled in the second phase. Hence, the competitive ratio of A is at least

1+(1+
√
2)+(2+2

√
2)

2+2
√
2

= 1 + 1/
√
2 in this case.

This concludes the proof of the theorem.

4. Algorithms for identical machines

In this section, we present scheduling algorithms for m identical machines M0, . . . ,Mm−1.
As main result, we introduce a fairly simple algorithm that achieves the competitive ratio
rm. First, we prove this matching upper bound for a reordering buffer of size 3m. Then,
with a refined analysis, we improve the buffer size to ⌈(1 + 2/rm) · m⌉ + 2. Finally, we
give a 3/2-competitive algorithm using a buffer of size ⌈(2/3 + 2/(1 + ln 3)) ·m⌉+ 1 and a
(1 + rm/2)-competitive algorithm using a buffer of size m+ 1.

4.1. The optimal algorithm

The following algorithm uses a reordering buffer of size k ≥ m which is a parameter of the
algorithm. The iteration and final phase are defined as follows.

• Iteration phase: When a new job arrives, store this new job in the reordering buffer,
and remove a job J of smallest size from the buffer. Let Mi be a machine with load at
most

wi · (T +m · p(J))− p(J) ,

where T denotes the total scheduled load. (Due to Observation 4, there always exists
such a machine.) Then, schedule job J on machine Mi, i.e., the total scheduled load T
is increased by p(J).

• Final phase: This phase consists of two steps.

In the first step, some of the k− 1 remaining jobs in the reordering buffer are virtually
scheduled on m empty machines M ′

0, . . . ,M
′
m−1: The jobs are considered in descending

order of their size and assigned to a machine with minimum load. Note that this is just
the LPT algorithm. However, we abort the process if the makespan is at least three
times the size of the smallest job assigned so far. When the process is aborted, the
last assigned job, which is also the smallest assigned job, is removed from the virtual
schedule. Note that, in particular, at most two jobs are assigned to each machine in the
virtual schedule. Assume that L(M ′

0) ≤ · · · ≤ L(M ′
m−1). Then, for each 0 ≤ i ≤ m− 1,

schedule the jobs from M ′
i on the real machine Mi.

9

In the second step, schedule the remaining jobs according to the greedy algorithm,
which allocates each job on a machine with minimum load.

Observation 4. There always exists a machine Mi with load at most wi ·(T+m·p(J))−p(J).

Proof. Assume for contradiction that, for each 0 ≤ i ≤ m− 1, machine Mi has load strictly
greater than wi · (T +m · p(J))− p(J). This yields the following contradiction

T >

m−1
∑

i=0

(wi · (T +m · p(J))− p(J))

= (T +m · p(J))−m · p(J)
= T ,

since by definition
∑m−1

i=0 wi = 1.

The following theorem shows that the above online algorithm, if given a sufficiently large
buffer, achieves the best possible competitive ratio.

Theorem 5. For m identical machines, our online algorithm achieves the optimal competitive
ratio rm with a reordering buffer of size k = 3m.

Proof. Fix an input sequence of jobs. Let OPT denote the minimum makespan achieved
by an optimal offline algorithm. We show that the makespan of our algorithm is at most
rm ·OPT.
At the end of the iteration phase, for each 0 ≤ i ≤ m− 1, the load of machine Mi is at

most
wi · (T + (m− 1) · p(Ji)) ,

where T denotes the total scheduled load at the end of the iteration phase and Ji denotes
the last job scheduled on machine Mi. Let pmin denote the smallest size of all remaining
jobs in the reordering buffer at the end of the iteration phase. Obviously, p(Ji) ≤ pmin and
hence, for each 0 ≤ i ≤ m− 1,

wi · (T + (m− 1) · p(Ji)) ≤ wi · (T + (m− 1) · pmin) .

In the final phase, the algorithm schedules the remaining 3m− 1 jobs in the reordering
buffer. This phase consists of two steps. First, we analyze, for a fixed 0 ≤ i ≤ m− 1, the
load on machine Mi at the end of the first step. In this step, some of the remaining jobs
in the buffer are virtually scheduled on m empty machines. Let M ′

0, . . . ,M
′
m−1 denote the

machines in the final virtual schedule with L(M ′
0) ≤ · · · ≤ L(M ′

m−1).
The virtual schedule is optimal. This is due to the fact that at most two jobs are assigned

to each machine in the virtual schedule. Scheduling three jobs on the same machine cannot
improve the makespan, since, by definition of our algorithm, the combined size of the three
smallest jobs in the virtual schedule is larger than the makespan. It is a well-known fact
that the LPT algorithm produces an optimal schedule if at most two jobs are assigned to
each machine in an optimal schedule. Hence, for each 0 ≤ j ≤ m− 1, L(M ′

j) ≤ OPT.
At the end of the first step, for each 0 ≤ j ≤ m− 1, the jobs from M ′

j are scheduled on
the real machine Mj . Thus, the load of machine Mi is at most

wi · (T + (m− 1) · pmin) + L(M ′
i) .

10

It remains to show that

wi · (T + (m− 1) · pmin) + L(M ′
i) ≤ rm ·OPT .

Clearly,
T + (m− 1) · pmin +

∑m−1
j=0 L(M ′

j)

m
≤ OPT ,

since at least m− 1 jobs remain in the buffer at the end of the first step and the size of each
of these jobs is at least pmin. Thus, for each 0 ≤ ℓ ≤ m− 1,

T + (m− 1) · pmin ≤ m ·OPT−
m−1
∑

j=0

L(M ′
j)

≤ m ·OPT− (m− ℓ) · L(M ′
ℓ) . (1)

We distinguish two cases.

• If wi = (rm − 1)/i, then (rm − 1) ·m/rm ≤ i ≤ m− 1 and it follows

wi · (T + (m− 1) · pmin) + L(M ′
i)

≤ rm − 1

i
· (m ·OPT− (m− i) · L(M ′

i)) + L(M ′
i)

=
(rm − 1) ·m

i
· (OPT− L(M ′

i)) + rm · L(M ′
i)

≤ rm · (OPT− L(M ′
i)) + rm · L(M ′

i)

= rm ·OPT ,

since L(M ′
i) ≤ OPT.

• If wi = rm/m, then 0 ≤ i ≤ (rm − 1) ·m/rm and it follows

wi · (T + (m− 1) · pmin) + L(M ′
i)

≤ rm
m

· (T + (m− 1) · pmin) + L(M ′
⌊(rm−1)·m/rm⌋)

≤ rm
m

· (m ·OPT

− (m− ((rm − 1) ·m/rm)) · L(M ′
⌊(rm−1)·m/rm⌋))

+ L(M ′
⌊(rm−1)·m/rm⌋)

= rm ·OPT .

In both cases, the makespan is at most rm ·OPT at the end of the first step.
Finally, we analyze the makespan at the end of the second step. Let pmax denote the

largest size of all jobs remaining in the reordering buffer at the end of the first step. Then,
the virtual scheduling process in the first step aborts when a job of size pmax is assigned to a
machine. Recall that this job of size pmax is removed from the virtual schedule. Consider
an optimal schedule of all jobs allocated in step one and one additional job of size pmax on
m empty machines. Since the makespan of this schedule is at least three times the size of

11

the smallest assigned job and since all jobs in this schedule have a size of at least pmax, we
conclude that pmax ≤ OPT/3.
In the second step, the remaining jobs in the reordering buffer are scheduled according

to the greedy algorithm. Since the average load is always bounded by OPT, there always
exists a machine with load at most OPT. After scheduling a job J according to the greedy
algorithm, the makespan is at most rm ·OPT, since p(J) ≤ pmax ≤ OPT/3 ≤ (rm− 1) ·OPT.
This concludes the proof of the theorem.

In the following theorem we give a refined analysis of the optimal algorithm showing that
the size of the buffer can be further reduced.

Theorem 6. For m identical machines, our online algorithm achieves the optimal competitive
ratio rm with a reordering buffer of size k = ⌈(1 + 2/rm) ·m⌉+ 2.

Proof. To improve upon Theorem 5, we observe that the proof even goes through if Equa-
tion (1) only holds for ⌊(rm − 1) · m/rm⌋ ≤ ℓ ≤ m − 1. In the following, we argue
that Equation (1) indeed holds for these ℓ if we only have a reordering buffer of size
k = ⌈(1 + 2/rm) ·m⌉+ 2.
In the beginning of the first step, ⌈(1 + 2/rm) ·m⌉+ 1 jobs are stored in the reordering

buffer. Let n′ denote the number of jobs scheduled in the final virtual schedule. The number
of jobs that are stored in the reordering buffer and that are not scheduled on the virtual
machines M ′

⌊(rm−1)·m/rm⌋, . . . ,M
′
m−1 is at least

rm + 2

rm
·m+ 1− n′ +max

{

0, n′ − 2

(

m

rm
+ 1

)}

≥ m− 1 ,

since m− ⌊(rm − 1) ·m/rm⌋ ≤ m/rm + 1. As a consequence, for each ⌊(rm − 1) ·m/rm⌋ ≤
ℓ ≤ m− 1,

T + (m− 1) · pmin ≤ m ·OPT−
m−1
∑

j=⌊(rm−1)·m/rm⌋
L(M ′

j)

≤ m ·OPT− (m− ℓ) · L(M ′
ℓ) .

Hence, the proof of Theorem 5 goes through if we only have a reordering buffer of size
k = ⌈(1 + 2/rm) ·m⌉+ 2.

4.2. The 3/2-competitive algorithm

The following algorithm uses a reordering buffer of size k := ⌈(2/3 + 2/(1 + ln 3)) ·m⌉+ 1.
The iteration and final phase are defined as follows.

• Iteration phase: When a new job arrives, store this new job in the reordering buffer,
and remove a job J of smallest size from the buffer. Let Mi be a machine with load at
most

w′
i ·

(

T +
2m

1 + ln 3
· p(J)

)

− p(J) ,

where w′
i := min{3/(2m), 1/(2i)} and T denotes the total scheduled load. (Due to

Fact 10 in Appendix A,
∑m−1

i=0 w′
i = ⌈m/3⌉ ·3/(2m)+

∑m−1
i=⌈m/3⌉ 1/(2i) is non-increasing

12

in m ∈ N≥2. As in Lemma 11 in Appendix A, it can be seen that this term converges
to 1/2 + (ln 3)/2 as m tends to infinity. As a consequence,

∑m−1
i=0 w′

i ≥ (1 + ln 3)/2 > 1
and, similar to Observation 4, it can be shown that a machine with the required load
bound always exists.) Then, schedule job J on machine Mi, i.e., the total scheduled
load T is increased by p(J).

• Final phase: Consider the k − 1 remaining jobs in the reordering buffer in descending
order of their size and schedule them according to the greedy algorithm, which allocates
each job on a machine with minimum load.

Theorem 7. For m identical machines, our online algorithm achieves the competitive ratio
3/2 with a reordering buffer of size ⌈(2/3 + 2/(1 + ln 3)) ·m⌉+ 1.

Proof. Fix an input sequence of jobs. Let OPT denote the minimum makespan achieved
by an optimal offline algorithm. We show that the makespan of our algorithm is at most
3/2 ·OPT.

Let T denote the total scheduled load at the end of the iteration phase, and let pmin denote
the smallest size of all remaining jobs in the reordering buffer at the end of the iteration
phase. As in Theorem 5, we can conclude that at the end of the iteration phase, for each
0 ≤ i ≤ m− 1, the load of machine Mi is at most

w′
i ·

(

T +

(

2m

1 + ln 3
− 1

)

· pmin

)

≤ 3/2 ·OPT ,

since w′
i ≤ 3/(2m), k − 1 = ⌈(2/3 + 2/(1 + ln 3)) ·m⌉ jobs remain in the reordering buffer,

and the size of each of these jobs is at least pmin.
In the final phase, the remaining jobs in the reordering buffer are scheduled according

to the greedy algorithm. Let J1, . . . , Jk−1 denote the remaining jobs in the buffer with
p(J1) ≥ · · · ≥ p(Jk−1).
First, we consider the jobs J1, . . . , Jm. A fixed job Ji with 1 ≤ i ≤ m is scheduled on a

machine with load at most w′
m−i · (T + (2m/(1 + ln 3)− 1) · pmin), since w′

0 ≤ · · · ≤ w′
m−1.

Hence, it remains to show that

w′
m−i ·

(

T +

(

2m

1 + ln 3
− 1

)

· pmin

)

+ p(Ji) ≤ 3/2 ·OPT .

Clearly,

T + (2m
1+ln 3 − 1) · pmin +

∑⌈2m/3⌉
j=1 p(Jj)

m
≤ OPT ,

since at least ⌈2m/(1 + ln 3)⌉ − 1 jobs remain in the buffer after the scheduling of the
jobs J1, . . . , J⌈2m/3⌉ and the size of each of these jobs is at least pmin. Thus, for each
1 ≤ ℓ ≤ ⌈2m/3⌉,

T +

(

2m

1 + ln 3
− 1

)

· pmin ≤ m ·OPT−
⌈2m/3⌉
∑

j=1

p(Jj)

≤ m ·OPT− ℓ · p(Jℓ) .

We distinguish two cases.

13

• If w′
m−i = 1/(2(m− i)), then 1 ≤ i ≤ 2m/3 and it follows

w′
m−i ·

(

T +

(

2m

1 + ln 3
− 1

)

· pmin

)

+ p(Ji)

≤ 1

2(m− i)
· (m ·OPT− i · p(Ji)) + p(Ji)

=
m ·OPT+ (2m− 3i) · p(Ji)

2(m− i)

≤ m ·OPT+ (2m− 3i) ·OPT

2(m− i)

≤ 3/2 ·OPT .

• If w′
m−i = 3/(2m), then 2m/3 ≤ i ≤ m and it follows

w′
m−i ·

(

T +

(

2m

1 + ln 3
− 1

)

· pmin

)

+ p(Ji)

≤ 3

2m
·
(

m ·OPT−
⌈

2m

3

⌉

· p(J⌈2m/3⌉)

)

+ p(J⌈2m/3⌉)

≤ 3

2
·OPT .

In both cases, the makespan is at most 3/2 ·OPT after the scheduling of the jobs J1, . . . , Jm.
Finally, we consider the jobs Jm+1, . . . , Jk−1. For a fixed job Ji with m+ 1 ≤ i ≤ k − 1,

p(Ji) ≤ OPT/2, because p(J1) ≥ · · · ≥ p(Jk−1). Since the average load is always bounded by
OPT, there always exists a machine with load at most OPT. After scheduling job Ji according
to the greedy algorithm, the makespan is at most 3/2 ·OPT, since p(Ji) ≤ OPT/2.

4.3. The (1 + rm/2)-competitive algorithm

The following algorithm uses a reordering buffer of size m+ 1. The iteration and final phase
are defined as follows.

• Iteration phase: When a new job arrives, store this new job in the reordering buffer,
and remove a job J of smallest size from the buffer. Let Mi be a machine with load
at most wi · T , where T denotes the total scheduled load. (Since

∑m−1
i=0 wi = 1, there

always exists such a machine.) Then, schedule job J on machine Mi, i.e., the total
scheduled load T is increased by p(J).

• Final phase: Consider the m remaining jobs in the reordering buffer in descending
order of their size and schedule them according to the greedy algorithm, which allocates
each job on a machine with minimum load.

Theorem 8. For m identical machines, our online algorithm achieves the competitive ratio
1 + rm/2 with a reordering buffer of size m+ 1.

Proof. Fix an input sequence of jobs. Let OPT denote the minimum makespan achieved
by an optimal offline algorithm. We show that the makespan of our algorithm is at most
(1 + rm/2) ·OPT.

14

Let T denote the total scheduled load at the end of the iteration phase, and let pmax

denote the largest size of all jobs scheduled in the iteration phase. We can conclude that at
the end of the iteration phase, for each 0 ≤ i ≤ m− 1, the load of machine Mi is at most

wi · T + pmax ≤ rm
m

· (m ·OPT−m · pmax) + pmax ≤ rm ·OPT ,

since m jobs remain in the reordering buffer and the size of each of these jobs is at least
pmax.
In the final phase, the remaining jobs in the reordering buffer are scheduled according

to the greedy algorithm. Let J1, . . . , Jm denote the remaining jobs in the buffer with
p(J1) ≥ · · · ≥ p(Jm). A fixed job Ji with 1 ≤ i ≤ m is scheduled on a machine with load at
most wm−i · T + pmax, since w0 ≤ · · · ≤ wm−1.

Hence, it remains to show that

wm−i · T + pmax + p(Ji) ≤ (1 + rm/2) ·OPT .

Obviously,

T = m ·OPT−
m
∑

j=1

p(Jj)

≤ m ·OPT− (m− i) · pmax − i · p(Ji)
= m · (OPT− p(Ji)) + (m− i) · (p(Ji)− pmax) .

We distinguish two cases.

• If wm−i = (rm − 1)/(m− i), then (rm − 1) ·m/rm ≤ m− i ≤ m− 1 and it follows

wm−i · T + pmax + p(Ji)

=
(rm − 1) ·m

m− i
· (OPT− p(Ji))

+ (rm − 1) · (p(Ji)− pmax) + pmax + p(Ji)

≤ rm · (OPT− p(Ji)) + rm · p(Ji) + (2− rm) · pmax

≤ (1 + rm/2) ·OPT ,

since p(Ji) ≤ OPT and pmax ≤ OPT/2.

• If wm−i = rm/m, then 0 ≤ m− i ≤ (rm − 1) ·m/rm and it follows

wm−i · T + pmax + p(Ji)

= rm · (OPT− p(Ji))

+
rm · (m− i)

m
· (p(Ji)− pmax) + pmax + p(Ji)

≤ rm ·OPT− (rm − 1) · p(Ji)
+ (rm − 1) · (p(Ji)− pmax) + pmax

≤ (1 + rm/2) ·OPT ,

since pmax ≤ p(Ji) and pmax ≤ OPT/2.

In both cases, the makespan is at most (1 + rm/2) ·OPT at the end of the final phase.

15

5. Acknowledgments

We thank an anonymous reviewer for many helpful comments and for pointing out an error in
an early version of this work. We thank Heiner Ackermann for discussions on this problem.

References

[AAF+97] James Aspnes, Yossi Azar, Amos Fiat, Serge A. Plotkin, and Orli Waarts. On-
line routing of virtual circuits with applications to load balancing and machine
scheduling. Journal of the ACM, 44(3):486–504, 1997.

[AH12] Susanne Albers and Matthias Hellwig. On the value of job migration in online
makespan minimization. In Proceedings of the 20th European Symposium on
Algorithms (ESA), pages 84–95, 2012.

[Alb98] Susanne Albers. A competitive analysis of the list update problem with
lookahead. Theoretical Computer Science, 197(1–2):95–109, 1998.

[Alb99] Susanne Albers. Better bounds for online scheduling. SIAM Journal on
Computing, 29(2):459–473, 1999.

[Alb04] Susanne Albers. New results on web caching with request reordering. In Pro-
ceedings of the 16th ACM Symposium on Parallel Algorithms and Architectures
(SPAA), pages 84–92, 2004.

[ATUW01] Houman Alborzi, Eric Torng, Patchrawat Uthaisombut, and Stephen Wagner.
The k-client problem. Journal of Algorithms, 41(2):115–173, 2001.

[BCK00] Piotr Berman, Moses Charikar, and Marek Karpinski. On-line load balancing
for related machines. Journal of Algorithms, 35(1):108–121, 2000.

[BDB94] Shai Ben-David and Allan Borodin. A new measure for the study of on-line
algorithms. Algorithmica, 11(1):73–91, 1994.

[BFKV95] Yair Bartal, Amos Fiat, Howard J. Karloff, and Rakesh Vohra. New algorithms
for an ancient scheduling problem. Journal of Computer and System Sciences,
51(3):359–366, 1995.

[BKR94] Yair Bartal, Howard J. Karloff, and Yuval Rabani. A better lower bound for
on-line scheduling. Information Processing Letters, 50(3):113–116, 1994.

[CLB+11] Xin Chen, Yan Lan, Attila Benko, György Dósa, and Xin Han. Optimal algo-
rithms for online scheduling with bounded rearrangement at the end. Theoretical
Computer Science, 412(45):6269–6278, 2011.

[CvVW94] Bo Chen, André van Vliet, and Gerhard J. Woeginger. New lower and upper
bounds for on-line scheduling. Operations Research Letters, 16(4):221–230, 1994.

[DE10] György Dósa and Leah Epstein. Online scheduling with a buffer on related
machines. Journal of Combinatorial Optimization, 20(2):161–179, 2010.

16

[DE11] György Dósa and Leah Epstein. Preemptive online scheduling with reordering.
SIAM Journal on Discrete Mathematics, 25(1):21–49, 2011.

[DS00] Srikrishna Divakaran and Michael Saks. An online scheduling problem with job
set-ups. Technical report, DIMACS, 2000.

[DWHG11] György Dósa, Yuxin Wang, Xin Han, and He Guo. Online scheduling with
rearrangement on two related machines. Theoretical Computer Science, 412(8-
10):642–653, 2011.

[EF02] Leah Epstein and Lene M. Favrholdt. Optimal preemptive semi-online schedul-
ing to minimize makespan on two related machines. Operations Research Letters,
30(4):269–275, 2002.

[ELvS11] Leah Epstein, Asaf Levin, and Rob van Stee. Max-min online allocations with
a reordering buffer. SIAM Journal on Discrete Mathematics, 25(3):1230–1250,
2011.

[ERW07] Matthias Englert, Harald Räcke, and Matthias Westermann. Reordering buffers
for general metric spaces. In Proceedings of the 39th ACM Symposium on Theory
of Computing (STOC), pages 556–564, 2007.

[FKT89] Ulrich Faigle, Walter Kern, and György Turán. On the performance of on-line
algorithms for partition problems. Acta Cybernetica, 9(2):107–119, 1989.

[FMP+04] Tomás Feder, Rajeev Motwani, Rina Panigrahy, Steven S. Seiden, Rob van
Stee, and An Zhu. Combining request scheduling with web caching. Theoretical
Computer Science, 324(2–3):201–218, 2004.

[Fri87] Donald K. Friesen. Tighter bounds for LPT scheduling on uniform processors.
SIAM Journal on Computing, 16(3):554–560, 1987.

[FW00] Rudolph Fleischer and Michaela Wahl. On-line scheduling revisited. Journal of
Scheduling, 3(6):343–353, 2000.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[Gra66] Ronald L. Graham. Bounds for certain multiprocessing anomalies. Bell System
Technical Journal, 45(1):1563–1581, 1966.

[Gra69] Ronald L. Graham. Bounds on multiprocessing timing anomalies. SIAM
Journal of Applied Mathematics, 17(2):416–429, 1969.

[Gro95] Edward F. Grove. Online bin packing with lookahead. In Proceedings of the 6th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 430–436, 1995.

[GRTW00] Todd Gormley, Nick Reingold, Eric Torng, and Jeffery Westbrook. Generating
adversaries for request-answer games. In Proceedings of the 11th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 564–565, 2000.

17

[HS88] Dorit S. Hochbaum and David B. Shmoys. A polynomial approximation scheme
for scheduling on uniform processors: Using the dual approximation approach.
SIAM Journal on Computing, 17(3):539–551, 1988.

[KKST97] Hans Kellerer, Vladimir Kotov, Maria Grazia Speranza, and Zsolt Tuza. Semi
on-line algorithms for the partition problem. Operations Research Letters,
21(5):235–242, 1997.

[KP94] Elias Koutsoupias and Christos H. Papadimitriou. Beyond competitive analysis.
In Proceedings of the 35th IEEE Symposium on Foundations of Computer Science
(FOCS), pages 394–400, 1994.

[KPT96] David R. Karger, Steven J. Phillips, and Eric Torng. A better algorithm for an
ancient scheduling problem. Journal of Algorithms, 20(2):400–430, 1996.

[KRSW04] Jens Krokowski, Harald Räcke, Christian Sohler, and Matthias Westermann.
Reducing state changes with a pipeline buffer. In Proceedings of the 9th
International Fall Workshop Vision, Modeling, and Visualization (VMV), pages
217–224, 2004.

[LCD+12] Yan Lan, Xin Chen, Ning Ding, György Dósa, and Xin Han. Online minimum
makespan scheduling with a buffer. In Proceedings of the Frontiers in Algorith-
mics and Algorithmic Aspects in Information and Management (FAW-AAIM),
pages 161–171, 2012.

[MOV97] Paul Mireault, James B. Orlin, and Rakesh V. Vohra. A parametric worst case
analysis of the LPT heuristic for two uniform machines. Operations Research,
45(1):116–125, 1997.

[PST04] Kirk Pruhs, Jiri Sgall, and Eric Torng. Handbook of Scheduling: Algorithms,
Models, and Performance Analysis, chapter Online Scheduling. CRC Press,
2004.

[RC03] John F. Rudin III and R. Chandrasekaran. Improved bound for the online
scheduling problem. SIAM Journal on Computing, 32(3):717–735, 2003.

[Rud01] John F. Rudin III. Improved Bound for the Online Scheduling Problem. PhD
thesis, University of Texas at Dallas, 2001.

[Tor98] Eric Torng. A unified analysis of paging and caching. Algorithmica, 20(2):175–
200, 1998.

[TY08] Zhiyi Tan and Shaohua Yu. Online scheduling with reassignment. Operations
Research Letters, 36(2):250 – 254, 2008.

[WBC+12] Yuxin Wang, Attila Benko, Xin Chen, György Dósa, He Guo, Xin Han, and
Cecilia Sik-Lányi. Online scheduling with one rearrangement at the end:
Revisited. Information Processing Letters, 112(16):641–645, 2012.

18

A. Properties of rm

Fact 9. ⌈m(1− 1
x)⌉ · x

m + (x− 1) ·
∑m−1

i=⌈m(1− 1

x
)⌉

1
i is monotonically increasing in x ∈ R≥1.

Proof. If m(1− 1
x) < ⌈m(1− 1

x)⌉, then ⌈m(1− 1
x)⌉ = ⌈m(1− 1

x+dx)⌉ and therefore

⌈

m

(

1− 1

x

)⌉

· x

m
+ (x− 1) ·

m−1
∑

i=⌈m(1− 1

x
)⌉

1

i

<

⌈

m

(

1− 1

x+ dx

)⌉

· x+ dx

m
+ (x+ dx− 1) ·

m−1
∑

i=⌈m(1− 1

x+dx
)⌉

1

i
.

If m(1− 1
x) = ⌈m(1− 1

x)⌉, then ⌈m(1− 1
x)⌉+ 1 = ⌈m(1− 1

x+dx)⌉ and therefore

⌈

m

(

1− 1

x

)⌉

· x

m
+ (x− 1) ·

m−1
∑

i=⌈m(1− 1

x
)⌉

1

i

=

⌈

m

(

1− 1

x+ dx

)⌉

· x

m
− x

m
+

x− 1

⌈m(1− 1
x)⌉

+ (x− 1) ·
m−1
∑

i=⌈m(1− 1

x+dx
)⌉

1

i

=

⌈

m

(

1− 1

x+ dx

)⌉

· x

m
+ (x− 1) ·

m−1
∑

i=⌈m(1− 1

x+dx
)⌉

1

i

<

⌈

m

(

1− 1

x+ dx

)⌉

· x

m
+ (x+ dx− 1) ·

m−1
∑

i=⌈m(1− 1

x+dx
)⌉

1

i
.

Fact 10. ⌈m(1− 1
x)⌉ · x

m + (x− 1) ·
∑m−1

i=⌈m(1− 1

x
)⌉

1
i is non-increasing in m ∈ N≥2.

Proof. If x > m+ 1, then ⌈m(1− 1
x)⌉ = m and ⌈(m+ 1)(1− 1

x)⌉ = m+ 1 and therefore

⌈

m

(

1− 1

x

)⌉

· x

m
+ (x− 1) ·

m−1
∑

i=⌈m(1− 1

x
)⌉

1

i

= x =

⌈

(m+ 1)

(

1− 1

x

)⌉

· x

m+ 1
+ (x− 1) ·

m
∑

i=⌈(m+1)(1− 1

x
)⌉

1

i
.

Suppose x ≤ m+ 1. We distinguish two cases.

19

In the first case ⌈m(1− 1
x)⌉ < ⌈(m+ 1)(1− 1

x)⌉. Then,
⌈

m

(

1− 1

x

)⌉

· x

m
+ (x− 1) ·

m−1
∑

i=⌈m(1− 1

x
)⌉

1

i

=

⌈

m

(

1− 1

x

)⌉

· x

m
+

x− 1

⌈m(1− 1
x)⌉

+ (x− 1) ·
m−1
∑

i=⌈(m+1)(1− 1

x
)⌉

1

i

=

⌈

m

(

1− 1

x

)⌉

· x

m+ 1
+

⌈

m

(

1− 1

x

)⌉

· x

m(m+ 1)

+
x− 1

⌈m(1− 1
x)⌉

+ (x− 1) ·
m−1
∑

i=⌈(m+1)(1− 1

x
)⌉

1

i

≥
⌈

m

(

1− 1

x

)⌉

· x

m+ 1
+ (m+ 1)

(

1− 1

x

)

· x

m(m+ 1)

+
x− 1

(m+ 1)(1− 1
x)

+ (x− 1) ·
m−1
∑

i=⌈(m+1)(1− 1

x
)⌉

1

i

=

⌈

m

(

1− 1

x

)⌉

· x

m+ 1
+

x− 1

m
+

x

m+ 1
+ (x− 1) ·

m−1
∑

i=⌈(m+1)(1− 1

x
)⌉

1

i

=

⌈

(m+ 1)

(

1− 1

x

)⌉

· x

m+ 1
+ (x− 1) ·

m
∑

i=⌈(m+1)(1− 1

x
)⌉

1

i
,

where the third step follows from the fact that y · x
m(m+1) +

x−1
y is decreasing in y for

y ≤
√

mx(m+ 1)(x− 1)/x and ⌈m(1− 1
x)⌉ < (m+1)(1− 1

x) ≤
√

mx(m+ 1)(x− 1)/x, due
to the fact that (m+ 1)(x− 1) ≤ mx.

In the second case ⌈m(1− 1
x)⌉ = ⌈(m+ 1)(1− 1

x)⌉. Then,
⌈

m

(

1− 1

x

)⌉

· x

m
+ (x− 1) ·

m−1
∑

i=⌈m(1− 1

x
)⌉

1

i

=

⌈

(m+ 1)

(

1− 1

x

)⌉

· x

m
+ (x− 1) ·

m−1
∑

i=⌈(m+1)(1− 1

x
)⌉

1

i

=

⌈

(m+ 1)

(

1− 1

x

)⌉

· x

m
− x− 1

m
+ (x− 1) ·

m
∑

i=⌈(m+1)(1− 1

x
)⌉

1

i

≥
⌈

(m+ 1)

(

1− 1

x

)⌉

· x

m+ 1
+ (x− 1) ·

m
∑

i=⌈(m+1)(1− 1

x
)⌉

1

i
,

due to the fact that (m+ 1)⌈(m+ 1)(1− 1
x)⌉x− (m+ 1)(x− 1) ≥ m⌈(m+ 1)(1− 1

x)⌉x+
(m+ 1)(x− 1)− (m+ 1)(x− 1).

20

Lemma 11. rm is non-decreasing in m and limm→∞ rm = W−1(−1/e2)/(1+W−1(−1/e2)).

Proof. Due to the definition, rm is the smallest positive solution to ⌈m(1− 1
x)⌉ · x

m + (x−
1)

∑m−1
i=⌈m(1− 1

x
)⌉

1
i = 1. Fact 9 and Fact 10 combined imply that rm is non-decreasing in m.

As m tends to infinity, ⌈m(1 − 1
x)⌉ · x

m + (x − 1)
∑m−1

i=⌈m(1− 1

x
)⌉

1
i converges pointwise to

(x− 1)− (x− 1) ln(1− 1
x). This follows easily from basic arithmetic properties of limits and

the well-known fact that limn→∞(
∑n

i=1
1
i − ln(n)) is equal to the Euler-Mascheroni constant.

It remains to show that x := W−1(−1/e2)/(1 + W−1(−1/e2)) satisfies (x − 1) − (x −
1) ln(1− 1

x) = 1. For this choice of x we get

(x− 1)− (x− 1) ln

(

1− 1

x

)

− 1

= − 1

1 +W−1(−1/e2)
+

1

1 +W−1(−1/e2)
· ln

(

− 1

W−1(−1/e2)

)

− 1

=
−1 + ln

(

− 1
W−1(−1/e2)

)

− 1−W−1(−1/e2)

1 +W−1(−1/e2)
= 0 ,

since W−1(−1/e2)eW−1(−1/e2) = −1/e2, which implies ln(− 1
W−1(−1/e2)

) − W−1(−1/e2) =
2.

21

