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There is a vivid debate on the relative importance of local and
regional factors in shaping microbial communities, and on whether
microbial organisms show a biogeographic signature in their dis-
tribution. Taking a metacommunity approach, spatial factors can
become important either through dispersal limitation (compare
large spatial scales) or mass effects (in case of strongly connected
systems). We here analyze two datasets on bacterial communities
[characterized by community fingerprinting through denaturing
gradient gel electrophoresis (DGGE)] in meso- to eutrophic shallow
lakes to investigate the importance of spatial factors at three
contrasting scales. Variation partitioning on datasets of both the
bacterial communities of 11 shallow lakes that are part of a
strongly interconnected and densely packed pond system <1 km
apart, three groups of shallow lakes �100 km apart, as well as
these three groups of shallow lakes combined that span a large
part of a North-South gradient in Europe (>2,500 km) shows a
strong impact of local environmental factors on bacterial commu-
nity composition, with a marginal impact of spatial distance. Our
results indicate that dispersal is not strongly limiting even at large
spatial scales, and that mass effects do not have a strong impact on
bacterial communities even in physically connected systems. We
suggest that the fast population growth rates of bacteria facilitate
efficient species sorting along environmental gradients in bacterial
communities over a very broad range of dispersal rates.

dispersal limitation � metacommunity biology � microbial biogeography �
microbial community � mass effects

M icrobial communities may constitute the majority of the
earth’s biodiversity and catalyze processes that are critical

to sustaining life on earth. Understanding the mechanisms that
govern their distribution is thus of great interest. There is
currently a vivid debate on whether microbial communities share
patterns of distribution and diversity similar to those of macro-
scopic organisms (1–7). The traditional hypothesis among mi-
crobiologists, ‘‘everything is everywhere, but the environment
selects’’ (8), presumes ubiquity based on the high dispersal rates
for microorganisms. This hypothesis has been reinforced by a
number of studies in pro- as well as eukaryotic microorganisms
that showed the same species or lineage to be present in very
different parts of the world (e.g., refs. 9 and 10). However, the
results of these studies have been questioned by researchers who
claim that insufficient ability to discriminate cryptic taxa may
have led to the wrong conclusion that many taxa are cosmopol-
itan (e.g., ref. 11). In addition, a number of recent studies suggest
that some microbial taxa can exhibit geographical isolation and
marked biogeographical patterns (3, 12, 13).

Bacterial communities can be locally controlled by a multitude
of factors, including habitat size and heterogeneity, ecosystem
productivity, biological interactions (competition and preda-
tion), and human impact (14–18). If bacteria are ubiquitous
because of high dispersal rates, then we expect no differences in
community composition in different sites after eliminating the
response to environmental variables. This scenario conforms to
the model of strong species sorting in a metacommunity frame-
work (19, 20). If, however, bacteria show some dispersal limi-
tation, we expect in addition to the environmental signal a
relationship between community composition and location,
which may either be due to chance effects or to a biogeographical
signal reflecting changes in the regional species pool with
distance. Spatial factors may also interfere with the signal of
local environmental conditions at the other extreme of the
gradient in dispersal rates, however. In very strongly connected
habitats, dispersal rates may be so high that they lead to
homogenization through mass effects (19). In the metacommu-
nity concept, species sorting results in a matching between the
environmental gradients and taxon composition, and is impeded
by either too low (dispersal limitation) or too high dispersal rates
(mass effects; source-sink dynamics). It follows that it is impor-
tant to quantify the relative contribution of regional factors
(dispersal) and local environmental conditions (species sorting;
we here use this term, commonly applied in metacommunity
theory, also for bacterial communities, but acknowledge that
species delimitation needs other criteria in asexually reproducing
prokaryotes than in sexually reproducing taxa) to bacterial
community composition over a wide range of spatial scales. To
date, only a few studies have investigated the relative influence
of geographic distance and habitat factors on bacterial commu-
nity composition (BCC) (see refs. 6 and 22 for an overview), and
none covered an extensive range of spatial scales (e.g., refs. 2, 16,
18, and 21).

Dolan (22), in his review on microbial biogeography, stated
that the contrasting patterns and trends observed in different
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studies may reflect differences in temporal and spatial scales. He
concluded that patterns of biogeography are more likely to
emerge in studies that focus on similar habitats across different
spatial scales. In the present study, we therefore set out to
quantify the relative importance of local environmental factors
and spatial distance in two datasets on BCCs of the same habitat
type, shallow meso- to eutrophic lakes, collected at widely
different spatial scales. A first dataset consists of bacterial
communities of 98 lakes located in three geographic regions
separated by several hundreds to �2,500 km: 32 lakes in
Denmark (DK), 34 in The Netherlands and Belgium (BNL), and
32 in southern Spain (SP) [supporting information (SI) Fig. 2].
This dataset is analyzed at both the regional and the near-
continental level. At the regional scale, lakes were on average in
DK 23 km separated from each other (range 1–78 km distance
among individual lakes), in BNL 97 km (range 0.1–250 km), and
in SP 185 km (range 0.2–430 km). The most distant lakes in the
combined area DK and BNL are separated 1,060 km; the most
distant lakes in the total dataset are separated by 3,100 km. The
second dataset consists of bacterial communities of 11 lakes in
a strongly interconnected pond system that encompasses 34
small shallow lakes on a total area of �300 ha (SI Fig. 3) (23).
We used a 16S rRNA gene-based fingerprinting technique,
denaturing gradient gel electrophoresis (DGGE), to determine
BCC. The fingerprints consisted of banding patterns, where each
band was translated to one operational taxonomic unit (OTU)
that was considered as a surrogate of the predominant bacterial
‘‘species’’ present. Our specific goals were to (i test to which
degree geographic distance has an influence on BCC in these
two widely contrasting datasets focusing on the same and
common habitat category, and (ii) identify the (environmental;
spatial) factors that best explain variation in BCC. We take a
metacommunity approach (19) as a logical framework to study
the impact of local and regional factors.

Results
European Dataset. A total of 107 different operational taxonomic
units (OTUs) were detected from the 98 study lakes. Eighty-
eight OTUs were recorded in DK, 86 in BNL, and 98 in Spain.
The total number of OTUs found in one lake ranged from 11 to
37. Although 85% of the OTUs (94 of 107) were detected in all

three geographic regions, there was a clear overall differentia-
tion in BCC between these regions, confirmed by an analysis of
similarities (ANOSIM) test (r � 0.18, P � 0.001). Pairwise tests
revealed significant differences between DK and SP (r � 0.22,
P � 0.001), between BNL and SP (r � 0.24, P � 0.001), and
between DK and BNL (r � 0.12, P � 0.001). The dissimilarity
in BCC tended to be lower between DK and BNL (average
dissimilarity: 50%) than between DK and SP (60%), or between
BNL and SP (59%).

The results of the similarity percentage (SIMPER) analyses of
the transformed abundance identifying the OTUs that contrib-
ute most strongly to the dissimilarity between geographic regions
are given in SI Table 1; parts of these bands were excised and
sequenced. The Spanish samples show a higher average abun-
dance of a member of the Actinomycetes, subgroup Agrococcus
jenesis (DGGE 67.4), a member of the Bacteroidetes subgroup
CL500-6 (DGGE 51.1), and an Aeromonas like organism
(DGGE 65.8). Conversely, in the DK and BNL lakes, we found
a higher average abundance of members of the Actinomycetes
subgroup ACK-M1 (DGGE 79.4, 59.8, 52.5, 63.2), Bacteroidetes
Cytophaga subgroup (DGGE 39.2), Phormidium limnetica
(DGGE 37.3), and Alphaproteobacteria LD12 (DGGE 32.9).
Bacterioplankton communities in BNL differed from DK mainly
because of higher abundance of a member of the alpha-
proteobacteria (DGGE: 32.9) and a member of the CFB-group
(DGGE: 42.2), and a lower abundance of a member of the genus
Synechococcus (DGGE: 41.5). Some OTUs showed an abundance
gradient from North to South (increasing: DGGE 79.4, 52.5,
39.2, 20.3, 58.0; decreasing: DGGE 50.1, 20.3, 47.8, 65.8, 67.4).

Considering the three regions together in one analysis, vari-
ation partitioning between significant environmental variables
and spatial location (here limited to a grouping variable indi-
cating what region the lake belongs to) yielded 3% (1% unbi-
ased) of total variance explained by region, 20% (8%) by
environmental variables, and 6% (6%) by a common environ-
ment-region effect (Fig. 1A and SI Table 2). A large amount of
variation (71%, 85% unbiased) remains unexplained in this
dataset. The environmental variables that significantly contrib-
uted to explain the overall BCC patterns after removal of the
region effect were: depth of the lake, pH, total nitrogen con-
centration (TN), bacterial densities, % Bosmina, densities of
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Fig. 1. Variation partitioning of the BCC. Shown are the three regions together (A), Denmark (B), Belgium and the Netherlands (C), Spain (D), and ‘‘De Maten’’ (E).
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heterotrophic nanoflagellates (HNFDENS), biomass of ciliates,
% grassland, and % forest (SI Fig. 4A).

Restricting our analysis to DK only, environmental and spatial
variables (third order polynomials of projected longitudes and
latitudes) explained 31% (10% unbiased) of the total variance.
Twenty percent (9% unbiased) of the total variance was ex-
plained by pure environmental variables. After removal of
environment-related variation, space did no longer significantly
explain any variation in the data collected in DK (Fig. 1B and SI
Table 2). The environmental variables that significantly ex-
plained BCC patterns in the DK lakes were as follows: lake area,
TN, biomass of Bosmina, total zooplankton (ZOOPTOT) and
Ceriodaphnia, % Cyanobacteria, and % ultraphytoplankton (SI
Fig. 4B).

For the BNL data, variance partitioning between significant
environmental variables and spatial variables yielded 12% (6%
unbiased) of total variance explained by pure spatial variables,
30% (15%) by environmental variables and 3% (1%) by common
effects (Fig. 1C and SI Table 2). The amount of variation not
explained by the environmental and spatial variables was 55%
(79%). The environmental variables that significantly explained
BCC patterns were as follows: lake area, TN, biomass of
Bosmina, ZOOPTOT, and Ceriodaphnia, % Cyanobacteria, and
% ultraphytoplankton (SI Fig. 4C). This list of environmental
variables that significantly explain variance in BCC in the BNL
lakes is identical to that of the DK lakes.

For SP, variance partitioning between significant environmen-
tal variables and spatial variables yielded 11% (3% unbiased) of
total variance explained by pure spatial variables, 18% (8%) by
environmental variables, and 4% (2%) by common effects (Fig.
1D and SI Table 2). A large amount of variation (67%, 87%
unbiased) was not explained by the environmental and spatial
variables. The environmental variables that significantly ex-
plained the BCC patterns were as follows: depth, temperature,
HNFDENS, and total coverage of submerged macrophytes
(SMTOT) (SI Fig. 4D).

Because of the overlap in environmental variables explaining
BCC in BNL and DK, we explored this similarity in detail. First,
we calculated Pearson correlations between the relative abun-
dance of taxa and all environmental factors. We observed that
for 10 of the 55 taxa (18%), significant correlations were
observed with the same environmental variables or combination
of environmental variables (SI Table 3). This number increased
to 17 (31%) when we relaxed significance criteria of the corre-
lations to 0.1. This pattern was confirmed by our observation that
similarity matrices among taxa for their correlations with envi-
ronmental variables were significantly related between the two
regions (Relate function in Primer; rho � 0.082; P � 0.005).

De Maten Dataset. A total of 42 different OTUs were detected in
the 11 lakes of the strongly connected De Maten system. The
number of OTUs per lake varied from 16 to 23. Seven OTUs
occurred in all lakes, and represented on average 47% (33–68%)
of the relative band intensity in the lakes. The average dissim-
ilarity between the lakes was relatively low (40.7%) and varied
between 56% (between lakes 12 and 17) and 11% (between lakes
9 and 10). The turbid lakes 9, 10, 11, and 12 had a similarity in
BCC exceeding 80%; their high similarity was mainly due to the
presence of the same dominant OTU that made up 21–30% of
the relative band intensity and was much less intense in the other
lakes (� 6% relative band intensity).

Variance partitioning on this dataset revealed that environ-
mental and spatial variables explained 89% (46% unbiased) of
the total variance. Fifty-two percent (36%) of the total variance
was explained by pure environmental variables. After removal of
environment-related variation, spatial configuration did no
longer significantly explain any variation (Fig. 1E and SI Table
2). The environmental variables that significantly explained the

BCC pattern in the De Maten lakes were transparency (Sneller
depth), pH, conductivity, biomass of dinoflagellates, and bio-
mass of calanoid copepods (SI Fig. 4E).

Discussion
At the largest spatial scale, we observed a differentiation in BCC
among geographic regions. This differentiation is strongest
between the Spanish lakes and the lakes of the more northern
regions (DK and BNL). There are several factors that may
account for this among-region effect. One possible explanation
is that regional differences in BCC reflect the biogeography of
bacteria, implying that there would be a certain amount of
historical contingency impacting bacterial distribution patterns,
similar to the patterns observed for multicellular organisms.
Rather than every species potentially being everywhere, the
array of taxa that may colonize a given patch would then be
confined to a more regional taxon pool. Alternatively, the
patterns observed in our study may reflect regional differences
in environmental conditions, either not measured in our study or
confounded in spatial differences. Several lines of evidence
suggest that the latter explanation is more likely than a bioge-
ography mediated by dispersal limitation. First, as �85% of the
detected bacterial OTUs were found in all three studied regions,
we can conclude that the majority of freshwater bacterial taxa are
not confined to a subset of regions at this geographical scale
(�3,000 km). It is therefore unlikely that a strong biogeography
effect plays an important role in determining the BCC at a given
location. Second, when environmental variables were taken into
account, geographic distance alone explained only a very low
percentage of the total variation (3%). Our data thus suggest
that lakes with similar environmental characteristics have similar
bacterial communities regardless of geographic distance. This
observation is strongly supported when we focus on BNL and DK
only, two regions for which the lakes in general are ecologically
more similar than when the Spanish lakes are included (24). For
the datasets of DK and BNL, the same set of environmental
variables is selected as significantly impacting BCC in local lakes.
Our observation that the pattern of correlations of the relative
abundance of almost 20% of the taxa is significantly related
among these two regions suggests that a significant part of the
BCC of lakes in the combined area (covering a distance of
�1,000 km) is structured in a similar way by the environment.
Given that our analysis captures only part of the relevant
environmental factors (e.g., not including sources of DOM, the
major food source of the bacteria), this observation is striking.
Overall, our data thus suggest that the two regions basically share
the same regional taxon pool. The BCC of the lakes in SP did
show appreciable differentiation from that of DK and BNL, but
the same holds for the ecology of the lakes (24).

Our observations on the wide distribution of bacterial taxa are
in agreement with the finding of Yannarell and Triplett (16),
who observed differences in bacterial communities between
northern and southern Wisconsin lakes, but also found that most
of the bacterial taxa were distributed state-wide. Fierer and
Jackson (25) came to the same conclusion in their study on the
biogeography of soil bacterial communities, covering 98 soil
samples from across North and South America. These studies
and our study suggest that the distribution of bacterial taxa is not
strongly limited by dispersal even at relatively large spatial scales
[up to several thousands of km, i.e., spatial scales at which the
influence of both historical contingencies and contemporary
ecological factors on microbial biogeography are most likely to
be detected (6)]. Our results further agree with Horner-Devine
et al. (2), who found that the taxa-area relationship for bacteria
in salt marsh sediments was driven primarily by environmental
heterogeneity, which increased with increased area considered,
rather than by geographic distance itself.
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Dolan (22) suggested that a signature of biogeography would
more likely emerge in studies that focus on similar habitats
across space. A key feature of our study is that similar lake types
were selected across all spatial scales. All studied lakes were
shallow and meso- to eutrophic, and they were selected to fit into
16 categories comprising all combinations of large/small, con-
nected/isolated, relatively low versus relatively high potential
productivity, and absence/presence of macrophytes in the three
regions studied. This sampling design ensured that very similar
lakes were selected in the different regions, although this
strategy worked better for BNL and DK than for SP (24). Even
though this sampling design made our study ideally suited to
detect a signature of biogeography (22), no strong effect of
geographic distance was detected. Although there are some
recent reports demonstrating that dispersal limitation may occur
at large spatial scales for some microbial organisms (12), the
environments involved were extreme and isolated, and may thus
perhaps not be representative of typical and common surface
water categories (rivers and rivulets, ditches, ponds, and lakes).
In rare and more isolated habitat types, one is more likely to
detect dispersal limitation, as dispersal rates are also a function
of the amount and size of source populations. Our results are
indeed not incompatible with the idea that a subset of bacterial
taxa may be more strongly dispersal limited. Rather, they suggest
that the majority of taxa present in natural bacterial communities
seem to be very widely distributed.

At the other extreme of the spatial spectrum, we show a much
higher association of BCCs with environmental factors in the
studied interconnected pond system than with spatial factors.
These results are in contrast with Reche et al. (21), who found
that the location of water bodies in the Sierra Nevada influenced
bacterial communities and that BCCs of nearby lakes showed
more similar OTU compositions. They argued that this pattern
is due to recolonization of a lake by microorganisms from
adjacent lakes being more frequent than from more remote
lakes. Similarly, Lindström et al. (18) showed that BCC of lakes
with a residence time �100 days showed a signature of mass
effects, reflected by similarity of BCC of the lake community
with that of the inlet. The discrepancy between these studies and
ours may lie in the fact that we studied meso- to eutrophic
systems, in which species replacements are expected to occur
faster (i.e., more efficient species sorting) than in oligotrophic
systems.

In the framework of metacommunity theory (19), dispersal
rates play a key role in determining patterns of community
similarities among habitat patches. Very low dispersal rates can
lead to dispersal limitation, resulting in purely spatial biogeog-
raphy patterns. Very high dispersal rates can lead to mass effects,
with taxa also occurring in less suitable habitats because of
continuous supply. Mass effects thus also lead to purely spatial
effects and a reduction of the match between the occurrence of
specific OTUs and environmental conditions. Intermediate dis-
persal rates provide the best conditions for environmental
factors to determine community composition, as there is a
sufficient supply of taxa from the regional species pool to fuel
species sorting, whereas there is no blurring of the resulting
differences in community composition by mass effects. In this
gradient of environmental connectedness, the impact of envi-
ronment is thus highest at intermediate dispersal levels. In the
case of mass effects, one may anticipate that the impact of spatial
factors is more pronounced at relatively small spatial scales,
whereas the impact of spatial factors is expected to increase with
geographical scale in the case of dispersal limitation. Our data
suggest that BCCs comply to the scenario of species sorting,
suggesting intermediate dispersal rates when scaled to the
efficiency of species sorting along environmental gradients.
Intriguingly, our data suggest that this strong species sorting
occurs at the near-continental (European) scale as well as at the

within-regional and local scale. This finding suggests that dis-
persal rates at a scale of �1,000 km are still for most taxa high
enough to allow species sorting to lead to a good association
between BCC and environmental variation, while at the same
time dispersal rates at a local scale of interconnected systems are
not so high as to result in strong mass effects. At the intermediate
scale, a very high impact of species sorting is observed. In the
region with the smallest inter-lake distances (DK), the impact of
spatial factors was indeed not significant when environmental
differences are taken into consideration. Importantly, in the
above, the dispersal gradient has to be viewed relative to the
strength and rates of species sorting. Indeed, if species sorting is
very efficient and rapid, dispersal rates must be very high to
result in mass effects (e.g., ref. 26). It follows that our data
strongly suggest that species sorting in bacterial communities is
very efficient, at least in the meso- to eutrophic systems studied,
so that bacterial communities track environmental conditions
even in the presence of very high immigration rates of bacterial
taxa from other sources. Similarly, their very high population
growth rates make BCCs largely independent of the amount of
propagules that arrive in the focal habitat, extending the range
of actual dispersal rates over which species sorting can strongly
impact BCC to the lower end of the spectrum. Our results thus
suggest that species sorting in BCCs is very efficient at both very
low and very high dispersal rates. This efficiency of space sorting
is most likely due to the extremely high population growth rates
of bacteria. Several studies that focused on the dynamics of BCCs
in local habitats have indeed reported that bacterial communities
can rapidly track changes in the environment (14, 27–31).

Conclusion
Our results provide strong evidence that species sorting in
response to local environmental factors is a key determinant of
the taxon composition of aquatic bacterial communities over a
very broad range of spatial scales (�100 m to �1,000 km). The
main factors controlling bacterial community composition were
resources (TN) and grazing-related factors (e.g., zooplankton
biomass). We argue that species sorting is so important in
bacterial communities because the high population growth rates
of bacteria largely uncouple local population dynamics and
relative abundances of taxa from dispersal rates. In combination
with sufficiently high dispersal rates to allow colonization of
distant habitats, these high population growth rates lead to a
weak biogeographical signal. Bacterial taxa need not be every-
where at all times to yield the observed pattern: it is sufficient
that low but sustained or regular dispersal is coupled with very
efficient tracking of environmental conditions through local
population dynamics. The high population growth rates of
microbial organisms in this way result in a much broader range
of spatial scales over which species sorting plays a predominant
role in shaping community structure than in many macroorgan-
isms. The power of species sorting in microbial communities thus
does not only reflect high dispersal rates, but rather the interplay
of sufficiently high dispersal rates (caused by small size, produc-
tion of resistant stages, and vast population sizes) and efficient
tracking of environmental changes due to fast population growth
rates. This framework explains metacommunity structure of
microorganisms using the same mechanisms as in macroorgan-
isms, and has in our opinion the potential to reconcile the two
opposing viewpoints on the occurrence of biogeographical sig-
nals in microbial communities. It predicts that the biogeograph-
ical signal for many microorganisms is much weaker than for
most macroorganisms because of the fact that long distance
dispersal is more likely combined with a strong capacity to
establish viable populations when environmental conditions
allow. It also predicts that biogeographical signal is likely to be
stronger in microorganisms inhabiting rare habitats. Both pre-
dictions are in line with current observations (e.g., ref. 12).
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Materials and Methods
Selection and Sampling of Lakes. European scale. Ninety-eight shallow lakes
were sampled, located in three European regions at different latitudes:
Denmark (32 lakes), Belgium/The Netherlands (34 lakes), and southern Spain
(32 lakes) (SI Fig. 2). Lakes were not selected randomly, but according to four
potentially important key factors: submerged vegetation cover (more than or
less than 20% of the lake area surface covered), total phosphorus (more than
or less than 100 �g�l�1), lake surface area (more than or less than 5 ha), and the
degree of connectedness (‘‘isolated’’: distance to nearest lake longer than
200 m; first order lake if part of river system; ‘‘connected’’: distance to nearest
lake �200 m; second or higher order lake and distance to upstream lake
smaller than 1 km if part of river system; see refs. 24 and 32). For a detailed
description of the sampled lakes, see Declerck et al. (24).

Each lake was sampled monthly during a period of 6 months in summer,
either in 2000 or 2001. To integrate spatial variability within each lake,
samples were collected at 8 (lakes �5 ha) or 16 (lakes �5 ha) randomly
selected locations and pooled. To obtain DNA samples of bacteria, 5 liters
of the pooled sample was fractionated by using a mesh of 20 �m, separat-
ing bacteria that were free-living or attached to small seston particles from
organisms attached to large particles. The small fraction was then filtered
over a 0.2-�m MF-Millipore MCE filter and kept frozen (�80°C) until further
analysis.
Local scale: The pond system ‘‘De Maten.’’ The De Maten wetland consists of a
series of 34 interconnected shallow lakes that are located within a small
geographic area (�300 ha). They are fed mainly by two rivulets and are
connected by a system of rivulets and overflows (SI Fig. 3). As a result,
connectivity in this system is extremely high. Although nutrient levels and
water chemistry are similar among the lakes in this system, they do differ
strongly in their ecology, as some lakes are turbid whereas others are in a
clear-water state with a dense vegetation of submerged macrophytes. For
more detailed information on the environmental conditions in these lakes, see
Cottenie et al. (23, 33). Information on the morphometry and water flow
between the lakes is given in Michels et al. (34, 35). Eleven lakes of this system
were sampled in August 2001. The lakes could not be selected according to the
gradients used in the European-scale study, as there is relatively little variation
in connectivity, size, and TP concentration in this set of lakes. The 11 lakes were
therefore chosen to be centrally located in the system (SI Fig. 3) and to consist
of both lakes in the turbid and in the clear-water state (i.e., absence/presence
of dense macrophyte vegetation). More information on the measured envi-
ronmental variables is given in SI Text.

Analysis of Samples. DNA extraction and PCR. DNA was extracted directly by
using the bead-beating method concomitant with phenol extraction and
ethanol precipitation (36). After extraction, the DNA was purified on a Wizard
column (Promega, Madison, WI) according to the manufacturer’s recommen-
dations. After DNA extraction and purification, the DNA of the six monthly
samples of the lakes in the European study was pooled so that we obtained
one sample per lake; for the De Maten lakes, only one sample was taken per
lake (August 2001).

For DGGE analysis, a small rDNA fragment was amplified with primers
357F-GC-clamp (5�-CGCCCGCCGCGCCCCGCGCCCGGCCCGCCGCCCCCG-
CCCCCCTACGGGAGGCAGCAG-3�) and 518R (5�-ATTACCGCGGCTGCTGG-3�).
By using these specific primers, our analysis is restricted to the domain Bac-
teria. The PCR mixture containing 5 �l of template DNA, each primer at a
concentration of 0.5 �M, each deoxynucleosidetriphosphate at a concentra-
tion of 200 �M, 1.5 mM MgCl2, 20 ng of BSA, 5 �l of 10� PCR buffer [100 mM
Tris�HCl (pH 9), 500 mM KCL], and 2.5 units of TaqDNA polymerase (Ampli-Taq
PerkinElmer) was adjusted to a final volume of 50 �l with sterile water (Sigma).
After an incubation for 5 min at 94°C, a touchdown PCR was performed by
using 20 cycles consisting of denaturation at 94°C for 1 min, annealing at 65°C
(initial cycle, the temperature was decreased by 0.5°C every cycle) for 1 min
and primer extension at 72°C for 1 min. Five additional cycles were carried out
at an annealing temperature of 55°C. The tubes were then incubated for 10
min at 72°C. The concentration of PCR products was determined by analyzing
5 �l of product on 1% (wt/vol) agarose gels, staining with ethidium bromide,
and comparison with a molecular weight marker (Smartladder; Eurogentec).
Analysis of BCC by denaturing gradient gel electrophoresis (DGGE). PCR prod-
ucts were analyzed on a 35–70% denaturant DGGE gel as described in ref.
27. DGGE gels were stained with ethidium bromide and photographed on
a UV transillumination table (302 nm) with a CCD camera. The 98 samples
of the European lakes were randomly analyzed on nine parallel DGGE-gels;
all samples of ‘‘De Maten’’ lakes were analyzed on one gel. As standards,
we used a mixture of DNA from nine clones, obtained from a clone library
of the 16S rRNA genes from Lake Visvijver (27). On every gel, three standard
lanes were analyzed in parallel to the samples. The position of the bands

in the standard lanes was used to compare the patterns formed in different
gels. Digitized DGGE images were analyzed by using the software package
Bionumerics 1.5. (Applied Maths BVBA, Kortrijk, Belgium). The software
performs a density profile through each lane, detects the bands, and
calculates the relative contribution of each band to the total band signal in
the lane after applying a rolling disk as background subtraction. Bands
occupying the same position in the different lanes of the gel were first
identified by the program and then visually checked. After alignment
within each gel, the gels were aligned against each other using the
standards. After two-by-two alignment, verification alignment of other
combinations of gels proved straightforward and repeatable. Samples
loaded on more than one gel were used as an extra quality check. Finally,
a matrix was compiled based upon the relative contribution of individual
bands to the total band signal in each lane.

Nucleotide sequences of DGGE bands of interest were obtained by direct
sequencing of DNA from excised DGGE bands as described in ref. 27. Sequenc-
ing was performed with the ABI-Prism sequencing kit (PE-Biosystems) using
the primer R519 (5�-GTATTACCGCGGCTGCTG-3�) and an automated se-
quencer (ABI-Prism 377). In total, 104 bands were cut out, 60 of which yielded
nice sequences. A GenBank Blast search was performed for each of those
sequences to identify the closest relatives. The partial sequences obtained in
this study have been deposited in the GenBank database under accession
numbers AM748764–AM748785. The occurrence of chloroplasts in our sam-
ples was low (3 of 60 verified sequences).

Data Analysis. For both datasets separately, we determined the relative
importance of environmental characteristics and spatial processes in explain-
ing differentiation in BCC by decomposing the total variation in the bacterial
community matrix into unique environmental and spatial components with
corresponding P values using (partial) redundancy analysis (23, 37, 38). This
multivariate extension of linear regression with corresponding R2 measures
the amount of variation (computed as the percentage of the total variation in
the community matrix) that can be attributed exclusively to one or the other
set of explanatory environmental (E) or spatial (S) variables. The different
components are as follows: total explained variation [E�S], environmental
variation [E], spatial variation [S], environmental variation without a spatial
component [E/S], and spatial variation without an environmental component
[S/E]. The significance of these components was evaluated with a Monte Carlo
permutation test (999 new values under the null hypothesis). For the partial
RDA analyses [E/S] and [S/E], residuals under the ‘‘reduced’’ model were
permuted; for the other RDA analyses ([E�S], [E], and [S]), residuals under the
‘‘full’’ model were permuted (38). We computed two other fractions: (i) the
unexplained variation (1 � [E�S]) and (ii) the variation explained by correla-
tions between environmental and spatial variables ([E with S] � [E] � [E/S] �

[S] � [S/E]). Peres-Neto et al. (39) showed that these variation components are
biased estimates and provided formulas for unbiased estimates. We reported
both the original (38) and the new unbiased estimates of the explained
variation components (39) to ease comparisons with studies that have not
incorporated this recently discovered method. BCC data were fourth-root
transformed to normalize these skewed density data. At the European scale,
spatial variables measured as latitude–longitude coordinates were converted
into projected coordinates. For the ‘‘De Maten’’ system, we used the coordi-
nates based on effective dispersal distances between lakes that incorporate
the dispersal pathways between the different lakes as quantified in a GIS
model parametrized using field measurements (34, 35). All third-order poly-
nomials of the projected coordinate variables were constructed to capture
more complicated spatial patterns (38). For the environmental variables of the
European lakes, we used averages calculated from the six monthly measure-
ments for abiotic environmental variables and chlorophyll a, and worked with
count data from pooled samples (equal volume) for biotic variables such as
zooplankton. Macrophyte cover was quantified once at the height of the
growing season using a standardized survey. Because increasing the number
of explanatory variables results in an increase of explained variation, we
limited both the environmental and spatial third degree polynomial variables
to the most parsimonious subset of significant variables each with a forward
selection procedure. This procedure also eliminated overfitting and problems
with colinear variables. R (40) and the Vegan library (41) were used for the RDA
analyses.

For the European dataset, we also determined whether the three regions
differ in overall community composition with an analysis of similarities (ANO-
SIM; refs. 42 and 43) and identified which species are associated with the
different regions with a similarity percentage (SIMPER; ref. 43) analysis. Both
analyses were performed in PRIMER 5 for Windows (44).
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