
The Operations Research Society of Japan

NII-Electronic Library Service

TheOpelationsReseaich  Society  of  Japan

Journal ef  the Operations Research
Society ofJapan
  Vol, 25, No, 3, September 1982

THE  POWER  OF  UPPER  AND  LOWER  BOUNDING

FUNCTIONS  IN BRANCH-AND-BOUND  ALGORITHMS

Toshihide lbaraki
 1<yoto Uhiversily

(Received October 12, 1980; Revised January 27, 1982)

AbstnTet In a branch-and-bound algorithm,  a  partial problem Pi is terminated  if the lower bound  of  the  optimal

yalue  of I} is greater (in case all optimal  solutions are sought) or  not  srnaller  (in case  a single  optimal  solution  is

sought)  than  the least upper  bound on  the optimal  value  of the original minimization  problem  Po currently avaiiable,

Although it seems  obvious  that tighter lower bounding function and  upper  bounding function always  irnprove the

efficiency  of  a brunch-and-bound algerithm,  counterexamp16s  can  be easily constructed.  In this paper, therefore,

it is extensively  studied  when  su ¢ h improvement is guaranteed, for typical search  strategies  such  as  heurSstic search,

best-bound search  and  depth-first search.  The model  of  branch-and-bound algoritbms  used  for investlgation is

quite general in the sense  that it allows  the  dorninance test as  well  as the lower bound  test mentiened  above.  The

efficiency  is measured  by the  number  of  partial problems decomposed  in the execution  of  the  algorithm.

1. Introduction

     A  branch-and-bound  algorithm  to  solve  a mlnimization  problem  po  is gener-

ally  defined  by  (D  a branching  structure  S' describing  how  Po is decomposed

into partial  problems  of  smaller  and  smaller  sizes,  (ti) lower  bound  test  based

on  an  upper  bounding  function  u  and  a  lower  bounding  functi/on  g (defined on  t:he

set  of  partial  problems.9ev)  that  terminates  those  partial  problems  whose  lower

bounds  are  greater  (in case  all  optimal  solutions  of  Po  arc: sought)  or  not

smaller  (in case  a  single  optimal  solution  of  Po  is sought)  than  the  least

upper  bound  oi  the  optimal  value  of  Po  known  by  then,  (tti) dominance  test

based  on  a doTninance  relation  D (a binary  relation  defined  on  .9U) that  termi-

nates  a  partiaL  problem  P,  if another  partial  problem  p.  generated  by  then  is
                         z J

known  to  have  a  better  solution,  and  (iv) a  search  function  s  specifying  the

                                     292
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order  of  testing  the  generated  partial  problems.  Four  known  types  of  search

functions  are  treated  in this  paper;  heuristic  search  function,  best-bound

search  function,  depth-･first  seareh  funetlon  and  breadth{irst  search  function.

Our  view  is therefore  t,hat, Eor  a  given  branching  structure  ca., a branch-and--

bound  algorithm  is essentially  a  lower  bounding  function  g, an  upper  bounding

function  u,  a  dominance  relation  D and  a search  function  s.

     Although  branch-and-bound  is a  wellknown  principle  for solving  aombina-

torial  optimization  problems,  only  limited  amount  of  research  has been  directed

to  clarify  its general  properties.  Motivated  by the  pioneering  work  such  as

[8, 13, 18, 19], the  author  has investigated  in earlier  papers  how  the  com-

putational  effiaiency  of  a  branch-and-bound  algorithm  (measured by the  number

of  decomposed  partial  problems)  depends  on  the  accuracy  of  a  search  funetion

s  [9] and  the  strength  of  a  dominance  relation  D  [ll]. Contrary  to  our  in-

tuitive  unde'rstanding,  it turned  out  that  improvement  in efficiency  is theo-

retically  guaranteed  when  a  search  function  is improved  or  dominance  test  is

strengthened  only  for certain  restricted  classes  of  branch-and-bound  algo-

rithms.  Similar  pToperties  were  also  examined  in [10] for approxirnate  branch-

and-bound  algorithms  which  incorporate  allowance  functions  specifying  allowable

deviation  from  the  exact  optimal  value.

     In  this  paper,  we  discuss  how  the  ef/ficiency  depends  on  the  tightness  o[

an  upper  bounding  function  u  and  a  lower  bounding  fanction  g.  :]he first resuZt

shown  in Sections  3-4 is thai: tightening  u  and/or  g does  not  always  result  in
   - -4  J
an  improvement  of  efficiency.  We  see  that  this  pathological  phenoTnenon  cornes

from  the  eonfliet  between  lower  bound  test:  and  dominanee  test,  which  becomes

possible  under  certain  searah  functions.  It is then  examined  what  is neces-

                     - - - p-
sary  to  guarantee  an  lmprovement  in  comput:ational  efficieney  when  u andlor  g
     .are

 tightened,  for  each  case  of  the  above  four search  functions.  It  turns  out

that  the  consistency  assumption  of  D  with  respeet  to  g  plays  a  erucial  role.

Under  this  assurnption  we  show  that  tightening  g always  results  in improvement

for  most  search  functions,  in Sections  3 and  4, and  that  tightening  u  always

results  in improvement  for  all  search  functions  mentioned  above,  in Seation  5.

Without  assuming  the  consistency,  an  improvement in efficiency  is not  guaran-
teed  except  for  a  lew  s'pecial  eases.  These  speeial  cases  are  also  discussed
                                                            '
in Sections  3-5. As  will  be  noted  later, some  special  cases  of  our  results

have  been  known in the  literature  such  as  [5, 8, 13, t5, t8].

2.Branch-and-Bound  Algorithm

 A forrnal descTiption  oi  a  branch-and-bound  algorithm  A  applied  to  a  mini-
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       mization  problem  Pe  is given  in this  section,  after  introducing  eight  eon-

       stituents  of  it. The  justiiicatian may  be found  elsewhere  [1, 2, 6, 8, 9, 13,

       16, 1'7, 18, 20] and  is not  given  here. Two  types  of  branch--and-bound  algo-

       rithms  are  considered  throughout  this  paper:  One  is to  obl:ain  all  optimal

       
solutions

 
oE

 
po

 and  the  other  is to obtain  a  single  optimalL  solution  of  Po.

       In  most  cases,  however,  proofs  are  given  only  to  the  case  of  all  optimal  solu-

       tions.  ]he case  of  a single  optimal  solution  can  usually  be treated  similarly.

       Complete  proofs  may  be found  in [12], '

            A finite  rooted  tree  S=  (.pt, g)  with  a set  of  nodes  ,9Y and  a  set  of

       arcs  8  represents  how  po  (represented by the  root  po  ofS)  is decomposed
       - -                                        - i                                                      J
       mto  partial  problems  when  all  possible  decompositzons  are  executed;

       (Pi, 
Pj)

 
E
 
if'
 
denotes

 
that

 partial  problem  
Pj

 
is

 genbrated  
from

 
pi

 by a  de-

       composition.  .-denotes  the  set  o[  leaf node$  in ma. Terrninologies  such  as

       
son,'ancestor,

 descendant,  depth  of  Pi  (denoted d(P2)  are  defined  in a  cus-

       tomary  manner  (e.g., [9]). ･

          
･
 Let  f; .9e .  EU{co}  denote  the  optiinal  values  of  nodes  (partial problems),

       where  E  is the  set  of  real  numbers.  f(P,)  =  co  if P,  is infeasible.  f  satisf/Les
                                            1 1

       (2.1) f(p?  
-

 min  {f(pj) l (pi, pj)  c8}

       and  hence

       (2.2) f(P  ,) Sf(P  .) Eor  (P., P.)  Eg,

                   I J                                   JJ

       O(P,)  denotes  the  set  of  optinzal  solutions  of  P.  E  .pt. It satisfies
          z l

                O(Pi)  
=

 {O(PJ,) i f(Pj)  
=

 f(Pi),  (Pi, Pj)  E g}.

       (M,  O,  f) (O is sometimes  omitted)  is called  the  branching  structure  of  P
                                                                            o'
            In  executing  a branch-and-bound  algorithm,  f(P.)  is usually  not  known  but
                                                       i

       a  lower  bounding  function  g(P,)  is evaluated  for  each  generated  P,.  
'

                                  Z J

       g:  ,9P "  EU{co}  satisfies

            (a) g(P?  
<-
 f(Pi)  Eor Pi  E,.op,

            (b) g(P.)  =f(P,)  for p,  E,-,
                   Z l                                  1

            (c) g(P  ,) S g(p  .) for  (p ., p  .)E8  .
                   1 j  IJ

       Y  denotes  the  set  of  nodes  p,  for  which  g(p,)  =f(P,)  ±s known  (and O(p,)  is
                                  J l l 2

       obtained)  or  O(Pi)nO(Po)  
-
 O is concluded,  in the  computation  process  of  g.'

       It satisfies

            (A) g(P,)  =  f(P.)  for  P,  EY
                   Z .2                                  z

            (B) Sf' :) .9'

            (C) 
pi

 
Eg7

 
implies

 
pj

 
E9for

 (pi, p?
 

E8.

       Note  that  condition  (A) is assumed  for  simplicity  even  if p,  E  9  is eoncluded
                                                              z              '
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due to o(p?no(po)  
=

 O, since  in this  aase  the  value  g(p2  
is

 
not

 
relevant

 
to

the  computation  process.                                                               '

     At this  point,  let us  cterive S  and  g of  a  typical  branch-and-bound  algo-
     '
rithm  for the  (rnixed) integer  programming  problem,  as  an  example.  Assurae  that

the  algorithm  uses  the  decompositton  scheme  proposed  by Dakin  [3] and  the  LP

(linear prograrrtrning) lower bound  (e.g., [6] for  general  deseription).  Then  a

parttal  problem  pi  (including the  case  oC  
Pi

 
=
 
Po)

 
is

 
decomposed

 
into

 
two

partial  problerns  by adding  constraints

                             '                '

(2.3) xk  SK  and  xk  
>m
 K+1

respectively  to  the  original  constraint  of  pi,  where  xk  is an  thteger variable

selected  for  decomposition  (called a  branching  variable)  and  K  is a nonnegative

integer  such  that  xk  assumes  a  value  between  
K
 and  

K
 
+
 
1
 
in

 
the,optirnal

 
solu-

tion  oi  the  LP  problem  corresponding  to Pi (i.e,, obtained  from 
Pi

 by 
removing

the  integrality  condition  on  variables).  Thus  all  partial  problems  are  again
                                                                  '
integer  programming  problerns.  We  see  now  that  the  resulting  branching  strue-
                                                 '
ture  is a  finite  binary  tree  (f±nite  under  the  as$umption  that  all  integer

variables  are  bounded  both  ffom  below  and  above).  f(p?  is the  optimal  value

oE  integer  prograinming  problem  Pi,  O(Pi)  is the  set  of  optimal  solutions  of

Pi,  and  g(Pi)  is the  optimal  value  ol  ,the 
LP problem  corresponding  

to
 
pi.

 
Vle

say  that  Pi  E-  if all  ipteger  variables  are  fixed  by  additional  constraints

of  type  (2. 3), and  pi  E  9  if the  LP  optimal  golution happens  to be an  integer                '
solution  or  the  LP  problem  turns  out  to  be infeasib!e. Obviously  these  g,  f',

o, Eij7, g, ,f  satisfy  the  above  conditions.

     In  many  practical cases,  a  good  feasible  solution  of  each  partial  problem
                                                                 '
Pi  is obtained  by  sirnple  computation.  

Thls
 gives rise

 
to

 
an

 
upper

 
bounding

function  u:  .9" .  Eu{os}  satisiying

     (I) u(P  .) > f(p  .) for  p,E,9i
          .2-  2  1

    (II) u(p,)  =f(p,)  for  P,  E9.
             I 2 J

u(p  ,) =  ee  denotes  that  no  feasible  solution  is obtained  for  P,  or  that  the
   2 2

computation  of  u(Pi)  is not  attempted.  u 
=

 
oo
 stands  for  that  u(Pi)  is never

computed,  and  u  
=
 u(po)  stands  for that  u is computed  only  for the  original

problem  Po.  Note however  that  condition  (II) is assumed  even  in these  cases.

     A dominanae  relation  D  is also  used  t:o test  partial  problems.  D  is a

partial  ordering  on  Y  satisfying  the  following  conditions.

                                                '

     When all  optfimal solutions  of po  are  sought:

    (i)a 
PiDPj

 
A
 
Pi

 f Pj
 
implies

 
f(Pi)

 
<
 
f(PJ.)

 (including co

 
<
 

o,).

   (ii). 
PiDPJ･

 
A
 
Pi

 l PJ.
 
irnplies

 
that,

 
for

 
each

 
descendant

 
IIIi,

 
of

 
pj,

 
there
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                                 .-
exists

 
a
 
descendant

 
Pi.

 
of

 
Pi

 
satzsfyxng

 
PI･

 
DPi,-

     When a single  optirnal solution  of  po  is sought:

    (Ds  
PiDPj,

 
A
 
Pi

 - Pj tmplies
 
f(Pi)

 
<F
 
f(Pj)

 
and

 
that

 
pj

 
is

 
not

 
an

 
ancestor

of  P,.
    i

   (ii)s 
PiDPj

 
A
 
Pi

 f Pj
 
implies,

 
for

 
each

 
descendant

 
PJ:

 
of

 
Pj,

 
there

 
exists

a
 
descendant

 
Pi,

 
of

 
Pi

 
sattsfyingPi.

 
DPi,,･

  
(ili)s

 
There

 
exists

 
no
 

sequence
 

of
 

nodes
 
Pil,

 
Pi2,...,

 
Pik+1

 
(k
 
>-

 
2
 

and
 
Pil,

Pi  ,...,Pi  are  distinct)  generated  during  computation,  such  that  pi is a piroper
  2 k  s

descendant  of  Pi  or  Pl  Dpi  Af(Pi  )=t'(Pi ) for s=1,2,...,k,  and  Pi  
ttPi

 .

                s+1  s  s+1  s                                            s+1                                                                        k+1                                                                              1
(This eondition  is not  used  in this  paper  but  is neeessary  to  guarantee  that  a

single  optimal  solution  is obtained.)

     A dominance  relation  D  is ealled  to  be  consistent  with  g if it satisftes

the  following  addttonal  condition:

     P,Dp  
,AP,4P,

 implies  g(P,)<g(P,)  in  case  all  optimal  solutions  are  sought,

                            I J      2J            :J

and  g(P,)Sg(P,)  in case  a  s!ngle  optimal  solution  is sought.

       I J

     D  =  J  (identity relation)  indicates  that  the  test  based  on  D is not  ef-

fective.

     ExaTTrples of  dominance  relations  in various  combin'ator/tal  optimization

probZems  may  be found  in [M]  together  with  relevant  Teferences.  The  con-

sisteney  assumption  is satisfied  in rnost  of  these  examples,,  However,  it would

be  still  nice  to  prove  pToperties  without  the  consistency  assumption,  if pos'-

sible,  since  D  and  g are  usually  designed  independently  wit;hout  regard  to  the

consistency  between  them.

     The  order  to  test  the  generated  partial  problerns is speciEied  by a  search

function  s:  ,.Sf +  ,.9"  such  that  s(.s\DE,offor  LofE..C  where  Y  denotes  the  family

of  independent  subsets  of.9'.  The  following  four  search  functiens  are  typical.

     s  is the  heuristic  search  function  based  on  a  heuristiic  function  h: .9di

-,-
 E,  denoted  s=sh,  if

          h(s(･of))  
=

 min  {h(pi) 1 pi  E,of}  for ofE,..se'.

It is
 usually  assumed  that  

h(p2
 f h(pj)  for pi

 f pj  by ustng  an  appropriate

tie  breaking  rule  if necessary.  In particular,  s  =  s  is called  the  best-bound
                                                     g
search  function.  The  depth-first  search  function  based  on  h, denoted  s  y  s
                                                                           h'
is defined  by

          h(s'-h Cof)) 
=

 min  {h(Pi)lPi E  i{i ("gV')}

          Sh  (of) EN
 (,of)

for ,of E  f,  where

          fi (JYr) 
=

 {pi E
 nfl  d(pi)  

=

 max  {d(pj) l pj  E.of]-}
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Finally,  
the

 
breadth-first

 
search

 
function

 
based

 
on

 
h,

 
denoted

 
s
 

=

 
gh,

 
is

 de-

fined by

          h(sh  (.gf')) 
=
 Tnin  {h(Pi) l Pi  E  it(of)}

          gh(-sf) E  fu csf')

          NCof) 
-

 {Pi E
 .Stzf  d(P?  

=

 min  {d(pj) 1 Pj  Eof}}

     It is known  [9] that  a  heuristic  search  function  sh  is most  general  among

the  above  search  functions  in the  sense  that  the  other  three  can  be viewed  as

    - J
sh

 
with

 
speczal

 
h.

 
I]hus

 properties  proved  
for

 
heuristic

 search  are  valid  for

all  the  above  search  functions.

     
A
 
heuristic

 
function

 
h
 
is

 
called

 
nonmisleading

 
if

 
h(Pi)<h(Pj)

 
implies

f(p  ,)Sf(p  ,) for P,,  P,c,g.  A  nonmislead/Lng  h is eonsidered  as  a  theoTetical
   i J t)

goal  when  we  design  a  heuristic  funetion  [4, 9]. Even  if h  ls not  nonmis-

leading, however,  it is shown  in [9] that  the  behavioT  of  a  branch-and-bound

algorithm  becomes  close  to  that  with  a  nonmisleading  one  if h is almost  non-

misleading.  Thus  the  analysis  of  the  case  of  a  nonmisleading  h may  help

understand  the  behavior  of  branch-and-bound  algorithms  that  are  very  nicely

designed.

     Based  on  these  constttuents,  a  formal  description  of  a  branch-and-bound
     i-
algonthm  is  now  g.iven both  foT  the  ease  of  all  optimal  solutions  and  for  the
           - -                              J
ease  of  a  sing!e  eptimal  solution.

     Branch-and-bound algorithm  Aa=((.sZP;  o, f), (fl7, g, u),  D,  s):  all  optimal

selutions

     In  the  following,  .-'c.9b  denotes  the  set  of  nodes  currently  generated.

A node  in fis  aative  if it is yet  neither  tested  nor  decornposed.  .ofdenotes

the  set  of  current  active  nodes.  0  stores  the  set  of  bes#  feastble  solutions

currently  available.  z  is called  the  incumbent  value  and  stores  the  current

best upper  bound  of  f(Po).  Generally  zSf(M)  (=f(x) for  xEpt)  holds  (z<f(0)

is possible  since  z  is set  in Step  A2  even  if optirnal  solutions  are  not  known),

but  z=f(0)  is satisfied  if u=,'oo or  if the  computation  has  terminated.  It  is
                                                                          '
assumed

 
that

 o(p?  is obtained  as  a  by-product  of  testing  pj  if picE4Y.

     Al(Initialize): .sV'+{po},.4'+{po},  zK-eo  and  0+ ¢ ･

     A2(Search): lf,of=O,  go to  A9;  else  p"s<.sV'),  zwhin[z,  u(pi)]  and  go to

as･

     
A3(Test  by Y"): If pfY',  go to A7; else  go  to A4.

     A4(Lower bound  test):  If g(Pj)>z,  go  to  A8;  else  go to  A5.

     A5(Dominance  test):  Zf there  exist$  Pk(fPi)E.z"nsatisfying  PkDE'i,  go to

A8; else  ge  to  A6.

     
A6(Decompose):

 
Generate

 
sons

 
Pil,

 
PI2,...,

 
Pik

 
of
 
Pi.

 
Return

 
to

 
A2

After
 
letting

 
.of+.sb/

 
U{Pot1,

 
Pi2,-..,Pik}

 
-'
 
{P?

 
and

 
･J"'

 
`'

 
vV'P

 
U{Pi1,

 
Pi2,''',Pik}'

                                                                  NII-Electionic  
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                                      '
     A7(Improve): Go  to  A8  after  lettmg

         O(P,)  if f(P,)<f(0')
            ] 1

     0+  0uo(p.)  if f(p,)=f(a)
                t l

         pt etherwise.

     A8(Terminate pi):･  ,of +of-{pi}  
and

 
return

 
to

 
A2.

     A9(Halt): Halt.  M=o(po)  and  z=f(po)  hold･ 
D

     Branch-and-bound  algorithm  As=((va,  .f), (Y, g, u),  D,  s):  a single

optimal  solution.

     In  this  case,  Mstores  at  most  one  solution  x,  and  z=f(x)  always  holds.

It is assumed  that  a  feasible  solution  x  of  Pi  satisfying  f'(x)=u(Pi)  is ob-

tained  in the  computatiom  of  u(Pi)  if u(pi)<co  (thus an  optimal  
solution

 
of

 
P:/

is obtained  if p.E9).
                2                                                                        "

     Al, A5, A6, A8 are  the  same  as  those  in Aa.  A7 may  be eliminated
 

sznce

    'it
 is never  executed.

      '

     A2(Search): IfM=O,  go to A9; else  pis(.of'),  zt'mtn[z,  
u(pi)],

 
a+M

if u(pi)>-z  else{x},  where  x  is a  feasible  solution  
of

 
Pi

 
with

 
f(x)=u(Pi).

Go  to  A3.

     A3(Test by Y):  If pfg,  go to A8;
 

else
 go to

 
A4,

     A4(Lower bound  test):  If g(p,))z,  go  to  A8i else  go  to  A5.
                                  i

     A9(Halt): Halt.  x  

'stored
 in M  and  z satisfy  f(x)=･z=:f(Po).  o

     The  finiteness  and  correctness  of  the  above  two  algorithms  (or their
                                                 '   'speeial

 eases)  may  be found in references  such  as  [1, 2, 6, 8, 13, 14, 16, 17,

18, 20].

     Throughout  this  paper,'the  following  parameters  are  used  to  rneasure  the
                                                            '
computational  efficiency  of  a  branch-and-bound  algorithm  A.
                                                                    --
     T(A):  The  nuTnber  of  nodes  deeomposed  in A6 before  the  terrnination  in  A9

is reached.                                                                    '

     B(A):  The number  of  nodes  decomposed  in A6  prior  to  the  last modificat/Lan

of  0  (which has  occurred  in A7  if all  optimal  solutions  are  sought,  or  in A2

if a  single  optimal  solution  is sought).
                                                 '

     T(A)  is relevant  to  the  total  computation  time  of  A, and  B(A)  is relevant

to the  time  pifhen optirnal  solutions  of  Po  are  stored  in  0.  
B(A)

 
is

 
an

 
im-

portant  rneasure  for  the  quality  of  solutions  stored  in 0' ithen  the  computation

may  be cut  off  beEore  the  normal  termination  in A9,  due  to  the  insufficiency
                                                    '

of  the  avatlable  computeT  time.  It is  of  course  desirable  to  mtike  T(A)  and

                                                                     '
B(A)  small.

      In  the  subsiequent  discussion,  subser'ipts  a  and  s  are  sometimes  added,

eeg-,  Aa,  As,  Ta(A),  Bs(A)  and  so  on,  to distinguish  the  
cases

 
of

 
all

 
optimal

solutions  and  a single  optimal  solution  respectively.  No subscript  is'added,

however,  if it is not  necessary  to  distinguish  them.  

'

                                                                NII-Electionic  
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3. Power  of  Lower  Bounding Functions  under  Heuristic Search

     consider  two  branch"and--bound  algorithms  A(gl)  
=

 ((.ff, O, f),  (Ee'1, gl,

u),  b, sh)  and  A(g2)  
=

 (Ce,  O,  f),  (92,  g2,  u),  D,  Sh)･  A(gl)  and  A(g2)

dlffer  only  in g  and  g, and  both  algorithms  use  the  same  heuristic  search

funetion
 
sh

 
which

 
is

 
not

 
dependent

 
on

 (EY, g).  We  say  that  (91, gl)  
is

tighter  than  (g2, g2)  and  denote  by gf 2 g2,  if Eer1 D  Y2  and  91(P?  ->, g2(Pi)

for  Pi  
E.9V.

 For  example,  let  g'2(pi) denot:e  the  LP  optimal  value  for  an

integer  programming  problem  pi,  as  mentioned  in se6tion  2. zt is known  that

g2  can  be  improved  to  gl satisEying  gl -> g2  by employing  the  concept  of  penalty

(e.g., [21]) or  by  resorting  to  the  group  theoretie  approach  [7] in case  Pi

is
 an  all-integer  prablem.  It has been  conjectured  that  gl -> g2 implies

T(gl)
 S T(g2)

 and  
B(91)

 S B(g2),
 where  

T(gk)
 and  B(gk)  are  abbreviations  of

T(A(g),))  and  B(･A(gk))  respectively.  But  this  is not  generally  true  as  we

shall  see  below.

     Theorem  3.1. Let  A(gl)  
=
 ((.9, o, f),  (91, gf, u),  D, sh)  and  A(g2)  

=

((-S', O,  f),  (Y2, 92, U),  D,  sh)  be  branch-andi-bound  algorithms  using  heuris･-

tic  search.  Then  gl  2 g2  does not  necessarily  irnply T(gl)  S T(g2)  or  B(gl)  S

B(g2).  This  is true  eve'n  if sh  is further  restricted  to  be (i) a  depth-first

search  function,  or  (li) a  breadth-fiTst  search  funetion.  Furtherrnore,  (iii)

gl ) g2 does  not  necessarily  imply T(gl)  S T(g2)  even  if h of  sh  is nonmis-

    .Ieadmg.
 

'

     
Proof.

 
See

 
the

 
exainple

 given  
in

 
Fig.

 1. Fig.  1(a) gives (Y, f), (gl,

gl),  (gf'2, g2),  h and  D.  Nodes  in S71 =

 Y2  (in this  case)  are  indicated by

double
 
circles,

 
and

 
dominance

 
relation

 
PiDPj

 
is

 
denoted

 
by

 
Pi'".

 
Pr

 u  
=

 
co
 is

assumed  in thts  example  (note however  that.  u(pi)  
±
 f(Pi)  are  assumed  for  PiE9

by
 
definitlon).

 
The

 
computation

 processes  
of

 
A(gl)

 and  A(g2)  are  illustrated

in Fig.  1(b) and  Fig.  1(c)  respectively.  The  node  numbers  denote  the  order  in

wh ±eh  nodes  are  tested.  The  z-value  attached  to  each  node  is the  incumbent

value
 

after
 
the

 
update

 
in

 A2. It ±s easy  to see  that  T(ga)  
=

 B(gl)  
=

 5 >
 T(g2)

=B(g2)=4

 in spite  of  glkg2･  ･

     (i) is true  since  sh  used  in Fig.  1 is a  depth-first  search  function.

(iO is proved  by the  example  in Fig･ 2i this  has T(gl)  
=

 B(gl)  
=

 4 >  T(g2)  
=

B(g2)  
=

 3 in spite  of  gl t>. g2. (iii) is proved  by considering  the  subtree  Df

Fig.  1(a)  surrounded  by broken  curve;  h of  this  port'ion  is nonmisleading  and

gives  T(gl)  
=

 4 >
 T(g2)  

=

 3. 
'O

    The  next  theorem  treats  the  final  case,  i.e., the  B-count  under  a nonnis-

leading
 

Sh･
 '
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l1/-!/!/--

f=glg2h-1.l=1.1=O.81.3

'l
f=

l･
     h-
l!NNx

e91.01.2

f=1.0g=O.5h=1.l

/

c

     "--

 -"x

    1

  x/

/
ifFgil
o

fTg=h='lIt1f"g=h-O.5o.o1.0

1.3O.71.6

 f=l.
 g=O.
   x
    N

 =1.

59

fgh

c

x
 × f=g=1.1                fg1.2

   Xs.--h-=l=4---h-1･5

      (a) (Cil), f), g and

8f

=O.5=O.3=2.1

c
.37

c
  f=g=l.5
   h=1.9

h (u!co is

c

=g=h=2

  N

 f=g=2.0
  h-2.0
pm -- -  - in- --i

assumed)

O.5.2xx

 x
  N
   1
  1/

T(

(b) Computation

c

 5

process  of  A(gl)

f=g
 h=21,5.3

(c) Computation

)=4

processof  A(g2)

Fig. 1Counterexample  to  the  conjecture  gl)g2  o  T(gl)S-T(g2)AB(gl)SB<g2)  under

heuristic  search  used  in the  proof  of  Theorem  3.1.  (Nodes in  g  are

denoted
 
by

 
double

 
circles.

 
Dominance

 
relation

 
PiDPJ,

 
is

 
indicated

 by

Pi--.Pj.
 

Some
 

relations
 
derivable

 
from

 
others

 by conditions  (i)ft,(iiD
oi  D  are  not  indicated.  Node  numbers  in (b) and  (c) denote  the  order

of
 nodes  tested  in A(gl)  and  A(g2)  respectively.)
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u= cof=1.5gl=l.1g2=o.sh=l.1

Branch-and-BoundAigorithms

             u=l.O

c

u=  
･cof=O.5g=O.3h-1.4

30i

oo.7.8.3

c c
            f=1.5 6 f::1.7 f=O.5

                 
T(gl)-B(gl)

 4 >
 T(g2)-B(g2)=3

Fig.
 
2
 

Counterexample
 
to

 
the

 
conjecture

 glw>g2 L:>

 T(gl)ST(g2)AB(gl)(B(92)  Under

        egi:gghs;i:?t.iegr::,u26g.gnlg:;..:Eo.gf,of 
TheoEem

 
3･i･

 
(oniy

 
rgievant

     Theorem  3.2. Let  A(gl)  and  A(g2)  be defi.ned  as  in Theorern  3.1,  and  assum'e
- -
m

 
additioti

 
that

 
h
 
is

 
nonmisleading.

 
Then

 
Bs(gl)

 
=

 
Bs(g2)

 holds,  i.e･, the

Bs--eount
 
is

 
independent

 
of

 (Y, g),  and  gl 2 g2 implies  Ba(gt)  r< Ba(g2)  (proPer
inequality

 
is

 possible  only  if Y{  9 Y2)･  
'
 

''

     Proof. Let .9=p,p,  ... p,  be the  sequence  of  nodes  selected  in A2
                      

:JI
 J2  jt

of
 

A(gl)
 (and A(g2i)  with  A3 (test byY)  replaced'by;  If pi  Cfgo  to A7;

else  go  to  A4,  and  ;ifith A4 (lower bound  test)  and  A5 (dominance tesO  sup-

pressed.  (Thus Y  is the  sequenee  of  all  nodes  in .q  arranged  in the  o=der

selected
 by searah  function  sh.  It is independent  of  (9, g)  and  D.)  The

sequences
 

ef
 
nodes

 
actuall.y

 selected  in A(gl)  and  A(g2)  are  subsequence$  o[

,Y  (Proposition 4.3 of  [9]), and  when  h is nonmisleading,

         f(p,)  -< f(p,)  s .., s f(p.)

            Jl J2  Jt
                           '

holds  (Lemma 5.1  of  [9]).
   '                                               '
         .
     We  give  a  proof  on]y  for the  case  of  all  optimal  solutions.  Let  P,  be
                                                                   

Ja

the
 
last

 
node

 
whieh

 
is
 

selected

 
in
 
A2
 

of
 
A(gl)

 
and

 
SatiSfieS

 
PjaEflf1,

 
f(Pj.)

 
'T'

f(Po)･
 

Then
 
Pj.b

 
(1
 
S
 
b
 
S
 

a)
 
is
 

terminated
 

neither
 
by

 
lower

 
bound

 
test

 
since

g(Pj'b)
 
S
 
f(Pjb)

 
S
 
f(PJ･a)

 
=

 
f(Po)

 
n<.
 

Zl

 
(Pjb),

 
nOr

 
by
 
doninance

 
test

 
since

 
pjb
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is
 
not

 
dominated

 
by

 
any

 
other

 
nodes

 
because

 
of

 
f(Pjb)

 
=

 
f(Po)

 
and

 
condition

(i)a of  D. Here  zk(P)  denotes  the  incumbent  
value

 
right

 
after

 
p
 
is

 
selected

ancl  z is updated  in A2 of  A(gk).  This  property  can  
be

 
extended

 
to

 
A(g2).

Although
 
some

 
of
 
pJ.b

 
(1
 
s
 
b
 
K
 
a)

 
rnay

 
be
 
terminated

 
by
 
S'2

 
(in

 
A(g2)),

 
such

 
Pj.b

is
 

also
 

terminated
 
by

 
91

 
(in

 
A(gl))

 
since

 
91

 
)

 
92･

 
Consequently

 
Pjb

(1 s b s  a)  is terminated  in A(g2)  only  if it is terminated  in A(gl).  
This

PrOVeS  Ba(gl)  m< Ba(g2).  1]he result  coneerning  proper  
inequality

 
is

 qlso

obvious.  D

     As  we  have  seen  in the  above  theorems,  T and  B  are  not  monotonically

related  to  (g, g) in  most  cases.  In  order  to  guarantee  the  monotomlc  rela-

tion,  the  eonsistency  assumption  on  D  with  respect  to  g' (defined in Section  2)

               .
seems  to  be  crucial.

     Theorem 3.3. Let  A(gl)  and  A(g2)  be as  defined  
in

 
Theorem

 
3.1,

 
where

A(g?  and  A(g2)  use  a  heuristic  search  function  sh.  rn add.Ltion,  assume  
that

b is consistent  with  g.  Then gl ) g2 irnplies T(g?  S 1'(g2) and  B(gl)  S B(g2)-

     Proof. We  consider  the  case  of  all  optimal  solutions  only.  Let  Y  =

p.  p, ...
 p,  and  g2np.  p.  

,..p,
 be the  sequences  of  nodes  selected

 11
 

i2
 

2s
 JI J2

 
Jt

in
 
A(gl)

 
and

 
A(g2)

 
respectively.

 
These

 
are

 
subseqyences

 
of

 -Yl lntroduced 
in

                         We  first  show  by induetion  that  ,9  zs  a  subsequeneethe  proof  of  IJheorem 3.2.

oE  ,S72. (This iimnediately implies T(gt)  ( T(g2),  and  i.s a key step  to  prove

B(gl)  S B(g2)･)
                              '
                                               - -
     For  that,  eonsider  a  slight!y  stronger  induetion  hypothesis  that  for  any

         Y-al 
=

 
Ptl

 
Pi2

 
'''

 
Pla'

 
1KaSS,

there  is the  unique  initial portion  of  ,s72,

          -2
         Y  =P.  P.  ...  P,
                           Jb                Jl                    J2

SUCh  that  Pia  
=

 Pjb,  ･of1(Pi.)  
C
 LgV>(Pjb), zl(Pia)  

=

 z2(Pjb)  and  .9g 
is
 
a
 
sub-

sequence  of  gZ, where  ofk(p) is the  set  of  aetive  nodes  whenp  ts selected  in

A2 of  A(gk)  (k "
 1, 2),  and  zk(P)  was  do-fined in the  proof  of  Theorem  3.2.

This
 
also

 
implies

 
fi

 
(Pia)C

 
dtf/i(Pjb)

 
SinCe

 
"diG

 
(Pi.)

 
=

 
{Pil'

 
Pi2'

 
''''

 
Pi.-1}

U-of1
 
(Pi.)

 
and

 
f2

 
(Pjb)

 
=

 
{Pjl,

 
Pj2,

 
･･･,

 
Pjb..1}U

 
"of2(Pjb)'

 .
                                                               

-2 ..
     This  induction  hypothesis  is trivially  true  for a=  1, since  Yl                                                                  satlsfles

the  above  conditions.  In  order  to  prove  the  genera!  case,  we  first  show  that
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Pia

 
iS
 
terminated

 
in
 
A(gl)

 
whenever

 
Pjb

 
is
 
termlnated

 
in
 
A(g2).

 
The

 
follow ±ng

       two  cases  are  considered  corresponding  to  how  p.  is terninated.

                                                   Jb

            
(a)

 
PJ.b

 
is
 
terminated

 
by

 
Y2

 
or

 
by
 
lower

 
bound

 
test:

 
rE
 
pjb

 
E
 
92,

 
then

       
pi.(=pib)

 
E
 
91

 
by
 
Yl

 
]

 
Elll･

 
If
 g2(Pjb)  

>

 
z2(Pjb),

 
then

 gl(Pi.))  g2(Pjb)  
:'

       
Z2(Pjb)

 
=

 
Zl(Pi.)

 
(bY

 
iLndUetiOn

 
hypothesis).

 
In
 
either

 
ease

 
pia

 
is
 
terminated

       in A(91)'

            
(b)

 
pjh

 
is
 
terminated

 
by
 
dorninance

 
test:

 
Then

 
some

 
PjpE

 
f2(Pjb)

 
Satis"'

       
fieS

 
PJ,p

 
DPjb,

 
Where

 
,/"7k(P)

 
denotes

 
fwhen

 
p
 
is
 

selected

 
in
 
A(gk).

 
Assume

       pj  ¢ vV'1'(pi  ) since
 

otherwise
 pi  is also  terminated.  This means  that  a  proper.

        P a  a

       ancestor  pi  of  pj has  been terminated  in A(gl)  (see Fig.  3).
                 9 P

                          
Pi

 
EN'l

 (Pi )
                            u q

o -

                              
PjpE'A(2(P

  Fig.  3 Illustration  of  the  set  of  nodes

       has  been  terminated  by  lower  boundIf P,
    -

     9

         Zl(Pi  ) S ZI(Pi  ) (Since Pi

              a g a

                 S gl(Pi. ) m< gl(Pj  )
                       q p･

                 
<
 gt(Pi  ) (since D  is

                       a

Hence
 Pi  is terminated  in A(gl)  by lower

       a

has
 
been

 
terminated

 in A(gl)  by dominance

..C(Pi  )･
     g
Then  pi  E  .Vl (pi ) follows  since  V/S (p
      u q
Thus

 
Pi

 must  have been terminated  in A(g2)

      g
This

 proves  that  
Pi

 is terminated  in A(gl)･

                  a

    Now
 
the

 
induction

 can  proceed  ope

proof  is done):

 
Piq

 
--D

 Pi,(=Pjb)

  jb)

    used  in  the  proof  of  Theorem  3.3.

                '

   
test,

 
or

 
by

 q, it follows  that

 
is

 selected  after  Pi  in A(gl))

                   g
(by condition  (c) oi  g)

 consistent  wtth  g).

   bound  test.  Thus  assume  that  p
                                i
                                 9         '
   

test,
 

z.e.,
 
Pi

 
DPi

 
for

 
some

 
Pi

 
E

                uq u

i 
) D  ･-C (pi ) by induetion  hypothesis.

 q q
     by dominance  test,  a  eontradiction.
                           '

step  unless  ,siPl =  ,9)1 (in this  case  the
             a

                        NII-Electionic  
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3o4 rtharaki

           
-1

          .9               =P,  P.  ".P.  P,

           a+t  11  12  Za  
la+1

         YZ+,, 
==

 Pjl  Pj2  ･･"  
Pj･b

 ''"  
PJ･b..,

where  pia+1  
=

 Pjb+w･  This  .9?i-b2+v, existS  SinCe  ･of2(PJ･b) COntai"S  
Pjb+w

 (= 
Pta+1)

l.i.
M

,;I:1.',:.,

-or

.i.i

p

,s..i

±

l
d

i.i
t

i
o

:.il!!i:i:i
s

l,ies.,i:?+w.i
s

,:Ii

"

;lglgy.e es

,;i,j.,,

CI

 
pt2

 
(pj.b+.).

 
Note

 
that

 
.sYl

 
CPi.+1)

 
C

 
･of2

 
(Pjh+1)

 
follows

 
froTn

 
of1

 
(Pia)

 
[

-･4(pjb)
 
(induction

 
hypothests)

 
and

 
the

 
fact

 
that

 
Pi.

 
is
 
decomposed

 
in
 
A(gl)

only
 
if
 
pjb

 
is
 
decomposed

 
in

 
A(g2).

 
By

 
definition

 
of
 
heuristic

 
seareh,

          
h(Pi.+1)

 
=

 
T"i"

 
{h(l')

 
P
 

E

 
LVI

 
(Pi..1)}

and  all  nodes  p,  , 1(  v<  w,  satisiy

              Jb+v

          h(P,  )<h(P,  ) (=h(P, )),
            Jb+v  Jb+w  

ia+1

i'e`,
 
PJ'b+va'- ¢ (Pia+1)

 
fOr

 
V
 

=

 
1,
 
2',o･`,W

 
m1･,

 
MliS

 
PrOVeS

 
.Jut1

 
(Pia+B

 
[

･iYll(Pjb+w).
 

TO
 
PrOVe

 
Zl(Pia+1)

 
=

 
z2(Pjb+,g),

 
note

 
that

 
a
 
proper

 
ancestor

 
pie

(1 SeS  a)  of  each  p,  (1 Sv<  nf) (we assume  w>1  since  otherwise  the  proof
                    Jb+v

is trivial)  has  been  terrninated  in A(%)  by  9  or  by  lower  bound  test.  (If

Pi  is terminated  in A(gl)  by dominance  test,  
it

 is also  
terminated

 
in

 A(g2)      '
  eby

 dominance  test  since  .y4'1'(pi )c ./}1' (pi ) follows  from the  induction  hy-

pothesis:)
 Thus  

e

 
e

                '

          
"(Pjb+.)

 
)
 
gl(PJ'b..)

 
->
 
91(Pi.)

and  gl(Pi  ) -> zl(Pi  ))  zl(Pi  ) tf Pi is terminated  in A(gl)  by  YF or  by

         e  e  e+1  e

lowgr
 
bound

 
test.

 
Zthis'

 
shows

 
u(Pjb+v)

 
)
 

zl(Pia+1),
 
i.e.,

 
zl
 

WOuld
 
not

 
have

been
 
inrproved

 
even

 
if
 
Pjb+.

 
i-s
 

teSted
 
in
 
A(%),

 
iMPIYtng

 
Zl(Pi.+1)

 
-<
 
Z2(Pjb+.)'

On
 
the

 
other

 
hand

 
zl(pia+i)

 r) 
z2(pjb+w)

 
si-nce

 gg+1 is
 

a
 

subsequence
 

of
 .E7g+w,

and
 
henee

 
Zl(Pi.+1)

 
=

 
Z2(PJ'b+w)'

     consequently  .91 is a  subsequence  of  ,f2, and  Ta(gl)  -< Ta(g2)  is an  imm
'rmediate

 consequenee  of  it. To treat  the  B-count,  let
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          ,.9"gpt 
"

 {Pi e ,.9" i Pi  E Sfl, f(Pi)  =  i(Po),  and  no  proper ancestor  of

    . Pi  belongs  to  Y?.
                                                         '
   2.  ..  .
.EXopt 

is
 

simllarly
 
defined.

 
Obviously

 
Ba(gk)

 is equal  to  the  number  of  nodes

 decornposed  in A(gk)  before  all  nodes  in.Spu5pt are  tested.  By  91 ) %, it

 foZlows  that,  for any  Pj  E,Spt"Zpt,  there  exists  pi  E Ygpt  such  that  Pi  is an

ancestor  (including the  ease  of  pi  .= 
pj)  ef  pj.  This  property  and  that  ,gl is

a subsequence  of  ,9-2 lead to  Ba(g?  -< Bi(g2)･  a

     A  property  similar  to  Theorem  3.3 has been  known  as  Theorem  2 of  [13]

 (see [14] for  the  eomplete  proof),  though  there  are  some  nonitrivial  deffeT--

ences
 such  as  [13] treats  only  depth-first  and･breadth--first  search  functions,

definitions  oE  u  and  D  are  slightly  different;  and  I13] does not  discuss  tbe

B-count.

                                                       '                        '

4. Power  of  Lower Bounding Functions under  Best-Bound  Sear/:h

     
Along

 the  line discussed  in Section  3, we  tFeat  in this  section  two

branch-and-bound
 

algorithms

 
A(gl)"

 
((9,

 
O,
 
f),

 ,( 
gl,

 
gl,

 
U),

 
D.
 
Sgl)

 
and

A(g2)=  ((.SZi; o,  f),(4,  g2,  u),  D, s                                         ) using  best-bound  search  functions
                                       g2
s  and  s  that  are  usually  different.                                         Classes  of  branch-and-bound  algo-
 

gl
         92

rithms
 
in

 
which

 gl  ) g2  
implies

 
T(gl)

 S T(g2)  and  B(gl)  S B(g2)  are  clarified.

In
 

additiop,
 for some  classes  not  satisfying  this  monotomic  relat ±ont  weak

statements
 

sueh
 as  T(gl)  -< T(g2)+t  and  B(gl)  S B(g2)+E  are  preved  for some

sma11  positive  number  E.

     The  effect  of  g  under  best-bound  seareh  was  first investigated  in  [8, 18]

(see also  [5]); special  cases  of  Theorem  4.4 (i) --
 (iii) we]re  therein  proved.

1]he
 phenomenon  

that
 gl -> g2 does not  necessarily  irnply Ts(gR  S Ts(g2)  (the

first half of  Theorem  4.4) was  also  observed  in [13].

     When  best-bound  seaTch  is coneerned,  it may  not  be reasonable  to  assume

g(P2  f g(PJ,) 
for

 
all

 pairs  
pi

 4 Pj･  In case  g('pi) 
rt
 g(p?  holds  for  some

Pi
 f Pj,

 
some

 
tie

 breaking  rule  is used  to  determine  the  nocle  selected  first,
   `A
 
tie

 
breaking

 
rule

 
which

 
selects

 
Pi

 befOre  P). if g(Pi)  
=

 g(IPj)A(S  a proper

deseendant
 
Pk

 
ef

 
Pi)

 (PkDPj) is
 

sometimes
 used  in the  following  discussion.

IE
 

sg
 
uses

 
such

 
a
 
tie

 
breaking

 rule,  it is said  to  be  coinpatible  vvTith  D.  (As
               .
an

 
example

 
consider

 
the

 
case

 
in

 
which

 
PiDpj

 
occurs

 
only

 if pi  and  Pj  are  in

the  same  depth. Then  a  tie  breaking  rule  putting  a  priority  on  nodes  with
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 ZIbaraki

                                                                           J

      sma11er  depth  results  in an  sg  compatible  
with

 
D.)

 
Usually,

 
howevers

 
we

 
will

      net  assume  any  particular  tie  breaking  rule  unless  otherwise  stated,

                                                                             '

          Theorem 4.t. Let
 
A(gl)

 
=

 ((ff, O,
 
f),

 
(Yl,

 
91,

 
U),

 
D,
 

Sgl)
 

and
 
A(g2)

 
"

      ((g, 
O,
 
f),

 
(Y2,

 92, 
U),

 
D,
 

Sg2)
 
be
 
branch-and-bound

 
algorithms

 
using

 
best-

      bound  seareh.  Then  gl ). g2  does not  necessarily  
imply

 
T(gl)

 
S
 
T(g2)

 
or

      B(91)  S B(g2)･

                         

                         

                       f=1,5  f=1.

                               .
Fig.  4 CounterexaTnple  to  the  con]ecture

       best-bound  search  in the  proof

     Proof. Jhe example  of  Fig. 4 has

--m
 splte  of  gl ) g2.  

1]

     Note  that  D  used  in Fig.  4 is not    '
           '
ency  assumptlonp  stronger  statements  ean

section.  The  following  lemma  is useful

     Lemma  4.2. Let  A(g)  =  ((eq  o, f)

bound  algorithm  using  best-bound  search,

Define(4.D

 ,.se-== {pi E  A  g(l'i) -< f(Po

(4.2) .9iD 
=

 {pi E  .9V i no  pj(4Pi)

IIhen T.(g)  
=

 IL9Un 0D  
-g[n

35

gl)=B(gl)=4

g2)=B(g2)=3

   2

      g121g2  C>  T(gl)ST(g2)AB(gl)(B(g2)  underc

    of  Theorem  4.1., (u=co is assumed.)

    T(gl)  
nt

 B(gl)  
=

 4 >
 T(g2)  

=

 B(g2)  
=

 3,

                                  '

    comsistent  wlth  gl, Under
 
the

 
consist-

      be made  as  shown  in the  rest  o[  this

     to  prove  them.

     , (9, g, u),
 

D}
 

sg)
 
be

 
a
 
branch-and--

      where  D is consistent  with  g.

    )}

    E  .es satisfies  P  .DP ,}.
                   ]l                  '
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          Proof. It  is  known  (e.g., lemrna 6.1 of  [11] and  Lemma  3 of  [8]) that

     g(Pi  ) -< g(Pi  ) holds  if Pi  is seleeted  after  pi  in A(g),  and  that  z  is set

         1 2 2                                                   1

     to  f(Po)  before  any  Pi  with  g(P?  
>
 f(Po)  is selected.  When all  optimal  solu-

     tions  are  sought,  therefore,  Pi  is terminated  by 9  or  by  lower  bound  test  if

     
and

 
only

 
if

 
Pi

 ¢ LSIV-9.  Next  eonsider  a  node  pi  E  Lff"- g  and  assume  that

     
there

 
exists

 
Pj(iP?

 
satisfying

 
PjDPi,

 
i.e.,

 
Pi

 ¢ .9"D･ Then
 g(Pj)  

<
 g(P?

     
since

 
D
 
is

 
consistent

 
with

 g. Thus
 
Pj

 
Ef(Pi)

 
if

 
Pj

 
is

 eventually  generated

     
in

 
A(g),

 implying  that  Pi  is terminated  by dominance  test.  On  the  other  hand,

     
if

 
Pj

 
is

 
not

 generated  
in

 
A(g),

 
a
 proper  

ancestor
 
Pk

 
of

 
Pj

 Tmist  have been

     
terminated

 by dominance  test,  i.e., PslDPk  for some  other  P2 E f(Pk) (note

     ;?::.,pf, ;:.::t,x;i:g
'

:a;:
d.by.,.Eij-'

 &r,?y S;w:g.::･::･g.t:i･i･,:i:;e.7(:gl,:

 g.`:･gl,`.
     descendant  P  o
                m  

f
 
P2

 
SuCh

 
that

 
P,,DPj

 (see Fig.
 
S).

 Ii P,n is eventually  gener--

     
ated

 
in

 
A(g),

 
it

 
is

 generated  
before

 
Pi

 
slnee

 g(Pm)  
<
 g(Pj)  

<
 g(Pi).  In

     addition,  
PmDPi

 holds  by the  transitivity  of  D (note that  D  is a partial  order-

     
ing).

 
Thus

 
pi

 
is

 terminated  by dominance  test.  On the  other  hand, if P., iS

     not  generated  in  A(g),  we  can  repeat  the  above  argu-ment.  However,  this  process

     can  not  be repeated  indeEinitely  since  .9} is  finite;  showing  that  p.  is terni-
                                                                    z

     nated  by doninance  test.  Consequently  a  node  Pi E  .Sff--  9  is terminated  by

     
dominance

 
test

 
if

 and  only  if Pi  ig YPD. Therefore  we  have Ta(g)=1.9rnfD-Yl.  []

                       
P2

 
.-h-

 
Pk

                          

        Fig.  5

     Theorem  4,3

A(gl)  and  A(g2)

sistent  with  gt.

i,erk n .99b 
-
 91

(4.3) Mk=

   P 
---b

 
---

   
m

 P･
                         J

 Relative  positions  of  P,,  P,,  p
                      2  J k,

 proof  of  Theorem  4.2.

.  
Let

 A(gl)  and  A(g2)  be defined

use  best-bound  search.  In  additton

  Then  gt -> g2 implies  Ta(gl)  S

l, where

{Pi E  ･ca1 gl(Pi)  
=

 g2  (Pi) =
 f(Po)}

        Pi

   
P
£

, 
Prn

 
used

 
in

  as  in Theorem  4

   , assume  that

Ta(g2)
 and  B.(gl)

   .

 the

.1, where
  .D

 ls  con-

 s B.(g2)  
"
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PrOOf.

 Ta(9? 
E!
 
Ta(g2):

 
By

 
Lemma

 
4.2,

 
we

 
have

       (4･4) T.(gi)  
==

 l･-9'1 [) Y.  
-
 9i[, T.(g2)  -> l･% n 1-  L[,

       wheTe  Lf7k/ is defined  by  (4.1) for  A(g)  
m

 A(gk),  kt=1, 2.
 

Note
 
that

 
the

 
second

       l:l:i:".;? //."f,',i
uallgy

 e.,: 
ezusi,?

 ::i,llt,b;.:g:iii･lll'I k,:lg:,g%,,g::7e 
gi

 
)

 
g2

           Ba(gl)  <- Ba(g2)  '  f･ofle n ･esD 
m
 911:- Let

       (4.s) nl  
=

 {pi E  ,tpal  gl (pi)<f(Po), g2 (Pi)<f(Po)}

                    '

       (4.6) Xi  
=

 {pi E  ,.9er1 gi<Pt)=f(Po),  g2  (Pi)`f(Po)}e

       Under  best-bound  search,  nodes  in ev1 u ,agYare  tested  in A(g2)  before  nodes

       in.S}r.:. Furtherrnore,  all  nodes  
Pj
 satisfiying  

P),E
 
2t7h

 
A
 
f(PJ,)

 
=

 
f(Po)

 
belong

             . Thus,  denoting  the  set  of  nodes  decomposed  in A(g2)  by ,%,                                                                        we  have       to  ,JiY

                 1(q u  ･-Ti5 f) 4I s B.(g2)･

       Next note  that  nodes  in ,Z.  are  tested  inA(gl)  beEore  nodeis  in /ff;UuS}i'*, and

       nodes  pj  satisfying  
pj

 
[
 E4G A

 
f(pj)

 
=

 
f(Po)

 
belong

 
to

 X  
U,.T

 
.                                                                       Thus,  de-

       noting  the  set  of  nodes  decomposed  in A(gl)  by  ,SZ, we  have

                                          V k

                B.(gi)  s 1`Sb':1i n SlI +  I(-SZ u,or  )n  .91i

                       -  ffl n ･9",]+  i,SFI' n JZI + 1.J2trfiL`n gll

                       s ev; uM,')n  ･%l+Lsu'n･t'.-  Z1
                                                 .* - -"t

                                                         
..T

 n ,91, 
-
 EeZ                            (by .9ff2 ]

 .cat and  by･or  n -op1

                             derived  from  LeTrffna 4.2)

                                    ""

                       -< B.  (92) ' 1,.SY' fL%  
-
 Y'1 1･ n

            The  term  ,;El?!t r) ,%  - l"11 is necessary  in the  above  theorem  because  a

       
best-bound  

searchikfunction
 
sg

 (without a
 
tie

 .breaking  
rule)

 
does

 
not

 
decide

       which  nodes  in.SY' should  be tested  f!rst.  This  term,  however,  seerns  to  be

       very  small  in most  cases  encountered  in practice.

            I"hen  a  sing!e  optimal  solutien  is sought,  the  situation  is somewhat  dif-

       ferent. Theorems  4.4  and  4.5 below  summarize  the  results  for  T  andi  B  respec-

       tively.  Fo:  proofs  of  these  results,  see  [12].

            Theorem 4.4. Let  A(gl)  and  A(g2)  be defined  as  in Theorem  4.1, where

       A(gl)  and  A(g2)  u$e  best-bound  search.  Furtherrnore  
assuTne

 
that

 
D
 
is

 
consistent

                                                                   NII-Electionic  
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with  g
      1
Jlf

 D=rtrue.

. In general,

is assumed  (asgl

 r>shown

 BranchandBoundAigorithms

gb does not  necessarily

 in Fig.  6). }Iowever,
 imply 

T,(gl)

the  follow2ng

          30.9

S Ts(g2)  even

       .
propertles  are

f=1.0

(a) (ge,

   z=co

    ]

f=1:3

f), gl and

3

g2 (u=cn is

z=oo

Fig.  6

2z=co 2

assumed)

     
zico

  z=co

(s[]

b
        @  .E  es
 z=1.0  z=1.0  z=1.0  z=1.0

      T,(gl)=B,(gl)=3

(b) Computational process  of

   A(gl) (The tie breaking

    rule  selects  node  2 prior

    to node  3 though  both

    have the same  gl-value.)

Counterexample  to  the  eonjectgre

under  best-bound  search  and  D=f
                             '

(ll!i

z=oo

 z=1.0  z=1.0

       Ts(g2)=B,(g2)=2

 (c) Computational  process of

     A(g2) (The tie breaking

     rule  selects  node  3 prfior

     to node  4 though  both

     have the  same  g2-value.>

'

gl->g2  
t->

 T,(gl)ST,(g2)ABs(gl)gB,(g2)

used  ±n  the  proof  of  Theorem  4.4.
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     (i) If s  is cornpatible  with  D, then

             gl

         gl -> g2 c> T,(g?  s T,(g2)  + Iafn gD  - gl1･

     
(ii)

 
If
 

sgl
 
is
 

compatible
 
with

 
D
 
anCL

 
gt(Pi)

 
>
 
g2(Pi)

 
for

 
Pi

 
E
 
g-

 
fYf,

then  gl -> g2 implieS  Ts(gl)  -<- Ts(g2)･

     (iii)t If gl(Pj)  >gl(PI)  £ or  every  (Pi, PJ,) e- 8with  PiEg  - 91, and

if pk  
E
 gl  has higher  priority  than  P

£  
ft 91 satisfylng  gl (P£ ) 

=

 gl (Pk) in

seleeting  an  active  node  in A2 of  A(gl),  then  gl 2 g2 iMPIieS  Ts(gl)  H< Ts(g2).O

     Special  cases  of  Theorent 4.4 (i) 'V
 (i,ii) assuming  a  certain  deminance

relation  specific  to  the  shortest  path  problem  were  proved  in [5, 8, 15, 18].

(Their results  are  more  general  in the  sense  that  .SZ? c6uld  be  infinite.)

     Theorem  4.5. Let  A(gl)  and  A(g2)  be defined  as  in Theorem  4.1, where

A(gl)
 and  A(g2)  use  bestmboun.d  search.  Fv.rthermore  assume  that  D  is eonsistent

with  g. Although  gl )  g2  does not  necessarily  imply Bs(gl)  S Bs(g2)  even  if

D=I  is assumed,  the  following  properties  are  true.

     (i) If u=ee  and  s  is compatible  with  D,  then
                     gl

         gl ) g2 =>  B,(gl)  s B,(g2)  + 1,.of n ,9nyD - S71 [.

     
(ii)

 
If
 

u=ee,
 

sgl
 
is

 
compatible

 
with

 
D
 
and

 
gl(Pi)

 
>
 
g2(Pi)

 
for

 
Pi

 
EP"-

91, then  gl ) g2 implies B,(gl)  S B,(g2).

     (iii)t If u=co,  gl(Pj)  > gl(Pl)  for every  (Pi, Pj)  E g with  pi  E ,9'-

Yl, and  if Pk  E  q has higher  priority  than  P
£ 

¢ fZ satisfying  gl(P
£
) =

gl(Pk)  in selecting  an  aetive.  node  in A2 of  A(gl),  then  gl H> g2 imrplies

Bs(gl)  S B,(g2>.  n

     The  results  in Sections  3 and  4 are  summarized  ih Table  1, where  -

indicates
 
that

 
a
 
rnonotone

 
dependeneg

 
of

 
T
 (or B) on

 g  
is
 

not
 guaranteed.

*

with

The  first cgndition  on  g  may  by  changed  as  follows:  
"If

 s

                                                      gl

 
D
 
and

 gl(Pi)  
<
 gl(Pj)  

holds
 
for

 
every

 (Pi, Pj)E
 gr with  pi

 is compatible

a EYI, Pf  Etr1"･

 NII-Electionic  
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Table  1.

 of  Japan

            Branch-and-BoundAigorithms

computational  efficiency  of  A(g?  and  A(g2)  With  gr>g2･

(Entries -  denote  that  
T(g?KT(g2)

 or  B(gl])SB(92)  does

not  necessarily  hold.)

3fl

D

Seareh
General Consist:entwithg

.
Strategles

.
Propertzes Theorems Properties Theorems

Heuristic

(General)

-

ww

3.1

3.1

T(gl)ST(g2)

B(gl)SB(g2)

3.3

3.3

Heuristic

(Nonmisleading)Ba(giB,(gP

-

)sB.(g2)

=B,(g2)

3.1

3.2

3.2

T(g?ST(g2)

B(gl)-<B(g2)

3.3

3.3

Depth-First

Breadth-First

-

-

3.1

3.l

T(gl)ST(g2)

B(ga)KBt[92)

3.3

3.3

(a)
Best-Bound

m

+

4.1･

4.1

Ta(gi)STa(g2)

-(b)

Ba(gi)SBa(g2)+

1mrkng,,-911
･-(e)

4.3

4.4

4.3

4.5

  (a) Nete  that  search  functions  also  change  when  g  is improved,  in case  of

       best-bound  search.

  (b) See  Theorem  4.4  for  detailed  analysis.

  (d) See  TheoreTn  4.5  for detailed  analysis.

5. Power of  UPper Bounding Functions

     Consider  two  branch-and-bound  algorithrns  A(ul)  
=

 ((ue, O,  f),  (EY, g, ul)s

D,  s)  and  A(u2)  
=

 ((S', O, f),  (Y, g, u2),  D,  s)  with  different  upper  bound-
4 - --
mg

 
functions

 
ul

 
and

 u2.  ul  
is

 said  to be tighter  than  u2,  denoted  by ul  S u2,

if
 ul(Pi)  S u2(Pi)  holds  for  any  Pi  E  .9V.  Again  ul  m< u2  does  not  generally

iMply T(Ul)  S T(u2)  and  B(ul)  -< B(u2)  as  we  shall  see  belovif. Classes  of

branch-and-bound
 
algorithms

 for which  
ul

 "< u2  irnplies T(ul)  S T(u2)  and

B(Ul)
 S B(u2)

 are  also  clarified  in this  section.  Properties  of  u along  this

line  were  first  examined  in [13], and  a  result  similar  to  Theorem  5.4 was
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       therein  obtained  (though [13] did not  consider  the  B-count,  treated  only  upper

       bounding  functions  of  type  utsu(pe),  and  did  not  assume  the  general  class  of

       heuristic  search).

            Theorem  5.1. Let  A<ul)  
=

 ((va, O,  f),  (Yi g, u?,  D,  sh)  and.A(u2)  
=

       ((,9, O, f), (EY, O, u2),  D, sh)  be branch-and-bound  algorithms  using  heuristic

       seareh.  Then  ul  r< u2  does not  neeessaTily  implSi T(ul)  S T(u2)  or  B(ul)SB(u2)･

       This  is true  even  if sh  is restricted  to be a  depth-first  search  function  or

       abTeadth-fiTst  search  functiion. 
'

                                   Ul=O.9

                                  u2=l.8

                   

                   

f=

     Fig.  7

     Proof.

in spiPe  of  u
            1
search  function

Fig.  8, in  whie

    Note  that

tions  of  type  u

                      h

  CounterexaTnple  to  the

  B(ul)-<B(u2)  under  

'

  Theorem  5･1･ (Uk=Uk(Po

  relevant  parameters  are

 The  example  in Fig.  7

S u2.
 

'lhe

 
seareh

.  The  case  of  a

h T(ul)  
--
 B(Ul)  

=

the  exaimples  used

k=  Uk(Po).  Thus

31

     =1.9  h=2.e

    
conjecture  ul-<u2  

,=>
 T(u?m(T(u2)A

heunstic  seavch,  used  in the  proof  of

     ) is assumed  for  k=1,  2. 0nly

      indicated.) 
'

   
has

 
T(ul)

 
=

 
B(ul)

 
=
 4 >

 T(u2)  
=

 B(U2)  
=
 3

 functio'n sh
 used  here  is alse  a  depth-first

breadith-first  search  function  is treated  in

 
7>T(u2)  

=B(u2)

 
==
 5 in spite  of  ul  S u2･  

M

 J
 m  the  above  proof  have  upper  bounding  fune-

 Theorem  5.1  holds  even  if  u  is restricted
                          k

                              NII-Electionic  
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results

Society  of

 typein

 T(u

fgh

u

1

Japan

k 
=

 Uk  (Po)

) r< T(U2)

Ll1.]Ll

g=1.h=1.

.and

g=1.3h=1.4

 Branch-and-BoundAigorithms

For  best-bound  seareh,

 
B(u?SB(U2)･

             ul=1.0

             U2=1.2

             
･f=1.0

             g=O.3
             h=1.0

c

!

3 !!

5!!-

 g=O.5
 h=l.6

    1
   1-

  4-
     c

) under

 1

    g

).

al

l

f=g=h=

however,
 

Ul
 
-<
 

U2

x!-

c

z

cc ce

                    T(ul) 7 >  T(u2)=B(u2)

       Fig. 8 Counterexample  the  eonjecture

              B(Ul)(B(u2  breadth-first

              of  Theorem  (uk=uk(Po) iS

              relevant  pararneters  are  indicated

     Theorem  5.2. Let  A(u  ((.gZ; O,  f),

((,SL O,  f), (gf?, g, u2),  be branch--･and-bound

bound  search.  Then  ul  -< ieS  
Ta(Ul)

 
=

Ts(g2)  and  Bs(ul)  S Bs(U2

     Proof. I"hen  all  optimal  solutions  are

A(ul)  and  
A(u2)

 proceed  independently  of  
ul

and  only  iE pi  E  ,.9-n .9il] (this set  does'

'LeTnma
 4.2. This  proves  T  Ta(u2)  and  B

     Lthen a  single  optiTnal,  solution  is sought

 -2Y
 

=p.
 P,  ...P,  be  sequences  of  nodes

       ]1          J2                  jt

respeetively.  It is shown  duction  that

always

3J3

                 j

 fxl.O
 g=O.5
 h=1.3

                     f=1.0
 g=O.5 g=O.5
 h=1.7  h=1.9

   g=O.s
   h-1,8

e  cccc
                    f=1.0

    =5

    UISU2  C> T(Ul)ST<u2)A

   search,  used  ±n  the  proof

  assumed  for  k=1,  2. 0niy

    -) 
,

(9, g, ul),
 

D,
 

sg)
 and  

A(u2)=

        algorithms  using  best-

 
Ta("2)'

 
Ba("1)

 
=:
 
Ba(U2)'

 
Ts(Ul)

 -<

sought,  computatiLonal  processes  of

and  
u2,

 sinee  
Pi

 is deeomposed  if

  not  depend  on  ul  or  u2)  by 
'

 a("1)  
=

 Ba(U2)'

 , 
let

 ,dil 
=

 
pil

 
pi2

 
...

 
Pis

 
and

    selected  in A(ul)  and  A(U2)

 .di3 is a subsequence  of  g2.
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To prove 
this,

 
assume

 
that

 
l'or

 .S711  
=

 
Pil

 
Pi2

 
...

 
Pia,

 
1
 S 

a
 2< 

s,
 

there
 

exists

Y-2b 
=

 Pja  Pj2  ''' 
P)'b

 SatiSfYing  that  
Pi.

 
=

 
Pjb'

 "Sgit (Pi.)[ 
Loff2

 (Pjb)' Zl(Pi.)  r<

z2(Pjb)
 

and
 gg  

is
 

a
 
subsequenee

 
of
 Y'"b2. 

Fora=
 
1,
 
this

 
induction

 
hypothesis

is trivially  true  since  ,S7? satisfies  the  above  conditions.  In a  general  case,

we
 
first

 
show

 
tbat

 
Pia

 
is
 
terminated

 
in

 
A(ut)

 
if
 
Pjb

 
is
 
terminated

 
in
 
A(u2).

Three  eases  are  consldered.

in A(u(ii b;jb{e

Li
'S

 
terMinated

 
in

 
A("2)

 
bY

 
EIf:

 
Then

 
Pia(=pjb)

 
is

 
also

 
terminated

     
(b)

 
P),b

 
is
 
terminated

 
in
 
A(u2)

 
by
 
1.ower

 
bound

 
test,

 
i.e.,

 
g(Pjb)

 
m>

:ii
P

:,bll. /ki.!,g2iijbl,l
'

,.i.iiol.11.lli,#

s

, l,[)l
r

:
c

i
e

;ljil
c

,:

f

.

b.iit-

:z::.
d

.

s

::l[
h

L
                   P P

proper  
ancestor

 
Pi

 
of

 
pj

 
has

 
been

 
terminated

 
in

 
A(ul),

 
since

 
otherwise

                  9 P
ZI(Pia)

 
(
 

"1(Pjp)

 
r<
 

"2(Pjp)

 
=

 
f(Po)

 
S
 
g(PJ･b)

 
"

 
g(Pj.)

 
and

 
henCe

 
Pi.

 
is
 
termiH

nated  in A(ul)
 by lower bound  test.  If pi  has been terminated  in A(ul)  by

                                           q
lower  bound  test,  it follows

          g(P.)  H> g(P,)  (since P,  is selected  after  p.)
             1  .1 1 1

              a g a  q
(5.1) -> zl(Pi)M  f(Po)  

'

                        q

                 2 zl(Pi  ) (since Pi  is selected  after  pi )
                        a a q

and  pi  is terminated  :Ln A(u?  by  lower  bound  test.  On  the  other  hand,  if
      a

pi  has been  terminated  by dominance  test  Pi  DPi  fQr  Pi  Efl(Pt  ), we  have
  q rg  r q
･Zfili(Pi ))  fl  (Pi) (this follows  from the  induction hypothesis)  and  pi  must:

      q q g
have

 
been

 
terminated

 
in

 
A(u2)

 
by

 
dominance

 
test.

 
This

 
contradiets

 
that

 
pj

                                                                          p
(a proper  deseendant  of  Pi ) was  generated  in A(u2).

                          q

     
(c)

 
pjb

 
is
 
terminated

 
in
 
A(u2)

 
by

 
dominance

 
test

 
PjcrDPjb

 
for

 
Pjc

 
E

f2(Pjb):
 

Assume
 

that
 

aproper
 

ancestor
 
Pid

 
of
 
pjc

 
has

 
been

 
terminated

 
in

A(ut)  since  otherwise  pi  ts aXso  terminated  in A(ul)  by  dominance  test.  For
                        a

sirnplicity,  assume  that  p.  has  been  terminated  by  lower  bound  test.  (If p,

                         
-d

 
ld

has been  terminated  by doTntnance test,  the  a=gument  used  for  Fig.  3 in the

proof  o £ Theorem  3.3 can  be used.  The  following  argument  is also  valid  for

this  case  with  minor  mod!fication.)  Then  it follows.
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                g(P,)  2 g(P,)  (since P,  is selected  after  p.)
                                        Z 2                   2 2
                    a d a  d
      (5 2)
                       -> Zl(Pi  ) -' Zl(Pi  ) ,
                              d a

      and  pi  ls terminated  in A(ul)  by  lower  bound  test.

           Ngw  assume  that  
.siJg

 \ 
.S71

 (since otherwise  the  proof is done) and  define

      the  followlng  two  sequences

                 
-1

                
Ya+1

 
=

 
Pil

 
Pi2

 
'''

 
Pia

 
Pia+1

                 -2

                
Yb+.

 
"

 
Pjl

 
Pj2

 
's'

 
Pjb

 
'''

 
Pjb+w'

      
such

 
that

 
pia+1

 
t

 
pjb+w,

 gal+1 is
 

a
 

subsequence
 

of
 Y'b2+w- 

tu1
 (Pia+1)C

      
of2

 
(Pjb+.)

 
ean

 
be
 prOved  

in
 
a
 
manner

 
similar

 
to
 
the

 proof 
of
 
1]heorem

 
3.3.

 
To

      proVe 
Zl(Pia+1)

 
S
 

Z2(Pjb+w),
 

aSSUMe
 
COntrarY,

 
i･e･,

 
Za(Pia+?

 
>

 
Z2(Pjb+w).

      
Then

 
there

 
exists

 
Pjb+k

 
(L<k<W)

 
SUCh

 
that

 
Z2(Ptib+.)

 
=

 
U2(Pjb+k)

 
<
 

Zl(Pi.+1)'

      Since pJ,b+k  is not  generated  in A(ul),  there  is piu  
=

 pjv  in .li}A and,9Jll

      Tespectively  such  that  (1) p,  is a  proper  ancestor  of  p.  and  (2) p,  is
                                  Jv  Jb+k  

iu

      
terminated

 
in

 
A(ul)

 
but

 
Pj

 
is

 
not

 
terminated

 
in

 
A(u2･).

 (2) is
 possible  

only

                                v

      if p.  is terminated  by  lower  bound  test,  as  obvious  from  the  above  proof.
          

Iu

      Therefore

                Zl
 (Pi ) -< g(Pi  ) =

 g(Pj  ) <
 

Z2
 (Pj ),

                     u u v v

      and  p.  (a descendant  of  p,)  satisfies

           Jb+k  Jv

               
(zl(Pi..t)

 
<-)
 

Zl(Pi.)
 
S
 
g(Pj.)

 
S
 
g(Pjb.k)

 
S
 
"2(Pjb.k)'

      
which

 
is

 
a
 

eontradiction･
 

ThiS
 
PrO"eS

 
ZI(Pi.+1)

 
-<
 

Z2(Pjb+w)'

           consequently  .971  is a subsequenee  of  Y-2, and  Ts(ul)  s Ts(u2)  igifnediately

      fOilows.  Bs(ul)  S Bs(u2)  can  also  be  proved  in a  manner  similar  to the  proof

      
of

 
Ba(ul)

 
S
 
Ba(u2)

 
in
 
Theorem

 
3.3

 
(use

 
also

 
the

 
propertY

 
zl(･Pia)

 
-<
 
z2(Pjh)

 
fOr

      P,  =  p,  ). m

       
ia

 Jb

           Remark.  In the  above  proof,  it is assumed  that  A(u?  and  A(u2)  use  the

      sarne  search  funetion  including  the  tie  breaking  ru!e.  In  other  words,  if P.,
                                                                                 i

      
Pj

 E  nf1, and
 
Pi

 
is

 
selected

 
before

 
Pj

 
in

 
A(ul),

 
then

 pi  
is

 
selected

 
before

                                                                                 '
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   'p
 xnj

h  of

n(ul)thatand

 B

T (u
 sl

                             Z  fbaraki

 A(u2)  when  Pi,  PJ･ E
 
'of2'

The  next  theorem  t'reats  a  special  case  of  heuristic  search,  i.e., when

                                               '
sh  is nonmisleading.

Theorem 5.3. Let  A(ul)  and  A(u2)  be defined
 

as
 
in

 
Theorem

 
S.1,

 
where

 .

 and  A(u2)  use  the  same  heur ±stic  search  function  
sh.

 Furthermore  assume

h is nonmisieading.  Then  ul  -< u2  
iMPIieS

 
Ta("1)

 
=

 
Ta(U2),

 
Ba(Ul)

 
=

 
Ba("2

s(ul)
 -< Bs(u2),  bu't does  not  necessarily･imply  Ts(ul)  -< Ts(u2).

PrOOf. The  last result  is shown  by  t/he  exam.ple  given  in Fig. 9, in whieh

                                                        a -
)=3  > Ts(u2)  

=2

 holds  though  ul  S u2  holds  and  h is nonmisleadmg.

                                     '

                                   Ul=1.0

                                   u2=1,5

                                   f=1.0
             g=o,o
             h-1.0

    T
     a

tnitial

is the

fgh

f=g=u=1.0
   h=l.2

f,=1.1hi=l.3

         Ts(ui )=3 ' Ts(U2)=2  f=2.
                                        h-l.

 Fig.  9 Counterexample  to  the  conjecture  ulSU2

        under  nonmisleading  heuristic  search,

        of  Theorem  5.3.  (uk"uk(Po) is assumed

(Ul) =

 Ta(U2),  and  Ba(Ul)  
=

 Ba(u2):  Let  LL  
=

 
P

 portion  oi  the  sequence  of  the  nodes  selected

last  node  satisfying  pi  E  9  A  f(Pi  ) =

 f(Po)･

                     p p

O f=2.1
7 h-1.8

'[>  Ts ("i)-< Ts ("2)
used  in the  pToof

 for k=1,  2.)

, P.  
...

 P.-  be the
Jl

 
l2

 
lp

in A(ul)  sttch  that  Pj

                   P
  We  show  below  that

)
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                                                                 . (1 Sr  -< p)A(u2)  also  selects  exactly  the  same  seguence  of  nodes  and  that  pi

                                                                 r

is deeornposed in A(ul)  if and  only  if it is deaompesed  in A(u2).  Then  it

impIies  that  pi  is also  the  last node  selected  in A(u2)  such  that  pi  E  EI7 A

               P P
f(Pi  ) =

 f(Po),  since  Y  and  f  are  independent  of  ul  and  u2,  This  proves
    pBa(Ul)

 
=

 Ba(U2)･  TO PrOVe  Ta(ul)  
=

 Ta(u2),  note  that  zl and  z2  are  set  to

f
 (Po) when  

A(ul)
 and  

A(u2)
 cornplete  the  .9{T portion.  The  rest  of  computation

then  proceeds  independently  of  ul  and  u2･  ThuS  Ta(Ul)  
=

 Ta(IU2)  fOllOVJS･

     Now  to  prove  the  above  assertion  by induction, assume  t/hat Ynt =P.  P.
                                                                 aJ
                                                       . {l2

...  Pi  (1 r< a  -< p)  is the  sequence  of  the  first a  nodes  selected  in both
      a

A(ul)  and  A(u2),  and  that  of1 (Pi )=  ･of2 (Pi ) holds.  For  a=  1, this  is
                                a a

trivially  true.  Let  a  < p since  otherwise  the  proof  is done.  Ibe show  that

Pi
 

is
 

terminated
 
in

 
A(ul)

 
if

 and  only  if it is terminated  im A(u2).  (Then
  athe

 induction  can  proceed  one  step,  and  it completes  the  proof.)  First  note

that
 
f(Pil)

 
"

 
f(Pi2)

 
=.･･"

 
f(Pia

 
)
 

=

 
f(Po)

 
holds

 
as
 

a
 

characteristic
 

of
 
a

nonmisleading  heuristic  search  function  (Lemma 5.1  of  [9]), and  that  z2(Pi  ) )r
                                                                          a

zl(Pt  ) r> f(Po)･  Thus  g(Pi  ) -< f(Po).S  zl(Pi  ) m< z2(Pi  ) andi Pi  is not

     a  a  a a a

terminated  in A(ul)  or  A(u2)  by  lower  bound  test.  Furthermore  the  induction

hYPOtheSiS
 
implieS

 
"Prfi

 
(Pia)

 
=

 
{Pif'

 
Pi2'''''

 
Pia-.t}

 
U
 
'J\C

 
(Pi.)

 
=

 
{Pil'

 
Pi2'''･'

Pia-1}U
 
'of2(Pia)=f2(Pi.)'

 ThUS 
Pi.

 
iS
 
terminated

 
in
 
A(ul)

 
by
 
doninance

test  if and  only  !E it is terminated  in A(u2)'  by dominance  test.  ThiS com-

pletes  the  proof.                     '

     
A  proof  for  Bs(ut)  S Bs(u2)  is similar  [12]. -

     Theorem 5.4. Let  A(ul)  and  A(u2)  be defined  as  in Theorem  5.1, where

A(ul)  and  A(u2)  use  heuristie  search.-  FuTtherrnore  assume  tha.t  D  is consistent

with  g. Then  ul  S u2  implies  T(u?  .< T(u2)  and  B(ul)S  B(u2)･  .

     PrOOf. We  consider  the  case  of  all  optimal  solutions.  1]he case  of  a

single  optimal  solution  is similar.  The  prooE  is done  by  slightly  modifying

the  p=oof  of  Theorem  5.2 (the case  of  a  single  optimal  solution).  Assume  that

g3 and  .9-"2b satisfy  the  same  induction  hypethesis  as  in Theorem  5.2. To prove

:ohnaii:gieii 
terMinated

 
in
 
A(Ul)

 
if
 
Pjb

 
is
 

terminated

 
in
 
A(u2),

 
three

 
cases

 
are

     
(a)

 
pjb

 
is
 

terminated
 
in
 
A(u2)

 
by
 
9:

 
1]hen

 
Pi.

 
(tPJ,b)

 
is
 

also
 
termi-

nated  by  9.

     
(b)

 
Pjb

 
is
 
terrninated

 
in

 
A(u2)

 
by

 
lower

 
bound

 
test:

 
The

 proof of

                                                                 NII-Electionic  
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      Theorem  5.2  ((b)-part) can  be used  after  changing  (5.1) to:

       (5･3) g(Pi.)=g(Pjb)>z2(Pjb)=U2(Pjp))g(Pjp)->g(Pig)>Zl(Pig)2Zl(Pi

                                                               The  proof
           

(C)
 

Pjb
 
iS
 
terrninated

 
in
 
A(u2)

 
by

 
dominance

 
test;

      5.2 ((c)-part) can  be used  after  changing  (5.2) to:

          '

                g(P,)  > g(P.)  (since D  is eonsistent  with  g)

       (5.4) 
ia

 
Jc

                       -> g(Pid)  
>

 
Zl(Pid)

 
2
 

Zl(Pi.)'

           The  construction  of  ,g2+1  and  ,9-2b+w to  complete  the  induction

      also  be done  in the  same  manner  as  Theorem  S.2, 1]hus we  have Ta(ul

      a"d  
Ba("1)

 r< Ba(U2)'
 

[]

           The  results  of  this  section  are  surnrnarized  in Table  2.

             Table  2. Computationa].  efficiency  of  A(ul)  and  A(u2)  With  
ul

                       (Entries -  denote  that  T(ul)-<T(u2)  Or  B(Ul)SB(U2)

                      not  necessari.ly  hold.)

 ).aof

step  can

) S Ta(U2)

SU2'does

SS

 Heuristic

 (General)

 Heuristlc

 (Nonmisleading)

General Consistent  with  g

Depth-First
    '
         '
Breadth-First

Best-Bou'nd

T
 a

B
 aB

 s

T
 aT

 sB

 aB

 s

Properties. theorerm$'
+

Properties
-

51 T(u)<T(u)-

-

.

51

1B(u)-

<2B(u). 1-2
-(u

(u

(u

)=t-

)=1

1)S

ttTa(U2)

Ba("2)

B,("2)

5.3

5.3

5.3

5.3

Ta("1)

Ts("1)

Ba("1)

Bs("1)

=,

-<

=

-<

T(ua2Ts("2Ba(U2Bs(U2

-tn--

-

5.t

5.l

T(Ul)

B(Ul)

s

s

T(U2)

B(U2)

-(u

(u

(u

(u

)=1)-<1)`t1)s1Ta("2)

T,(U2)

Ba("2)

B,("2)

5.2

5.2

5.2

S.2

Ta("1)

T,(Ul)

Ba("1)

Bs(ua)

m

-<

=

-<

Ta(U2Ts(U2Ba("2Bs(U2

H---

)

)

)

)

)

)

)

)

Theorems

  5.4

  5.4

  5.3

  5.4

  5.3

  5.3

  5.4

  5.4

  5.2

   5.2

   5.2

   5.2
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6. Further  Comments

     Vge have  extensively  studied  how  u  and  g  affeet  the  T-count  and  B-count.

Another  count  often  used  to  measure  the  performanee  of  a  braneh-and-bound

algorithm  A is the  required  Tnemory  size.  ]his is usually  evaluated  by

     M(A):  The  maximum  size  of  ,of attained  during  the  execution  of  A.

It rnay  be possible  to  develop  a  similar  theoTy  treating  how  M(A)  depends  on

u  and  g. Some results  are  included  in [12].

     Finally,  in concluding  this  paper, we  emphasize  that  the  results  in this

paper is prirnarily of  theoretical  interest. Even  iE an  improvement  of  u  and  g

possibly  Tnakes  the  resulting  algortthrn  less efficient,  our  empirical  knowledge

tells  that  sueh  phenomenon  occurs  extremely  rarely.  Thus  an  effort  should

always  be directed  to  obtain  tighter  upper  and  lower bounding  functions  when

we  want  to  design  efficient  branch-and-bound  algorithms.
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ア ブ ス　 ト ラ ク　ト

分枝限定法に おける下界および上界値関数 の効力

京 都大 学　 　茨 　木　俊　秀

　最小化問題 P
。

を解 く分枝 限定法で は，テ ス トす べ き部分問題 Pv の 下界値 y （Pt ）を求め 、

そ の値が暫定値 よ り大 （P
。

の すべ て の 最適解を求め る場合）あ るい は暫定値以上 （Pi の 最適

解を 1個求め る場合 ）な らば Pi を終端 し以後 の 考察か ら除外 し て い る。 た だ し，暫定値 とはそ

の 時点 まで に テ ス トされ た部分 問題の 上界値の 最小値で ある。こ の と き，よ り精度 の 高 い 下界値

と上界値 を利用 すれ ば、より多 くの部分問題 を終端で き ， そ の 結果分枝 限定法の 効率が高 まるの

は直観的に は明 らか な よ うに見 え る が，実際 に はそ の 反例を容易に構成で き る。

　そ こ で ， 本論文で は ，発見的探索，最良 下界探索や深 さ優 先探索な どの 典 型的な探 索法を用 い

た とき ， どの よ うな 仮定を 置けば分枝限定法の 効率 向上 を厳 密に 保障で きるか を検討 した 。 ただ

し，こ こ で用 い て い る分枝限定法の モ デ ル は，上 記の テ ス トに優越 テ ス トを も加えた きわめ て一

般的な もの で あ り，また 計算効率は 、計算終了ま で に 分解 され る部分問題 P　の個数で評価 して
　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 t

い る。

　得 られた結論は，下界値関数 y と優越関数 ρ の 整合性が本質的 な役割 を果た す こ と，両者が 整

合 して い る場 合に はかな り広範囲 の分枝限定法に お い て上記 の効率 向上が保障で きる ことなどで

あ る 。
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