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ABSTRACT

Response variances var(yi) are estimated from m replications per

experimental condition. The resulting estimated variances si can be used
to derive the correct variances of the Ordinàry Least Squares (OLS)

estimators B. The estimates si can also be used to compute the Estimated~~
Weighted Least Squares (EWLS) estimators S. The asymptotic covariance~~
formula for EWLS might be utilized to test these estimators s. The type

I and type II errors of this test procedure are compared to the corres-
ponding errors of the OLS test.

1. INTRODUCTION

This paper is a continuatíon of Kleíjnen, Brent and Brouwers
(1981) and Nozari (1984); also see Deaton, Reynolds and Myers (19,83).
The problem we face is: we have the classical general linear model

but the errors e may show strong heterogeneity of variance. We have

variance estimators s2 based on replicating the experimental conditionsi
i, say mi times:
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mi
Si - E (Yij - Yi)2I(mi-1) ( 1 - 1,...,n)

j-1

We examine the following questions:
(1) Are Ordinary Least Squares (OLS) robust? So we compute

B - (X'.X)-1.X,.x

and

n .. - (X' .X)-1.a2a
n mi

0 2- E E(Yij - Yij)2I(N-q)
i-1 j-1

(1.3)

(1.4)

(1.5)

n „ „
where q denotes the number of parameters, N- E mi and yi ~ yi, The

j
classical t statistic with v- N-q degrees of frée~om is:

s. - s.
t~ - ~~ ,. ~ ~ ( j - i,...,q)

{var (Bj)}
(1.6)

(2) Can we use the OLS estimator g of (eq. 1.3) combined with the cor-
rect expression for the covariance matrix S2„ in case of unequal varianc-
es? Obviously we have: NS

s~.. - (x'.x)-i.x'.s~y.x.(x',X)-i (i.~)
s

We can estimate S2 using si of eq. (1.2). But how many degrees of free-
Y

dom has the t statistic of eq. ( 1.6)? It is easy to derive that eq.
(1.3) reduces to

., n
6j - E xij.ylln ( j - 1,....q) (1.8)

i-1

where xi is the (i ,j)th element of the n x q matrix g formed by the n
j

different rows of the N x q matrix X(remember: N- E mi; mi replicat-
es), and we restrict this study to experimental designs with X'.X
- n.I. Because (X ) 2 equals plus one, and the observations are indepen-

ij
dent we obtain:

n 2
var (B.) - E var (yi)In

~ i-1
(1.9)
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Using :he estimator si of eq. (1.2) we get:

n
var (B.) - E (silmi)In2

~ ial
(1.10)

We further restricted our study to equal numbers of replications (mi -

m) so that var (Bj) reduces to a sum of X2 variates. Because of the

additivity of X2 varíates the t statistic of eq. (1.6) has degrees of

freedom v - n.(m-1).

Note: If mi ~ m then we would recommend mi - c ~ar (yi~) so that

var (yi) is (approximately) constant.

2(3) Can we use the variance estimators si in Estimated Weighted Least

Squares (EWLS)? Oz

B - (X' .S2-:X) ".X' .SZ-:x
~Y ~Y

The asymptotic covariance matrix of EWLS ís:

S?~~ - (X' .S2 1.X)
Y

(1.12)

Eqs. (1.11) and (1.12) result in the analogue of the t statistic of eq.

(1.6). However, it is more difficult to determine the correct degrees of

freedom v~. We might investigate:
(í) v~ - N-q - n.m-q; see the classical OLS formulas.n~(ii) v- E(mi-1) - n.(m-1) ~ n.m-n; see eq. (1.10).

(iii) v~` - min (mi-1) - m-1; see Scheffé (1964).
~ i(iv) v- m or t~ - z with z~ N(0,1); the asymptotic case.

Actually we did not investigate approach (i). One reason is that ap-
proach (i) assumes a correctly specified regression model whereas the

other approaches use the unbiased estimators si. The difference between
(ï) and (ii) is minor if q n(with q~ n).
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2. MONTE CARLO INPUT PARAMETERS

The parameters of our Monte Carlo experiment are as follows: All

n X q matríces X are orthogonal. One X is a 16 x 13 matrix X taken from

a simulation study on the Rotterdam harbor (with design generators

1- 5.6 and 3~ 4.5) and corresponding s vector; see Kleijnen et al.
(1981; note 3). The other matrices X are 8 X 4 and 4 X 3 respectively.
We combine each of these three cases with several degrees of heteroge-
neity measured by

H - ( omax - omin), oQ

where a~x (and amin) is the maximum (and minimum) element of Sty. H
varies between zero (constant variances) and 1,455.69 (taken from the
harbor study). The variances are estimated from m replications where we
varied m between two (a technical minimum) and twenty-five.

We repeated each Monte Carlo experiment (specified by X, B, ny,
and m) 150 times to reduce chance effects. We used a multiplicative

random number generator with multiplier 1313 and modulus 259. This

generator was developed by NAG (Numerical Algorithms Group) and it is

standard on our ICL 2960 computer.

3. MONTE CARLO RESULTS

In Appendix 1 we present the results that substantiate the experimental

results of Kleijnen et al. (1981). In other words we repeat the experi-

ment of Kleijnen et al. (1981) with different random numbers and find

the following results:
(i) Bias: OLS gíves unbiased estimators S as we knew, and EWLS gives

~~
unbiased estimators B too.

(íi) Standard errors: The asymptotic covariance formula of eq. (1.12)

applies if we estimate var (y) from twenty-five replications (m ~

25). For m~ 9 our results deviate from Kleijnen et al. (1981):

the asymptotic formula may very well underestimate the variance.

(iii) Relative efficiency: In case of strong heterogeneity EWLS gives

smaller variances for the B estimators provided we have more than

two replications (m ~ 2).
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Next we try to answer a new set of questíons, namely can we use

the Student t statistic tv when we estimate the unknown variances

var (y~) and apply OLS and EWLS respectively, where the degrees of

freedoa v may equal n(m-1) for OLS and (m-1), n(m-1) or m for EWLS. We

estimate the true distribution from 150 realizations, and apply three

popular goodness-of-fit tests, namely the X2, the Kolmogorov-Smirnov,

and the Anderson-Darling test. We apply each goodness-of-fit test to

each of the q parameters Bj, with a li significance level. We do not

present the mass of data but report our preliminary results (whích are

further investigated below): EWLS based on only two replícations result

in distributions not well approximated by any Student distribu[ion. If

we have more replications (m ~ 2) then we may use the Student t statist-

ic with the (conservative) degrees of freedom equal to m-1. If m is as

high as 25 then we may use the normal approximation. OLS with the cor-

rected variance formula accounting for unequal variances (eq. 1.7)

results in a t distribution with degrees of freedom equal to n(m-1),

provided n(m-1) ~ 15 (as n íncreases the variance of var (B) decreases).

We shall give more detailed results for the following more specialized

question.

Because we use the t distribution only to select the critical

constant t~,2, we test the hypothesis:

; S. - B. .
HO : P{ „~ „ ~ ~ ~ tV~2} - o (J ' 1,....q) (3.1)

{var (B~)}

versus the alternative hypothesis H1 : P{e} ~ a or the one-sided and
conservative alternative hypothesis H1 : P{e} ~ n, where e denotes the
event within the brackets of eq. (3.1). To test HO we use the binomial
test as follows. We estímate P{e} from 150 independent replications and
compute a confidence interval. For example, for the one-sided H1 the
lower limit of th,~ 1-YO confidence interv~l i s given by the following
expression where z 0 is defined by P(z ~ z 0) ~ YO and z~ N(0,1):

Y ..
p-z0.{p.(1-p)~150}1` (3.2)
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We reject ii0 if a is smaller than this limit. We reject HO if for a~ of

the q parameters Sj we exceed the critical level: Applying the Bonfer-

roni inequality we reject HO if:

l~~~q IPj-zY~q.{pj.(1-pj)I150}~] ~ a (3.3)

We fix Y in eq. (3.3) at 5X. We apply this procedure for three classi-

cal a values in eq. (3.1), namely 1X, 57 and lOZ. This approach results

in Tables I and II where the symbol ~ meane that we reject ii0. These

tables suggest the following conclusions: If the n responses y have

different variances and we can estimate these variances from more than

two replications (m ~ 2) then the OLS estimators 9 can be tested using a
Student t statistic with degrees of freedom equal to v a n(m-1), provid-~~
ed we test B with an a exceeding li. Testing the EWLS estimators B re-

quires more replications, say m~ 25 (and a~ 0.01). This conclusion

agrees with Nozari (1983)'s conclusion.

If both OLS and EWLS result in (roughly) the same a error then

we may proceed to a comparison of their power functions. We estimated

the power function ín a few points (from eight to ten points) using

different random numbers per point. (In Kleijnen (1984) we shall present

a more efficient procedure.) For each point we generate 150 replicates.

In all experiments the estimated power of EWLS dominated that of OLS (as

we míght expect because in previous experiments we found that
~~

var (S ) t var (6)) which we tested through the sign test.

4. CONCLUSIONS

If we suspect heterogeneity of variances then we should try to

estimate the n different variances, using more than two replications (m

~ 2). We can use these estimated variances to derive the correct vari-

ances of the OLS estimators S and to test their significance, through

the Student t statistic with n(m-1) degrees of freedom. If we have firm

estimators of the response variances - say 25 replications - then it is

better to use the EWLS eatimators g~ with the t distribution with de-

grees of freedom equal to n(m-1). We should test OLS and EWLS estimators

using an a higher than 1X.



TABLE I
Testing the tail of the t~ distribution; one-sided test

a - li a ~ 5Í

OLS

tn(m-1)

EWLS OLS

tm-1 tn(m-1)
C1Hllm2 ~ ~

tn(m-1)

C1H1455m2 ~ ~ ~ ~ ~ ~t ,~ ,~

C2H lOm2 ~ ~ ~ ,r ,t ,t

C2H1455m2 ~ ~ ~ ~ ~ ~r ~ ~t ,~

C3H lOm4 ~ ~ ~ ~ ~ ,~

C3111289m4 ~ ~ ~ ~t ~ ~

C3H10m5 ~ ,r ~

C3H 1289m5 ~ ~ ~ ~ ,~ ,~

C1HOm9 ~ ,t ,t ,r

C1Hllm9

C1H1455m9

C2HOm9

C2H l Om9 ~ ~ ~ ~t ,t ~

C2H1455m9 ~ ~ ~t ~t ,~

C3H10m9

C3H1289m9 ~ ~ ~t ~ ~t ~ ,t ~t

C1HOm25

C1Hllm25

~itti4i~mti

C2HOm25
C2H10m25

r,2H 1455m25
C3Hi~m25

C3H1289m25

C1Hllm2 means: Case 1(n - 16, q- 13), Heterogeneity factor H- 11, replications m- 2. Etc.

EWLS OLS

a - l0Y

EWLS

tm-1 tn(m-1) ~ tn(m-1) tm-1 tn(m-1) ~



TABLE II
Testing the tail of the t~ distribution; two-sided test

C1Hllm2
C1H1455m2
C2H10m2
C2H1455m2
C3H10m4
C3H1289m4
C3H l Om5
C3H1289m5
C1HOm9
C1Hllm9
C1H1455m9
C2HOm9
C2H10m9
CZH1455m9
C3H10m9
C3H1289m9
C1HOm25
C1Hllm25
C1H1455m25
C2HOm25
C2H10m25
C2H1455m25
C3N10m25

C3H1289m25

a a li a- 5Y

tm-1 tn(m-1)
~ ~

OLS EWLS OLS EWLS OLS EWLS

tn(m-1)
~

~ tn(m-1) tm-1 tn(m-1) ~ tn(m-1) tm-1 tn(m-1) t
~ ,t ~ ,t ~t ~ ,~

a - 10~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~
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APPENDIX 1: REPEATING THE EXPERIMENT OF KLEIJNEN ET AL. (1981)

We first check the correctness of our Monte Carlo computer

progran as follows. We know that the OLS estimator 6 of eq. (1.3) or

(1.8) is unbiased and that its covariance matrix is given by eq. (1.7)

or (1.9) where St or var (y) is known in the Monte Carlo experiment. So
~

we estimated the aexpected values E(Bj) and the variances var (gj) from

the 150 Monte Carlo repetitions and tested these values using the stan-

dard normal z statistic respectively the X2 statistic with 149 degrees

of freedom.
Next we examine the quality of the various B estimators in

several steps:
(i) Bias of B estimator

We know that OLS give unbiased estimators s, and that under mild techni-~~
cal assumptions EWLS also give unbiased estimators S. In the preceding

paragraph we verified the lack of bias ín OLS. For EWLS we computed the

(approximate) Student t statistic:

150 „~
( E S, ~150) - S

t149 0 Jg 150
~ - - - --- -- ( j - 1, ....4) (A.1)

{ E (S~ - E S~ ~150)2~(149 X 150)}~
g-1 Jg g-1 Jg

Note: We do not use the equality sign in eq. (A.1) because the EWLS
-~t - ~~

estimator S is not a linear transformation of x; ~ also uses the
random vector with the elements si. However, the t statistic is supposed

to be robust, especially with as many observations as 150.

We obtain 160 realizations of t149 (the number 160 follows from

Table III later on). We use a 5~ significance level per realization so

that we expect eight false significances. We find zero significances for

OLS and six for EWLS. We conclude that OLS and EWLS do give unbiased

estimators of S which agrees with Kleijnen et al. (1981).
(ii) Standard error of S estimator

The standard errors of the OLS estimators S follow from eq. (1.7) or eq.

(1.10). For EWLS we have the asymptotic formula of eq. (1.12). We com-
pute the X2 approximation:
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2íj)
X149

150 .~ 150 „~ 2
~1 (Bjg - ~1 BjgI150) ~149

(X'.HY1.X)jj

íj s 1,...~q) íA.2)

where () j j means the j-th element on the main diagonal of (). Table

III displays the maximimm and the minimum of the q realizations. We

compare the maximum and minimum using a two-sided X149 test with li

significance, resulting in the critical values 0.73 and 1.32. Table III

suggests the following conclusions. With only two replications (m) to~~
estimate var(y) we underestimate the true variance of B. With m- 25~~
the asymptotic formula gives unbiased estimators of var(B ). With m- 9

we may very well underes~imate the variance; our results for m~ 9

conflict with Kleijnen et al. (1981) who reported unbiased estimators.

~~
Note: We use the X2 statistic even though 6 may be nonnormal and we

know that the X2 statistic is not robust. However, we do not apply a

distribution-free procedure because we have 149 degrees of freedom and

because ultimately we are not interested in the standard errors them-

selves but in their role when using a t statistic like eq. (1.6); see

Section 3.
(iii) Efficiency of OLS versus EWLS

We measure the efficiency by the variance. Therefore we compare the

estimated variance of the EWLS estimator (the numerator of eq. (A.2)) to

the known variance of the OLS estimator (see eq. (1.9)) which results ín

a X149 statistic analogous to eq. (A.2). Table IV suggests the followíng

conclusions (which agree with Kleijnen et al. (1981)):

(i) If we knew that the variances var(y) are constant (H - 0), then we

should not estimate them, i .e., we should not use EWLS.

(ii) In case of strong heterogeneity we should use EWLS provided we can

estímate var(y) from more than two observations.
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TABLE III

Adequacy of asymptotic variance formula

Case 1: n a 16, q 3 13
Heterogeneity H

0 11.84 1,455.69

m 9 25 2 9 25 2 9 25

max X2 1.399~ 1.207 1.643~ 1.215 1.238 1.792~ 1.186 1.224
min X2 0.834 0.823 1.013 0.914 0.674~ 1.236 0.923 1.005

Case 2: n 3 8, q- 4

Heterogeneity H

0 10.83 1,455.69

m 9 25 2 9 25 2 9 25

max X2 1.195 1.211 2.427~` 1.348~ 1.038 3.635~` 1.183 0.918
min X2 0.948 1.047 1.680 1.074 0.899 2.642 0.947 0.873

~
Case 3: n- 4, q- 3

Heterogeneity H

10.38 1,289.15

m 4 5 9 25 4 5 9 25

max X2 1.251 1.100 1.092 1.120 1.315 1.184 1.399~ 1.049
min X2 1.169 0.903 0.945 0.962 1.012 0.978 0.993 0.792

m
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TABLE IV
Effíciency of OLS versus EWLS

Case 1: n- 16, q- 13
Heterogeneity H

0 11.84 1,455.69

m 9 25 2 9 25 2 9 25

max X2 1.399~ 1.207 1.453~` 1.195 1.217 1.436~ 0.949 0.941
min x2 0.834 0.823 0.993 0.864 0.673~` 0.097~ 0.077~ 0.075~`

Case 2: n- 8, q- 4
Heterogeneity H

0 10.83 1,455.69

m 9 25 2 9 25 2 9 25

max X2 1.195 1.211 1.827~ 1.203 0.989 0.560 0.190 0.162
min X2 0.948 1.047 1.389 0.732 0.635~ 0.150~ 0.052~ 0.046~`

Case 3: n- 4, q- 3
Heterogeneity H

10.38 1,289.15

m 4 5 9 25 4 5 9 25

max X2 1.237 1.100 1.017 1.096 1.214 1.119 1.242 0.915
min X2 0.763 0.589~ 0.684~ 0.730 0.352~ 0.395~ 0.345~ 0.275~`
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