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Abstract

The power prior has been widely used in many applications covering a large number of 

disciplines. The power prior is intended to be an informative prior constructed from historical 

data. It has been used in clinical trials, genetics, health care, psychology, environmental health, 

engineering, economics, and business. It has also been applied for a wide variety of models and 

settings, both in the experimental design and analysis contexts. In this review article, we give an A 

to Z exposition of the power prior and its applications to date. We review its theoretical properties, 

variations in its formulation, statistical contexts for which it has been used, applications, and its 

advantages over other informative priors. We review models for which it has been used, including 

generalized linear models, survival models, and random effects models. Statistical areas where the 

power prior has been used include model selection, experimental design, hierarchical modeling, 

and conjugate priors. Prequentist properties of power priors in posterior inference are established 

and a simulation study is conducted to further examine the empirical performance of the posterior 

estimates with power priors. Real data analyses are given illustrating the power prior as well as the 

use of the power prior in the Bayesian design of clinical trials.
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1. Introduction

Informative prior elicitation is one of the biggest and most important topics in Bayesian 

inference. Bayesian inference using informative priors is becoming more widely used in an 

age of massive datasets and prior information including settings such as clinical trials and 

observational studies. Informative prior elicitation is typically not an easy task since it is 

typically not easy to quantify and synthesize prior information into a suitable prior. Thus, 

techniques and methods for synthesizing and quantifying prior information are highly 

needed. In the presence of historical data, informative prior elicitation can proceed in a 
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much more systematic fashion, and in such cases, the quantification of prior information is 

more straightforward, and even “objective” in some sense.

The power prior discussed in [1] has emerged as a useful class of informative priors for a 

variety of situations in which historical data are available. The first paper to discuss the 

formalization of the power prior as a general prior for various classes of regression models is 

[1]. Several applications to clinical trial design and analysis as well as epidemiological 

studies using historical data in prior elicitation have appeared in the literature. Examples of 

papers discussing the use of historical data in prior elicitation include [2, 3, 4, 5, 6, 7]. 

Papers using the power prior and its variations include [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 

18, 19, 20, 21, 22, 23, 24]. Books illustrating the use of the power prior in epidemiological 

studies and clinical trials contexts include [25, 26].

One of the reasons that the power prior has become such a powerful tool in the last decade 

as an informative prior in both design and analysis settings is because of its ease in 

construction and its natural form for incorporation of historical data, its attractiveness in 

interpretation, its relative ease in computation, its attractive theoretical properties and uses in 

model selection problems, and because of the relatively few hyperparameters that need to be 

specified. It is an ideal tool as an informative prior in settings where historical data are 

available and is arguably the most widely used informative prior in such settings. The power 

prior is a useful general class of priors that can be used for arbitrary classes of regression 

models, including generalized linear models, generalized linear mixed models, survival 

models with censored data, frailty models, multivariate models, and nonlinear models. The 

power prior specification for the regression coefficients focuses on observable quantities in 

that the elicitation is based on historical data D0 and a scalar parameter a0 quantifying the 

heterogeneity between the current data D and the historical data D0. The power prior 

distribution is then constructed by raising the likelihood function of the historical data to the 

power a0, where 0 ≤ a0 ≤ 1. Such constructions of prior distributions have been discussed by 

[27, 1]. The power prior provides, in some sense, an “objective” and historical data-driven 

approach to informative prior elicitation. It is objective in the sense that the degree of 

informative-ness of the prior is driven by the information contained in the (“objective”) 

historical data, not from expert opinion elicited on parameters in the model. The only 

hyperparameter that requires subjective elicitation in the power prior is the discounting 

parameter a0, for which we highly recommend several sensitivity analyses, including 

analyses with a0 = 0 (non-informative prior) and a0 = 1 (full borrowing).

A formal justification of the power prior is given in [15] where it is shown to be an optimal 

class of informative priors in the sense that it minimizes a convex sum of Kullback-Leibler 

(KL) divergences between two specific posterior densities, in which one density is based on 

no incorporation of historical data, and the other density is based on pooling the historical 

and current data. This result provides a strong motivation for using the power prior as an 

informative prior in Bayesian inference. In addition, a formal relationship between this 

convex sum of KL divergences and the information processing rules proposed by [27, 28] is 

derived. Specifically, Ibrahim, Chen, and Sinha [15] showed that the power prior is the 

100% efficient information processing rule in the sense defined by [27]. The power prior 

also has close connections with hierarchical modeling as shown in [16]. Chen and Ibrahim 
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[16] showed that the parameter a0 has a direct analytic connection with the variance 

hyperparameter in the prior for the mean function in a normal hierarchical model.

The rest of the paper is organized as follows. In Section 2, we introduce the basic 

formulation of the power power and review various variations of the power prior, including 

the full power prior, the normalized power prior, the commensurate power prior, the partial 

discounting power prior, and the partial borrowing power prior. The issue of fixed or 

random power parameters, extensions to multiple historical datasets, and the power prior for 

generalized linear models are all reviewed and presented in Section 2. An in-depth review of 

the theory of the power prior and its properties, including the theoretical justification, 

connections to hierarchical models, the power prior as a conjugate prior, the property of 

matching predictives, and the power priors in variable selection, is given in Section 3. 

Section 4 includes entirely new development. In Section 4, we examine frequentist 

properties of the posterior estimates using power priors in linear models as well as 

generalized linear models. In Section 5, the determination of a guide value of the power 

parameter is reviewed and new derivations for the linear model are obtained for estimating 

the guide value along with a new simulation study to examine the empirical performance of 

the power prior. Section 6 reviews seven applications of the power prior in various research 

fields. The use of the power prior for survival analysis in the context of cancer clinical trials 

as well as in the Bayesian design of non-inferiority clinical trials is demonstrated in Sections 

7 and 8 with new analyses. We conclude the paper with a brief discussion in Section 9.

2. The Power Prior

2.1. Basic Formulation of the Power Prior

The power prior can be constructed as follows. Let the data for the current study be denoted 

by D and denote the corresponding likelihood function by L(θ|D), where θ is a vector of 

parameters. Suppose we have historical data D0 from a similar previous study. Let L(θ|D0) 

denote the likelihood function for the historical data D0. Here, L(θ|D) and L(θ|D0) are 

general likelihood functions for arbitrary models, such as normal linear models, generalized 

linear models, random effects models, nonlinear models, or survival models with censored 

data.

The basic formulation of the power prior, as discussed in [1], is

(2.1)

where 0 ≤ a0 ≤ 1 is a scalar parameter and π0(θ) is the initial prior for θ before the historical 

data D0 is observed. In many applications, π0(θ) is taken to be an improper prior. Using the 

power prior in (2.1), the corresponding posterior distribution of θ is given by

(2.2)

We see from (2.2) that a0 weights the historical data relative to the likelihood of the current 

study, and thus the parameter a0 controls the influence of the historical data on L(θ|D). The 

parameter a0 can be interpreted as a precision parameter for the historical data. Since D0 is 
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historical data, it is unnatural in many applications such as clinical trials to weight the 

historical data more than the current data; thus it is scientifically more sound to restrict the 

range of a0 to be between 0 and 1, and thus we take 0 ≤ a0 ≤ 1. One of the main roles of a0 

is that it controls the heaviness of the tails of the prior for θ. As a0 becomes smaller, the tails 

of (2.1) becomes heavier. Setting a0 = 1, (2.1) corresponds to the update of π0(θ) using 

Bayes theorem. That is, with a0 = 1, (2.1) corresponds to the posterior distribution of θ 

based on the historical data. When a0 = 0, then the prior does not depend on the historical 

data D0; in this case, π(θ|D0, a0 = 0) ≡ π0(θ). Thus, a0 = 0 is equivalent to a prior 

specification with no incorporation of historical data. Therefore, (2.1) can be viewed as a 

generalization of the usual Bayesian update of π0(θ). The parameter a0 allows the 

investigator to control the influence of the historical data on the current study. Such control 

is important in cases where there is heterogeneity between the previous and current studies, 

or when the sample sizes of the two studies are quite different. One of the most useful 

applications of the power prior is for model selection problems since it inherently automates 

the informative prior specification for all possible models in the model space (see [1, 12, 

13]). The power prior given by (2.1) will be proper if the initial prior π0(θ) is proper. The 

propriety issue of the power prior arises when an improper initial prior, such as π0(θ) ∝ 1, is 

specified. If , the initial prior plays a dominant role in the power prior 

since in this case, the historical data may not contain much information about the parameters 

θ. However, even in this case, we are still able to evaluate the extent of information 

contained in the power prior about θ by taking a proper initial prior. The role of the initial 

prior in the power prior for model selection was extensively discussed and carefully 

examined in [12].

Since the power prior is basically a likelihood function raised to a power, it shares all of the 

properties that likelihood functions have, and therefore has several advantages over other 

priors. Some of these advantages include

(i) Propriety: techniques for showing propriety of π(θ|D0, a0) are exactly the same 

as those for showing propriety for a posterior distribution based on a dataset D0 

with likelihood function L(π|D0), and prior π0(θ).

(ii) A semi-automatic prior elicitation scheme for variable subset selection and 

general model selection problems.

(iii) Asymptotics: Since the power prior is a likelihood raised to a power, all of the 

asymptotic results for likelihood theory carry over to the power prior.

Propriety results for the power prior are not difficult to characterize since one can use results 

from likelihood theory to obtain necessary and sufficient conditions for obtaining propriety 

of the power prior for a wide class of models. Ibrahim, Ryan, and Chen [10] and Chen, 

Ibrahim, and Yiannoutsos [12] developed such results for the power prior based on logistic 

regression, Chen, Ibrahim, and Shao [14] established general results for GLMs, Chen et al. 

[11, 29] examined propriety results for the cure rate model and piecewise exponential 

model. For the asymptotic property, it can be shown that for many classes of models that as 

, where  is the mode of the power prior and 
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. This was demonstrated in many applications and models 

by Ibrahim and his co-workers.

2.2. Variations of the Power Prior

In many applications of the power prior, one may take a0 to be fied and then do several 

sensitivity analysis using different values of a0. However, one can also develop the 

hierarchical prior specifiation by taking a0 random and specifying a beta distribution for it, 

for example. In this case, the full prior specification becomes

(2.3)

where π0(θ) and π0(a0) are the initial priors. We call (2.3) the joint power prior.

Another modification of the power prior when a0 is random, which was introduced by [19, 

30], is called the normalized power prior, and is given by

(2.4)

where π0(θ) and π0(a0) are the initial prior.

The main difference between (2.3) and (2.4) is that (2.3) specifies a joint prior distribution 

directly for (θ, a0) while (2.4) first specifies a conditional prior distribution for θ given a0 

and then specifies a marginal distribution for a0. For the normalized power prior in (2.4), we 

must have  for 0 < a0 ≤ 1. The joint power prior in (2.3) may or 

may not need to be proper as long as the resulting posterior is proper. However, when 

, the joint power prior in (2.3) is proper and can be rewritten as

(2.5)

In this case, the joint power prior can also be viewed as a normalized power prior with the 

normalizing constant free of a0. An in-depth examination of the propriety of the joint power 

prior in (2.3) can be found in [14] for GLMs and in [31] for generalized linear mixed 

Models (GLMMs).

An extension of the power prior introduced by [22] allows for different parameters for the 

historical and current data. Hobbs et al. [22] called such a prior the commensurate power 

prior. To illustrate this idea, we consider θ and θ0 as the one-dimensional parameters for the 

current and historical data, respectively. A vague initial prior is chosen for θ0 and the prior 

for θ depends on θ0 and τ, where τ parameterizes commensurability between θ and θ0. The 

information on τ is used to guide the prior on a0. Assuming a uniform improper initial prior 

for θ0, the commensurate power prior is given by
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(2.6)

where , which is the commensurate prior, 

 is a function of the commensurability parameter that is small 

for τ close to zero and large for large values of τ, and π0(τ) is an initial prior of the 

commensurate parameter. The variations of the commensurate power prior have been 

recently developed and discussed in [23, 26].

The other formulation of the power prior, which is now called the “partial discounting 

power prior”, is especially useful and most easily motivated in latent variable models, where 

one wishes to discount the likelihood function of the historical data but not discount the 

distribution of the latent variables. The partial discounting power prior is formulated as

(2.7)

where ξ is a vector of latent variables in the model, and g(ξ) is the distribution of the latent 

variables. We see in this formulation that the discounting occurs only in the likelihood 

function of θ based on the historical data, conditional on the latent variables, and the latent 

variable distribution g(ξ) is not discounted. Chen, Dey, and Shao [32] used (2.7) in the 

context of skewed link models for dichotomous response data, where g(ξ) denotes a skewed 

distribution of latent variables ξ. The partial discounting power prior is attractive in the 

sense that information in the historical data is typically available on the regression 

parameters but not directly on the distribution of the latent variables in the model. In 

addition, (2.7) is more computationally advantageous than the full discounting power prior, 

which is defined as . The partial discounting 

power prior is not restricted to latent variable models. This idea can easily be extended to 

models with random effects in which g(ξ) may depend on an additional unknown variance 

parameter τ of random effects (e.g., [24]). The variations of the partial discounting power 

priors have also been developed in the literature, including [32, 33, 34, 35, 36].

In addition, a more recent variation of the power prior is called the partial borrowing power 

prior formally-introduced by [24]. The idea of the partial borrowing power prior can be 

traced back to [8] in analyzing human twin data, in which only summary statistics from the 

historical studies were available and consequently, the prior information was available only 

for certain parameters. Shao [37] also discussed the partial borrowing power prior method in 

toxicity study design and benchmark dose estimation. Chen et al. [21] used the partial 

borrowing power prior to borrow the historical data only for the control device from 

previous medical device trials. The key idea of the partial borrowing power prior is that the 

historical data are borrowed only through the common parameters shared in the models for 

the historical data and the current data. Thus, strength from the historical data is borrowed 

through those common parameters and at the same time, the parameters in the power prior 

are allowed to be different than those in the likelihood function for the current data. This 

attractive and flexible feature of the partial borrowing power prior allows the historical data 
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to have different forms (e.g., summary statistics versus individual-level data) or different 

models than the current data. Moreover, the partial borrowing power prior can be adapted to 

the fixed-a0, random a0, normalized, and commensurate settings. Chen et al. [21], Ibrahim et 

al. [24], and Chen et al. [38, 39] applied the partial borrowing power prior for clinical trial 

design.

2.3. Fixed or Random a0

When a0 is fixed, we know exactly how much historical data D0 are incorporated into the 

analysis of the current data D, and also how the type I error and power are related to a0 in 

Bayesian design of clinical trials, which is discussed in detail in Section 8. In addition, there 

is a theoretical connection between the power prior formulation and the hierarchical prior 

specification, as established in [16]. Some useful comments on the fixed a0 case can be 

found in [18]. When a0 is random, we need to compute the prior normalizing constant, given 

by

(2.8)

This normalizing constant is often analytically intractable except for normal linear 

regression models.

2.4 Computations of the Power Prior

The computational properties of the power prior were discussed in many papers, including 

[9, 10, 11, 12, 13, 14, 29]. The power prior for variable subset selection was demonstrated in 

[12, 13, 31, 33, 40].

When a0 is fixed, the implementation of Markov Chain Monte Carlo (MCMC) sampling 

from the posterior distribution becomes straightforward, especially for complex models such 

as generalized linear models, random effects models, nonlinear models, or survival models 

with censored data. The joint power prior formulation is more computationally intensive 

than the a0 fixed case. The normalized power prior formulation is even more 

computationally extensive than the joint power prior formulation for models other than 

normal linear regression models since for most non-normal models, an analytical evaluation 

of the integral,  in (2.4), is not available, which poses a huge challenge 

in sampling from the resulting posterior distribution and computing the posterior quantities 

of interest. To circumvent the computational issues that arise from the normalized power 

prior, one may extend the Monte Carlo method developed in [41] to compute the posterior 

quantities and the computational algorithms developed in [42, 43, 44] to sample from the 

posterior distribution.

2.5. Extension to Multiple Historical Datasets

Multiple historical datasets often arise in clinical trials, observational studies, 

carcinogenicity studies, and environmental studies. For example, in phase II and phase III 

clinical trials, a particular treatment is tested several times under various conditions within a 
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certain population. Suppose we have K0 historical datasets, D0k, k = 1,..., K0. Write D0 = 

(D01, ··· , D0K0). By extending (2.1) to the K0 historical datasets, we have

(2.9)

where π0(θ) is the initial prior for θ, a0 = (a01, ··· , a0K0), and 0 ≤ a0k ≤ 1 for k = 1,..., K0. 

The prior in (2.9) is attractive since it allows for diffierent a0k's for diffrent historical 

datasets, providing a flexible degree of discounting for each historical dataset. The 

theoretical and computational properties of (2.9) are similar to those of the single historical 

dataset case, and (2.9) can also be extended to the variations of the normalized power prior 

discussed in Section 2.2. The power prior for multiple historical datasets has been discussed 

in the literature and used in several applications, including [1, 15, 16, 19, 21, 31, 30, 45, 46, 

47].

2.6. The Power Prior for Generalized Linear Models

Let yi he the response variable and also let xi be a p-dimensional vector of covariates for i = 

1,... ,n for the current study. Write D = {(yi, xi), i = 1,...,n} = (n, y, X), where y = (y1,..., yn)′ 

and . Throughout the paper, we assume a generalized linear model 

(GLM) for yi given xi, which has a density in the exponential class 

, indexed by the 

canonical parameter θi and the scale parameter τ. The functions ψ and ϕ determine a 

particular family in the class, such as the binomial, normal, Poisson, etc.. The function αi(τ) 

is commonly of the form  where the wi's are known weights. Further 

suppose the θis satisfy the equations: θi = h(ηi) and , where h is a monotone 

differentiable function, often referred to as the link function and  is a p-

dimensional vector of regression coefficients.

We assume that τ is known and denote αi ≡ αi(τ) and ϕ(yi) ≡ ϕ(yi, τ)throughout the 

remainder of the paper. For the binomial and Poisson regression models, τ is intrinsically 

equal to 1. We further rewrite  under the GLM as 

, i = 1,..., n. In the special case 

of the normal linear regression model, we have

(2.10)

The likelihood function of the current data D is given by 

Similarly, let  denote the historical data, 

where  and . We assume the GLM for y0i, 
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given by , i = 1,..., n0, 

where  and x0i is a p-dimensional vector of covariates in the historical data. In 

the special case of normal linear regression, we have

(2.11)

The likelihood function of the historical data D0 is given by 

and the power prior in (2.1) with a fixed a0 for the GLM is given by 

, where 0 ≤ a0 ≤ 1 and π0(β) is the initial prior of β. In 

the normal linear regression case, the power prior reduces to 

. Assume that we take an 

improper uniform initial prior for β, i.e., π0(β) ∝ 1. Then we have

(2.12)

Similarly, the normalized power prior (2.4) with a random a0 for the GLM takes the form 

, where π0(a0) is the initial prior for a0,

(2.13)

and π0(β) is the initial prior for β. We may simply consider π0(a0) ∝ 1, i.e., a0 ~ beta(1,1). 

We note that a closed form expression of (2.13) under the GLM is not available except for 

the linear model, in which we have 

.

3. Theory of the Power Prior and its Properties

3.1. Theoretical Justification of the Power Prior

The power prior in (2.1) has attractive theoretical properties. First, the power prior is an 

optimal class of informative priors in the sense that it minimizes a convex sum of Kullback-

Leibler (KL) divergences between two posterior densities  (no 

borrowing) and  (full borrowing), where  is given 

in (2.2). Mathematically, Ibrahim, Chen, and Sinha [15] showed that 

, where 

 and 

. Second, the power prior 

in (2.1) is a 100% efficient processing rule in the sense that  minimizes the 
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weighted information-processing rule (Zellner [28], [48]) defined by Δ[g] = output 

information – weighted input information = , where , 

0 ≤ a0 ≤ 1, and . Similar results have been 

established in [30] for the normalized power prior in (2.4) based on Shannon's mutual 

information theory. Extensions of these results to multiple historical datasets can be found in 

[15, 30].

3.2. Connections to Hierarchical Models

Hierarchical modeling is a common method for combining several datasets or incorporating 

prior information. Chen and Ibrahim [16] established a formal connection between the 

power prior and hierarchical models for the class of generalized linear models via an 

approximate relationship between the power parameter a0 and the variance components of 

the hierarchical model. This connection facilitates a direct interpretation and estimation of a0 

and unifies these two different approaches for incorporating prior information.

For the GLMs, the power prior is given in Section 2.6. Under the hierarchical GLM 

specification, We take  for the current data and 

for the historical data. In order to establish the connection between the power prior and the 

hierarchical model for GLMs, we further assume that Ω is fixed and specify an improper 

uniform initial prior for µ, i.e., π0(µ) ∝ 1. Under the hierarchical formulation, the posterior 

distribution of β give D and D0 is given by , 

where  is the joint posterior distribution of β, β0 and µ. Chen and Ibrahim 

[16] obtained an asymptotic approximation to  similar to [49], which is given 

by

(3.1)

where , 

,  and 

 are the maximum likelihood estimates (MLEs),  and  are the Hessian matrices of 

 and  evaluated at the respective MLEs of β, and L(β|D) and L(π|D0) 

are the likelihood functions under the GLMs. Similarly, under the power prior formulation, 

the posterior distribution  corresponding to the power prior 

given in (2.12) with  can be approximated by

(3.2)
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where  and . We note that (3.1) and (3.2) are the 

exact posterior distributions in the special case of normal linear regression. Chen and 

Ibrahim [16] showed that the approximate posterior distributions in (3.1) and (3.2) match, 

i.e.,  and  if and only if , where Ip is the p × p identity 

matrix. Chen and Ibrahim [16] proposed a guide value for a0 based on this analytical 

connection and discussed extensions to multiple historical datasets as well as the case in 

which Ω is unknown.

3.3. The Power Prior as a Conjugate Prior

For GLMs, it turns out that a special case of the power prior is a conjugate prior. That is, if 

we take D0 = (n, y0, X), where y0 is a prior elicitation of the response vector for the current 

data D = (n,y,X) (y0 is not historical data here), then the power prior reduces to a conjugate 

prior. Prior elicitation of observable quantities has been examined in detail by [50, 51, 52, 

53]. If , the conjugate prior is given by

(3.3)

where a0 > 0 is a scalar prior parameter, and y0 = (y01,..., y0n)′ is an n × 1 vector of 

hyperparameters. In (3.3), (y0, a0) have different meanings and interpretations than that of 

the historical data case of the earlier subsections. Now y0 is a prior prediction for y, and a0 

reflects the degree of confidence in that prediction. Thus, a0 is no longer restricted to be 

between 0 and 1 in this conjugate prior situation, and we only need a0 ≥ 0. We denote the 

conjugate prior by . As shown in [53], the resulting posterior 

distribution takes of the form .

We now briefly discuss the elicitation of y0 for the conjugate prior. There are two ways of 

eliciting y0. First, in the case of direct elicitation, one can use expert opinion or case-specific 

information on each subject. We can also elicit y0 from forecasts or predictions obtained 

from a theoretical prediction model. In this case, we could obtain a point prediction y0 based 

on a previous similar study. Second, in the case of indirect elicitation, we can specify y0 

indirectly through a prior specification for the prior mode µ0 of β. As shown in [53], 

 yields a prior mode of β equal to µ0, where 

. In the context of binary regression, , where 

F is a cdf. When µ = 0 and F is the cdf corresponding to a symmetric distribution, then y0 = 

(1/2,..., 1/2)′. Many other interesting special cases for the specification of y0 as well as the 

elicitation of a0 for GLMs can be found in [53].

3.4. Matching Predictives

Another attractive feature of the power prior examined in [54] is that it has the property of 

matching predictives. In variable selection or model selection problems, many authors have 

advocated the notion that the priors for the parameters should somehow “match” across the 
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models in the model space. For example, for two nested models, the prior specification for 

the parameters “in common” between these two models should be consistent in some sense.

Suppose we have two nested models  and take the priors  i = 1, 2, where 

the prior predictive densities  and  are given by 

 for i = 1,2. For variable subset selection in linear 

models, it turns out that the power prior is the class of priors that minimizes the discrepancy 

between  and , when the discrepancy measure is the symmetric KL 

divergence, defined by

(3.4)

To illustrate this, we first consider the linear model with no covariates, i.e., the intercept 

model, y = µ + ε, where . Take the prior for µ as 

. Then the prior predictive distribution of y is given by

(3.5)

Now consider the linear model with covariates given by y = Xβ + ε, where 

. We take the prior for β as . Then we have

(3.6)

As shown in [54], as a function of (β0, Σ0), DSKL in (3.4) is minimized when 

 and . That is, the power prior is the prior that 

minimizes the discrepancy between the prior predictive distribution with no covariates (i.e., 

(3.5)) and the prior predictive distribution with covariates (i.e., (3.6)).

3.5. Variable Selection Problems

The power prior is “semi-automatic” in the sense that once one identifies the likelihood 

function of the historical data, then the kernel of the power prior is immediately determined 

with minimal prior elicitation. One only has to elicit a single scalar a0. This type of prior 

elicitation scheme is very powerful in variable selection problems, since by the mere 

specification of likelihood function of the historical data, the hyperparameters of the power 

prior for all possible subset models in the model space are automatically determined. A 

detailed discussion of this semi-automated elicitation scheme based on the power prior for 

variable selection in linear models can be found in [51] and [55]. Chen, Ibrahim, and 

Yiannoutsis [12] developed the power prior for variable selection and computation in the 

GLM, Chen et al. [31] extended these results to generalized linear mixed models, Ibrahim 

and Chen [1] and Ibrahim, Chen, and MacEachern [13] developed the variable selection 

methodology and computation for power priors in the Cox regression model, and Ibrahim, 
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Chen, and Ryan [40] developed the power prior for variable selection and its computational 

properties for time series models.

For the GLM, Chen, Ibrahim, and Yiannoutsos [12] used the power prior to specify both a 

prior for the regression coefficients for all subset models in the model space and prior 

probabilities for all models in the model space. To do this, they let p denote the number of 

the regression coeffiients including an intercept for the full model and let  denote the 

model space. They enumerate the models in  by k = 1,..., , where  is the dimension 

of  and model  denotes the full model. Also, they let  denote 

the regression coefficients for the full model including an intercept, and let  denote a pk 

× 1 vector of regression coefficients for model k with an intercept, and a specific choice of 

pk – 1 covariates. They take  as the historical data for model k, where 

 is an n0 × pk design matrix. Under model k, Chen, Ibrahim, and Yiannoutsos [12] 

proposed the following form of the power prior based on  for :

(3.7)

where  is the initial prior for , c0 is a fixed hyperparameter, and a0 is the 

discounting parameter. The parameter c0 controls the impact of  on the entire 

prior, and the p arameter a0 controls the influence of the historical data on . 

From (3.7), we see how the prior distribution of  is automatically determined from the 

historical data for all models in the model space. All one needs to do is just to specify the 

historical data  and elicit the discounting parameter a0 and the 

hyperparameter c0.

To specify prior probabilities for all models on the model space  using the historical data 

D0. Chen, Ibrahim, and Yiannoutsos [12] first specified the prior for  as

(3.8)

where  is the same density as that in (3.7) with c0 replaced by d0, and then 

defined the prior probability for mode k as

(3.9)

In (3.8), the parameter d0 is a scalar prior parameter that controls the impact of 

on the prior model probability π(k|D0,d0) in (3.9). The prior model probability π(k|D0,d0) 
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defined by (3.8) and (3.9) has several nice properties. First, π(k|D0,d0) in (3.9) corresponds 

to the posterior probability of model k based on the historical data D0 using a uniform initial 

prior  for . Second, as d0 → 0, then π(k|D0,d0) reduces to a uniform prior 

on the model space. Therefore, as d0 → 0, the historical data D0 have minimal impact in 

determining π(k|D0,d0). On the other hand, with a large value of d0,  plays a 

minimal role in determining π(k|D0, d0), and in this case, the historical data plays a larger 

role in determining π(k|D0, d0). Thus as d0 → ∞, π(k|D0, d0) will be regulated by the 

historical data. The parameter d0 plays the same role as c0 and thus serves as a tuning 

parameter to control the impact of D0 on the prior model probability π(k|D0, d0).

For the GLM, the prior  and the prior model probability π(k|D0, d0) given 

in (3.7) and (3.9) lead to convenient and efficient computation of the prior and posterior 

model probabilities. The computational algorithms developed in [12] only require two Gibbs 

samples, one from the prior and another from the posterior under the full model, to compute 

the prior and posterior model probabilities for all possible models in .

4. The Role of Power Priors in Posterior Inference

In Subsections 4.1 and 4.2, we consider new developments. In particular, we wish to 

theoretically examine the behavior of the posterior variance of β and the marginal variance 

of the posterior mean of β as the discounting parameter a0 is varied between 0 and 1. 

Studying these properties is important since it shows how the marginal variance is reduced 

or maximized as a function of the discounting parameter a0. We show that for the linear 

model and generalized linear model that the marginal variance of the posterior mean of β is 

always less than or equal to the posterior variance of β and that equality is only attained 

when a0 = 0 and a0 = 1 and the maximum discrepancy between the two variances is attained 

at a0 = 0.5.

4.1. The Normal Case

Assume that we take an improper uniform initial prior for β, i.e., . Suppose that 

L(β|D) and L(β|D0) are the likelihood functions in (2.10) and (2.11). Then, the posterior 

distribution of β is given by

(4.1)

for 0 ≤ a0 ≤ 1. From (4.1), we see that the posterior mean and variance of β are given by 

 and

(4.2)

Theorem 4.1 Let Var( ) denote the varianee of  with respect to the marginal distribution 

of (y, y0) defined by (2.10) and (2.11). Assume that X and X0 are of full rank. Then, we have
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(4.3)

for 0 ≤ a0 ≤ 1, where  is the posterior variance of β and “≤” denotes that 

 is a positive semi-definite definite matrix. In addition, the 

equality in (4.3) holds if and only if a0 = 0 or a0 = 1 and the maximum difference between 

Var(β|D, D0, a0) and  is reached at a0 = 0.5.

The proof of Theorem 4.1 is given in Appendix A.

REMARK In view of the frequentist properties of the posterior estimates of β, the results 

established in Theorem 4.1 imply that for 1 ≤ j ≤ p, (i) the 100(1 – α)% HPD interval of βj 

has exact coverage probability of 1 – α when a0 = 0 or a0 = 1; (ii) the coverage probability 

of the 100(1 – α)% HPD interval of βj is greater than 1 – α when 0 < a0 < 1; (iii) the highest 

coverage probability of the 100(1 – α)% HPD interval of βj is attained at a0 = 0.5.

4.2. The General Case

Using the GLMs, the posterior distribution of β is given by 

. Following [49, 16] and ignoring constants 

that are free of the parameters, we have  and 

 where L(β|D) and L(β|D0) are the likelihood 

functions,

 and  are the respective MLEs of β based on D and D0 under the GLMs, and  and 

 are the Hessian matrices of log L(β|D) and logL(β|D0) evaluated at the respective MLEs 

of β. Then, it is straightforward to show that under the GLMs,  and 

, where  and  are n × n diagonal matrices with ith diagonal elements 

 and  evaluated at , where hi = 

h(ηi) and , and  and  are n0 × n0 diagonal matrices with ith diagonal elements 

 and  evaluated at , 

where  and . The above approximations are valid for large n and large 

n0, respectively. Assuming , we obtain 

, where 

. Again, using the 

asymptotic variances of  and , it can be shown that the sample variance of the posterior 

mean  is given by 
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and the posterior variance of β is approximated by 

. Here,  is taken with respect 

to the marginal distribution of (y, y0). Thus, we are led to the following corollary.

Corollary 4.1 Theorem 4.1 holds approximately for the GLMs when n and n0 are large and 

X and X0 are of full rank.

5. The Choice of a0

One of the most important issues in the use of the power prior is what value of a0 to use in 

the analysis. There are several possible solutions to this issue. The easiest solution is to 

establish a hierarchical power prior by specifying a proper prior distribution for a0, such as a 

beta prior, for example. A uniform prior on a0, might be a good choice or a more 

informative prior would be to take a0 ~ beta(c, c), where c is moderate to large, such as c ≥ 

3. Although a prior for a0 is attractive, it is more computationally intensive than the a0 fixed 

case and all closed forms are lost when taking this approach. The a0 random case has been 

discussed in [1, 10, 12, 13, 15, 19, 22, 23, 30, 45, 46, 47, ?, 56, 57, ?].

Another approach is to take a0 as fixed and elicit a specific value for it and conduct several 

sensitivity analyses about this value, or to take a0 fixed and use a model selection criterion. 

To facilitate the choice of a0, for the normal linear model, we derive here expressions for the 

penalized likelihood-type criterion, marginal likelihood criterion, deviance information 

criterion, and logarithm of the pseudo-marginal likelihood criterion for the linear model as 

well as present a new simulation study in Section 5.6. As discussed in [15], the guide values 

based on the criteria discussed below serve only as a starting point for the analysis, and 

several sensitivity analyses should be carried out in the range of the guide values.

5.1. The Penalized Likelihood-type Criterion

Ibrahim, Chen, and Sinha [15] proposed a penalized likelihood-type criterion (PLC) to 

determine a guide value of a0. This criterion takes of the form 

, where

(5.1)

L(β|D) and L(β|D0) are the likelihood functions under the GLMs, and π0(β) is the initial 

prior. Then, the guide value of a0 based on the PLC is given by

(5.2)

For the normal linear model, when , (5.1) reduces to 
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and the PLC in takes the form 

.

5.2. The Marginal Likelihood Criterion

We take the power prior distribution of β given D0 and a0 in (2.13) with an initial prior 

. Then, the marginal likelihood is defined as

(5.3)

The guide value of a0 according to the marginal likelihood criterion is given by

(5.4)

Note that when a0 > 0 and X0 is of full rank,  in (2.13) is still proper. For the 

normal linear model, when  and a0 > 0, we have 

.

5.3. The Deviance Information Criterion

For the GLMs, the deviance function is defined as 

. 

The Deviance Information Criterion (DIC) (Spiegelhalter et al. [58]) is given by

(5.5)

where  and . Using (5.5), 

the optimal value of a0 according to DIC is given by
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(5.6)

Now, we present a closed form expression of DIC for the normal linear model whose 

detailed derivation is given in Appendix A. In this special case, the deviance function 

reduces to 

. 

The DIC for the normal linear model is given by

(5.7)

It is interesting to see that when a0 = 0, we have pD(a0 = 0) = tr(X′X[X′X]−1)= p, which is 

exactly the same as the dimension of β. In addition, pD(a0) decreases when a0 increases.

A Special Case: When p = 1, X = (1,1,..., 1)′, and X0 = (1,1,..., 1)′, which corresponds to an 

intercept model, we have  and 

, where  It is easy to show that 

. Therefore, we obtain  if  and 

 if . This result is quite interesting since if 

 then  decreases when n0 increases.
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5.4. The Logarithm of the Pseudo-Marginal Likelihood Criterion

Let  denote D with the ith observation deleted. Then, for the ith observation, the 

Conditional Predictive Ordinate (CPO) is defined as 

, where 

 denotes the posterior density of β given , and a0. Following 

Geisser [59] and Gelfand, Dey, and Chang [60], we have 

, where 

 is the posterior distribution under the GLM. Then, the logarithm of the 

Pseudo-marginal likelihood (LPML) in [61] is defined as

(5.8)

Using (5.8), the optimal value of a0 according to LPML is given by

(5.9)

For the normal linear model, the CPO reduces to 

. After some 

algdbra, we obtain the LPML for the normal linear mo el as 

 Note that when 

a0 = 0, using a first-order Taylor's series expansion, we have 

. For a detailed derivation of the LPML 

for the normal linear model, see Appendix A.

5.5. Multiple Historical Datasets Case

For K0 historical datasets, using the notation in Section 2.4 and (2.9), we first extend (5.1) to

(5.10)

and then define

(5.11)
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Thus, the guide value of a0 based on PLC in (5.11) is given by

(5.12)

where 0 (1) is a K0-dimensional vector with all elements equal to 0 (1). Similarly, we can 

extend (5.4), (5.6), and (5.9) to obtain the guide values of a0 for multiple historical datasets. 

For brevity, the details are omitted here.

5.6. A Simulation Study

We carry out a simulation study to examine the empirical performance of the power prior 

with fixed a0 and random a0 for the normal linear regression model. The model for the 

current data is  and  for i = 1,..., n, where the εi's are 

independent, and the model for the historical data is  and 

for i = 1,..., n0, where the εi0's are independent. We further assume that the εi's and the εi0's 

are independent. In all simulated datasets, we assume that the xi's and xi0 are independently 

generated from a N(0,1) distribution. We consider two scenarios: (i) the historical and 

current data are similar and (ii) the historical and current data are different. In Scenario I, we 

set β0 = β00 = 1, β1 = β10 = 2 n = 400, and n0 = 200; and in Scenario II, we set β0 = β00 = 1, 

β1 = 2, β10 = 1.75, n = 400, and n0 = 200. We also consider two additional scenarios: 

Scenario III, we set β0 = β00 = 1, β1 = β10 = 2 n = 200, and n0 = 400; and Scenario IV, we set 

β0 = β00 = 1, β1 = 2, β10 = 1.75 n = 400, and n0 = 200. The simulation results are given in 

Appendix B.

We generated 10,000 simulated datasets under each scenario. For each simulated dataset, we 

computed the posterior means, the posterior standard deviations, and the 95% HPD intervals 

of β1 using the power prior (2.1) with 21 fixed a0 values ranging from 0 to 1 with an 

increment of 0.05, and four estimated optimal a0 values, namely, , and 

 given by (5.2), (5.4), (5.6), and (5.9), respectively, as well as using the normalized 

power prior (2.4). In all cases, an improper initial prior, , was specified, and a 

uniform prior on (0,1) was taken for a0 for the normalized power prior. Based on the 10,000 

simulated datasets, we then calculated the average of the posterior means (Estimate), the 

average of the posterior standard deviations (SD), the coverage probability (CP) of the 95% 

HPD intervals, and the root of the mean square error (rMSE) for β1.

The simulation results are shown in Table 1. The coverage probabilities and rMSE's are also 

plotted in Figure 1. From Table 1 and Figure 1, we see that under Scenario I, the highest CP 

is 0.9606, which is achieved at a0 = 0.5. This empirical result is consistent with the 

theoretical result established in Theorem 4.1. The posterior estimates based on  were 

very similar to those under a0 = 0.10 under both scenarios. The guide values 

and  led to similar posterior estimates under both scenarios. Compared to the SD's 

and rMSE's for fixed a0 values, we see that , and the random a0 were 

equivalent to approximately borrowing 50% of the historical data under Scenario I and about 

30%-40% of the historical data under Scenario II. In Scenario II, the random a0 power had 
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the largest rMSE; the power prior with  had the smallest rMSE; and the power prior 

with guide values , and , as well as a random a0 was over-borrowing the 

historical data, resulting in CPs around 90%, which were lower than 95% as expected. In 

general, the guide value  leads to less borrowing while the other three guide values 

and a random a0 yield more borrowing.

6. Applications of the Power Prior

The power prior has been recently applied in many fields such as clinical trials, 

epidemiological studies, environmental health, genetics, health services research, etc.. In this 

section, we provide a snapshot overview on the use and implications of the power prior in 

various biomedical applications. The non-medical applications of the power prior are given 

in Appendix C.

6.1. Heritability Estimates in Human Genetics Research

In human genetics research, twin studies are often used as an initial process for testing a 

specific trait that is genetically influenced. One of the goals of these studies is to estimate 

the heritability in twin data. The heritability, denoted by h2, is defined as twice the 

difference of the intraclass correlation coefficients of monozygous (MZ) and dizygous (DZ) 

twins. The twin data consist of n1 MZ pairs of response variables,  for j = 

1,..., n1; and n2 DZ pairs of response variables,  for j = 1,..., n2. The 

assumed model is , where  and Xij is a matrix of 

covariates for i = 1, 2. The heritability of the trait is simply h2 = 2(ρ1 – ρ2). The published 

literature on heritability studies typically report sample sizes and intraclass correlations of 

MZ and DZ only. Therefore, the data from the kth historical study can be written as 

, where r01k and r02k are intraclass correlations of MZ and DZ, 

for k = 1,...,K0. Write D0 = (D01,..., D0K0).

Often twin studies require great effort and much expense. Thus, the data are comprised of a 

small number of subjects. In typical analyses of human twin data in the literature, the 

standard errors of the estimates of the intraclass correlations are based on large sample 

theory, which may not be appropriate for small samples. To overcome these issues, Chen, 

Manatunga, and Williams [8] developed a new Bayesian scheme for analyzing human twin 

data. Specifically, they considered three types of prior distributions based on the complete 

data from previous studies (fully informative prior), summary statistics from the historical 

studies (semi-informative prior), and no historical information (non-informative prior), 

respectively. Their proposed semi-informative power prior based on D0 takes the form
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(6.1)

where  and , k = 1,..., K0 are the Fisher's z transformations of ρi and r0ik, 

respectively for i = 1, 2,  and  are pre-determined 

hyperparameters. From (6.1), we see that (i) the historica data are borrowed only through the 

ρi and (ii) no historical data are available for β and σ2. In this sense, (6.1) can be viewed as a 

partially borrowing power prior. Using a simulation study, Chen, Manatunga, and Williams 

[8] empirically showed that the semi-informative prior is as informative as the fully 

informative prior if the purpose of the study is to estimate the intraclass correlations or 

heritability h2 in twin studies.

6.2. Evaluating Water Quality in Environmental Science

In environmental statistics, one important issue is the evaluation of air or water quality 

standards. One objective of such studies is to estimate the water quality standards in water 

quality data. The data consist of n measurements of water quality (response variable), y = 

(y1,..., yn), and the assumed model is  for i = 1,..., n. The historical data D0 = 

(n0, y0) were collected in previous years and published by the US Environmental Protection 

Agency (USEPA).

One problem in evaluating water quality is that the current data are available over a short 

time period and consequently the sample size is inadequate to provide necessary precision in 

parameter estimation. To overcome this problem, Duan, Ye, and Smith [19] developed a 

novel Bayesian approach in analyzing water quality data. Specifically, they considered the 

power prior approach to incorporate historical data. Their proposed normalized power prior 

based on D0 takes the form

(6.2)

where , k is a pre-specified constant, and δ0 and λ0 are known 

hyperparameters of the prior distribution of a0. As shown in [19], the power prior approach 

in (6.2) improves the precision of the estimatesof the measurements of water quality over 

other approaches.

6.3. Application to Pediatric Quality of Care

In the pediatric quality of care clinics, investigators conducting new research often have 

access to data from previous studies. Therefore, it is scientifically reasonable and 
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advantageous to incorporate the information from previous studies in conducting a new 

study on pediatric quality of care.

In the context of pediatric quality of care, Neelon and O'Mally [57] compared common 

specifications of the power prior and explored whether it is preferable to use fixed a0 or 

random a0, which was also discussed in Section 2.3. They empirically showed that the 

normalized power prior provides a measure of congruence between the current and historical 

data, so that the historical data were downweighted more substantially as the studies 

diverged. They suggested that in real world problems involving large datasets and models 

with several parameters, the normalized power prior may lead to considerably more 

downweighting than desired. Thus, they further recommended that it is perhaps more 

appropriate to assign a0 a fixed value based on expert opinion about the relevance of the 

historical data for the current analysis. Neelon and O'Mally [57] then applied the power prior 

methods to a pair of studies designed to improve delivery of care in pediatric clinics.

6.4. Analysis of Randomized Therapeutic Trials

In randomized therapeutic trials (RTTs), historical data provide a valuable source of 

information for the motivation and design of later trials. One objective of these studies is to 

estimate the intervention effect. In the presence of previous studies, meta-analysis is a well-

known approach for estimating the overall treatment effect. When one is interested in the 

effect of the study-specific subpopulation, however, the historical data based on meta-

analysis would receive too much weight. As a solution to this problem, Charlotte et al. [46] 

established a new Bayesian method for analyzing data from randomized therapeutic trials. 

They evaluated the use of the power prior distribution, illustrated with data from a large 

randomized clinical trial on the effect of ST-wave analysis in intrapartum fetal monitoring.

Charlotte et al. [46] advocated the use of a power prior distribution with pre-specified fixed 

study weights based on differences in study characteristics. They further proposed obtaining 

a ranking of the historical studies via expert elicitation, based on relevance for the current 

study, and then specified study weights accordingly.

6.5. Benchmark Dose Estimation in Toxicology

The benchmark approach is a useful tool in toxicology. One of the aims of these studies is to 

estimate the benchmark dose in the toxicological experiment. The benchmark dose, denoted 

by BMD, is defined as the dose of an environmental toxicant that corresponds to a 

prescribed change in response compared to the background response level. The toxicological 

data consist of n binomial responses y = (y1,...,yn) of an adverse event at a specific dose 

level. The assumed model is , where ni is the number of animals tested at dose 

level xi and pi is the probability that the animals give an adverse response. That is, 

 for i = 1,..., n. The historical D0 = (n0, y0, X0) are available from a recent 

report by the USEPA.

The typical BMD analysis employed by the U.S. EPA ignores the possibility that other 

models might partially reflect the true dose-response relationship. An alternative approach is 

to estimate a Bayesian model averaged (BMA) BMD. Shao [62] compared three methods 
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for integrating historical data from a previous study, including a pooled data analysis, a 

hierarchical model, and the power prior approach, in risk assessment for BMA BMD 

estimation. He empirically showed that the power prior had little influence on current 

estimates when the historical and current data were incompatible.

In the context of the toxicology studies, Shao [37] discussed another power prior approach, 

which borrows “partially” from the common parameter shared in the models for the 

historical data and the current data. Using this power prior, which is called the partial 

borrowing power prior in this paper, Shao [37] empirically showed that the partially 

borrowing power prior successfully achieved the reduction of the uncertainty in the 

estimates of both the parameters of interest and the benchmark dose.

6.6. Hospital Anxiety and Depression Scale in Psychology

In psychometrics, item response theory (IRT) models have been commonly used to express 

the probability of an item response as a function of the item psychometric properties and the 

individual latent characteristics (generally-called abilities). In order to accurately estimate 

the item parameters and the individual abilities, a large number of respondents and many 

items in a test are needed. However, in practice, the administration of a test with a large 

number of items on a large number of subjects may not always be possible. Therefore, the 

use of collateral or historical information in model estimation assumes a particular 

importance. In Bayesian estimation of IRT models, non-informative priors may lead to 

unstable estimates and poor convergence of the Gibbs sampling algorithm. To overcome 

these problems, Matteucci and Veldkamp [56] introduced the power prior in Bayesian 

estimation of IRT models.

Using the data from the Hospital Anxiety and Depression Scale, Matteuchi and Veldkamp 

[56] demonstrated the efficiency of the power prior approach in terms of measurement 

precision with small samples. In addition, Matteuchi and Veldkamp [56] empirically showed 

that the power prior improves not only the precision of the ability estimates but also 

convergence of the Gibbs sampling algorithm.

6.7. Application to Non-inferiority Trials for Anti-infective Products

In the context of the design and analysis of non-inferiority (NI) trials for anti-infective 

products, Gamalo, Tiwari, and LaVange [47] developed a new methodological approach to 

determine NI margins that can utilize all relevant historical data through a novel power 

adjusted Bayesian meta-analysis. They also provided a Bayesian decision rule for the NI 

analysis that is based on a broader use of available prior information and a sample-size 

determination that is based on this Bayesian decision rule. They used the power prior as a 

means to discount historical data and then proposed a new prior, called the order restricted 

power prior, for combining historical data from different types of studies such as 

randomized double-blind studies, randomized open-label studies, observational studies, 

animal models of disease, and Pharmacokinetic-Pharmacodynamic (PK-PD) profiles.
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For illustrative purposes, we consider that the historical data are from two types of studies. 

Let  denote the random variables corresponding to estimates of the 

treatment response from k historical studies that are not randomized control trials (RCTs) 

and also let  denote the random variables corresponding to 

estimates of the treatment response from m – k historical studies that are RCTs. Write the 

combined historical data as . Assume that 

 for i = 1,..., k and  for i = k + 1,..., m, where µ is 

the population treatment response, αi, i = 1,..., m, are random effects corresponding to the 

study effets, and  i = 1, ..., m, are within-study variabilities. Let  and 

. The order restricted power prior proposed by [47] is given by

(6.3)

where π0(θ) is the initial prior for θ. The joint order restricted power prior therefore takes the 

form , where  is 

the initial prior for (a01, a02). The order constraints on the power parameters in (6.3) serve as 

a means to downweight the influence of the historical data, which are not RCTs. Gamalo, 

Tiwari, and LaVange [47] specified a Dirichlet distribution as the initial prior for the 

transformed variables (u, v, 1 – u – v), where u = a01 and v = a02 – a01, a Dirichlet process 

prior for (α1,..., αm)′, and an improper uniform initial prior for µ.

Gamalo, Tiwari, and LaVange [47] illustrated their proposed method through three case 

studies, including determination of the effect of antibacterial drugs in reducing all-cause 

mortality in hospital-acquired or ventilator-associated bacterial pneumonia (HABP/VABP) 

patients, estimation of the NI margin for trials in HABP/VABP drug development, and 

sample size determination for the treatment of HABP/VABP. They empirically showed that 

the approach of incorporating prior information in the sample size calculations for NI trials 

can result in significant reductions in sample size.

7. A Case Study in Cancer Clinical Trials

Chen et al. [11, 29] and Ibrahim et al. [15, 63] demonstrated the use of the power prior in 

survival analysis settings in the context of melanoma cancer clinical trials. Interferon (IFN) 

was used in two previous Eastern Cooperative Oncology Group (ECOG) phase III 
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melanoma clinical trials, E1684 and E1690. The first trial, E1684, was a two arm clinical 

trial comparing high-dose interferon (IFN) to Observation (OBS) (Kirkwood et al. [64]). 

There were a total of n0 = 286 patients enrolled in the study. The treatment effect favoring 

IFN that was seen in E1684 with respect to both relapse-free survival (RFS) and overall 

survival (OS) was larger than expected and was accompanied by substantial side effects due 

to the high-dose regimen. As a result, ECOG began a second trial (E1690) in 1991 to 

attempt to confirm the results of E1684 and to study the benefit of IFN given at a lower 

dose. The ECOG trial E1690 was a three arm phase III clinical trial, and had treatment arms 

of high dose interferon, low dose interferon, and observation (Kirkwood et al. [65]). This 

study had n = 427 patients on the high dose interferon arm and observation arm combined. 

The two datasets were quite similar with respect to the distributions of several prognostic 

factors, including Breslow depth, number of nodes, performance status, site of primary, and 

stage of disease. Prognostic factor analyses were conducted to examine the significance of 

time trend covariates and institutional effects for each study alone, as well as for the 

combined studies, and these factors were highly non-significant.

Chen, Harrington, and Ibrahim [29] and Ibrahim, Chen, and Chu [63] considered an analysis 

of the E1690 data, using E1684 as the historical data, which was incorporated via the power 

prior. They presented a power prior using the treatment covariate alone based on a piecewise 

exponential model, parametric cure rate model, and semiparametric cure rate model. Here, 

we present an analysis based on RFS and four covariates, which are treatment, age, gender, 

and the interaction of treatment and gender. In our analysis, we used n0 = 285 with deletion 

of one observation due to missing age and gender. We use the cure rate model of [11] to 

carry out the Bayesian analysis for these data. The cure rate model has been a key 

component in the design of adjuvant melanoma ECOG trials, and this model was used to 

design E1690, E1694, and the E1697 adjuvant melanoma trials.

For the ith patient, i = 1,...,n, let yi denote the observed RFS time or censoring time and let vi 

be the censoring indicator variable taking a value of 1 if yi is an RFS time and 0 if it is a 

censoring time. Also, let trti denote the treatment indictor such that trti = 1 if the ith patient 

received IFN and trti = 0 if the ith patient received OBS. As the gender indicator, genderi is 1 

if the ith patient is male and 0 if the ith patient is female. The likelihood function for the 

E1690 data (denoted by D with n = 427) is given by 

, where 

, and 

 is the cumulative distribution function and  is the corresponding density 

function. We further assume a piecewise exponential model for , which is given by 

, where 

, and . Let D0 denote the 

historical E1684 data and the corresponding likelihood function  is defined in a 

similar way as the one for the current data. Then, the power prior in (2.1) reduces to 

, where  is the initial prior, 
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and  is the likelihood function based on the historical data. We specify a joint 

noninformative uniform initial prior for , i.e., .

Figure 2 shows the plots of DIC and LPML versus a0 for various values of J. We see from 

Figure 2 that DIC (LPML) is roughly a convex (concave) function of a0 for a given value of 

J and the entire DIC (LPML) curve for J = 5 is below (above) those corresponding to J = 2, 

J = 10, and J = 15. These results show that J = 5 is the best choice according to both the DIC 

and LPML criteria. In terms of a0, the respective best DIC values for J = 2, 5, 10, and 15 are 

1040.626, 1038.072, 1044.742, and 1045.578, attained at a0 = 0.2, 0.5, 0.6, and 0.7 while the 

respective best LPML values for J = 2, 5, 10, and 15 are −520.324, −519.06, −522.403, and 

−522.902, attained at a0 = 0.3, 0.5, 0.6, and 0.7. These results empirically show that when 

the model becomes more complex (i.e., J becomes larger), the optimal a0 becomes larger. 

This is quite interesting as these results essentially imply that the historical and current data 

become more comparable under more complex models.

The posterior estimates of the regression parameters, including posterior means, posterior 

standard deviations (SDs), and 95% HPD intervals, for a0 = 0, 0.5, and 1 under J = 5 are 

given in Table 2. From Table 2, we see that (i) the posterior SDs decrease as a0 increases for 

all parameters, implying that the incorporation of historical data improves the precision of 

the posterior estimates; (ii) the 95% HPD intervals for β2, β3, β4, and β1 + β4 include 0 for all 

a0's; and (iii) the 95% HPD intervals for β0 and β1 include 0 when a0 = 0 but do not include 

0 when a0 = 0.5 and 1. Note that based on our notation and model setup, β1 quabtufues the 

treatment effect for female patients while β1 + β4 captures the treatment effect for male 

patients. We also see from Table 2 that the posterior means and 95% HPD intervals are 

−0.311 and (−0.620, 0.012), −0.340 and (−0.616, −0.078), and −0.352 and (−0.593, −0.126) 

for a0 = 0, 0.5, and 1, respectively, for β1; and −0.022 and (−0.447, 0.416), −0.108 and 

(−0.461, 0.259), and −0.147 and (−0.442, 0.180) for a0 = 0, 0.5, and 1, respectively, for β1 + 

β4. We also computed the posterior estimates of the hazard ratios (HRs) of the treatment 

effect for females (exp(β1)) and for males (exp(β1 + β4)). The estimated HRs of the 

treatment effect and corresponding 95% HPD intervals are 0.732 and (0.538, 1.012), 0.712 

and (0.540, 0.925), and 0.703 and (0.553, 0.882) for a0 = 0, 0.5, and 1, respectively, for 

females; and 0.978 and (0.640, 1.516), 0.898 and (0.631, 1.295), and 0.864 and (0.643, 

1.197) for a0 = 0, 0.5, and 1, respectively, for males. The above results indicate that the 

treatment effect favoring IFN with respect to RFS can be seen only for female patients but 

not for male patients.

8. The Power Prior in Bayesian Design

Many examples of the use of the power prior in experimental design settings can be found in 

Spiegelhalter, Abrams, and Myles (2004). The power prior has also been used more recently 

in clinical trial design settings in [21, 24, 38, 39]. Specifically, Chen et al. [21] developed a 

new and general method to determine Bayesian sample size using historical data for a non-

inferiority trial. Ibrahim et al. [24] and Chen et al. [38, 39] adapted this method using the 

partial borrowing power prior in Bayesian meta-experimental design as well as Bayesian 

design for superiority trials with recurrent events data.
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To put the methodology in a specific context, Chen et al. [21] considered designing a 

clinical trial to evaluate the performance of a new generation of drug-eluting stents (DES) 

(“test device”) with a non-inferiority comparison to the first generation of DES (“control 

device”). The trial had two arms: test device and control device. The primary endpoint is the 

12-month Target Lesion Failure (TLF) (binary) composite endpoint, which is an ischemia-

driven revascularization of the target lesion (TLR), myocardial infarction (MI) (Q-wave and 

non-Q-wave) related to the target vessel, or (cardiac) death related to the target vessel. 

Historical data were available from two previous trials on the first generation of DES. The 

first trial conducted in 2002 evaluated the safety and effectiveness of the slow release 

paclitaxel-eluting stent for treatment of de novo coronary artery lesions. The second trial 

conducted in 2004 expanded on the first trial, studied more complex de novo lesions, and 

involved multiple overlapping stents and smaller and larger diameter stents. The historical 

data based on lesion size matched criteria are subsets of the data published in Stone et al. 

[66, 67]. The numbers of failures, the numbers of patients, and the percentages of the 12-

Month TLF were 44, 535, and 8.2% for historical trial 1 and 33, 304, and 10.9% for 

historical trial 2.

Let (yt, nt) and (yc, nc) be the data corresponding to the test device and the control device, 

respectively. Assume that the ratio of the two sample sizes, , is fixed and typically 

small. Thus,  and  where n = nt + nc is the total sample size, The goal of the 

trial is to show that the test device is non-inferior to the control device. We assume that yt 

and yc independently follow binomial distributions b(pt, nt) and b(pc, nc), respectively. Then, 

the joint distribution of y(n) = (yt, yc)′ is given by 

, where θ = (pt,pc). The design parameter is 

the difference between pt and pc, namely, pt – pc. The hypotheses for non-inferiority testing 

are H0: pt – Pc ≥ δ versus H1: pt – Pc <, where δ is a prespecified non-inferiority margin. The 

trial is successful if H1 is accepted. Let  and 

. Following Chen et al. [21], the key design quantity is 

defined as

(8.1)

where the indicator function 1{A} is 1 if A is true and 0 otherwise, γ > 0 is a prespecified 

Bayesian credible level, the probability  is computed with respect 

to the posterior distribution of θ given the data y(n) and the feting prior π(f)(θ), and the 

expectation Es is taken with respect to the marginal distribution of y(n) under the sampling 

prior π(s)(θ). Let  and  denote the closures of  and . Let  denote a sampling 

prior with support . Also let  denote a sampling prior with support 

. Then,  and  given in (8.1) corresponding to  and  are the 

Bayesian type I error and power, respectively.

Let yc0 = (yc01, yc02)′ = (44,33)′ denote the historical data for the control medical device. 

The partial borrowing power prior with fixed a0 = (a01, a02)′ is given by
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(8.2)

where , and π0(pt) and π0(pc) are initial priors. Assuming 

, the posterior distribution of pc is given by

(8.3)

and the normalized power prior for (pt, pc, a0) given multiple historical datasets yc0 is of the 

form

(8.4)

where  denotes 

the complete beta function, and b01 > 0 and b02 > 0 are prespecified hyperparameters. Note 

that in (8.4), we assume that the a0k's are independent and distributed as a0k ~ beta(b01, b02) 

for k = 1,2.

We consider (8.2) or (8.4) after integrating out a0 as the fitting prior . For the 

sampling prior, , l = 0,1, we take

(8.5)

where  is the design value of the 12 month TLF for the future data and Δ{A} denotes 

the point mass at the event A, that is, P(A) = 1.

As discussed in [21], we set the margin to be δ = 4.1%, took an improper beta(0,0) initial 

prior for π0(pc), and specified b01 = b02 = 1 for the initial priors of the a0k's in (8.4). In the 

sampling prior, we assumed a point mass prior at  for π(s)(pc), where 9.2% was the 

pooled proportion for the two historical control datasets. We first computed the powers and 

the type I errors for various sample sizes based on the Bayesian procedure without the 

incorporation of historical data (a0 = 0) as well as with power priors for random and fixed 

a0. Table 3 shows the results. From Table 3, we see that (i) without incorporation of 

historical data, a total sample size of 1480 is required in order to achieve 80% power; (ii) 

With incorporation of the historical data, a sample size of (nt, nc) = (810, 270) achieves 80% 

power; and (iii) the power prior with random a0 borrows approximately 30% of the 

historical data. Thus, the Bayesian sample size determination (SSD) procedure with 

incorporation of historical data leads to a reduction in the sample size.

To carry out a sensitivity analysis of the Bayesian SSD, we consider n = 1200 with nt = 900 

and nc = 300, three different values of , namely 8.0%, 9.2%, and 10.0%, and various 

Bayesian credible levels for γ. The powers and type I errors for the normalized power priors 

with various initial priors for a0k's as well as the power prior with fixed a0 = (0.3, 0.3)′ are 
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shown in Table 4. From this table, we see that the type I errors were not controlled at 5% for 

both the normalized power prior and the power prior with fixed a0 = (0.3, 0.3)′ when γ = 

0.95% and , because of the fact that the historical data and the current data from the 

control device are not compatible. Also, we see that the type I errors corresponding to the 

normalized power prior is quite sensitive to the specification of the initial prior beta(b01, 

b02) for a0k in (8.4). However, when γ increases or when the historical control data are 

downweighted, the type I error decreases. In particular, when γ = 0.96 and 0.97, the type I 

errors were 0.049 and 0.035 for the power prior with fixed a0 = (0.3, 0.3)′. In addition, if a 

point mass sampling prior at pc = 8.0% is assumed, the type I errors under the normalized 

power prior were 0.041 when (b01, b02) = (1,1) and γ = 0.97 and 0.047 when (b01, b02) = 

(1,10) and γ = 0.96.

In the binomial setting, closed-form expressions for the penalized likelihood-type criterion 

(PLC), the marginal likelihood criterion (MLC), and the deviance information criterion 

(DIC) in Section 5 are available. Let 

. Using (8.3), assuming an improper beta(0,0) initial prior for pc, and ignoring the binomial 

coefficient , we have

(8.6)

The guide values of a0 based on PLC and MLC are given as

(8.7)

,  and  and 

C(a0) are defined in (8.6) and (8.4), respectively. Ignoring , we take the deviance 

function as . Using (8.3), the posterior 

mean of pc is 

. It 

can be shown that the posterior mean of Dev(pc) is given by

(8.8)

where  is the digamma function. Then, the guide value of a0 based on 

DIC is given by

(8.9)
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where  is given by (8.8). The powers and type I errors under these 

three guide values are also given in Table 4. From this table, we see that (i) the power prior 

with  leads to a slightly lower power but a better controlled type I error; (ii) the 

powers and type I errors under the power priors with  and  are similar; and (iii) 

both  and  require higher Bayesian credible levels in order to control the type I 

errors and maintain good powers at the same time.

9. Concluding Remarks

We have provided a comprehensive review of the power prior and its applications in this 

article. As seen in earlier sections, the power prior has been used in a wider variety of 

contexts and disciplines, ranging from experimental design to data analysis. We also 

demonstrated a large number of attractive theoretical properties of the power for inference, 

such as its asymptotic normality, conjugacy, log-concavity for Gibbs sampling, its 

connection to hierarchical models, its semi-automatic nature for variable subset selection, 

and its important role in the design of clinical trials. The power prior continues to be highly 

used today, especially in clinical trials contexts, in both design and analysis settings. It is 

becoming a standard approach to informative prior elicitation. It is also one of the 

recommended priors by the US Food and Drug Administration (FDA) for analyzing and 

designing medical device trials.

The power prior has also been implemented in software packages such as SAS Proc MCMC 

and WinBUGS. Some comments are in order here for the different variations of the power 

prior. First, we note that the normalized power prior (2.4) is computationally difficult to 

work with especially in regression settings, and thus the joint power prior (2.3) is more 

preferred for this purpose. Second, the partial borrowing power prior is flexible and different 

than (2.3) in that it allows borrowing information from historical data on a subset of the 

model parameters that is common to both the historical dataset and the current study. The 

partial borrowing power prior is most useful in clinical trials setting, for example, where one 

only has historical data on the control arm, and no historical data on the treatment arm for 

the current study. Third, the partial discounting power prior, which is different than the 

partial borrowing power prior, is most useful in settings with latent variables or random 

effects, where one wishes to discount the likelihood function of the historical data but not 

discount the distribution of the latent variables or the random effects. Fourth, the order 

restricted power prior, which is another variation of the power prior, is quite attractive in 

combining historical data from different types of previous trials with ordered importance. 

The partial borrowing power prior, the partial discounting power prior, and the order 

restricted power prior all show great promise for future use in both the design and analysis 

of clinical trials. All of these three variations of the power prior are promising topics of 

future research.

Regarding fixed or random a0 in design or analysis, our experience shows that taking a0 

fixed and doing several sensitivity analyses for different values of a0 is much 

computationally feasible and easier to interpret than taking a0 random. In addition, a fixed 

a0 may also be more convenient to elicit via expert opinion. The a0 random case is 
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computationally very difficult and it often gives answers similar to the a0 fixed case, so its 

advantages appear to be minimal. As a result, using fixed a0 may be more preferred and 

desirable in many applications. A related issue is the specification of a useful guide value for 

a0. In Section 5, we have derived the closed-form expressions of the penalized likelihood-

type criterion, marginal likelihood criterion, DIC, and LPML criterion for the linear model 

with known sampling-level variances. When the sampling-level variances are unknown, the 

closed-form expressions of these criteria except for the LPML criterion can still be derived. 

Thus, for the LPML criterion, a sampling-based Monte Carlo method needs to be used in 

order to obtain a guide value of a0. Although the approaches based on the penalized 

likelihood-type, marginal likelihood, DIC, and LPML criteria are attractive, their properties 

have not been fully investigated and much more work needs to be done in finding optimal 

guide values for a0. This is also a topic of future research.
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Figure 1. 
Plots of coverage probability (left panel) and rMSE (right panel) of βi, where ○ indicates the 

results based on fixed values of a0 (evenly-spaced from 0 to 1), and ◆, ▲, ■, ●, and Δ 

display the results based on , and , and the normalized power 

prior.
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Figure 2. 
DIC and LPML plots for E1684 and E1690.
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Table 1

Simulation Results for the Posterior Estimates of β1

a 0 Scenario I Scenario II

Estimate SD CP rMSE Estimate SD CP rMSE

0.00 1.9989 0.0521 0.9492 0.0523 1.9989 0.0521 0.9492 0.0523

0.10 1.9989 0.0510 0.9538 0.0503 1.9887 0.0510 0.9476 0.0515

0.20 1.9990 0.0499 0.9580 0.0486 1.9793 0.0499 0.9359 0.0528

0.30 1.9990 0.0489 0.9588 0.0473 1.9707 0.0489 0.9137 0.0556

0.40 1.9990 0.0480 0.9604 0.0462 1.9627 0.0480 0.8887 0.0594

0.50 1.9990 0.0472 0.9606 0.0454 1.9552 0.0472 0.8540 0.0637

0.60 1.9991 0.0463 0.9597 0.0448 1.9483 0.0463 0.8103 0.0683

0.70 1.9991 0.0456 0.9566 0.0443 1.9419 0.0456 0.7615 0.0731

0.80 1.9991 0.0448 0.9554 0.0440 1.9358 0.0448 0.7089 0.0778

0.90 1.9991 0.0441 0.9523 0.0439 1.9302 0.0441 0.6492 0.0824

1.00 1.9991 0.0435 0.9487 0.0438 1.9249 0.0435 0.5906 0.0870

a0,PLC
opt 1.9989 0.0510 0.9535 0.0503 1.9891 0.0510 0.9476 0.0515

a0,MLC
opt 1.9992 0.0448 0.9471 0.0459 1.9794 0.0492 0.8935 0.0583

a0,DIC
opt 1.9992 0.0448 0.9474 0.0458 1.9783 0.0491 0.8913 0.0587

a0,LPML
opt 1.9992 0.0448 0.9471 0.0458 1.9784 0.0491 0.8915 0.0587

Random 1.9991 0.0472 0.9579 0.0455 1.9687 0.0512 0.9003 0.0601
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Table 2

Posterior Estimates for E1690 using E1684 as the historical data (J=5)

a 0 Parameter Posterior Mean Posterior SD 95% HPD Interval

0.0 β 0 0.204 0.127 (−0.043, 0.451)

β 1 −0.311 0.163 (−0.620, 0.012)

β 2 0.119 0.067 (−0.008, 0.252)

β 3 −0.290 0.195 (−0.675, 0.091)

β 4 0.290 0.274 (−0.263, 0.805)

β1 + β4 −0.022 0.223 (−0.447, 0.416)

0.5 β 0 0.260 0.101 (0.056, 0.450)

β 1 −0.340 0.138 (−0.616, −0.078)

β 2 0.094 0.055 (−0.010, 0.204)

β 3 −0.219 0.161 (−0.536, 0.091)

β 4 0.233 0.230 (−0.209, 0.682)

β1 + β4 −0.108 0.183 (−0.461, 0.259)

1.0 β 0 0.286 0.088 (0.110, 0.454)

β 1 −0.352 0.120 (−0.593, −0.126)

β 2 0.086 0.048 (−0.013, 0.175)

β 3 −0.182 0.137 (−0.461, 0.078)

β 4 0.205 0.197 (−0.179, 0.599)

β1 + β4 −0.147 0.159 (−0.442, 0.180)
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Table 3

Powers and Type I Errors for 12-Month TLF with 

Total Sample Size 1000 1080 1200 1280 1480

nt 750 810 900 960 1110

nc 250 270 300 320 370

No Borrowing a0 = (0, 0) Power 0.648 0.676 0.718 0.738 0.800

Type I Error 0.049 0.048 0.048 0.050 0.044

Random a0 using (8.4) Power 0.843 0.878 0.897 0.902 0.914

Type I Error 0.038 0.031 0.029 0.036 0.039

Fixed a0 = (0.3, 0.3) Power 0.840 0.856 0.884 0.892 0.923

Type I Error 0.030 0.027 0.028 0.030 0.032
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Table 4

Powers and Type I Errors under Three 's and Various γ's for 12-Month TLF with (nt, nc) = (900, 300)

Fitting Prior γ
p

c
∗ = 8.0 % p

c
∗ = 9.2 % p

c
∗ = 10.0 %

Power Type I Error Power Type I Error Power Type I Error

Power Prior with a0k ~ beta(b01, b02) in (8.4)

(b01, b02) = (1, 1) 0.95 0.945 0.070 0.882 0.039 0.799 0.034

(b01, b02) = (1, 5) 0.95 0.916 0.061 0.832 0.033 0.760 0.026

(b01, b02) = (1, 10) 0.95 0.868 0.053 0.791 0.038 0.728 0.032

(b01, b02) = (1, 1) 0.96 0.935 0.055 0.880 0.022 0.765 0.026

0.97 0.917 0.041 0.848 0.015 0.719 0.009

(b01, b02) = (1, 5) 0.96 0.899 0.047 0.803 0.027 0.722 0.021

Power Prior with fixed a0 = (a01, a02)′

a0 = (0.3, 0.3) 0.95 0.965 0.065 0.884 0.028 0.788 0.018

0.96 0.953 0.049 0.856 0.021 0.750 0.013

0.97 0.940 0.035 0.820 0.015 0.703 0.008

a0 = a0,PLC
opt

 in (8.7)
0.95 0.918 0.055 0.829 0.035 0.755 0.027

0.96 0.898 0.045 0.798 0.026 0.722 0.021

0.97 0.871 0.033 0.758 0.018 0.673 0.014

a0 = a0,MLC
opt

 in (8.7)
0.97 0.900 0.072 0.851 0.046 0.780 0.028

0.98 0.877 0.053 0.811 0.030 0.734 0.019

a0 = a0,DIC
opt

 in (8.9)
0.97 0.912 0.071 0.854 0.041 0.788 0.027

0.98 0.889 0.051 0.815 0.028 0.738 0.018
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