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ABSTRACT
The formation of large-scale structure is independent of the nature of the cold dark matter
(CDM), however the fate of very small-scale inhomogeneities depends on the microphysics of
the CDM particles. We investigate the matter power spectrum for scales that enter the Hubble ra-
dius well before matter–radiation equality, and follow its evolution until the time when the first
inhomogeneities become non-linear. Our focus lies on weakly interacting massive particles
(WIMPs), and as a concrete example we analyse the case when the lightest supersymmet-
ric particle is a bino. We show that collisional damping and free-streaming of WIMPs lead
to a matter power spectrum with a sharp cut-off at about 10−6 M� and a maximum close to
that cut-off. We also calculate the transfer function for the growth of the inhomogeneities in
the linear regime. These three effects (collisional damping, free-streaming and gravitational
growth) are combined to provide a WMAP normalized primordial CDM power spectrum, which
could serve as an input for high-resolution CDM simulations. The smallest inhomogeneities
typically enter the non-linear regime at a redshift of about 60.
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1 I N T RO D U C T I O N

Analysis of the anisotropies in the cosmic microwave background
(CMB) radiation (Spergel et al. 2003) shows that the relative matter
density �m = 0.29 ± 0.07 is significantly larger than the relative
baryon density �b = 0.047 ± 0.006. These results are consistent
with the observed abundances of light elements and primordial nu-
cleosynthesis (see e.g. Tyler et al. 2000) and the power spectrum
found from galaxy redshift surveys (Percival et al. 2001), and indi-
cate that the Universe contains a significant amount of non-baryonic
cold dark matter (CDM).

Weakly interacting massive particles (WIMPs) are attractive
CDM candidates, since a stable relic from the electroweak scale
generically has an interesting present-day density, �cdm ∼ O(1)
(Dimopoulos 1990). The argument goes as follows: annihilation
processes cease and the WIMP number density n becomes fixed
when the annihilation rate �ann drops below the expansion rate H
(usually referred to as chemical decoupling or freeze-out). The tem-
perature of chemical decoupling is thus defined by �ann = 〈 σ annv〉
n(T cd) ∼ H (T cd), where σ ann denotes the annihilation cross-section
and v the relative velocity of the annihilating particles. For a typ-
ical weakly interacting particle one finds T cd ∼ m/25, m being
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the WIMP mass. The present-day relative WIMP density can be
estimated as

�wimp = mncd(acd/a0)3(
3H 2

0 /8πG
) ∼ 0.2

(m/Tcd)/25

〈σannv〉/1 pb
, (1)

where a denotes the scale factor and we have set h = 0.7 and as-
sumed 90 relativistic degrees of freedom at chemical decoupling. A
cross-section of about 1 picobarn (pb) (≡ 10−40 m2) is typical for
the annihilation of supersymmetric WIMPs since 1 pb ∼α2/(100
GeV)2, where α ≈ 1/100 is the electroweak coupling and supersym-
metric particles typically have mass of the order of the electroweak
scale (100 GeV).

In supersymmetry every standard model particle has a supersym-
metric partner and in most models there is a conserved quantum
number (R-parity), which makes the lightest supersymmetric par-
ticle stable. Supersymmetry models have a large number of free
parameters, however in most models the lightest supersymmetric
particle is the lightest neutralino (which is a mix of the supersym-
metric partners of the photon, the Z and the Higgs bosons; see e.g.
Jungman, Kamionkowski & Griest 1996), furthermore in large re-
gions of parameter space the lightest neutralino is mainly the bino
(Roszkowski 1991). Accelerator searches place a lower limit on the
neutralino mass of m > 37 GeV (see e.g. Hagiwara et al. 2002),
while the WMAP measurement of the matter density leads to an
upper limit of m < 500 GeV (Ellis et al. 2003).

In CDM cosmologies structure forms hierarchically; galaxy
haloes form from the merger and accretion of subhaloes (which
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themselves formed from smaller subhaloes). The internal structure
of galaxy haloes is determined by the dynamical processes that act
on the accreted components. Dynamical friction causes subhaloes
with mass M > 109 M� to spiral toward the centre of a Milky
Way mass parent halo within a Hubble time, while the tidal field
of the parent halo can strip material from a subhalo. Numerically
simulated galaxy haloes contain large numbers of subhaloes that
have not been destroyed (Klypin et al. 1999; Moore et al. 1999) and
the subhalo mass function varies roughly as N (M) ∝ M−1.8 down
to the resolution limit of the simulations, M ∼ 106 M� (Stoehr
et al. 2003). Furthermore the anomalous flux ratios of multiply im-
aged QSOs (Mao & Schneider 1998; Schechter 2003) may be due to
millilensing by subhaloes, providing tentative observational support
for the existence of substructure in galaxy haloes.

Substructure on scales far smaller than those resolved by nu-
merical simulations has potentially significant consequences for
WIMP direct (Drukier, Freese & Spergel 1986) and indirect (see
e.g. Bergström 2000) detection. WIMP direct detection (using ter-
restrial detectors) probes the dark matter distribution on submillipar-
sec scales (Silk & Stebbins 1993; Moore et al. 2001; Green 2002,
2003). WIMP indirect detection via WIMP annihilation products
(gamma-rays, antiprotons and neutrinos) is most sensitive to the
highest density regions of the Milky Way (e.g. Silk & Stebbins
1993; Bergström et al. 1999; Bergström, Edsjö & Gunnarsson 2001;
Calcaneo-Roldan & Moore 2000) and clumping will also enhance
the extragalactic gamma-ray signal (Ullio et al. 2002; Taylor & Silk
2003).

In this Letter we present the matter power spectrum close to the
end of the linear regime, for scales that enter the horizon well before
matter–radiation equality. Three effects are important: after chem-
ical decoupling the primordial CDM density perturbations are col-
lisionally damped, owing to elastic interactions with other species,
and then after kinetic decoupling free-streaming leads to further
damping. CDM inhomogeneities on physical scales larger than the
damping scale grow logarithmically during the radiation-dominated
epoch and then roughly proportional to the scalefactor during the
matter-dominated epoch.

The small-scale CDM power spectra for the density, velocity and
potential perturbations are an essential input for attempts to esti-
mate analytically the size and mass of the very first gravitationally
bound objects. Ultimately, very high-resolution CDM simulations
will be necessary to make detailed predictions for the fate of the
very first objects, however the very different characteristic smallest
scales that have been predicted for different CDM candidates [10−6

M� for neutralinos (Hofmann, Schwarz & Stöcker 2001; Schwarz,
Hofmann & Stöcker 2001; Berezinsky, Dokuchaev & Eroshenko
2003) compared with 10−13 M� for axions (Kolb & Tkachev, 1996)]
could have observable astrophysical consequences [such as fem-
tolensing and picolensing of gamma ray bursts (Gould 1992)]. This
would open up the exciting possibility of discriminating between
CDM candidates astronomically.

2 C O L L I S I O NA L DA M P I N G
A N D F R E E S T R E A M I N G

Primordial CDM inhomogeneities on the smallest scales are
smeared out by collisional damping and free streaming, if the CDM
has once been in thermal contact with the hot component of the
Universe (as is the case for WIMPs). These damping processes give
rise to a sharp cut-off in the primordial CDM power spectrum. In
order to make quantitative predictions, we assume the CDM par-
ticle to be a bino with mass m. The bino abundance is fixed at

chemical decoupling, which happens at typically T cd ∼ m/25, i.e.
above 1 GeV. Below that temperature, elastic scattering of binos and
fermions (leptons and quarks from the radiation component) can still
occur and the bino decouples kinetically at significantly lower tem-
peratures (Schmid, Schwarz & Widerin 1999): T kd = 10 MeV to
40 MeV, depending on the parameters of the supersymmetric model.

Between chemical and kinetic decoupling the CDM particles
interact with the cosmic heat bath, which consists of all the relativis-
tic particles in the Universe, and this leads to collisional damping
of the CDM density perturbations. Since CDM is non-relativistic
at this epoch, the dominant processes are bulk and shear viscosity.
Hofmann et al. (2001) calculated the effect of these processes on
the primordial density perturbations and found exponential damping
with a characteristic comoving wavenumber

kd ≈ 1.8

(
m

Tkd

)1/2
akd

a0
Hkd ,

≈ 3.8 × 107

Mpc

(
m

100 GeV

)1/2 (
Tkd

30 MeV

)1/2

. (2)

This corresponds to a length-scale of ∼10−2/H at kinetic decou-
pling. The total CDM mass contained in a sphere with radius π/kd

is M d ∼ 10−10 M�.
For a bino, the kinetic decoupling temperature depends on m and

on the various sfermion masses m f̃ . Here we make the simplify-
ing assumption that all sfermions have the same mass, which is
not correct in more realistic models, but is a reasonable assumption
for a first estimate. We consider two fiducial sets of parameters:
model A (B) has m = 100(150) GeV and m f̃ = 230(190) GeV.
For these parameters we find, neglecting coannihilations with other
supersymmetric particles, that chemical decoupling happens at
T cd = 4.0(5.8) GeV and �bino = 0.31(0.17), thus models A and
B have CDM densities at the high and low end respectively of the
range of values found by WMAP. For these models kinetic decou-
pling occurs at T kd = 33 (21) MeV and the damping mass-scale is
M d = 9 × 10−11(6 × 10−11) M�.

After kinetic decoupling, the CDM particles enter the free-
streaming regime. We calculate the effect of free streaming by
solving the collisionless Boltzmann equation in Fourier space on
subhorizon scales, to first order in the perturbed thermodynamics
quantities and neglecting metric perturbations, starting immediately
after kinetic decoupling. We include the spectrum of CDM density
perturbations at this time, and also take into account the matter
and radiation components of the Universe. The net result is again
exponential damping with a characteristic scale that is inversely
proportional to the (time-dependent) free-streaming length-scale
(kfs ≡ 2

√
3/lfs), multiplied by a polynomial term that arises from

the ratio of the CDM particle kinetic energy to the thermal averaged
kinetic energy. The free-streaming scale becomes approximately
constant soon after matter–radiation equality:

kfs ≈
(

m

Tkd

)1/2
aeq/akd

ln
(

4aeq/akd

) aeq

a0
Heq,

≈ 1.7 × 106

Mpc

(m/100 GeV)1/2 (Tkd/30 MeV)1/2

1 + ln (Tkd/30 MeV) /19.2
.

(3)

The damping scale from free streaming depends on ωm ≡ �mh2

only via the logarithm; we therefore set it equal to WMAP’s best-
fitting value, ωm = 0.14 (Spergel et al. 2003). The corresponding
length-scale at matter–radiation equality ∼10−8/H and the total
mass contained in a sphere with radius π/kfs is M fs ∼ 10−6 M�.
More precisely, for model A (B) we find M fs = 9 × 10−7 (6 ×
10−7) M�.
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We can now put together all the damping factors for the CDM
mass density perturbation � ≡ δρ/ρ. Well after equality (our
approximations are valid for a/a eq � 10), when the comoving
free streaming length is frozen, density inhomogeneities with large
wavenumbers are suppressed by a damping factor

D(k) =
[

1 − 2

3

(
k

kfs

)2
]

exp

[
−

(
k

kfs

)2

−
(

k

kd

)2
]

. (4)

The present approximation is valid for k/k fs < 1, as terms of order
(k/kfs)4 have been neglected in the polynomial.

The mass density contrast as function of redshift and wavenumber
can now be written

�(k, z) = �(k, zi)T
1/2

� (k, z)D(k), (5)

where �(k, zi) is the primordial density perturbation and T �(k, z)
is the transfer function which encodes the gravitational evolution of
�(k, z).

3 G R AV I TAT I O NA L G ROW T H
O N S U B H O R I Z O N S C A L E S

Following Weinberg (2002), we model the Universe as a two com-
ponent (non-relativistic matter and radiation) fluid. Here we utilize
the zero shear (or longitudinal or conformal Newtonian) gauge. It
is useful to define for each fluid (the index ‘a’ stands for radiation,
p r = ε r/3, or non-relativistic matter, pcdm = 0) the energy density
perturbation

�a = δεa

εa + pa
, (6)

(note that �cdm ≡ �) and the velocity perturbations va by

va = ik
k

va, (7)

where va is the peculiar velocity.
The Newtonian gravitational potential φ is defined via the metric,

which is in the zero shear gauge given by

ds2 = −(1 + 2φ) dt2 + a2 (1 − 2φ) δi j dxi dx j , (8)

in the absence of anisotropic stress, where cosmic time is denoted by
t. Another useful quantity is the hypersurface-independent quantity
ζ (= −R) ≡ �/3 − φ (Bardeen 1980, 1989), which is conserved
on superhorizon scales. We use this definition to make contact with
the WMAP normalization, which is given in terms of R (Verde
et al. 2003).

Several comments are in order here. First, we work in the zero
shear gauge, because all subhorizon quantities can be interpreted in
terms of Newtonian physics, which is not the case in the synchronous
gauge, where the Newtonian gravitational potential is gauged to
zero. Secondly, neutrinos are included in the radiation component
in order to allow an analytic treatment, i.e. their anisotropic stress
is neglected. This leads to errors of around 10 per cent (Hu et al.
1995). Furthermore we ignore the effect of a non-zero cosmological
constant or curvature (which only effect the evolution of the pertur-
bations at very late times) and baryon inhomogeneities. At early
times the baryons are tightly coupled to the radiation fluid, and pho-
ton diffusion damping rapidly erases small-scale perturbations in
the baryon fluid at z ∼ 106 to 105. On small scales the tight coupling
breaks down prior to recombination, and the baryon perturbations
grow, however �b ��cdm still (Yamamoto, Sugiyama & Sato 1997,
1998). Post decoupling on scales k > k b ∼ 103 Mpc−1, the residual

electrons allow transfer of energy between the photon and baryon
fluids so that thermal pressure prevents the baryon perturbations
from growing until zb ∼ 150 (Yamamoto et al. 1997; Padmanabhan
2002). As we are interested in CDM perturbations on small scales
at early times, we can neglect the perturbations in the baryon fluid.

The gravitational evolution of CDM inhomogeneities is described
by the corresponding transfer functions. For the calculation of the
transfer functions the equations of motion of the related perturba-
tion variables have to be solved. Unfortunately, this is not possible
exactly for all times, however there are two overlapping regimes for
which exact solutions exist. The first of these regimes is radiation
domination, ε r � ε cdm, for which an exact solution can be found
that is valid for all scales (Schmid et al. 1999). In the superhorizon
limit (k/a � H ), φ → φ0, �cdm,r → −3φ0/2, vcdm,r → −(φ0/2)
(k/aH) and ζ → − 3φ0/2, while in the subhorizon limit (k/a �
H ) with x = k/(

√
3aH ):

�cdm(x) = −9φ0

[
ln x + γE − 1

2

]
, vcdm(x) = −3

√
3φ0

x
,

�r(x) = 9φ0

2
cos x, φ(x) = −3φ0

cos x

x2
, (9)

with γ E denoting Euler’s constant. We see that on subhorizon scales
during radiation domination the matter perturbation �cdm grows log-
arithmically while �r oscillates with constant amplitude. Thus for
small scales, which enter the horizon sufficiently long before matter–
radiation equality, the condition ε cdm�cdm � ε r�r is satisfied during
the radiation-dominated era. As long as the CDM density perturba-
tions ε cdm�cdm dominate the density perturbations of the radiation
and baryons, the evolution of �cdm is governed by (Hu & Sugiyama
1996)

y(1 + y)
d2�cdm

dy2
+

(
1 + 3

2

)
d�cdm

dy
− 3

2
(1 − fb)�cdm = 0, (10)

where y = a/a eq and f b = �b/�m is the baryon fraction, with
best-fitting value from WMAP f b = 0.16 (Spergel et al. 2003).
The exact solution to this equation is a combination of Legendre
functions of first and second kind, Pν(

√
1 + y) and Qν(

√
1 + y)

with index ν( fb) = (
√

25 − 24 fb − 1)/2. We smoothly join the
small y expansion of these functions with the radiation domination
subhorizon solution (equation 9), to obtain the normalization of the
solution to equation (10). Expanding the result for y � 1, we find

�cdm(y) = −9φ0 c yν/2

[
ln

(
k

keq

)
+ b

]
, (11)

where k eq = 1/(aH)eq, c(ν) = �[1 + 2ν]/(2ν�2[1 + ν]) and
b( f b) = 1/2 ln(25/3) − γ E − 1/2 − 2/ν − 2�′[ν]/�[ν], e.g.
ν( f b) = 1.80 (2), c[ν( f b)] = 1.37 (3/2) and b( f b) = −1.57 (−1.74)
for f b = 0.16 (0). Note that before zb, CDM density perturbations
grow as �cdm ∝ aν/2. Later the baryons follow the CDM and the
matter fluctations grow as a. For the peculiar velocity and the New-
tonian gravitational potential we obtain

vcdm(y) = keq

k

√
y

2

d

dy
�cdm(y) ,

φ(y) = −3

4

(
keq

k

)2

(1 − fb)
�cdm(y)

y
. (12)

In the following, we omit the subscript cdm.
For redshifts z eq > z > zb (between matter–radiation equality and

the epoch at which small-scale baryon perturbations start growing)
we find the transfer function for the CDM density perturbations for

C© 2004 RAS, MNRAS 353, L23–L27

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/353/3/L23/1747119 by guest on 16 August 2022



L26 A. M. Green, S. Hofmann and D. J. Schwarz

modes which satisfy k > k b:

T�(k, z) = (6c)2

[
ln

k

keq
+ b

]2 (
1 + zeq

1 + z

)ν

, (13)

and the transfer function for the Newtonian gravitational potential
on these scales is given by

Tφ(k, z) =
[

27(1 − fb)c

4

]2 [
ln

k

keq
+ b

]2 (
keq

k

)4 (
1 + zeq

1 + z

)ν−2

.

(14)

The transfer function for the velocity depends on the initial time and
is therefore not a very useful quantity.

4 P OW E R S P E C T R A

In this section we present the dimensionless power spectra (defined
as PX (k, z) = (k3/2π2)〈|X (k, z)|2〉) normalized to the WMAP mea-
surements (Spergel et al. 2003; Verde et al. 2003). For simplicity
we assume that gravitational waves have a negligible contribution
to the CMB anisotropies and that the density perturbations have a
Harrison–Zel’dovich primordial power spectrum (n = 1). We find,
for k > k b and z eq � z > zb,

P�(k, z)

10−7 A
= 1.06 c2

[
ln

k

keq
+ b

]2

D2(k)

(
1 + zeq

1 + z

)ν

, (15)

Pv(k, z)

10−7 A
= 0.13 c2ν2

×
[

ln
k

keq
+ b

]2 (
keq

k

)2

D2(k)

(
1 + zeq

1 + z

)ν−1

, (16)

Pφ(k, z)

10−7 A
= 0.60 c2(1 − fb)2

×
[

ln
k

keq
+ b

]2 (
keq

k

)4

D2(k)

(
1 + zeq

1 + z

)ν−2

, (17)

where A = 0.9 ± 0.1 according to Spergel et al. (2003). Note that
from the WMAP data n = 0.99 ± 0.04, which is consistent with our
assumption of n = 1. The scale of equality is k eq = (0.01/Mpc)
(ωm/0.14) and 1 + z eq = 3371(ωm/0.14).

Fig. 1 shows the power spectrum for the density contrast at a
redshift of 500, close to the end of the linear regime of structure
formation. It can be observed that the induced cut-off is indeed very
sharp and that the power spectrum has a maximum close to the
cut-off.

5 D I S C U S S I O N

The mechanisms of collisional damping and free streaming of
WIMPs lead to a cut-off in the CDM power spectrum, which sets
the typical scale for the first haloes in the hierarchical picture of
structure formation. A rough estimate of the redshift at which typ-
ical fluctuations on comoving scale R go non-linear can be made
via

σ (R, znl) = 1, (18)

where σ (R, z) is the mass variance defined by

σ 2(R, z) =
∫ ∞

0

W 2(k R)P�(k, z)
dk

k
, (19)

Figure 1. The dimensionless power spectrum of the CDM density contrast
at z = 500 for models A and B from the text (full lines). Without the effects
of collisional damping and free streaming, the power spectra would be given
by the dotted lines.

where W(kR) is the fourier transform of the window function di-
vided by its volume. In accordance with the usual procedure, we
take the window function to be a top hat. For this calculation we
need the power spectrum on all scales, however our calculation of
the CDM transfer function is only valid for k > k b ∼ 103 Mpc−1.
We therefore instead use the matter transfer function found neglect-
ing the baryon density (i.e. f b = 0) which is valid for k > k eq and
take �m = 0.36(0.22) for model A (B). This introduces errors at the
10 per cent level, however the criterion for non-linearity (equation
18) is only an order of magnitude estimate. Finally we include the
power spectrum on scales k ∼ k eq by normalizing σ (R, z) to σ 8 ≡
σ (8/h Mpc, 0) = 0.9 ± 0.1 (Spergel et al. 2003), taking into ac-
count the suppression of the growth of � at late times due to the
cosmological constant.

In Fig. 2 we plot znl, as defined by equation (18), as a function of
the scale R. The plateau at R < 1 pc is due to the sharp cut-off in the
power spectrum. We can now give a more precise picture of the onset
of the hierarchical structure formation process; non-linear structure
formation starts at a redshift zmax

nl , which takes values in the range
30 to 80, and zmax

nl ∼ 60 for the best-fitting WMAP matter density. To
be more specific, this is the epoch when the typical overdense regions
go non-linear. Note, that rare fluctuations with large amplitude will
go non-linear at much higher redshifts. If the density fluctuations

Figure 2. The redshift at which typical fluctuations of comoving scale R
become non-linear, for the two models discussed in the text. The full lines
take into account the effects of collisional damping and free streaming,
whereas the dashed lines show the behaviour without a cut-off in the power
spectrum.
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have a Gaussian probability distribution then a N σ fluctuation will
go non-linear at roughly Nznl. We leave the discussion of these
rare large fluctuations and their cosmological consequences for a
forthcoming paper and conclude with some comments on the typical
fluctuations.

Let us estimate the size and mass of the first generation of sub-
haloes that form at zmax

nl using the spherical collapse model (e.g.
Padmanabhan 2002). The mean CDM mass within a sphere of co-
moving radius R is M(R) = 1.6 × 10−7 M� (ωm/0.14) (R/pc)3.
CDM overdensities that go non-linear have mass twice this value,
i.e. roughly equal to the mass of Mars. These WIMP haloes are
however much less compact than Mars. The physical size of the
first haloes at turnaround (when their evolution decouples from the
cosmic expansion) is r = 1.05 R/(1 + zmax

nl ) ∼ 0.02 pc. The first
haloes then undergo violent relaxation, decreasing in radius by a fac-
tor of 2 so that their present-day radius is of order tens of milliparsec
(mpc) (comparable to the size of the solar system). If some of these
first haloes could survive to the present day, their overdensity would
be of order �halo = 7 (1 + zmax

nl )3 ∼ 106, several orders of magnitude
larger than that of galaxies. Rare fluctuations, a non-Gaussian fluc-
tuation distribution, or a blue (n > 1) primordial power spectrum
could lead to even larger overdensities.

We regard this Letter as a first step towards an ab initio calculation
of the small-scale structure of CDM. The resulting power spectra
are presented in a form that can be used as input for future very
high-resolution simulations. Only once the fate of the first CDM
haloes has been understood in detail will it be possible to make
robust predictions for the expected signals in direct and indirect
dark matter searches.
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