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A B S T R A C T
We measure the redshift-space power spectrum PðkÞ for the recently completed IRAS Point
Source Catalogue (PSC) redshift survey, which contains 14 500 galaxies over 84 per cent of the
sky with 60-mm flux $0:6 Jy. Comparison with simulations shows that our estimated errors on
PðkÞ are realistic, and that systematic errors resulting from the finite survey volume are small
for wavenumbers k * 0:03 h Mpc¹1. At large scales our power spectrum is intermediate
between those of the earlier QDOT and 1.2-Jy surveys, but with considerably smaller error
bars; it falls slightly more steeply to smaller scales. We have fitted families of CDM-like
models using the Peacock–Dodds formula for non-linear evolution; the results are somewhat
sensitive to the assumed small-scale velocity dispersion jV . Assuming a realistic
jV < 300 km s¹1 yields a shape parameter G , 0:25 and normalization bj8 , 0:75; if jV is
as high as 600 km s¹1 then G ¼ 0:5 is only marginally excluded. There is little evidence for any
‘preferred scale’ in the power spectrum or non-Gaussian behaviour in the distribution of large-
scale power.
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1 I N T RO D U C T I O N

As is well known (e.g. Peebles 1980), the power spectrum of the
galaxy distribution on large scales is of great importance for testing
cosmological models, since it can be related to the initial conditions
by linear perturbation theory. The power spectrum has been
estimated from a variety of galaxy redshift surveys, notably the
CfA redshift survey (Park et al. 1994), the QDOT survey (Feldman,
Kaiser & Peacock 1994, hereafter FKP), the Las Campanas redshift
survey (Lin et al. 1996), and the 1.2-Jy IRAS survey (Fisher et al.
1993). Also, the real-space power spectrum has been inferred from
the APM Galaxy Survey (Baugh & Efstathiou 1993; Baugh &
Efstathiou 1994a) by inversion of both the angular correlation
function and the 2D power spectrum.

Despite these substantial surveys, there are still considerable
uncertainties in the shape of the power spectrum on large scales,
since most of these surveys contain only a small number of
independent structures, while the largest one (Las Campanas) has
a slice-like geometry which complicates the estimation of the power
spectrum. If the primordial power spectrum is PðkÞ ~ kn with n < 1

as suggested by inflation, then for consistency with the COBE DMR
results the present-day power spectrum must show a turn-over to
this slope at k & 0:02 h Mpc¹1, close to the largest scales accessible
to current galaxy surveys. There is marginal evidence for such a
turn-over in the APM data (Baugh & Efstathiou 1994a; Maddox,
Efstathiou & Sutherland 1996; Tadros, Efstathiou & Dalton 1998).

Also, it is valuable to measure the power spectrum from surveys
with different selection criteria (e.g. optical and IRAS selection).
This is of considerable interest since the observed power spectrum
is measured from the density field of galaxies, whereas theory
predicts the power spectrum of the mass distribution. The process of
galaxy formation is poorly understood, so the observed PgðkÞ may
differ from PmðkÞ, possibly in a complex way; indeed, since it
appears that IRAS galaxies and optical galaxies have different
small-scale correlation amplitudes, at least one of these cannot
trace the mass. A simple ‘linear bias’ model is often assumed, in
which dg ¼ bdm for some constant ‘bias factor’ b which may
depend on galaxy type; this model predicts that PðkÞ for optical
and IRAS galaxies should differ by a multiplicative factor of
ðbO=bIÞ

2. Such a model is reasonable since it has been shown by
several authors (e.g. Fry & Gaztanaga 1993; Cole et al. 1998; Mann,
Peacock & Heavens 1998) that if the galaxy density is a (possibly
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complex and stochastic) function only of the local mass density on
scales &1 h¹1 Mpc, then the effective bias parameter defined by
bðrÞ ;

����������������������
ygðrÞ=ymðrÞ

p
tends to a constant on large scales, so such

a ‘local’ bias cannot alter the large-scale shape of the power spectrum.
Another motivation for measuring the power spectrum from a

large sample of IRAS galaxies is that there appears to be a marginal
discrepancy between the power spectra from the previous QDOT
(FKP) and 1.2-Jy (Fisher et al. 1993) IRAS surveys, with the
amplitude of PðkÞ from QDOT being roughly a factor of 2 higher
at large scales. A counts-in-cells comparison of the two surveys
does not reveal any obvious systematic errors (Efstathiou 1995), but
it is interesting to check whether these differences are consistent
with sampling fluctuations in one or both surveys.

In this paper, we estimate the redshift-space power spectrum
from a new redshift survey (Saunders et al. 1996) of some 14 500
galaxies over 84 per cent of the sky, selected at 60 mm from the IRAS
Point Source Catalogue (PSC). A variety of analyses from this
survey will appear shortly; the topology of the density field has been
analysed by Canavezes et al. (1998), the correlation function is
analysed by Maddox et al. (in preparation), the dipole is estimated
by Rowan-Robinson et al. (in preparation), a reconstruction of the
peculiar velocity field is given by Branchini et al. (1999), and the
redshift-space distortions are estimated using spherical harmonics
by Tadros et al. (1999).

The plan of this paper is as follows: in Section 2 we summarize the
construction and properties of the survey; in Section 3 we present
the power spectrum estimates, and we compare these with results of
N-body simulations in Section 4. In Section 5 we compare our results
with other surveys and some parametrized cosmological models,
and also set limits on non-Gaussian behaviour and periodicities.

2 T H E P S C R E D S H I F T S U RV E Y

The construction of the PSC redshift survey (hereafter PSCz) is
described in detail elsewhere (Saunders et al. 1996; Saunders et al.
in preparation), but we summarize the main points here. The aim of
the survey is to obtain redshifts for all galaxies with 60-mm flux
f60 > 0:6 Jy over as much of the sky as feasible. The starting point
for the survey is the QMW IRAS Galaxy Catalogue (Rowan-
Robinson et al. 1991), but with modifications to extend the sky
coverage and improve completeness. We have relaxed the IRAS
colour criteria for galaxy selection, and we have added in additional
sources in the ‘2-HCON’ sky as follows: the IRAS satellite covered
most of the sky with 3 hours-confirmed scans (HCONs) (Beichman
et al. 1988), while about 20 per cent of the sky had only 2 HCONs.
Since a source must be detected in 2 separate HCONS for inclusion,
the PSC catalogue may be less complete in the 2-HCON regions.
Thus, in the 2-HCON sky we added sources to our target list which
had a 1-HCON detection in the ‘Point Source Reject’ file and also
had a matching entry in the IRAS Faint Source Catalogue.

These relaxed selection criteria allowed more contamination of
the target list by non-galaxy sources, but these were excluded using
APM or COSMOS scans of the POSS and UKST sky survey plates.
If the APM or COSMOS data showed no ‘obvious’ galaxy candi-
date near the IRAS source, we visually inspected the plate and
attempted to classify the source, rejecting it if it showed an obvious
Galactic counterpart, e.g. an H ii region, planetary nebula, dark
cloud etc. We also exclude very faint galaxies (BJ > 19:5) from the
redshift survey since measuring their redshifts is time-consuming,
and they are usually at z > 0:1 and hence have little effect on most of
the desired analyses.

The sky coverage of the survey is the whole sky, excluding areas

with less than 2 HCONs in the IRAS data, regions with optical
extinction AV > 1:42 mag as estimated from the IRAS 100-mm maps
and two small areas near the Large and Small Magellanic Clouds.
The resulting coverage is 84 per cent of the whole sky. (An
extension to 93 per cent sky coverage is in progress, using a
combination of K-band snapshots and H i redshifts).

Our 2D source catalogue contains 17 060 IRAS sources in the
unmasked sky. Of these, 1593 are rejected as objects in our own
Galaxy (e.g. cirrus, bright stars, reflection nebulae, planetary nebulae
etc.), or as multiple entries from very nearby galaxies ‘broken up’ by
the IRAS point source detection scheme. Another 648 sources are
rejected either as very faint galaxies (,400) or as sources without an
optical identification. This leaves 14 819 galaxies in the ‘target’ list,
and redshifts are now known for 14 539 of these (98 per cent).

Of these redshifts, ,6500 are from a combination of the 1.2-Jy
survey (Fisher et al. 1994) and QDOT (Lawrence et al. 1998), and
,3000 are from other publications and private communications. A
further 4115 redshifts were measured by us for this survey, using 49
nights at the Isaac Newton Telescope, 18 nights at the Cerro Tololo
1.5-m telescope, and 6 nights at the Anglo-Australian Telescope,
between 1992 January and 1995 July. Details of the observations
and data reduction will be given elsewhere (Saunders et al., in
preparation). The error on our redshifts is typically 150 km s¹1; for
the literature redshifts it is somewhat smaller. The median redshift
of the sample is <8500 km s¹1, though there is a long ‘tail’
extending to > 30 000 km s¹1 because of the broad luminosity
function of IRAS galaxies.

3 P OW E R S P E C T RU M E S T I M AT I O N

For the estimates here, we restrict the analysis to the unmasked sky
with the additional constraint jbj > 108, since the survey may be
slightly incomplete below this latitude; this gives a coverage of 78
per cent of the full sky. We also set an upper redshift limit of
cz < 45 000 km s¹1, since the survey is incomplete at high redshift
as noted above. This gives 13 346 galaxies in the ‘default’ sample
used for the power spectrum estimate.

Since the geometry of the survey is well approximated by a
sphere, apart from the missing slice near the Galactic plane, we
follow the analysis of FKP with minor modifications. This method
provides an optimal weighting scheme with redshift for estimating
the power spectrum of an all-sky survey. More sophisticated methods
have been suggested by e.g. Tegmark (1995) and Tegmark et al.
(1998); these are very useful for surveys with highly non-spherical
geometries but are more complex than necessary for our survey.

We convert the galaxy positions to comoving coordinates assum-
ing Q0 ¼ 1 and redshifts in the Local Group frame, and bin the
galaxies in a cube of size 950 h¹1 Mpc with 1283 cells. The FKP
method assigns a redshift-dependent weight to each object,

wðrÞ ¼
1���

A
p

½1 þ PenðrÞÿ
ð1Þ

where nðrÞ is the mean galaxy density at distance r, Pe is the
estimated power spectrum (at some scale to be determined), and A is
a normalization constant (see later). We use a parametric fit for the
selection function determined using the method of Springel &
White (1998); here this takes the form

nðzÞ ¼ n¬yð1¹aÞ=ð1 þ ygÞðb=gÞ;

y ; z=z¬; z¬ ¼ 0:0318;

a ¼ 1:769; b ¼ 4:531; g ¼ 1:335;

n¬ ¼ 8:76 × 10¹3 h3 Mpc¹3; ð2Þ
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these values are appropriate for f $ 0:6 Jy; for other flux limits we
simply scale z¬ by

��
ð

p
0:6=flimÞ.

We have made three refinements to the FKP estimator: first, we
define the ratio of densities of real and random catalogues
a0 ¼

P
g wi=

P
s wj, where wi is the weight of the ith object and

the sums run over galaxies and random points respectively (Tadros
& Efstathiou 1996), instead of a ¼ Ng=Nr as in FKP (where Ng;Nr

are the numbers of galaxies and random points respectively).
Secondly, we compute the shot noise using

Pshot ¼
X

g

w2
i þ a02

X
s

w2
j ; ð3Þ

where the two terms are the contributions from galaxies and random
points respectively. The shot noise definition in FKP’s equation (2.4.5)
was Pshot ¼ að1 þ aÞ

P
s w2

j ; there the first-order term in a is the
‘expected’ shot noise from the galaxies given many realizations of the
given selection function, while the first term in our definition is the
‘actual’ shot noise in the data. This makes negligible difference at
large scales, but we find from simulations that equation (3) gives
substantially smaller errors in the estimated power spectrum at small
scales (large k), because the shot noise term is substantial here and the
‘actual’ shot noise from the galaxies may differ significantly from its
expectation value estimated from the selection function.

The third refinement is that we use a normalization convention
given by equation (A3); see Appendix A for a discussion of the
normalization.

The estimated power spectrum bPðkÞ is then given as in FKP, by

FðrÞ ¼ wðrÞ½ngðrÞ ¹ a0nsðrÞÿ; ð4Þ

FðkÞ ¼

�
d3r FðrÞeik: r; ð5Þ

bPðkÞ ¼ jFðkÞj2 ¹ Pshot; ð6Þ

where ng; ns are the number densities of galaxies and random points
in cubical cells, and bPðkÞ is just the unweighted average of bPðkÞ over
a spherical shell with mean radius k.

The optimal weighting scheme depends on the actual value of
PðkÞ, so the procedure is slightly circular in principle. We have used
values of Pe ¼ 2000; 4000; 8000; 16 000 h¹3 Mpc3; estimates of the
power spectrum for each value of Pe are shown in Fig. 1.

We see that changing Pe changes the size of the error bars, but
there is little systematic difference in the resulting estimates of bPðkÞ.
This is as expected since FKP showed that any choice of Pe gives an
unbiased estimate of PðkÞ (apart from the convolution effects at
small k discussed below), but just weights different redshift shells
differently – larger Pe gives relatively more weight to more distant
shells. We adopt Pe ¼ 8000 h¹3 Mpc3 as the default value for the
remainder of the paper. The resulting weights are illustrated in
Fig. 2: the solid line shows the weight function wðzÞ, and the dotted
line shows the real-space window function nðzÞwðzÞ. Also shown are
the differential and cumulative contributions to the survey ‘effective
volume’ per unit redshift.

We have explored varying many of the selection criteria, e.g.
varying the model of the selection function, using a maximum
redshift of 30 000 km s¹1, or a galactic latitude cut of 20o, and
changing the flux threshold. Most of these changes have a negligible
effect on the results, with the exception of changing the flux limit:
the subsample with f60 > 0:8 Jy has a slightly lower amplitude ofbPðkÞ at all scales; the difference is mostly within the individual 1j

error bars but is evident over a range of k. The slice with
0:6 < f60 < 0:8 Jy has correspondingly higher amplitude. This
might be suggestive of systematic errors in the catalogue near the
flux limit, as suggested by Hamilton (1996); however we have
investigated the correlation function yðj;pÞ as a function of
projected and redshift separation and find negligible evidence for
a ‘Hamilton effect’ i.e. elongation of the correlation function out to
large redshift separation. The correlation functions of the subsam-
ples above and below 0:8 Jy show a similar difference in amplitudes
to the bPðkÞs, but the difference is most pronounced at small to
intermediate scales, rather than at large scales as might be expected
from systematic errors; thus this effect may be a sampling
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Figure 1. Estimated redshift-space power spectra bPðkÞ for weights Pe ¼ 2000; 4000; 8000; 16 000 h¹3 Mpc3. Open circles with error bars show the result for each
weight, while the solid line is the result for Pe ¼ 8000 h¹3Mpc3 (the same in all panels).
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fluctuation or possibly a dependence of clustering amplitude on
intrinsic galaxy luminosity. Hereafter we use the full sample to 0.6
Jy with the caveat that the reason for this slight flux dependence is
not yet clearly understood. The effect on the derived cosmological
parameters in Section 5.2 is similar to or less than that resulting
from the uncertainties arising from the small-scale velocity disper-
sion etc.

3.1 Observed versus true PðkÞ

As is well known, the finite size of the survey volume means that the
estimated power spectrum is a convolution of the true power
spectrum with the squared Fourier transform of the real-space
window function; e.g. equations (2.1.6) and (2.1.10) of FKP give

hbPðkÞi ¼ ð2pÞ¹3
�

d3k0 Pðk0ÞjGðk ¹ k0Þj2; ð7Þ

GðrÞ ; nðrÞwðrÞ
�

d3r n2ðrÞw2ðrÞ
� �¹1=2

;

and the normalization is defined so that�
d3k jGðkÞj2 ¼ ð2pÞ3 ð8Þ

by Parseval’s theorem. This convolution is a significant problem for
slice-like survey geometries with a highly anisotropic window
function; but since our survey is large in all three dimensions,
the window function is narrow. For our standard weighting
with Pe ¼ 8000 h¹3 Mpc3, the window function jGðkÞj2 is
illustrated in Fig. 3 for three axes in Galactic coordinates, along
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Figure 2. Weight and window functions versus redshift for Pe ¼ 8000 h¹3 Mpc3, in arbitrary units. The solid line shows the weight wðzÞ, and the dotted line
shows the real-space window function nðzÞwðzÞ. The dashed line shows nðzÞwðzÞdV =dz, i.e. the ‘effective volume’ of the survey per unit redshift, and the dot–
dashed line is the integrated effective volume below redshift z.

Figure 3. The k-space window function jGðkÞj2. Points show this quantity for k parallel to the Galactic x; y; z directions (as labelled). The solid line shows the
direction-average over spherical shells of radius k. The dashed line shows a Gaussian expð¹k2=2k2

0Þ with k0 ¼ 0:007 h Mpc¹1 (this is for illustration and is not a
fit).
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with the angle-average. The window function is roughly approxi-
mated by a Gaussian expð¹k2=2k2

0Þ with k0 , 0:006 h Mpc¹1 at
small k, with a roughly k¹4 tail arising from the survey mask.
Therefore, the effect of the convolution on our estimates is small
except at the largest scales k & 0:03 h Mpc¹1. This is illustrated in
Fig. 4; the solid lines show the fractional contribution to the
measured bPðkÞ as a function of ‘true’ wavenumber k0, i.e.
equation (7) averaged over directions of k; k0 for five values of
observed k ¼ 0:033; 0:066; 0:1; 0:2; 0:3 h Mpc¹1, assuming a
CDM-like model Pðk0Þ with the parameter G ¼ 0:3 (see
equation 11 below). We have not attempted a deconvolution here,
since the convolution effect is only important at small k where the
estimates are becoming noisy.

Another effect which causes the measured bPðkÞ to deviate
systematically from its true value is that the mean density of
galaxies is not known independently but is estimated from the
survey. This leads to the constraint bPð0Þ ¼ 0, and the convolution
above means that bPðkÞ will also be underestimated for small but
non-zero k. This effect was noted by Peacock & Nicholson (1991),
and has been evaluated analytically by Tadros & Efstathiou (1996)
for the special case of a volume-limited survey; their
equation (A4.2) gives

hbPðkÞ ¹ PðkÞi< ¹
n
V

j bWðkÞ2j

¹ n2
X

k0

j bWðk0Þj2Pðk0Þ

" #
j bWðkÞ2j: ð9Þ

For unequal weights as here, the expression is complex and best
evaluated numerically; we have computed this for two models of
PðkÞ: a G ¼ 0:3 CDM model, and an n ¼ ¹1:2 power law, with a
bend to n ¼ 0 at k # 0:01 h Mpc¹1. For each model, we generate a
Gaussian random density field with the assumed PðkÞ, multiply by
the PSCz window function nðrÞwðrÞ, set the mean of the windowed
density field to zero, and compute the power spectrum of the
resulting density field using the given wðrÞ. The mean of the
recovered power spectra from 30 realizations of each model is
shown in Fig. 5. We see that the bias is serious only for
k & 0:02 h Mpc¹1; note in particular that for the power-law model

the recovered power spectrum lies well above the PSCz
measurements at k , 0:01–0:03 h Mpc¹1. The data points at
k , 0:013 and 0:02 h Mpc¹1 are noteworthy here; although their
error bars appear large because of the logarithmic scale, none of the
30 realizations of the power-law model gave bPðkÞ as low as the
PSCz data at these k.

Thus, we can be confident that the flattening of the observed
power spectrum below k , 0:06 h Mpc¹1 is a real feature, not an
artefact of the finite volume or normalization.

We compute the covariance matrix of bPðkÞ using equation (2.5.2)
of FKP. In practice, it is infeasible to evaluate this directly since it
contains ,N6 terms where N ¼ 128; thus in practice, we assign
each of the N3 wavevectors to its bin in k; for each k; k0 we pick
,106 random pairs of wavevectors k; k0 in the appropriate bins, and
evaluate the sum accordingly. It is found that ,106 pairs are
necessary to ensure that the random errors are small, otherwise
the resulting matrix can become non-positive-definite.

A final effect on bPðkÞ is the ‘binning factor’ noted by Baugh &
Efstathiou (1994b), which causes an underestimate of small-scale
power because of the galaxies being binned into finite-size cells
before the Fourier transform. This ‘smooths’ the observed density
field over the bin size. The size of this effect depends on the slope
of the true power spectrum; a second-order approximation is
given by equation (20) of Peacock & Dodds (1996), and isbPðkÞ=PðkÞ < 1 þ ðklÞ2=12

� �¹1
, where l is the size of the unit cells

in the fast Fourier transform; this becomes inaccurate for kl * 2. We
find that for n , ¹1 a better approximation useful for kl < p isbPðkÞ=PðkÞ < 1 þ ðklÞ2=12 ¹ ðklÞ4=220

� �¹1
: ð10Þ

Since this correction is slightly model-dependent, we have not
applied it to the estimates in Figs 1 or 6, but we have applied it
before the model fitting in the following section and in Table 1.

4 C O M PA R I S O N W I T H S I M U L AT I O N S

As a check of the code, and to assess whether the resulting error bars
are realistic, we have generated simulated ‘PSCz’ surveys from
large N-body simulations from three cosmological models and
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Figure 4. The effect of convolution, i.e. the contribution to ‘observed’ power bPðkÞ from ‘true’ wavenumber k0 in equation (7), summed over directions of k; k0, per
unit ln k0. Values are shown for observed k ¼ 0:033; 0:066; 0:1; 0:2; 0:3 h Mpc¹1 (dashed lines). The y-scale is arbitrary.
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computed their power spectra as above. The three models are
‘standard’ CDM (SCDM), CDM with a cosmological constant
(LCDM), and a mixed cold + hot dark matter model (MDM); the
simulations use a P3M code (Croft & Efstathiou 1994) and their
parameters are listed in Table 2. We place an ‘observer’ at a random
location in the cube, wrap the simulation using periodic boundary
conditions, and then select ‘galaxies’ in redshift space as random
particles using the selection function of equation (2) and a ‘mask’ of
the same shape as the real PSCz mask. We generated a total of 27
simulated ‘PSCz’ surveys for each model; for each model we used
nine different runs of the P3M code, and three different observer
locations for each run.

Fig. 6 shows the power spectra of the full box for each simulation,
compared with results from nine simulated PSCz surveys. As
expected, our estimator bPðkÞ recovers the ‘true’ redshift-space
power spectrum quite well for k * 0:02 h Mpc¹1; the simulated
surveys slightly underestimate the true redshift-space PðkÞ on
intermediate scales because of the convolution with the survey
window function, but the effect is small. Fig. 7 shows the mean of
the FKP error bars from nine simulations (triangles), compared with

294 W. Sutherland et al.

q 1999 RAS, MNRAS 308, 289–301

Figure 5. The effect of convolution and the normalization condition bPðkÞ ¼ 0 on two model power spectra (solid lines); the upper solid line shows a power law
PðkÞ ~ k¹1:2 with a break at k ¼ 0:01 h Mpc¹1; the lower solid line shows G ¼ 0:3 CDM. The dashed and dot–dashed lines show the mean recovered power
spectra for the two cases. Points show the measured values for PSCz.

Figure 6. Power spectra for the three models in Table 2. For each model, the
dotted and solid lines show the real- and redshift-space power spectrum of
the full simulation box (mean of nine runs, error bars negligible). The circles
show the mean of the estimated power spectra from nine simulated ‘PSCz’
surveys, with 1j error on the mean.

Table 1. Estimated power spectrum bPðkÞ with weight Pe ¼ 8000 h¹3 Mpc3,
and associated 1j errors. These data points have been ‘corrected’ for finite-
size bins using equation (10) with l ¼ 950=128 h¹1 Mpc. Covariances
between consecutive entries are substantial for small k but negligible for
k * 0:1 h Mpc¹1.

k bPðkÞ Error k bPðkÞ Error
ðh Mpc¹1Þ ðh¹3Mpc3Þ ðh Mpc¹1Þ ðh¹3 Mpc3Þ

0.0066 16110 21200 0.0839 8690 1165
0.0132 3981 5774 0.1056 4548 625
0.0198 3503 4039 0.1329 3786 425
0.0265 13514 5960 0.1674 2591 285
0.0334 14189 4861 0.2107 1466 193
0.0420 12459 3428 0.2653 1122 151
0.0529 10241 2321 0.3339 748 119
0.0666 8059 1488 0.4204 545 89
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the ‘real’ uncertainty estimated from the rms scatter between the
nine simulations (crosses). Clearly the FKP error estimates are a
reasonable approximation to the ‘real’ errors in bPðkÞ, though they
appear to underestimate the actual errors by ,20 per cent.

In Fig. 8 we compare the data to the mean of 27 simulated PSCz
surveys for each model. We find that all three models give a
reasonable match to the shape of the observed power spectrum;
the LCDM model has somewhat too high an amplitude and would
require an antibias b < 1. However, this could be remedied by
lowering h somewhat and raising Q0, keeping G constant; this would
reduce the implied j8 for COBE normalization, and improve the fit.
Alternatively, a modest degree of ‘tilt’ with primordial spectral
index n < 1 would similarly reduce the COBE-normalized j8.

Although the SCDM model has much less large-scale power than
the others in real space, the high COBE normalization gives two
effects: an enhancement of power on large scales by a factor <1:86

from the Kaiser (1987) redshift-space distortion, and a suppression
of small-scale power from the resulting large peculiar velocities.
These two effects combine to bring the redshift-space PðkÞ of this
model into rather good agreement with the data. These effects for
COBE-normalized SCDM have been previously noted by various
authors, e.g. Bahcall, Cen & Gramann (1993), although of course
this model has serious problems with cluster abundances (Eke, Cole
& Frenk 1996), large-separation gravitational lenses (Cen et al.
1994), etc.

5 D I S C U S S I O N

5.1 Comparison with other surveys

Our observed redshift-space power spectrum for Pe ¼

8000 h¹3 Mpc3 is compared with a number of previous measure-
ments in Fig. 9. These come from various catalogues, both optical
and IRAS-selected; all are redshift-space power spectra except for
the APM data which come from an inversion of the 2D power
spectrum. We see that on large scales our measurements are well
within the range of previous surveys, but on intermediate scales
,0:2 h Mpc¹1 our measurements are slightly steeper than the
others, notably the combined QDOT and 1.2-Jy surveys. This is
the cause of the low values of G , 0:2 for best-fitting CDM-like
models seen in the next section. It appears that optical galaxies have
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Table 2. N-body simulation parameters.

Name N Box ( h¹1 Mpc) QCDM QHDM QL h j8

SCDM 1603 600 1 0 0 0.5 1.0
LCDM 1603 600 0.2 0 0.8 1.0 1.0
MDM 1003 300 0.7 0.3 0 0.5 0.67

Figure 7. Error estimates for simulated PSCz surveys, with the observed mask and selection function, for the three models in Table 2. Triangles show the mean of
the FKP error estimate dbPðkÞ from nine simulated surveys; crosses show the ‘true’ error in bPðkÞ estimated from the scatter in the nine simulated surveys.
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a somewhat higher power spectrum amplitude on intermediate
scales, as expected from the fact that IR-selected surveys contain
mainly late-type galaxies, and from their smaller correlation length
r0, but it remains unclear whether this persists to large scales; a
direct comparison with APM is complicated by the redshift-space
distortion, and the interpretation of Las Campanas is somewhat
complicated by the inversion from the 2D to 3D power spectrum
caused by the slice-like geometry. Future large optical surveys such
as 2dF and Sloan should greatly clarify this question.

5.2 Fits to the power spectrum

In addition to the direct comparison with simulations, it is interest-
ing to extract best-fitting values for parametrized models of the
power spectrum; we use first linear theory for simplicity, and later
the fitting formulae of Peacock & Dodds (1996), which account
both for non-linear evolution of clustering and the effect of distor-
tions between real space and redshift space.

We use CDM-like models with the initial power spectrum
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Figure 8. The observed PSCz power spectrum (points with 1j errors) compared to the mean power spectrum of 27 simulated PSCz surveys for each of the three
models (lines).

Figure 9. Comparison of PSCz bPðkÞ with other measured power spectra. The data points as labelled on the figure are IRAS 1.2-Jy from Fisher et al. (1993), QDOT
from FKP, QDOT + 1.2-Jy from Tadros & Efstathiou (1995), Stromlo-APM from Tadros & Efstathiou (1996), APM (real-space, deconvolved) from Baugh &
Efstathiou (1994), and Las Campanas (deconvolved) from Lin et al. (1996). For clarity, error bars are only shown on PSCz and APM (others are larger), and
Stromlo, QDOT and QDOT+1.2-Jy data have been rebinned. Dotted lines show linear-theory CDM with G ¼ 0:2 and 0.5 with j8 ¼ 0:8.
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parametrized by G as in equation (7) of Efstathiou, Bond & White
(1992, hereafter EBW), which is

PðkÞ ¼
Bk

1 þ ½ak þ ðbkÞ3=2 þ ðckÞ2ÿn
� 	2=n ; ð11Þ

a ¼ 6:4=G h¹1 Mpc; b ¼ 3:0=G h¹1 Mpc;

c ¼ 1:7=G h¹1 Mpc; n ¼ 1:13:

In linear theory there are only two free parameters: the shape
parameter G, and the normalization, which may be taken as bj8,
where b is the bias parameter and j8 is the rms mass fluctuation in an
8 h¹1 Mpc top-hat sphere. The x2 contours using the full covariance
matrix are shown in Fig. 10; the best-fitting values are G ¼ 0:196
0:03 and bj8 ¼ 0:80 6 0:02. These compare to G ¼ 0:19 6 0:06,
bj8 ¼ 0:87 6 0:07 for the QDOT survey, as given by FKP
equation (4.3.3).

For the non-linear Peacock–Dodds formula, we need a total of
six parameters to specify the present-day redshift-space power
spectrum: the initial mass power spectrum is specified as above
by G and j8 (where j8 is defined as the initial rms mass fluctuation,
multiplied by the linear-theory growth factor to the present day).
The subsequent non-linear evolution depends also on Q0 and
(weakly) on QL. The transformation from real to redshift space
depends on Q0 and the bias b, and also on the pairwise peculiar
velocity dispersion; in the Peacock–Dodds formula this is approxi-
mated by assuming galaxy velocities are independent Gaussians
with dispersion jV ¼

����������������
v2

12ðrÞ=2
p

for some suitable scale r. We
assume simple ‘linear bias’ so the galaxy power spectrum is b2×
the matter power spectrum. There is clearly insufficient information
in the PðkÞ data to fit all six parameters separately, so we restrict the
parameter space as follows.

(i) To set Q, we consider either Einstein–de Sitter models, with
Q ¼ 1, QL ¼ 0, treating G as a free parameter (which is a reasonable
approximation to e.g. mixed dark matter models); or we consider
LCDM models with Q ¼ G=0:66, QL ¼ 1 ¹ Q (i.e. assuming
G ¼ Qh with a Hubble constant h ¼ 0:66, consistent with most
recent measurements).

(ii) To set j8, we use either the cluster normalization
j8 ¼ 0:52Qð¹0:52þ0:13QÞ (Eke et al. 1996), or we use COBE normal-
ization where j8 is a function of G using equation (6) of EBW and
Qrms ¼ 17 mK.

(iii) To set jV , we fix either jV ¼ 300 or 600 km s¹1, or predict jV

as a function of G; j8 using the fitting formula in equations (40a) and
(40b) of Mo, Jing & Borner (1997, hereafter MJB). A value as high
as 600 km s¹1 is probably disfavoured by observations (Landy,
Szalay & Broadhurst 1998), but we include this as a conservative
upper limit to show the effect on the derived parameters.

Having made one choice from each of (i), (ii), (iii) above, this
defines Q;QL; j8; jV as a function of G; we then treat G and b as free
parameters, and fit to the observed bPðkÞ data. We choose to use only
the data points in the range 0:021 < k < 0:3 h Mpc¹1 in the fits, since
points at lower k may be affected by the convolution, and those at
higher k are subject to large and somewhat uncertain corrections
both for the peculiar velocity term and the binning correction of
equation (10).

The best-fitting values of G; bj8 for each of the above parameter
choices are shown in Table 3. [We present the fit results in terms of
ðG; bj8Þ rather than ðG; bÞ because b and j8 are degenerate in the
linear regime, and also for simplicity since the contours of equal x2

are roughly parallel to the axes in the ðG; bj8Þ plane.] For the low-Q
cluster-normalized case, contours of goodness of fit are shown in

Fig. 10 for each of the three jV assumptions. The derived power
spectra for the best fits in the same cases are shown in Fig. 11. For
most of the fits, a fairly small value of G , 0:2 is favoured, and
G , 0:5 is quite strongly ruled out; for the cases with
jV ¼ 600 km s¹1, higher values G , 0:35 are favoured and
G ¼ 0:5 is only marginally ruled out, though values of jV as high
as this are definitely not favoured observationally.

There is little difference between the goodness-of-fit for the
various choices, though the fits for jV ¼ 600 km s¹1 are somewhat
worse. For a given parameter choice, the 1j random errors are
typically 615 per cent in G and 64 per cent in bj8. In general we
see that the systematic uncertainties from the different choices of
Q; j8; jV dominate the random errors arising from the error bars onbP; the largest source of uncertainty is that arising from jV . As
expected, if we increase jV the predicted small-scale power
decreases at a fixed G, and thus the best-fitting values of G and
bj8 increase to compensate.

For LCDM models, the value of G at which the COBE and cluster
normalizations agree is G ¼ 0:17; j8 < 1:0; this is interestingly
close to our best-fitting values of G , 0:2. Our fit values of bj8

thus imply b , 0:75: this is a significant amount of ‘antibias’, but
may be plausibly accounted for by the deficiency of IRAS galaxies
in rich clusters. Thus a LCDM model is attractive in that it can
simultaneously satisfy three constraints [COBE, cluster abundance,
PðkÞ] with one free parameter G, if optical galaxies are approxi-
mately unbiased and IRAS galaxies mildly antibiased relative to the
mass.

5.3 Periodicities and spikes

There have been a number of suggestions of a ‘preferred scale’ for
large-scale clustering, notably by Broadhurst et al. (1990), Landy et
al. (1996) and Einasto et al. (1997). These effects, if real, could arise
from a ‘spike’ in the power spectrum, such as may arise from a
baryon isocurvature model or non-standard inflation models, or
from non-Gaussian initial conditions, which could lead to one
particular direction showing a value of jdðkÞj2 much larger than
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Table 3. Fits of CDM-like models to the observed bPðkÞ in the ðG; bj8Þ plane.
The first line shows linear theory, the remainder use the non-linear PD
formula, using various choices for setting the other input parameters
(Q;QL; j8; jV ) as a function of G. Column 1: either Q ¼ 1;QL ¼ 0 or
Q ¼ 0:66=G;QL ¼ 1 ¹ Q; Column 2: j8 defined either by COBE or cluster
normalization; Column 3: jV either fixed to 300 or 600 km s¹1, or defined as
a function of the other parameters using the MJB model. For the j8 and jV

columns, the values in brackets show the derived values at the best-fitting G.
The * in the last column flags the models plotted in Figs 10 and 11.

Q Norm (j8) jV ð km s¹1Þ G bj8 Plot?

Linear – – 0.19 0.80 *
1 COBE (0.45) 300 0.20 0.67
1 COBE (0.49) MJB (368) 0.22 0.68
1 COBE (1.00) 600 0.40 0.71
1 Clus (0.52) 300 0.20 0.66
1 Clus (0.52) MJB (390) 0.23 0.69
1 Clus (0.52) 600 0.34 0.81
G=0:66 COBE (0.97) 300 0.16 0.66
G=0:66 COBE (0.97) MJB (457) 0.16 0.70
G=0:66 COBE (1.38) 600 0.34 0.73
G=0:66 Clus (0.91) 300 0.20 0.67 *
G=0:66 Clus (0.81) MJB (438) 0.25 0.74 *
G=0:66 Clus (0.73) 600 0.31 0.83 *
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Figure 10. Contours of x2 in the ðG; bj8Þ plane for fits to the observed power spectrum. The upper left panel shows linear theory. Other panels use the Peacock–
Dodds formula as in Section 5.2, with Q ¼ G=0:66, cluster normalization, and different choices of random velocities jV as labelled. The cross denotes the
minimum x2, contours are at x2 ¼ x2

min þ 1; 4; 9; 16; 25.

Figure 11. Fits to the measured power spectrum (points) using the Peacock–Dodds formula as in Section 5.2. Vertical dotted lines denote the range of k used in
the fits. Lines show the fitted power spectra as labelled, one for linear theory and three for different values of jV , for the case of a low-density universe with
Q ¼ G=0:66, and cluster normalization.
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its expectation value PðkÞ, or even from an intrinsic ‘preferred
direction’ in the Universe.

In our data, there is marginal evidence for a ‘spike’, perhaps
better described as a ‘step’, in the power spectrum near
k , 0:08 h Mpc¹1, but this is only about a 2j effect above a
smooth CDM-like fit, and the scale is significantly different from
that (k , 0:06 h Mpc¹1) suggested by Broadhurst et al. (1990) and
Landy et al. (1996); also, we find that changing our flux limit to
f60 > 0:7 Jy causes a substantial drop in bPðkÞ at this point, while
leaving other points virtually unchanged. Thus, we suspect this point
may be a statistical fluctuation, and there is no conclusive evidence
for a feature in our power spectrum. From inspection of results from a
number of realizations of N-body simulations, we find that such
features quite commonly arise from statistical fluctuations.

To test for non-Gaussian effects, we have examined the histo-
gram of the ratio of observed to mean power, jFðkÞj2=ðPðkÞ þ PshotÞ,
for each wavenumber; for Gaussian clustering, this should follow
an exponential distribution with unit mean. Results for several
ranges of wavenumber are shown in Fig. 12, and closely follow the
exponential distribution. The presence of the shot noise somewhat
weakens this test, since for smaller scales Pshot * PðkÞ, but at large
scales this is a sensitive test for non-Gaussian initial conditions with
a ‘tail’ to high values. The distributions are well fitted by the
exponential, so there is no evidence for non-Gaussian initial
conditions or any ‘preferred direction’ in our survey.

This also strongly constrains any ‘preferred direction’, as
follows. If there exists a strict plane-wave periodicity in
the Universe with dimensionless density contrast a along
wavevector k0, the true power spectrum contains delta functions
at 6k0, PðkÞ ¼ C½dðk ¹ k0Þ þ dðk þ k0Þÿ. Requiring the variance
j2 ¼ a2=2 ¼ ð2pÞ¹3 � d3k PðkÞ gives the constant C ¼ ð2pÞ3a2=4.
Then, after convolution with the survey window function as in
equation (7), this contributes to the observed power spectrum a term
of size

bPspikeðkÞ ¼
a2

4
jGðk ¹ k0Þj

2 þ jGðk þ k0Þj
2� �
: ð12Þ

Recall that

jGðk ¼ 0Þj2 ¼

�
d3r nðrÞwðrÞ

� �2�
d3r n2ðrÞw2ðrÞ

; ð13Þ

for a volume-limited survey with constant n;w this just reduces to
the survey volume V , so it may be thought of as the survey ‘effective
volume’. For our survey with weight function given by
Pe ¼ 8000 h¹3 Mpc3, we have jGð0Þj2 ¼ 6:2 × 107 h¹3 Mpc3: thus
even a small-amplitude periodic wave of a ¼ 0:15 would lead to a
large spike in our measured bPðk0Þ < 3 × 105 h¹3 Mpc3, well outside
the exponential tail of measured values. We conclude that there is
no strictly periodic plane-wave structure in our survey volume with
amplitude larger than 15 per cent.

Power spectrum of PSCz 299

q 1999 RAS, MNRAS 308, 289–301

Figure 12. Solid lines show histograms of ‘observed’ power bPðkÞ þ Pshot divided by the mean for each k. The dashed line shows an exponential distribution with
unit mean. The four panels show various ranges in k as labelled.
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6 C O N C L U S I O N S

Our conclusions may be summarized as follows.

(i) The redshift-space power spectrum of the PSCz survey is
intermediate between those of the earlier QDOT and 1.2-Jy IRAS
surveys on large scales, though it is slightly steeper on small scales. It
is stable against variations in the galactic cuts and redshift limits etc.,
though the amplitude decreases slightly for a flux cut f * 0:8 Jy.

(ii) There is convincing evidence for curvature in the power
spectrum; the slope changes from the small-scale power law
n < ¹1:4 to n , 0 on scales k & 0:07 h Mpc¹1. This is not an
artefact of the finite sample volume or the estimation of the mean
density from the survey.

(iii) The best-fitting CDM-like models have G , 0:25; bj8 , 0:7.
The uncertainties in these values are mainly caused by uncertainties
in the small-scale velocity dispersion, the value of Q etc., rather than
statistical errors.

(iv) There is little evidence for a ‘spike’ in the power spectrum,
and no evidence for large-scale periodicity or non-Gaussianity.
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A P P E N D I X A : N O R M A L I Z AT I O N O F PðkÞ

We note an issue concerning the overall normalization of PðkÞ. FKP
set a normalization of their weight function via their equation (2.4.1).
It is convenient in practice to set weights via equation (1) with A ¼ 1,
and then later divide all power spectra by a constant A. There are
several ways of doing this, which give similar but not identical results:
The left-hand side of FKP’s equation (2.4.1) gives

A1 ¼

�
d3r n2ðrÞw2ðrÞ; ðA1Þ

the right-hand side gives

A2 ¼ a
X

s

nðrsÞw
2ðrsÞ; ðA2Þ

where the sum runs over random points, and a ¼ Ng=Nr as before.
Another possible definition is

A3 ¼
a2

v

X
cells

c2
i ¹

X
s

w2
i

 !
; ðA3Þ

where the first sum runs over the cells used in the Fourier transform,
ci is the sum of weights of all random points in the ith cell and v is
the volume of a unit cell. [This results from estimating the window
function from the fast Fourier transform of the random points via

jbGðkÞj2 ¼
a2

A3V

X
cells

cie
ik:ri

�����
�����
2

¹
X

s

w2
i

 !
; ðA4Þ

requiring
P

k jbGðkÞj2 ¼ 1 leads to equation (A3).]
The relationship between A1;A2;A3 is as follows: the number of

random points Nr is arbitrarily fixed, and we define
b ¼

�
d3r nðrÞ=Nr to be the ratio of the expected number of galaxies

from the selection function to the number of random points, which
should be similar to but not identical to a. Thus the expected
number of randoms in cell i is just niv=b where ni ; nðriÞ. For small
cells, all randoms in a given cell will have equal weight wi, thus
ci ¼ wi × Poissonðniv=bÞ. Thus

hA2i ¼ a
X
cells

hciiniw
2
i

¼ a
X
cells

n2
i vw2

i =b ¼
a

b
A1: ðA5Þ
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Since ci is a Poisson variable multiplied by wi,
hc2

i i ¼ w2
i ½ðniv=bÞ2 þ nv=bÿ, thus equation (A3) gives

hA3i ¼
a2

v
v2

b2

X
cells

w2
i n2

i

 

þ
v
b

X
cells

w2
i ni ¹

X
cells

ðniv=bÞw2
i

!

¼
a2v

b2

X
cells

w2
i n2

i ¼
a2

b2 A1: ðA6Þ

Thus we see that the three definitions of A differ by powers of
a=b, which is just the ratio of ‘observed’ to ‘expected’ number of
galaxies. Which is more ‘correct’ is largely a matter of choice, but
the definition A3 is convenient in practice since it leaves the results
unchanged if we rescale the selection function by a constant n → cn
and rescale the weights by Pe → Pe=c.

This paper has been typeset from a TEX=LATEX file prepared by the author.
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