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Abstract

Myocardial energy metabolism is an important determinant of cardiac structure and function. Modulating metabolism is therefore an
attractive therapeutic avenue for the treatment of cardiac disease. The peroxisome proliferator-activated receptor family (PPARα, β/δ, γ) of
nuclear receptor transcription factors is an important regulator of cardiac metabolism and has been targeted for pharmacologic therapies
designed to modulate metabolism. The PPARs control myocardial metabolism by transcriptionally regulating genes encoding enzymes
involved in fatty acid and glucose utilization. The expression and activity of the PPARs and their coactivator protein PGC-1α is dynamically
regulated in several cardiomyopathic and metabolic diseases. This review will summarize these findings and other recent studies regarding
the effects of experimental PPAR activation and deactivation and its potential impact on cardiomyopathic remodeling.
© 2006 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The myocardium requires an enormous and steady supply
of ATP. This need is met by high-level mitochondrial
catabolism of carbohydrates and fatty acids. Glucose, lactate,
and fatty acids are oxidized in the mitochondrion and gener-
ate a common end product, acetyl-CoA, which enters the
tricarboxylic acid (TCA) cycle (Fig. 1). NADH and FADH2,
the reducing equivalents that transfer electrons to the elec-
tron transport chain, are produced by the TCA cycle and
during fatty acid and glucose oxidation. The electron
transport chain receives electrons from reducing equivalents
and ultimately converts them to ATP. Finally, ATP is
transported from the mitochondrial matrix to the cytoplasm
through the adenine nucleotide transporter (ANT), making
energy available for cellular work.

The mammalian heart demonstrates tremendous substrate
selection plasticity depending upon the developmental stage,
nutritional status or dietary composition, and cardiac perfor-
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mance demands. Due to limited oxygen and fatty acid
availability, the fetal heart relies primarily on anaerobic
glucose utilization pathways. However, the reliance on
mitochondrial fatty acid oxidation (FAO) markedly increases
in the immediate post-natal period [1,2] concomitant with the
sudden increase in cardiac work and the abundance of fatty
acids in the maternal milk supply. In addition, whereas the
myocardium utilizes primarily fatty acids in the fasted state,
cardiac glucose utilization significantly contributes to ATP
synthesis post-prandially [3]. This flexibility allows the
myocardium to maintain steady ATP production.

2. Perturbations in myocardial energy metabolism play
a role in the development of cardiomyopathy

Several acquired forms of cardiomyopathy are associated
with a decline in overall mitochondrial oxidative catabolism
while reliance on anaerobic glycolytic pathways is increased
[1,2,4–7]. Whereas altered metabolism was originally con-
sidered to be a byproduct of these pathologic states, evidence
is emerging that metabolic abnormalities contribute to the
pathogenesis of cardiac disease. This idea is supported by
d by Elsevier B.V. All rights reserved.
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Fig. 1. Cellular energy metabolism pathways. The diagram depicts the major routes for ATP production from catabolism of fatty acids and glucose in the cardiac
myocyte. Proteins and enzymes known to be regulated by PPARα are indicated by a star. Abbreviations: FATP, fatty acid binding protein; FAT/CD36, fatty acid
translocase; FABP, fatty acid binding protein; ACS, acyl-CoA synthetase; GLUTs, glucose transporters; CPT, carnitine palmitoyltransferase; TCA, tricarboxylic
acid; ANT, adenine nucleotide translocator; (1) four chain length-specific acyl-CoA dehydrogenases; (2) enoyl-CoA hydratase; (3) 3-hydroxyacyl-CoA
dehydrogenase; (4) 3-ketoacyl-CoA thiolase.
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several genetic studies demonstrating that mitochondrial
DNA disorders resulting in a global impairment of mito-
chondrial respiratory function are associated with cardiac
defects, including dilated cardiomyopathy, hypertrophic car-
diomyopathy, and conduction defects [8–10]. Mutations in
nuclear genes encoding FAO enzymes also often manifest as
cardiomyopathy [11–14]. Cardiomyopathy in subjects with
defects in mitochondrial metabolism usually appears during
childhood and often presents as sudden onset heart failure,
pulmonary edema, and ventricular arrhythmia, brought on
by metabolic stress such as periods of fasting due to infec-
tious illness. A chronic cardiomyopathic phenotype may also
develop [12,14].

To model these mitochondrial defects, several genetically-
engineered mouse models have been developed. Targeted
deletion of ANT1, which transports mitochondrially-derived
ATP to the cytosol, leads to mitochondrial dysfunction and
cardiomyopathy [15]. In addition, mice with cardiac-specific
deletion of mitochondrial transcription factor A (mtTFA or
Tfam), which controls expression of the mitochondrial ge-
nome, also exhibit marked impairments in mitochondrial
metabolism, ROS accumulation, severe cardiomyopathy, and
premature mortality [16]. Cardiomyopathy and/or conduc-
tion defects are also observed in mouse models with targeted
deletion of the fatty acid oxidation enzymes [17–19]. The
mechanisms by which impaired mitochondrial metabolism
lead to pathologic remodeling are still unclear. However,
lipotoxicity, ROS overproduction, and ATP deficiency have
been proposed to play a role. These examples of inherited
metabolic cardiomyopathic disorders highlight the sensitivity
of the heart to defects in mitochondrial metabolism.

3. The PPAR family transcriptionally regulates
myocardial energy metabolism

Acute changes in flux through metabolic pathways are
mediated by changes in substrate concentrations and al-
losteric modification of enzymes catalyzing these reactions.
However, chronic changes in mitochondrial oxidative capac-
ity and substrate selection are also mediated at the gene
transcriptional level [20]. Cardiac metabolism is transcrip-
tionally regulated by the PPAR family (PPARα, β/δ, and γ)
of ligand-activated transcription factors. PPARαwas initially
identified for its role in mediating the hepatic peroxisome
proliferative response to non-genotoxic rodent hepatocarci-
nogens [21], which are potent synthetic ligands for PPARα.
The expression of PPARα is high in tissues with an elevated
capacity for fatty acid oxidation (FAO), like liver, heart,
brown fat, and kidneys [22]. PPARα regulates fatty acid
homeostasis via transcriptional activation of genes encoding
key enzymes in fatty acid metabolism. PPARβ/δ is almost
ubiquitously expressed and transcriptionally regulates FAO
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[23]. PPARγ is adipose tissue-enriched and thought to play a
vital role in regulating fat storage. Synthetic ligands for
PPARγ, the thiazolidinediones, are insulin-sensitizing drugs
for insulin resistance and type 2 diabetes, ostensibly because
they sequester fatty acid in adipose depots where it can be
appropriately stored and by modulating the secretion of
adipose-derived adipokines.

PPAR family members regulate the expression of target
genes via binding to direct repeat response elements in the
promoter region of target genes with their obligate hetero-
dimeric partner, the retinoid X receptor (RXR) (Fig. 2). The
activity of the PPAR/RXR complex is modulated by the
availability of ligands for PPAR and RXR. Potentially the
most relevant endogenous ligands for the PPARs are long-
chain fatty acids and their metabolites. However, the specific
species of fatty acid metabolite that serve as endogenous
ligands for the PPARs have yet to be fully established.

When engaged by ligand, PPARs recruit transcriptional
coactivators that are necessary to initiate target gene tran-
scription [24]. These coactivators usually possess histone
acetylase (HAT) activity or recruit other coactivators that
have HAT activity. Acetylation of histones allows RNA
polymerase to access target DNA and initiate transcription
(Fig. 2). Several coactivators interact with PPARα including
steroid receptor coactivators (SRC; [25]), PPAR-interacting
protein (PRIP; [26]), p300 [27], and PPAR-binding protein
(PBP; [28]). However, the best-characterized coactivator of
PPARα in the heart is the cardiac-enriched PPARγ
coactivator-1α (PGC-1α) (Fig. 2). PGC-1α is a coactivator
without HAT activity that interacts with several members of
the nuclear receptor superfamily [29–31]. PGC-1α acts
through PPARα and other transcription factors in the heart to
couple metabolic needs to the expression of genes involved in
the control of energy metabolism. Given the strong influence
of PGC-1α in regulating PPAR activity, its effects on cardiac
metabolism and physiology are also described below.
Fig. 2. The PPARα transcriptional regulatory complex controls the
expression of fatty acid utilization genes. The schematic depicts key
components of the PPARα transcriptional regulatory complex. PPARα binds
to specific promoter DNA response elements (PPRE) with its heterodimeric
partner, the retinoid X receptor (RXR). The cardiac-enriched coactivator,
PGC-1, interacts with PPARα and recruits other cofactors with histone
acetylase activity necessary to initiate gene transcription. Formation of the
PPARα/RXR dimer, DNA binding, and recruitment of coactivator is
influenced by the presence of ligands for PPARα (fatty acid metabolites).

uest on 20 August 2022
4. PPARα

In the past few years, the role that the PPARα isoform
plays in controlling cardiac energy metabolism and function
has been evaluated using both gain-of-function and loss-of-
function approaches. Treatment of cultured cardiac myocytes
with PPARα agonists or adenoviral-mediated PPARα over-
expression induces expression of many genes involved in
fatty acid catabolic pathways [32–34], including fatty acid
transport, esterification, binding, and β-oxidation. PPARα
agonists also exhibit anti-inflammatory effects [35]. Inter-
estingly, most studies have shown little effect of PPARα
agonists on myocardial PPAR target genes when adminis-
tered in vivo [36], suggesting that, at least in rodents, the
peripheral (likely hepatic) actions of PPARα ligands explain
many of the cardiac effects of the drugs. These compounds
elicit strong effects on hepatic fatty acid metabolism
including the inhibition of hepatic lipoprotein secretion to
lower circulating lipid levels [37,38]. PPARα ligands admin-
istered in vivo actually decrease rates of cardiac FAO in
diabetic mice [39,40] suggesting that these agonists influ-
ence cardiac metabolism indirectly by altering circulating
endogenous substrate concentrations.

To distinguish the cardiac-specific effects of PPARα from
the systemic effects of ligand administration, transgenic mice
with cardiac-specific overexpression of PPARα driven by
the myosin heavy chain (MHC) promoter (MHC-PPARα
mice) were generated [41–45]. Heart-specific overexpres-
sion of PPARα induced several target genes involved in fatty
acid utilization and increased cardiac fatty acid uptake and
oxidation [41]. The expression of multiple genes involved in
glucose metabolism was markedly diminished in hearts of
MHC-PPARα mice leading to impaired glucose uptake and
utilization [41,44]. These metabolic changes were also ac-
companied by ventricular hypertrophy and moderate systolic
dysfunction. Interestingly, the functional abnormalities of
MHC-PPARα mice were greatly exacerbated when MHC-
PPARα mice were rendered insulin-deficient or placed on a
high fat diet [42] — two stimuli that increase the supply of
circulating lipids. The cardiomyopathic remodeling that
occurred in diabetic or high-fat-fed MHC-PPARα mice was
accompanied by striking steatosis and reactive oxygen
species accumulation in the myocardium, suggesting a lipo-
toxic component to the cardiomyopathic changes. These
findings indicate that PPARα-driven reliance on fatty acid
utilization and coordinate inhibition of glucose metabolism
can lead to pathologic remodeling and severe cardiomyop-
athy. The pathologic mechanisms whereby these metabolic
abnormalities are still incompletely understood. However,
metabolic inflexibility (uncontrolled FAO), toxic lipid
intermediate accumulation, and reactive oxygen species ac-
cumulation have been observed in these hearts and are
known to be linked to cardiomyopathic remodeling.

The cardiac phenotype of mice with targeted deletion of
the PPARα gene has also been evaluated. PPARα null mice
are viable and appear outwardly normal, but exhibit mild
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aging-associated cardiac fibrosis [46]. The expression of
several PPARα target genes and rates of FAO are diminished
in hearts of PPARα null mice at baseline [46–48] and fail to
be induced in response to fasting or diabetes [47]. PPARα
null mice also exhibit increased glucose transporter (GLUT4)
expression, glucose uptake, and reliance on glucose for car-
diac ATP production [49,50]. The age-associated fibrosis
notwithstanding, cardiac function is relatively normal in
young PPARα null mice. However, the response to several
physiologic stressors is perturbed in mice lacking PPARα.
For example, isolated hearts from PPARα null mice are
unable to compensate when challenged with an increased
workload [49,51]. Although a definitive mechanism for these
cardiac defects is lacking, it is likely that the inability to boost
rates of FAO in response to increased work load leads to
energy deprivation. In support of this, transgenic overexpres-
sion of the GLUT1 glucose transporter, which further
enhanced glucose utilization in these mice, rescued the func-
tional defect in response to increased workload [51]. In sum,
PPARα overexpressing and null mouse models exhibit
reciprocal metabolic phenotypes and demonstrate the
important roles that PPARα plays in controlling cardiac
energy substrate selection.

5. PPARβ/δ

Until recently, the PPARβ/δ (referred to as PPARβ from
here on) isoform was little-studied. PPARβ is expressed
fairly ubiquitously throughout the body and at relatively high
levels in cardiac myocytes [32]. PPARβ ligand administra-
tion or adenoviral overexpression in cultured cardiac myo-
cytes activates many PPAR target genes involved in FAO
[32,52]. Also, the PPARβ/δ isoform has been shown to
protect cardiac myocytes from oxidative stress-induced
apoptosis by activating expression of catalase, which scav-
enges hydrogen peroxide [53]. Two strains of whole-animal
constitutive PPARβ knockout mice have been developed
[54,55], but the cardiac physiology and metabolic phenotype
of these PPARβ null mice has not yet been reported. Re-
cently, however, mice with conditional cardiac-specific dele-
tion of PPARβ were generated and shown to exhibit severe
impairments in myocardial FAO gene expression, diminished
rates of FAO, increased cardiac lipid accumulation, and
lipotoxicity [56]. Severe cardiomyopathy and congestive
heart failure developed leading to premature death. Given
that the cardiac PPARα system is intact in these mice, these
findings suggest that PPARα is not sufficient to compensate
for cardiac-specific PPARβ deficiency and indicate that
PPARβ is a critical regulatory factor controlling myocardial
energy metabolism.

6. PPARγ

PPARγwhich is adipose-enriched, controls the expression
of genes involved in fatty acid storage and adipogenesis. The
exact mechanism by which PPARγ regulates myocardial
metabolism is unclear. Whereas several manuscripts demon-
strate significant expression of PPARγ in cardiac myocytes,
other studies fail to detect this isoform in the myocardium
[32,57–59]. This disparity could be explained by species-to-
species variability, differing reagents used for detection, or
contamination of myocardial samples with pericardial white
adipose tissue, which is enriched in PPARγ. Agonists for
PPARγ fail to increase FAO gene expression in cultured
cardiac myocytes [32] and in vivo administration actually
leads to diminished expression of known PPAR target genes
in the myocardium [60]. Given that the main site of PPARγ
agonist action in vivo seems to be white adipose tissue, the
basis for this observationmay be rooted in a systemic effect of
PPARγ ligands, as was proposed above for PPARα. PPARγ
agonists also possess potent anti-inflammatory effects
[61,62]. In contrast to the lack of effect on metabolic gene
expression, other studies suggest that PPARγ agonists retain
their anti-inflammatory properties in cardiac myocytes in
vitro [62,63].

The influence of the myocardial PPARγ system on
cardiac structure and function has recently been tested using
a loss-of-function approach. Unfortunately, constitutive,
whole-body disruption of PPARγ results in embryonic
lethality due to placental and cardiac defects [64], preventing
the evaluation of the cardiac phenotype of these mice. How-
ever, cardiac-specific PPARγ (csPPARγ) null mice have
recently been generated [65]. These studies revealed that
csPPARγ deficiency caused modest ventricular hypertrophy,
but did not impair systolic function [65]. Further work will
be required to evaluate the effects of PPARγ deficiency on
cardiac metabolism. Given the increased usage of PPARγ
agonists as insulin-sensitizing drugs, this is an area of active
investigation.

7. PGC-1α

The transcriptional coactivator of the PPARs, PGC-1α
has recently emerged as a key player in the control of
myocardial metabolism. In cardiac myocytes, activation of
PGC-1α drives a strong induction of PPARα target genes
encoding FAO enzymes [66]. PGC-1α also coactivates other
transcription factors, including estrogen-related receptors
(ERRα and γ) and the nuclear respiratory factor 1 (NRF-1),
to stimulate mitochondrial biogenesis and enhance expres-
sion of components of the electron transport chain [66–68].
These findings suggest that PGC-1α acts to augment the
capacity for ATP production in a “global” manner by induc-
ing expression of enzymes involved in multiple components
of these catabolic pathways.

Several interesting mouse models that explore the func-
tion of PGC-1α in cardiac myocytes have also been devel-
oped. The first model constitutively overexpressed PGC-1α
under control of the myosin heavy chain (MHC) promoter.
This approach resulted in profound mitochondrial prolifer-
ation, cardiomyopathy, and premature death due to heart
failure [66]. The severity and rapid onset of cardiomyopathy
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prevented a full investigation of the cardiac metabolic
phenotype of these mice. To better assess this issue, a
tetracycline-inducible transgenic system was employed to
drive inducible cardiac-specific overexpression of PGC-1α
[69]. This model revealed developmental stage-specific
responses to acute PGC-1α overexpression. When PGC-1α
was overexpressed in the neonatal stage, dramatic prolifer-
ation of mitochondria was observed without overt effects on
cardiac function. In other studies, overexpression of PGC-1α
after mice had reached adulthood revealed only modest
mitochondrial proliferation. However, mitochondrial ultra-
structural abnormalities and severe cardiac dysfunction was
observed with PGC-1α overexpression in the adult. Further
metabolic characterization of these mice is expected to
unveil the mechanisms linking mitochondrial (dys)function
to cardiomyopathic remodeling.

Two independently-derived PGC-1α-deficient mouse
lines have been developed and characterized [70–72].
Studies characterizing both strains of PGC-1α-deficient
mice demonstrate perturbations in mitochondrial OXPHOS
pathway function and depressed expression of genes encod-
ing enzymes involved in these pathways. Interestingly, the
severity of the cardiac phenotype varies greatly between the
two lines of null mice. One strain of PGC-1α null mice
exhibit moderate age-related cardiac dysfunction and activa-
tion of several gene expression signatures of cardiomyopathic
remodeling [72]. In contrast, the phenotype of the second
PGC-1α null mouse line appears to be less severe [71]. In
both models, the most obvious signs of cardiac dysfunction
were unveiled under stress of dobutamine or following an
exhaustive bout of treadmill exercise [71,72]. To summarize,
these recent studies indicate that PGC-1α plays a critical role
in controlling cardiac energy metabolism and suggest that
perturbations in the PGC-1α system could predispose to
cardiomyopathic remodeling.

8. The PPAR/PGC-1α system is deactivated in acquired
cardiomyopathy and is a target for therapeutic
intervention

Abnormalities in myocardial energy metabolism occur in
several acquired forms of hypertrophy, ischemic heart dis-
ease, and in the failing heart. Specifically, overall mitochon-
drial oxidative catabolism decreases while reliance on
anaerobic glycolytic pathways is increased [1,2,4–7,73].
These metabolic changes are mediated, at least in part, via
decreased expression of genes encoding enzymes involved in
mitochondrial FAO and OXPHOS pathways secondary to
deactivation of the PPAR/PGC-1α axis [1,33,74–77]. The
expression and/or DNA binding activity of the PPARα-RXR
complex is markedly diminished by hypoxia [34,78], ische-
mic heart disease [79–81], and pressure overload-induced
cardiac hypertrophy [33,82]. Similarly, PGC-1α expression
is diminished in mouse models of experimentally-induced
cardiomyopathy [74,83]. Deactivation of PPARα in human
heart failure patients has also been observed [2,84], sug-
gesting that this finding in rodent models translates to
humans. It is likely that deactivation of the PPAR/PGC-1α
complex in the failing heart plays a major role in the
coincident metabolic remodeling.

Although much regarding the mechanisms whereby the
PPAR/PGC-1 axis is deactivated in the failing heart remains
to be discovered, several signaling pathways have been
implicated. The activity of PPARα and PGC-1α is known to
be increased by acute activation of the calcineurin [85] or
p38 mitogen-activated protein kinase (MAPK) [86,87] path-
ways. PGC-1α is also under the control of the calcium/
calmodulin-dependent protein kinase [85]. However, less is
known regarding the pathways that deactivate PPARα and
PGC-1. The extracellular signal-regulated kinase MAPK has
been shown to directly phosphorylate PPARα, leading to
diminished transcriptional activity [33]. In addition, chronic
activation of cyclin-dependent kinase 9, a nuclear-localized
kinase that is activated in cardiac hypertrophy, leads to
diminished PGC-1α expression and activity [83]. Given the
potential importance of metabolic remodeling in the progres-
sion of heart failure, the search for additional pathways that
control PPAR/PGC-1 activity is ongoing.

The consequence of PPAR/PGC-1α complex deactivation
in the hypertrophied and ischemic heart as an adaptive versus
maladaptive response is also unclear. Increased myocardial
reliance on anaerobic glycolytic pathways for the production
of ATP is likely an adaptive response to reduce oxygen
consumption. In support of this, partial inhibitors of mito-
chondrial FAO show promise as therapeutic treatment for
cardiac disease [88–90]. Moreover, treatment with a PPARα
agonist following pressure overload [82] or ischemic insult
[79] to reactivate oxidative metabolism leads to contractile
dysfunction. Conversely, there is also evidence that deacti-
vation of mitochondrial metabolism can be maladaptive.
Glycolysis yields far less ATP per mole substrate compared
to FAO, possibly creating a relative energy-deficient state.
Indeed, depletion of high energy phosphate intermediates, a
key energy stockpile, has been detected in heart failure [91].
Alternatively or in addition, impairments in FAO are linked
to lipid accumulation in the cardiac myocyte, which can have
toxic effects (“lipotoxicity”) [92–94]. PGC-1α overexpres-
sion [83] and PPAR agonists [58,59,95] prevent cardiac
hypertrophy or improve contractility in cultured cardiac
myocytes. Thus, the end effects of PPAR/PGC-1α activity
on pathologic remodeling are less than clear.

Despite this uncertainty, agonists for the PPARs have been
targeted to improve the response to ischemic insult. While
some studies fail to show an effect of PPAR agonism
[57,96,97], many others demonstrate that ligands to PPARα
or PPARγ improve the response to ischemic insult and may
reduce infarct size in various experimental models [98–103].
The mechanisms involved are unclear, but may involve anti-
inflammatory effects or increased myocardial glucose utiliza-
tion [98,99,101,104,105]. Indeed, enhanced glucose oxida-
tion during ischemia–reperfusion, especially in insulin
resistant or diabetic heart, has been linked to improved
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recovery [50]. Interestingly, the recent Fenofibrate Interven-
tion and Event Lowering in Diabetes (FIELD) clinical trial, a
randomized, controlled study, failed to detect a significant
benefit of daily PPARα ligand treatment on the incidence of
ischemic heart disease, though there was a trend towards
reduced risk of cardiovascular events [106]. In contrast, other
smaller pre-clinical trials have demonstrated beneficial
effects of fibrates on cardiovascular health, especially in the
context of diabetes or insulin resistance [107,108]. The recent
PROactive clinical study, a prospective randomized trial in
patients diagnosed with pre-existing cardiovascular disease,
also showed positive effects of pioglitazone, an insulin-
sensitizing PPARγ agonist, on mortality and cardiovascular
events [109].

The effects of PPARα on the response to ischemia–
reperfusion have also been tested in genetically altered mice.
PPARα null mice, which have diminished capacity for FAO
and increased glucose use, exhibit resistance to ischemia–
reperfusion injury [45,50]. In contrast, MHC-PPARα mice
display an exacerbated response to ischemia–reperfusion
[45]. It is postulated that the metabolic profile induced by
PPARα deficiency or overexpression explains these find-
ings. The PPARα null mouse heart prefers to utilize glucose,
which may be protective during ischemia–reperfusion. In
contrast, the MHC-PPARα heart cannot utilize glucose.
However, further work is required to delineate the mechan-
isms involved and to determine whether PPAR agonists elicit
protective effects during ischemia–reperfusion.

9. PPAR activity is altered in the diabetic heart

Cardiomyopathy is extremely prevalent in persons with
diabetes mellitus even after corrections for risk factors
(hypertension, hyperlipidemia, etc.) that abound in diabetic
patients [110]. Idiopathic cardiac disease occurring in
diabetic subjects is often referred to as “diabetic cardiomy-
opathy”, a term coined by Rubler et al. over 30 years ago
[111]. However, the etiology of this condition is very poorly
understood. Many have proposed that abnormalities in
myocardial energy metabolism play a causative role in the
development of diabetic cardiomyopathy. Whereas the
healthy myocardium displays tremendous metabolic flexi-
bility [3], due to the importance of insulin in the control of
cardiac metabolism, FAO is the primary source of ATP
production in insulin-resistant and diabetic heart [112–115].
Uncontrolled, high-level FAO and impaired glucose utiliza-
tion may have detrimental effects on cardiac structure and
function by a variety of mechanisms including glucotoxicity,
lipotoxicity, reactive oxygen species accumulation, or higher
oxygen consumption costs.

There is emerging evidence that the PPARα/PGC-1α
complex is activated in the diabetic heart. The myocardial
expression of several PPARα target genes involved in fatty
acid utilization was induced by both insulin-deficient and
obese type 2 diabetic mice [41,42,116]. When PPARα null
mice were rendered insulin-deficient, the induction of PPAR
target genes was markedly blunted [42]. The activation of
PPARα by diabetes is consistent with increased availability
of fatty acids, which serve as endogenous ligands for
PPARα. However, it should be noted that other studies have
shown that PPAR target gene expression is diminished in the
diabetic heart [117,118]. These disparities could be due to
the differences in the underlying causes of diabetes in the
various models used. In addition, the duration of diabetic
disease has also been shown to influence the expression of
PPARα [116,117], suggesting a time-course effect.

10. Summary

The studies described herein describe the link between
myocardial energy metabolism and cardiac structure and
function. The deactivation of myocardial oxidative metab-
olism in acquired cardiomyopathies is not only a secondary
effect, but may also play a significant role in the patho-
genesis of cardiomyopathic remodeling. There is therefore
rationale for metabolic therapy to remedy cardiac hypertro-
phy and dysfunction in cardiac disease. The importance of
the PPARs and PGC-1α in the control of cardiac energy
metabolism makes these regulatory pathways attractive tar-
gets for metabolic therapy. However, much needs to be
learned concerning the intricacies of modulating their activi-
ty for optimal therapeutic benefit.
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