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Abstract

The development of artificial intelligence (AI)-based technologies in medicine is advancing 

rapidly, but real-world clinical implementation has not yet become a reality. Here we review some 

of the key practical issues surrounding the implementation of AI into existing clinical workflows, 

including data sharing and privacy, transparency of algorithms, data standardization, and 

interoperability across multiple platforms, and concern for patient safety. We summarize the 

current regulatory environment in the United States and highlight comparisons with other regions 

in the world, notably Europe and China.

A I has recently experienced an era of explosive growth across many industries, and the 

healthcare industry is no exception. Studies across multiple medical specialties have 

employed AI to mimic the diagnostic abilities of physicians1–4. The hope is that AI may 
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augment the ability of humans to provide healthcare. However, although these technologies 

are rapidly advancing, their implementation into patient-care settings has not yet become 

widespread. Here we review some key issues surrounding implementation of Al-based 

technologies in healthcare.

The current status of AI in medicine

AI involves the development of computer algorithms to perform tasks typically associated 

with human intelligence5. AI is broadly used in both the technical and popular lexicon to 

encompass a spectrum of learning, including but not limited to machine learning, 

representation learning, deep learning, and natural language processing (see Box 1 for 

definitions). Regardless of the specific technique, the general aim of these technologies in 

medicine is to use computer algorithms to uncover relevant information from data and to 

assist clinical decision-making6. AI technologies can perform a wide array of functions, 

such as aiding in diagnosis generation and therapy selection, making risk predictions and 

stratifying disease, reducing medical errors, and improving productivity7,8 (Fig. 1).

Personal health data may include demographics, healthcare provider notes, images, 

laboratory results, genetic testing data, and recordings from medical devices or wearable 

sensors. A multitude of technology platforms may be involved in the generation or collection 

of this data, including network servers, electronic health records (EHRs), genomic data, 

personal computers, smart phones and mobile apps, and wearable devices and sensors. With 

improved global connectivity via the Internet and technology with cloud-based capabilities, 

data access and distribution has become easier as well. Integration of big data concerning 

health and disease will provide unprecedented opportunities in the management of 

healthcare information at the interface of patients, physicians, hospitals and healthcare 

authorities, and regulatory bodies (Fig. 2).

Potential roles for AI in clinical settings.

We envision several ways in which AI-based technologies could be implemented into 

clinical practice. The first is as a triage or screening tool. For example, AI could analyze 

radiology images and use the probability of disease as a basis to decide which images should 

be interpreted first by a human radiologist9, or it could examine retinal images to determine 

which patients have a vision-threatening condition and should be referred to an 

ophthalmologist2. Similarly, the Babylon app, an AI-based chatbot being piloted in the 

United Kingdom10, is essentially a triage tool used to differentiate patients who simply need 

reassurance from those who need referral for an in-person examination. AI-based triaging 

would theoretically decrease burden on the healthcare system and direct resources toward 

the patients most likely to have a real medical need.

AI technologies may also function in a replacement scenario. While unlikely to replace 

human healthcare providers entirely, AI may perform certain tasks with greater consistency, 

speed, and reproducibility than humans. Examples include estimation of bone age on 

radiographic exams9, diagnosing treatable retinal diseases on optical coherence 

tomography2,11, or quantifying vessel stenosis and other metrics on cardiac imaging12. By 

automating tasks which are not theoretically complex but can be incredibly labor- and time-
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intensive, healthcare providers may be freed to tackle more complex tasks, representing an 

improved use of human capital.

Perhaps the most powerful role for AI will be as an add-on to or augmentation of human 

providers. Studies have demonstrated a synergistic effect when clinicians and AI work 

together, producing better results than either alone13,14. AI-based technologies could also 

augment real-time clinical decision support, resulting in improved efforts toward precision 

medicine15.

Engagement in the AI health space.

The AI health space seems to be constantly expanding. The National Science and 

Technology Council’s Committee on Technology estimated that the US government’s 

investment in research and development in AI-related technologies was ~$1.1 billion in 2015 

and that this will substantially increase over subsequent years16. While this amount also 

includes funding for other areas, even within healthcare the numbers are staggering. To 

illustrate, Massachusetts General Hospital and Brigham and Women’s Hospital have spent 

more than $1 billion on health information and data collection infrastructures to promote 

operationalizing AI algorithms for real-world clinical practice17. While much of this 

investment was for an EHR system, because many AI technologies will be expected to 

interface with the EHR in order to influence the delivery of healthcare, this infrastructure 

investment can be considered an initial step toward translating AI algorithms, even if EHR 

implementation is not AI per se. In addition, academic institutions are increasingly engaged 

in AI-related research: 212 AI-related publications were indexed globally in 1990, 

increasing to 1,153 in 201418.

On the industry side, AI-related health start-ups have experienced increased funding and 

investor interest. By 2021, growth in the AI market is expected to reach $6.6 billion19. The 

number of healthcare-focused AI deals increased from less than 20 in 2012 to nearly 70 by 

mid-201620. Even companies not traditionally linked with healthcare, such as Google and 

Amazon, are increasing their involvement in this sector.

Despite this growing interest in healthcare-related AI, substantial translation or 

implementation of these technologies into clinical use has not yet transpired. How we tackle 

issues in implementation in the next few years will likely have far-reaching impacts for the 

future practice of medicine.

Key issues in implementation

Above and beyond building AI algorithms, ‘productizing’ them for clinical use is incredibly 

complex17. This productization process requires the availability of a massive amount of data, 

integration into complex existing clinical workflows, and compliance with regulatory 

frameworks.

Data sharing.

Not only are data necessary for initial training, a continued data supply is needed for 

ongoing training, validation, and improvement of AI algorithms. For widespread 
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implementation, data may need to be shared across multiple institutions and potentially 

across nations. The data would need to be anonymized and deidentified, and informed 

consent processes would need to include the possibility of wide distribution. With this scale 

of dissemination, the notions of patient confidentiality and privacy may need to be 

reimagined entirely21. Subsequently, cybersecurity measures will be increasingly important 

ffor addressing the risks of inappropriate use of datasets, inaccurate or inappropriate 

disclosures, and limitations in deidentification techniques22.

Existing data-sharing efforts include biobanks and international consortia for medical 

imaging databases, such as the Cardiac Atlas Project23, the Visual Concept Extraction 

Challenge in Radiology (VISCERAL) Project24, the UK Biobank (http://

www.ukbiobank.ac.uk/), and the Kaggle Data Science Bowl (https://www.kaggle.com/

datasets). However, the extent of data sharing required for widespread adoption of AI 

technologies across health systems will require more expansive efforts.

The current healthcare environment holds little incentive for data sharing7. This may change 

with ongoing healthcare reforms that favor bundled-outcome-based reimbursement over fee-

for-service models. This would create greater incentive to compile and exchange 

information7. Furthermore, the government should promote data sharing. The National 

Science and Technology Council Committee on Technology recommended that open data 

standards for AI should be a key priority for federal agencies16. Similarly, a strategic plan 

issued by the Obama Administration envisioned a ‘sociotechnical’ infrastructure with a wide 

variety of accessible training and testing datasets22, and the current Trump administration 

has also expressed support for research and development in AI25.

Some have proposed creating anonymized ‘benchmarking data-sets’ with known diagnoses 

that are updated and ‘calibrated’ at regular intervals using local data from the implementing 

institutions, similar to how clinical laboratories maintain a local reference standard for 

blood-based biomarkers9. These maintenance measures would clearly require extensive data 

sharing and significant human effort. The local calibration is important, because certain 

algorithms may have local or cultural-specific parameters that may not be generalizable to 

different populations.

Transparency.

Transparency of data and AI algorithms is also a major concern. Transparency is relevant at 

multiple levels. First, in the case of supervised learning (Box 1), the accuracy of predictions 

relies heavily on the accuracy of the underlying annotations inputted into the algorithm. 

Poorly labeled data will yield poor results26, so transparency of labeling such that others can 

critically evaluate the training process for a supervised learning algorithm is paramount to 

ensuring accuracy.

Besides issues in annotation or labeling, transparency also relates to model interpretability—

in other words, humans should be able to understand or interpret how a given technology 

reached a certain decision or prediction27 (https://christophm.github.io/interpretable-ml-

book/). This kind of ‘transparent’ AI contrasts the ‘opaque’ or ‘black box’ approach28. It is 

thought that if the system’s reasoning can be explained, then humans can verify whether the 
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reasoning is sound. If the system’s reasoning cannot be explained, such evaluation would not 

be practically feasible. However, there are tradeoffs—in certain instances, enforcing 

transparency and interpretability can potentially result in decreased accuracy or predictive 

performance of a model. And certain scenarios may not require interpretability, such as if 

the model has no significant impact or if the problem is well-studied (https://

christophm.github.io/interpretable-ml-book/). It is obvious that the delivery of healthcare 

does not fall into these categories. AI technologies will need transparency to justify a 

particular diagnosis, treatment recommendation, or outcome prediction22. Furthermore, only 

with transparency can physicians and researchers perform analyses that could potentially 

uncover new clinical insights.

Another reason why transparency is important is that AI technologies have the potential for 

algorithmic bias, thereby reinforcing discriminatory practices based on race, sex, or other 

features21,22. Transparency of training data and of model interpretability would allow 

examination for any potential bias. Ideally, machine learning might even help resolve 

healthcare disparities if designed to compensate for known biases21.

Transparency will be difficult to achieve if companies purposefully make their algorithms 

opaque for proprietary or financial reasons. Physicians and other stakeholders in the 

healthcare system must demand transparency to facilitate patient safety.

Patient safety.

What mechanisms will (or should) be in place for quality control of algorithms remain 

unclear. The US Food and Drug Administration (FDA) recognizes that AI-based 

technologies are distinct from traditional medical devices. Along with the International 

Medical Device Regulators Forum (IMDRF), the FDA has defined a new category called 

Software as Medical Device (SaMD) and has expressed the need for an updated regulatory 

framework, the details of which we will explore in the next section.

Some have proposed that AI technologies should be held to the same standard as clinical 

laboratories—that is, local standards and established minimum performance metrics for 

critical abnormalities should be in place9. AI systems face safety challenges in the forms of 

complex environments, periods of learning during which the system’s behavior may be 

unpredictable, and the uncertainty of human-machine interactions, which may result in 

significant variation in the system’s performance.

Another issue related to patient safety is that of accountability. If a patient suffers an adverse 

event due to an AI-based technology, who is responsible? AI technologies will undoubtedly 

alter the traditional physician-patient relationship. Inherent in that change is a potential shift 

in the physician’s sense of personal responsibility. If AI indeed completely replaces certain 

tasks previously performed by the physician, perhaps that shift in responsibility is warranted. 

But if the physician is not responsible, who is? One could reasonably propose multiple 

sources—the vendor providing the software platform, the developer who built the algorithm, 

or the source for the training data. The patient safety movement is already shifting away 

from blaming individual ‘bad actors’ and working toward identifying systems-wide issues as 

opportunities for improvement and reduction in potentially avoidable adverse events. The 
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same principles could be applied to AI technology implementation, but where liability will 

ultimately rest remains to be seen.

Data standardization and integration into existing clinical workflows.

Data standardization is critical for implementation. Data standardization refers to the process 

of transforming data into a common format that can be understood across different tools and 

methodologies. This is a key concern because data are collected in different methods for 

different purposes and can be stored in a wide range of formats using variable database and 

information systems. Hence, the same data (e.g., a particular biomarker such as blood 

glucose) can be represented in many different ways across these different systems. 

Healthcare data has been shown to be more heterogeneous and variable than research data 

produced within other fields29. In order to effectively use these data in AI-based 

technologies, they need to be standardized into a common format. With the complexity of 

healthcare data and the massive volumes of patient information, data standardization should 

occur at the initial development stage and not at the user end.

Interoperability will be essential given the multiple components of a typical clinical 

workflow. For example, Tang et al.9 posited that for an AI-assisted radiology workflow, 

algorithms for protocolling, study prioritization, feature analysis and extraction, and 

automated report generation could each conceivably be a product of individual specialized 

vendors. A set of standards would be necessary to allow integration between these different 

algorithms and also to allow algorithms to be run on different equipment. Without early 

efforts to optimize interoperability, the practical effectiveness of AI technologies will be 

severely limited.

The Digital Imaging and Communications in Medicine (DICOM) standards and the picture 

archiving and communication system (PACS) revolutionized medical imaging by providing 

a consistent platform for data management. A similar set of standards should be applied to 

AI-based technologies to develop a consistent nomenclature to facilitate consistent methods 

of data storage and retrieval.

One such set of standards that is rapidly evolving worldwide for the purpose of clinical 

translation is the Fast Healthcare Interoperability Resources (FHIR) framework (https://

www.hl7.org/fhir/summary.html). This framework is based on Health Level 7 (HL7), a 

framework of standards for electronic health information exchange, and is geared toward 

implementation. FHIR utilizes a set of modular components, known as ‘Resources,’ which 

can be assembled into working systems that will facilitate data sharing within the EHR and 

mobile-based apps as well as cloud-based communications. Looking to the future, we 

anticipate that the FHIR framework will be critical for implementation of AI-based 

technologies in the healthcare sector that utilize electronic data, just as DICOM and PACS 

have become critical for exchange of digital medical images.

Financial issues in AI technology implementation.

As mentioned previously, optimal performance of AI systems will require ongoing 

maintenance not only in incorporation of increasing amounts of patient data, but also in 

terms of updating software algorithms and ensuring hardware operability. Equipment 
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upgrades may also be needed to support software updates. All of this maintenance activity 

will require not only significant effort in human capital, but also a funding support 

mechanism. Funding will be critical to ensuring successful implementation and ongoing 

process improvement, and currently it is not clear how use of AI technologies will be 

reimbursed.

On the other hand, there is also potential for abuse by AI technology developers. For 

example, clinical decision support systems could be programmed to increase profits for 

certain drugs, tests, or devices without clinical users being aware of this manipulation21. For 

all medical devices, a tension exists between providing ethical medical care and generating 

profit21. AI technologies will not be immune to that tension, and it should be openly 

acknowledged and addressed during implementation processes.

Another concern that relates to the financial aspect of implementation is whether there is 

sufficient business incentive to motivate translation of these technologies. While business 

incentives are by no means the only way to advance healthcare, historically they have played 

a key role in facilitating change. The question of whether AI-based technologies actually 

bring added value to healthcare with improved outcomes is unanswered. The notion of 

advanced technology with incredible potential that is not yet fully realized is not new. For 

example, gene therapy, genomic-driven personalized medicine, and EHRs are all 

technologies that were purported to deliver revolutionary improvements in the delivery of 

healthcare, but thus far many have felt that their potential has exceeded their performance. 

However, those fields are delivering ongoing advancements with continuing promise for the 

future. Similarly, the application of AI-based technologies to medicine is still in its early 

stages. While the initial investments from government, academia, and industry are growing, 

whether these will sustain into the future remains to be seen and in part may depend on the 

successes of early translational efforts.

Education of an AI-literate workforce.

All stakeholders need to be actively involved in the AI implementation process in medicine. 

The workforce should be educated about AI and understand both its benefits and limitations. 

Medical school and residency curricula should be updated to include topics in health 

informatics, computer science, and statistics9. In an ideal world, physicians would 

understand the construction of algorithms, comprehend the datasets underlying their outputs, 

and, importantly, understand their limitations. But in a world of finite resources and 

competing demands on clinicians’ time, it may not be reasonable to expect every provider to 

reach that level of understanding. However, as AI becomes increasingly prevalent not only in 

healthcare, but also in our world at large, we anticipate that an increasing number of 

clinicians will be interested in obtaining this type of dedicated training, whether through 

research projects during medical school, residency, or fellowship, or through dedicated 

training programs in informatics, such as those offered by the National Library of Medicine. 

Ultimately healthcare providers will need this knowledge to maximize their functioning on 

human-machine teams. Additionally, as patient advocates, a cadre of healthcare workers 

needs to understand these technologies in order to educate policymakers on the complexities 

of clinical decision-making and the consequences of potential misuse.
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AI policy and the regulatory environment in the united States

One key element to implementing AI technologies in healthcare is the development of 

regulatory standards for assessment of safety and efficacy. Conventional medical device 

approvals in the United States currently go through the FDA’s Center for Devices and 

Radiological Health (CDRH) and are classified as Class I, II, or III, with higher numbers 

indicating increasing risk of illness or injury and therefore a higher level of regulatory 

control to ensure safety and effectiveness (https://www.fda.gov/ForPatients/Approvals/

Devices/ucm405381.htm). Medical devices undergo an extensive regulatory process, which 

includes establishment registration, medical device listing, and a Premarket Notification 

510(k) for Class I or II devices or Premarket Approval (PMA) for Class III devices. The 

process is very complicated and can be lengthy. The average time for FDA 510(k) 

submissions to be cleared in 2015 was 177 days30. PMA reviews are normally longer than 

180 days (https://www.fda.gov/medicaldevices/deviceregulationandguid-ance/

howtomarketyourdevice/premarketsubmissions/premarket-approvalpma/). Evaluations are 

performed for individual medical devices, and any changes to the devices after approvals 

require an amendment or a supplement, resulting in another review cycle of 180 days 

(https://www.fda.gov/MedicalDevices/ucm050467.htm). The process is not well-suited for 

fast-paced cycles of iterative modification, which is what software entails.

The International Medical Device Regulators Forum (IMDRF) has defined AI-based 

technologies as being encompassed by the term Software as a Medical Device (SaMD)31, 

and the FDA has put forth the Digital Health Innovation Action Plan32, which outlines its 

approach to SaMD, including AI technologies. A few AI technologies have already received 

FDA approval (Box 2). The FDA has also developed a Software Precertification Program33 

(Fig. 3), a ‘more streamlined and efficient’ voluntary pathway resulting in improved access 

to technologies. The FDA acknowledges that traditional forms of medical-device regulation 

are not well suited for the faster pace of design and modification for software-based medical 

devices.

According to the FDA’s description of the program, this pathway is organization-centric and 

focuses on the technology developer instead of the individual products. Manufacturers who 

demonstrate ‘organizational excellence’ can achieve precertification, facilitating exemption 

from premarket review for lower-risk SaMD products or faster review for higher-risk SaMD 

products. These organizations are expected to continue monitoring the safety and 

effectiveness of their products with real-world performance data, some of which may be 

automatable. The FDA predicts that with this strategy, precertification and postmarket 

oversight will allow low-risk devices to forego premarket review and be introduced directly 

to the market. In addition, the overall timeline for a precertified company’s SaMD product 

review should be shorter than traditional processes. The FDA’s hope is that this approach 

will support continued innovation, allow increased availability of new and updated software, 

and better focus the organization’s resources on higher-risk developers and products.

In our view, the FDA’s efforts to define a completely new process for this type of technology 

acknowledges the delicate and difficult balance between protecting patients and promoting 

innovation. With overregulation, innovation and advancements in this field may be stifled. 

However, with under-regulation, there may be risks to patient safety.
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The FDA invited public comment on the program throughout the spring of 2018, which led 

to some additional clarifications33. The FDA will continue to actively review public 

feedback throughout this iterative process. We expect that these policies will continue to 

evolve as these technologies undergo real-world implementation and that this will be an area 

of dynamic change in the coming years.

The first ‘autonomous’ AI diagnostic system to receive FDA approval for marketing was 

IDx-DR (Box 3). Implementation of the device has begun at the University of Iowa for 

screening patients with diabetes34. This represents one of the earliest translations of an 

autonomous AI screening system into real-world clinical practice, and it will be interesting 

to see what kind of impact the screening system has and whether it actually leads to 

improvement in visual outcomes for patients with diabetes.

The view toward global implementation of AI in healthcare

The issues surrounding AI implementation are universal in nature and are not unique to the 

United States. One of the organizations leading guidance in this area is the International 

Medical Device Regulators Forum (IMDRF), a voluntary group of medical device regulators 

working toward harmonizing international medical device regulation (http://

www.imdrf.org/). Its members currently include Australia, Brazil, Canada, China, Europe, 

Japan, Russia, Singapore, South Korea, and the United States. The IMDRF has issued key 

definitions for SaMD and a common framework for regulators31. Its guidance also 

recommends a continuous iterative process based on real-world performance data35. Similar 

to the FDA approach, the IMDRF states that low-risk SaMD may not require independent 

review.

The European Union (EU) has issued some key regulatory policies that will affect AI 

implementation in their healthcare systems. The General Data Protection and Regulation 

(GDPR) outlines a comprehensive set of regulations for the collection, storage, and use of 

personal information, which was adopted by the European Parliament in April 2016 and 

became effective in May 201836. A critical component of this regulation is Article 22, 

“Automated individual decision making, including profiling.” This article of regulation 

describes the right of citizens to receive an explanation for algorithmic decisions. This 

would potentially prohibit an array of algorithms currently in use in advertising and social 

networks36. Although the GDPR applies to data from EU citizens, given the global nature of 

the Internet and modern connectivity, the regulation has impacted companies from the US 

and worldwide as they adapt to the new regulations.

The GDPR will affect AI implementation in healthcare in several ways. First, it requires 

explicit and informed consent before any collection of personal data. Informed consent has 

been a long-standing component of medical practice (unlike in social media or online-based 

marketing), but having to obtain informed consent for any collection of data still represents a 

higher bar than obtaining consent for specific items, such as procedures or surgical 

interventions. Second, the new regulation essentially lends power to the person providing the 

data to track what data is being collected and to be able to request removal of their data. In 

the healthcare context, this will shift some of the power balance toward the patient and 

highlights the importance of ongoing work needed to protect patient privacy and to 
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determine appropriate governance regarding data ownership. Finally, the need for a ‘right to 

explanation’ will potentially limit the types of models that manufacturers are able to use in 

health-related applications. However, as we described earlier in this review, model 

interpretability is important in AI-based healthcare applications given the high stakes of 

dealing with human health, and this requirement may actually help AI applications become 

more reliable and trustable. In addition, this requirement of a right to explanation will hold 

the manufacturers of AI-based technologies more accountable.

The GDPR regulation has occurred so recently that the long-term effects remain to be seen. 

Companies may need to enact significant innovations in their practices in order to meet the 

new standards. The GDPR regulation may also eventually affect regulatory practices in other 

countries. We anticipate that the GDPR may potentially slow down AI implementation in 

healthcare in the short term owing to the stricter regulatory standards, but it may facilitate 

implementation over the long term by promoting public trust and patient engagement.

China is also a major player in AI in the global arena. With the world’s largest population 

and a relatively centralized healthcare system, data for training and validation of AI 

algorithms are vast. Healthcare equity has been a major concern due to the uneven 

distribution of resources between urban and rural areas. As such, AI technologies represent 

an opportunity to overhaul China’s medical system. The rapid adoption of mobile 

technology and increased Internet connectivity throughout China is projected to facilitate 

adoption of AI technologies, which could help make more efficient triage and referral 

systems for patients. Furthermore, Chinese health providers envision that the combination of 

AI technologies with wearable devices could assist with health maintenance as well as 

disease surveillance on a broad scale.

In July 2017, the China State Council issued a development plan for AI, including strong 

promotion of AI applications in the healthcare system. This plan issued favorable policies 

and funding for AI start-up companies and implementation efforts. Hundreds of new start-up 

companies working on AI applications in healthcare in China have emerged. Similar to how 

Google and Amazon are expanding into the health space in the United States, in China, 

Internet giants such as Alibaba, Tencent, and Baidu have also established their own groups 

to work on healthcare AI applications.

In terms of implementing AI technologies in real clinical practice, AI-based screening tools 

have already been deployed in clinical trials in multiple Chinese hospitals. These include AI-

based tools for the diagnosis of lung cancer, esophageal cancer, diabetic retinopathy, and 

general diagnostic assistance in pathology examinations. The first AI-powered medical 

device is expected to be approved by the Chinese Food and Drug Administration in the first 

half of 2019.

One example of a successful implementation in China is an AI-based screening and referral 

system for the diagnosis and referral of major eye and systemic diseases in the Kashi First 

People’s Hospital and its healthcare network. Located in the remote most western part of the 

Xinjiang autonomous region of China, this health system serves a population of 4.5 million 

people scattered across a mountainous area of 112,057 km2. This population has a high 
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prevalence of blinding eye diseases, including diabetic retinopathy, glaucoma, retinal vein 

occlusions, and age-related macular degeneration, as well as common chronic systemic 

diseases including diabetes, hypertension, cardiovascular disease, and stroke. This AI system 

employs retinal photographs captured by nonmydriatic fundus cameras to screen for and 

diagnose the aforementioned diseases. Preliminary results demonstrate high accuracy of the 

AI-generated diagnoses, comparable to that of a trained eye doctor.

Future directions

We anticipate that the fields that will see the earliest translation of AI-based technologies are 

those with a strong image-based or visual component that is amenable to automated analysis 

or diagnostic prediction—these include radiology, pathology, ophthalmology, and 

dermatology. Ophthalmology has seen the first FDA clearance for an autonomous screening 

tool, and more SaMDs are anticipated to come through the pipeline in the near future. 

Although fields requiring integration of many different types of data, such as internal 

medicine, or fields that have a prominent procedural component, such as the surgical 

specialties, may require a longer time before fully realizing the operationalization of AI-

based technology, research in AI-related applications across all specialties of medicine is 

rapidly advancing.

The implementation of AI-based technologies in healthcare will provide no shortage of work 

for the future. Specialties may decide to create organizations specifically oriented toward AI 

implementation, as the American College of Radiology has done with the creation of its 

Data Science Institute37. Having specific task force committees to deal with AI 

implementation issues may be useful for developing a common vision at a specialty-wide 

level.

Ongoing research will be needed to develop new AI algorithms for medical applications and 

to improve upon existing ones. In particular, interdisciplinary collaborations will be crucial 

to ensure that the goals of programmers developing the algorithms correspond with the goals 

of clinicians providing patient care. Development of a workforce that is cross-trained such 

that communication and collaboration are possible between physicians and healthcare 

providers, data scientists, computer scientists, and engineers will be crucial. While these 

technologies hold promise for increasing productivity and improving outcomes, it must be 

remembered that they, just like their human creators, are not infallible. It is necessary to 

evaluate and implement them with a critical eye, keeping in mind their limitations and 

educating policymakers to do the same.
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Box 1 |

Key terms in artificial intelligence

• Artificial intelligence: A branch of applied computer science wherein 

computer algorithms are trained to perform tasks typically associated with 

human intelligence.

• Machine learning: Providing knowledge to computers through data without 

explicit programming. Attempts to optimize a ‘mapping’ between inputs and 

outputs.

• Representation learning: Learning effective representations of a data source 

algorithmically, as opposed to hand-crafting combinations of data features.

• Deep learning: Multiple processing layers are used to learn representations of 

data with multiple layers of abstraction.

• Supervised learning: Training is conducted with specific labels or annotations.

• Unsupervised learning: Training is conducted without any specific labels, and 

the algorithm clusters data to reveal underlying patterns.

• Natural language processing: The organization of unstructured narrative text 

into a structured form that can be interpreted by a machine and allows for 

automated information extraction.
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Box 2 |

Examples of artificial intelligence technologies that have received FDA 
approval in the United States

• Arterys: Aids in finding lesions within pulmonary computed tomography 

(CT) scans and liver CT and magnetic resonance imaging (MRI) scans using 

AI to segment lesions and nodules. This is the first FDA-approved deep 

learning clinical platform.

• IDx-DR:Provides automatic detection of more than mild diabetic retinopathy 

in adults 22 years of age or older diagnosed with diabetes who have not been 

previously diagnosed with diabetic retinopathy. This is meant to be used in 

primary care settings with subsequent referral to an eye specialist if indicated 

and is the first autonomous AI diagnostic system, as no clinician 

interpretation is needed before a screening result is generated.

• Guardian Connect (Medtronic):Continuously monitors glucose and sends 

collected data to a smartphone app. This uses International Business 

Machines (IBM) Watson technology to predict major fluctuations in blood 

glucose levels 10–60 minutes in advance.
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Box 3 |

The case study of IDx-DR

The case of IDx-DR highlights one of the earliest successes of an Al-based technology 

completing the regulatory process in the United States. IDx-DR is a software program 

designed to perform screening for diabetic retinopathy at primary care offices, or more 

generally, in contexts where a provider specifically trained in eye care (e.g., an 

optometrist or ophthalmologist) is not readily available. The software program analyzes 

digital color photographs of a patient’s retinas using an AI algorithm to provide a 

screening result—either (i) “more than mild diabetic retinopathy detected; refer to an eye 

care professional” or (ii) “negative for more than mild diabetic retinopathy; rescreen in 

12 months” (https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/

ucm596575.htm). Although other devices with an AI component have been previously 

approved (Box 2), this is the first to provide a screening result without an image 

interpretation provided by a clinician: it is the first autonomous AI diagnostic system. 

Furthermore, instead of going through the traditional pathway, IDx-DR underwent the 

Automatic Class III or De Novo premarket pathway and also achieved Breakthrough 

Device designation. The De Novo pathway is for novel medical devices for which general 

controls provide reasonable assurance of safety and effectiveness (https://www.fda.gov/

MedicalDevices/DeviceRegulationandGuidance/HowtoMarketYour-Device/

PremarketSubmissions/ucm462775.htm); essentially, it is an alternative regulatory 

pathway for low- to moderate-risk devices. In the review process, the FDA based its 

clearance on the performance of the algorithm in a clinical trial of 900 patients 

(NCT02963441), which was conducted at ten primary care sites across the United States. 

The FDA was closely involved with advising and guiding the company throughout the 

clinical trial and in defining meaningful endpoints. This early involvement and active 

collaboration between the device manufacturer and the FDA undoubtedly facilitated the 

review. Early engagement with the FDA and pursuance of the De Novo pathway likely 

represents an advantageous strategy for other manufacturers of AI-based technologies to 

consider as well.
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Fig. 1 |. Potential roles of AI-based technologies in healthcare.
In the healthcare space, AI is poised to play major roles across a spectrum of application 

domains, including diagnostics, therapeutics, population health management, administration, 

and regulation. NIPT, noninvasive prenatal test. Credit: Debbie Maizels/Springer Nature
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Fig. 2 |. Integration of patient health information at multiple interfaces.
The vast quantity and accessibility of electronic health information will influence decision-

making on multiple fronts, including for patients, physicians, healthcare systems, healthcare 

providers, and regulatory bodies. Standardization of information storage and retrieval will be 

critical for facilitating information exchange across these multiple interfaces. Credit: Debbie 

Maizels/Springer Nature
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Fig. 3 |. Conceptual diagram of the FDA precertification for SaMD.
This approach represents an organization-centric evaluation to facilitate streamlined review 

and faster adoption of technology. Credit: Debbie Maizels/Springer Nature
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