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ABSTRACT

The potential for storm surge to cause extensive property damage and loss of life has increased urgency to

more accurately predict coastal flooding associated with landfalling tropical cyclones. This work investigates the

sensitivity of coastal inundation from storm tide (surge 1 tide) to four hurricane parameters—track, intensity,

size, and translation speed—and the sensitivity of inundation forecasts to errors in forecasts of those parameters.

An ensemble of storm tide simulations is generated for three storms in the Gulf of Mexico, by driving a storm

surge model with best track data and systematically generated perturbations of storm parameters from the best

track. The spread of the storm perturbations is compared to average errors in recent operational hurricane

forecasts, allowing sensitivity results to be interpreted in terms of practical predictability of coastal inundation at

different lead times. Two types of inundation metrics are evaluated: point-based statistics and spatially inte-

grated volumes. The practical predictability of surge inundation is found to be limited foremost by current errors

in hurricane track forecasts, followed by intensity errors, then speed errors. Errors in storm size can also play an

important role in limiting surge predictability at short lead times, due to observational uncertainty. Results show

that given currentmean errors in hurricane forecasts, location-specific surge inundation is predictable for as little

as 12–24 h prior to landfall, less for small-sized storms. The results also indicate potential for increased surge

predictability beyond 24 h for large storms by considering a storm-following, volume-integrated metric of

inundation.

1. Introduction

Coastal flooding caused by storm surge1 is one of the

most dangerous hurricane hazards, resulting in billions of

dollars of damage and loss of life. As such, the U.S. Na-

tional Weather Service and research community have

expended significant effort in recent years to improve the

prediction and communication of storm surge risks asso-

ciated with landfalling tropical cyclones and other coastal

storms (Morrow et al. 2015). The National Hurricane

Center (NHC) has recently developed new storm surge

watch, warning, and probabilistic inundation products, but

these storm-specific surge forecast products are not cur-

rently issued more than 48h in advance of anticipated

landfall because of the limited predictability of the hur-

ricane’s track, and thus of storm surge at different coastal

locations (NHC 2017). An indication of the uncertainty in

these predictions is the recent development of ensemble

prediction systems for surge both in research (Di Liberto

et al. 2011; Colle et al. 2015; Georgas et al. 2016) and in

operations [the creation of the NHC’s new probabilistic

surge (P-Surge) products; Taylor and Glahn 2008].

Without adequate advanced warning of this type of

hazard, it is difficult for public officials and members of

the public to plan and implement evacuations and to take

the other preparedness actions necessary to protect life

and property when a hurricane approaches the coast.

From an emergency management perspective, not only

are the timing and location of potential storm surge im-

portant, but also the peak magnitude of inundation,

likelihood of occurrence, length of coastline affected, and

inland extent of inundation. These concerns combined

with the difficulty of predicting the storm itself and

resulting surge at particular locations,motivate this study,Corresponding author: Kathryn Fossell, fossell@ucar.edu

1 In this work, we focus primarily on the predictability of storm-

induced inundation over normally dry land including the combined

impact of storm surge and tide, which is scientifically referred to as

storm tide. Following NOAA (2013), we refer to this as coastal

inundation or simply inundation. When referring to surge-related

predictability more generally, we conform to the NHC’s use of the

term storm surge in their storm surge watches, warnings, and po-

tential inundation maps, where the impact of tides is typically in-

cluded along with storm-induced inundation.
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which aims to build understanding about the practical

predictability of storm surge from landfalling tropical

cyclones and the contributions of different factors to

surge predictability.

While storm surge is sensitive to the bathymetry, to-

pography, and other characteristics of the landfall region,

it is also highly sensitive to attributes of the storm such as

size, intensity, speed, and track. Thus, the accuracy of

storm surge predictions is closely related to accuracy in

predictions of the storm itself (e.g., Zhong et al. 2010).

For this reason, in this study we focus primarily (but not

exclusively) on the contributions of forecast errors in

different storm parameters to limited surge predictability.

Several previous studies have looked at the sensitivity

of storm surge (both with and without tides) to storm

parameters such as track, speed, size, and intensity

(Weisberg andZheng 2006a; Irish et al. 2008;Rego andLi

2009; Zhong et al. 2010; Sebastian et al. 2014; Faivre et al.

2015). These studies, however, have generally focused on

one storm or on specific coastal areas with similar

bathymetric qualities. They alsomeasure sensitivity using

peak inundation at select observation points. Similar to

these examples, NOAA’s current efforts andmuch of the

body of research on storm surge prediction focuses on

simulating or predicting the water level at specific loca-

tions. Rego and Li (2009) evaluated the sensitivity to

storm parameters using two different measures, maxi-

mum at a point and volume, and found different results

depending on the metric used. This last study highlights

the importance of investigating different storm surge

metrics.

Building on this previous work, we investigate the

practical predictability of storm surge from tropical cy-

clones across a range of lead times, from hours to days

before landfall. Consistent with this goal, rather than fo-

cusing on accurately simulating the details of inundation,

we use an idealized experimental framework designed to

isolate the individual contributions of changes in four

storm parameters (landfall location, intensity, size, and

translation speed) to simulated surge-induced coastal

inundation. We start with a parameterized version of a

storm, perturb each storm parameter separately, and then

generate an ensemble of storm tide simulations for the

perturbed storms. Although we use ensembles, we do so

to represent the uncertainty in the various storm param-

eters and evaluate the relative sensitivities, not to pro-

duce probabilistic forecasts of surge from the storms

themselves. By recasting the variation of storm parame-

ters into characteristic errors at different forecast lead

times, we are able to quantify the contribution of forecast

errors in each parameter to practical predictability.

We examine the surge modeling results in terms of

inundation (including tide), which is the coastal flooding

that areas at risk may experience. Sensitivity of in-

undation is evaluated using two types of metrics: point-

based and integrated volume. We evaluate predictability

using different metrics in order to explore whether al-

ternative methods for measuring the skill of inundation

predictions can extend surge predictability to longer lead

times, when location-specific inundation from surge

cannot be accurately predicted.

Weperform experiments with idealized versions of two

historical storms, Hurricane Ike (2008) and Hurricane

Charley (2004), and a third hypothetical storm (‘‘Char-

ike’’) that has the size and intensity of Charley but the

track of Ike.2 These storms were chosen to represent a

range of reasonably plausible storm surge scenarios in

which to conduct our experiments, in two different areas

of the Gulf of Mexico. Our aim is not to simulate or un-

derstand the surge from either historical storm in detail,

but rather to use a systematically perturbed set of ex-

periments with these three storms to develop more gen-

eral conclusions about surge predictability given present

skill in tropical cyclone forecasts.

Hurricane Ike was a medium-sized storm [radius of

maximum winds (RMW); 73km (40n mi)] that tracked

west-northwest through the Gulf of Mexico. Ike made

landfall in the United States near Galveston, Texas

(Fig. 1), as a category 2 hurricane on the Saffir–Simpson

hurricane wind scale and produced widespread storm

surge along the Texas and Louisiana coasts (Berg 2014).

Hurricane Charley was a much smaller storm [RMW ,

11km (6n mi)] that crossed Cuba and turned northeast,

making U.S. landfall as a category 4 storm on the south-

western coast of Florida (Fig. 1). Compared to Ike,

Charley’s storm surge covered a much smaller area

(Pasch et al. 2011). The hypothetical storm Charike was

created to help investigate the reasons underlying the

differences between the Ike and Charley surge pre-

dictability results, especially the importance of bathy-

metric and coastline variations compared to storm

properties for limiting storm surge predictability.

By investigating how uncertainty in atmospheric pre-

dictions propagates into uncertainty in coastal inundation

predictions, using different metrics of inundation, we aim

to improve knowledge about the predictability of the

hurricane surge system. This knowledge can help hurri-

cane and surge modelers, forecasters, and forecast users

understand what aspects of coastal inundation can

2We also considered simulations of a second hypothetical storm,

‘‘Ikechar,’’ with the properties of Ike following the track of Char-

ley. However, because of concerns about properly imposing the

large size of Ike over the various track perturbations of Charley,

including traversing over Cuba, we decided to not include these

simulations in our experiments.
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meaningfully be predicted at different lead times, given

current hurricane forecast errors and potential future

hurricane forecast improvements. It also provides in-

formation about the current limitations of deterministic

and probabilistic surge predictions for different types of

tropical storms at different lead times. Our study does not

represent many important complicating factors in real-

world surge prediction, including surge model error,

three-dimensional ocean effects, wave coupling, and river

flows. Including these factors would likely further de-

crease the skill of the perturbations, and so we anticipate

that the estimates of practical predictability obtained

here serve as an upper bound for real-world practical

predictability of surge-induced coastal inundation from

hurricanes. More generally, this research contributes to

knowledge about coupled system predictability, which is

important given the growing emphasis on using coupled

modeling and other tools to extend weather predictions

into predictions of weather-related hazards and impacts

(NRC2010; NOAA2011; Jones andGolding 2014;Morss

et al. 2017).

The experiment design, model, and data used, and

perturbation methodologies are described in section 2.

A brief evaluation of the control simulations is pre-

sented in section 3. Results from the perturbed simula-

tions, different metrics of surge, and relative importance

of different storm parameters are discussed in section 4,

followed by a summary and discussion in section 5.

2. Methodology

The overall goal of the methodology is to conduct

a series of storm tide predictability experiments that

evaluate the changes in coastal inundation induced by

systematically generated storm perturbations. The ex-

perimental design uses an idealized ‘‘perfect model’’

framework, in which the sensitivity of coastal inundation

to storm forecast errors is evaluated with respect to a

model control simulation (section 2a). Perfect-model ex-

periments are an informative starting point for this type of

research, since they can advance fundamental knowledge

in ways that support interpretation of more complicated

results (e.g., Lorenz 1963, 1965, 1982; Houtekamer and

Derome 1994; Ehrendorfer 1997; Morss et al. 2001;

Walser et al. 2004; Collins et al. 2006). This approach is

also advantageous because it allows us to evaluate the

ensemble perturbations at every model node, rather than

only at the few locations where inundation observations

are available from the real storm (section 3).

We use a surge modeling setup designed to represent

how changes in hurricane parameters influence macro-

scale aspects of storm surge on the forecast time scales of

interest, while also remaining computationally feasible

(section 2b). In addition, to facilitate systematic pertur-

bation of different storm parameters, we use a parame-

terized version of real tropical storm wind fields (sections

2c and 2d). These choices mean that our simulations may

not accurately represent the details of coastal inundation

in specific locations, but they are appropriate given our

study’s goals and the idealized, perfect-model approach.

The results are examined using location-based and

integrated metrics of inundation (section 2e). The in-

tegrated metrics were tested to explore the potential for

extending skillful surge predictions to longer lead times,

when location-specific inundation forecasts have limited

skill. This area-integrated approach is similar to opera-

tional weather prediction products that forecast the

likelihood of a tornado or heavy rainfall in a region,

which can provide useful information at longer lead

times when the probability of a hazard occurring at a

specific location is extremely low.

a. Experiment design

First, we use best track data from the Automated

Tropical Cyclone Forecast system (ATCF; Sampson

and Schrader 2000) for each hurricane (Ike, Charley,

Charike3) to generate a parameterized version of the

storm that is used to force the Advanced Circulation

(ADCIRC; Luettich et al. 1992; Luettich andWesterink

2004) model, as described in sections 2b and 2c. For the

two real storms, themaximumwater level (surge1 tide)

produced by these simulations is evaluated qualitatively

FIG. 1. Storm tracks for Hurricane Ike (solid) and Hurricane

Charley (dashed).

3The hypothetical best track file for Charike is achieved by

modifying Ike’s best track to reflect the intensity and size of

Charley, and keeping the track and timing identical to Ike.
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and, where possible, using available water level obser-

vations to confirm that the simulations are realistic

(section 3). These best track simulations of inundation

are then used as the control (CNTRL) experiments for

each storm.

We then independently perturb four storm parame-

ters as described in section 2d and rerun the ADCIRC

model for each perturbed storm. This provides an en-

semble of coastal flooding simulations for each storm,

with the ensemble spread determined by how the dif-

ferences in the meteorological inputs are translated by

ADCIRC into differences in inundation. For each per-

turbed run, the resulting inundation is compared to the

corresponding CNTRL, using the metrics presented in

section 2e, to quantify the sensitivity of inundation to

changes in the four perturbed storm attributes for the

different storms.

b. Storm surge and inundation modeling and tidal

forcing

To simulate the inundation produced by different

storms, we used model version 51 of ADCIRC in two-

dimensional mode. ADCIRC is a depth-integrated

barotropic hydrodynamic circulation model that solves

the shallow-water equations to produce domainwide

water levels.

The ADCIRC model is used in conjunction with a

finite-element mesh of varying resolution. The mesh

used in this study was originally built and validated by

Riverside and AECOM (Riverside Technology and

AECOM 2015), and was provided to us by the National

Ocean Service (NOS; Feyen et al. 2015), who owns and

maintains the grid. It consists of almost 3 million nodes

and encompasses a domain that extends along the coast

from Texas to Maine and inland to the 10-m contour

with a node spacing as small as 200m. The bathymetry

and topography of themesh for the region of interest are

illustrated in Fig. 2.

We selected this mesh for this set of experiments be-

cause its higher-resolution meshing alongshore and over

inland areas allows the model to resolve many aspects of

inundation such as land surface heterogeneities. At the

same time, the mesh covers a large geographic area,

which is important for performing experiments with

hurricanes in different areas of theU.S. coastline and for

allowing larger track perturbations representing fore-

cast errors at several-day lead times. A model time step

of 2 s is used for the simulations.

Tidal forcing is applied at the open ocean boundary of

the grid in the Atlantic Ocean with 13 tidal constituents

from the TPXO7.2 tidal atlas (Riverside Technology

and AECOM 2015 and references within). This forcing

is started approximately 15 days prior to applying me-

teorological forcing to allow the state to come to equi-

librium. During the first 10 days of tidal forcing, a

hyperbolic tangent ramping function is applied to

ensure a smooth spinup of the basins. The tidal forcing

continues through the simulation and thus results pre-

sented here include the tidal signal. We have chosen to

include the tides in our experiments in order to repre-

sent the total inundation that coastal communities

would experience.

Hurricane Ike’s tidal spinup begins 23 August and

ends 7 September 2008, at which point we begin apply-

ing the meteorological forcing (described in sections 2c

and 2d) in addition to the tidal forcing. Hurricane

Charley’s spinup period is from 23 July to 9August 2004.

Charike’s spinup is the same as for Ike.

FIG. 2. Bathymetry and topography of the area of interest in the ADCIRC mesh. Negative

(positive) values denote depths in meters below (above) mean sea level.
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c. Meteorological forcing

For the CNTRL simulations for each storm, the storm

parameters in the best track data are used to prescribe an

asymmetric gradient wind field (Mattocks et al. 2006;

Mattocks and Forbes 2008) that evolves in time, which is

then used to force the ADCIRCmodel. This asymmetric

wind model modifies the Holland (1980) radial profile

of gradient wind to account for the asymmetric shape of

hurricane wind fields by including a different radius of

maximum winds in each of the four storm quadrants. For

each entry in the best track data file (typically every 6h),

ADCIRC computes the speed, direction, parameter B

from Eq. (3) of Holland (1980) (Holland B parameter

hereafter), and radius of the 34-, 50-, and 64-kt isotachs

(1kt5 0.5144 ms21) in each of the four quadrants. From

these parameters, the model then interpolates the pres-

sure and wind velocity to each node of the ADCIRC grid

for every model time step.

The meteorological forcing is applied after the

ADCIRC tidal spinup described in section 2b. For Hur-

ricane Ike, this begins on 7 September 2008 (approxi-

mately 6 days prior to landfall) and continues until

approximately 1 day after landfall, resulting in a total

simulation time of approximately 22 days when consid-

ering both tidal spinup and meteorological forcing. For

Hurricane Charley, the meteorological forcing begins on

9 August 2004 (approximately 5 days prior to landfall),

with a total simulation time of 21 days. As with the tidal

forcing, a hyperbolic tangent ramping is applied to the

first 24h of meteorological forcing to allow for a smooth

adjustment of water level as the wind and pressure are

interpolated to the grid.

d. Meteorological perturbations

For the perturbed simulations, we modify the storm in

the CNTRL simulations by separately perturbing four

storm parameters: storm track (TRACK), maximum

wind speed (VMAX), storm translation speed (SPEED),

and the size of the storm (SIZE). All perturbations are

applied beginning approximately 72h prior to landfall.

We focus on a 3-day lead time because initial experiments

indicated that this easily contains the predictable storm

surge behavior, in other words, that running for longer

lead times did not provide additional information.

1) TRACK

The track perturbations are produced by applying a

rate of change in ‘‘degrees per day’’ to the angle of storm

motion, resulting in new storm tracks that veer to the left

and right of the CNTRL storm. The perturbed tracks are

designed so that at 72h (landfall), their spreadmimics the

width of the NHC 2010–14 cone of uncertainty, which

encompasses two-thirds of the historical official forecast

errors in track over that 5-yr period (Cangialosi and

Franklin 2016). The resulting track perturbations for each

storm are shown in Fig. 3. We depict the results in terms

of the distance between the landfall locations of the

perturbed tracks and that of the CNTRL track.

This track perturbation approach is modeled after

Fleming et al. (2008), but our method preserves storm

translation speed, so that in each perturbed track the

storm moves the same distance in each time period. This

results in different landfall times for each perturbation

(e.g., Hurricane Ike perturbed to the left will have more

water to traverse before making landfall) (Fig. 3). Thus,

we also compress or expand the time variation of storm

intensity so that the intensity at landfall is the same in each

track perturbation. However, the phase of the tide varies

with the time of landfall.

2) VMAX

TheVMAXperturbations are produced by applying a

monotonic rate of change in maximum wind speed,

FIG. 3. TRACK perturbations for (left) Hurricane Ike and (right) Hurricane Charley.

DECEMBER 2017 FO S SELL ET AL . 5107



resulting in storms that have greater or weaker intensity

than theCNTRL storm at landfall. Themagnitude of the

wind perturbations was chosen to mimic two-thirds of

the mean error in NHC 2010–14 intensity forecasts

(Cangialosi and Franklin 2016), as in the TRACK per-

turbations. In addition, we added one larger perturba-

tion (positive and negative) to the ensemble to evaluate

sensitivity to larger changes in intensity. This results in

eight perturbations of64,612,620, and628kt at 72 h,

which encompasses about 87% of the mean error in

2010–14 NHC intensity forecasts.

To run ADCIRC with central pressures that are

consistent with the perturbed VMAX values, we used

the relationships in Eqs. (7) and (8) fromHolland (1980)

to compute new central pressure values at each time for

each perturbed maximum wind, with the Holland B

parameter held constant. Since these computed central

pressure values are based on Holland (1980) relation-

ships and may not reflect the pressure in the best track

data, an additional correction is made to account for

this. At each time, the derived best track central pres-

sure is computed from Eq. (1) in Holland (1980) based

on the original recorded best track maximum wind. The

difference between these derived and recorded pressure

values for the CNTRL storm is treated as a bias cor-

rection and is added to the central pressure computed at

each time on the perturbed maximum wind value.

3) SIZE

The size perturbations are generated by multiplying

the wind radii (34, 50, and 64kt) for each quadrant by a

percent change, holding constant the maximum wind, to

derive wind profiles that cover a larger or smaller area

than the CNTRL storm. Unfortunately, because of

limitations in observations, hurricane wind radii are

difficult to verify (Cangialosi and Franklin 2016), and

reliable estimates of errors in hurricane size forecasts

are not readily available (e.g., Knaff and Sampson 2015;

Cangialosi and Landsea 2016; Knaff et al. 2016).

Nonetheless, the NHC does provide wind radii as part of

the best track files, primarily based on forecaster anal-

ysis given available land- and satellite-based observa-

tions. Studies have shown that the forecast error in the

34-kt radii estimates is about 30–40n mi (56–74 km) at

72-h lead time (Knaff et al. 2007; Landsea and Franklin

2013; Sampson and Knaff 2015; Cangialosi and Landsea

2016; Knaff et al. 2016).

Based on these previous studies, we perturbed storm

size by choosing the extremes of the perturbations to be

half and double the original size, with a sampling of

perturbations in between: (250%,243%,233%,220%,

25%, 50%, 75%, and 100%). A ramping is applied during

the 24h prior to the start of the 72-h forecast period to

avoid a sudden unrealistic increase or decrease in

the storm size. The size perturbation is held constant

throughout the 72-h integration. Results are depicted in

terms of the maximum difference in the radius of the

34-kt isotach at landfall between the perturbed storm and

the CNTRL storm.

4) SPEED

The perturbations in storm translation speed are pro-

duced bymodifying the times in the best track files so that

the stormmakes landfall earlier or later than theCNTRL.

Specifically, for each perturbation, each forecast hour in

the best track file is multiplied by a specified (constant)

percent. For example, to increase storm speed by 10%

(the110% perturbation), the position for 120h becomes

valid at 108h. Along-track errors in hurricane forecasts

have been noted to be slightly larger than the cross-track

errors (Cangialosi and Franklin 2016). Thus, we chose the

SPEED perturbations (115%, 110%, 15%, 25%,

210%, 215%, and 220%) to produce along-track

spread that is slightly larger than the NHC 2010–14

mean error in position forecasts at 72h. Note that this

method changes the timing of landfall, and so it changes

the impact of tides among the perturbed simulations.

Similar to the TRACKperturbations, results are depicted

in terms of the along-track distance of the landfall loca-

tion of the perturbed storm from that of the CNTRL.

e. Metrics

Rather than evaluate storm surge predictability using

the maximumwater level above the geoid (e.g., mean sea

level) at any offshore or land locations (e.g., Irish et al.

2008, references within), here we focus primarily on in-

undation. We define inundation depth d as the water

depth (storm surge1 tide) over normally dry land in the

ADCIRC grid, where normally dry land is defined as

nodes above themean higher high water (MHHW)mark,

or nodes specifically initialized as dry on the mesh. Be-

cause we reference the inundation metrics to MHHW,

which is the mean water level for a location at high tide,

the results can be interpreted practically as the combined

flooding impact from storm surge and tide over areas

normally unaffected by tide.We usemetrics that quantify

inundation instead of the maximum water level, much of

which is offshore, in order to evaluate the predictability of

storm surge in terms of flooding over land—which is the

surge-related information needed by emergency man-

agers and coastal populations to make risk management

decisions as a tropical cyclone approaches.

We evaluate inundation depth using two types of

metrics. The first type is point-basedmetrics [e.g., spatial

correlation coefficient r2 and root-mean-square error

(RMSE)]. By measuring differences between the
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control and perturbed simulations using r2 and RMSE,

we assess sensitivity of inundation across many specific

locations. For the r2 and RMSE metrics, we use the

maximum inundation at each point, at whatever time

during the simulation it occurs, and do not area weight

the control–perturbation pairs. No distinction is made in

the location of inundation depth points based on local

geographical features (e.g., estuaries, rivers), since our

emphasis is not on the details of inundation produced by

these complex local effects.

While point-based metrics such as r2 and RMSE are

commonly used to evaluate storm surge predictions,

they can also be noisy owing to the finescale heteroge-

neity of the land characteristics and inundated locations.

As discussed above, we also wanted to explore whether

metrics that measure inundation integrated across

points have the potential to enhance the predictability of

storm surge, in other words, to extend skillful pre-

dictions to longer lead times. Thus, we also introduce a

second type of metric, an integrated measure referred to

as inundation volume.

To compute inundation volume, we multiply the in-

undation depth by the cell area and sum over nodes that

are normally dry (above MHHW) where the inundation

depth exceeds 1m.4 To filter out inundation in outlying

areas far away from landfall that are not related to the

primary geographic region of surge-induced inundation,

we also trim the left- and rightmost 2.5% of the in-

undation volume. Henceforth, we refer to this trimmed

inundation volume as simply inundation volume. Note

that while r2 and RMSE are applied to the maximum

inundation depth at each point throughout each run,

which can occur at different times, the inundation volume

metric occurs at a single time—the time of maximum

inundation volume—which can vary from run to run.

We examine two measures of inundation volume:

storm following and fixed location. The storm-following

measure computes the inundation volume (above 1m)

where the inundation occurs for each (perturbed or

CNTRL) storm. The fixed-location measure computes

inundation in a fixed geographic region, regardless of

where the storm goes. We designed the fixed-location

measure to evaluate the predictability of integrated

(rather than point based) coastal inundation in a given

region that may be of interest to emergency manage-

ment personnel and coastal populations for making

evacuation decisions. The fixed-location inundation re-

gion can be defined anywhere of interest; here, we

choose it to be the trimmed area inundated by the

CNTRL storm (i.e., all points in the CNTRL run at the

time of greatest inundation volume where d $ 1m and

between the 95% bounds).

3. Evaluation of control simulations of surge and

inundation

Before examining surge predictability, we evaluate our

CNTRL experiments, to confirm that our ADCIRC

modeling is doing a sufficiently realistic job of translating

storm characteristics into storm surge and inundation for

the purpose of our experiments. For Hurricane Ike, the

maximum water level in the control simulation surpasses

6m, with a spatial coverage that spreads from the Gal-

veston Bay area to the east (Fig. 4). Qualitatively, this is

consistent with observations of Ike’s surge (Berg 2014).

Because the storm surge from Hurricane Ike was

widespread, observations of water level were available

from multiple U.S. Geological Survey (USGS) pressure

sensors. To evaluate Ike’s CNTRL qualitatively, we

used data from the 38 USGS sensors that recorded high

water marks (East et al. 2008), were within 500m of a

mesh point in the ADCIRC grid, and were categorized

as ‘‘surge only’’ (i.e., did not include factors not repre-

sented in our modeling, such as freshwater riverine

flows, beach waves, or other unresolved processes).

Each observation is compared to themodeledmaximum

water level at the closest ADCIRC mesh point.

Figure 5 shows a scatterplot of observed versus sim-

ulated high water marks. Timing of the simulated surge

was also realistic compared to time series of observed

water height from several NOAA buoys, such as at Port

Arthur, Texas (8770475; NOAA/NOS/CO-OPS 2016),

and the closest mesh point (not shown). Other re-

searchers have focused on simulating the details of Ike’s

surge more accurately (Kennedy et al. 2011; Hope et al.

2013; Kerr et al. 2013; Sebastian et al. 2014), for exam-

ple, by using a more geographically focused, higher-

resolution mesh and including a wave model. However,

our qualitative evaluation and the correlation of 0.63

with observations indicate that the macroscale behavior

of the Ike CNTRL simulation is sufficiently realistic to

suit our goal of investigating the sensitivity of coastal

inundation to large-scale errors in hurricane forecasts.

Because Hurricane Charley’s surge affected only a

small area, only one NOAA tide gauge was affected

(Wang et al. 2005). So, we evaluate the CNTRL simula-

tion qualitatively. In Charley’s CNTRL, the spatial cov-

erage of the surge is much smaller than in Ike, with

maximum water levels confined to the Fort Myers region

nearing 4m (Fig. 6). This is consistent with visual reports

(Pasch et al. 2011) and other simulations of Hurricane

Charley storm surge (Weisberg and Zheng 2006b).

4The measurement of 1m roughly matches the 3-ft NWS watch

and warning threshold for coastal flooding.
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4. Results from sensitivity experiments

We now investigate the sensitivity of surge forecasts

to changes in different storm parameters by comparing

the perturbed simulations to the control simulations for

each storm.We start with a brief qualitative comparison,

and then the remainder of this section focuses on

quantitative comparison using the different metrics of

coastal inundation discussed in section 2e.

Examining maps of the maximum water level pro-

duced by different perturbations for Ike (Fig. 7) and

Charley (Fig. 8), we see that the changes in surge pro-

duced by the storm perturbations behave as one would

expect. A more intense or larger storm results in larger

surge (Figs. 7d,f and 8d,f), and a storm track veered to

the left moves the storm surge with it, to some extent

(Figs. 7a and 8a). The amount of overlap in areas that

are inundated varies with the storm and the parameter

being perturbed. The primary differences between Ike

and Charley that contribute to the differences in how

surge responds to the storm perturbations are the size of

the storm, the bathymetry within the track envelope,

and, to a lesser extent, the intensity; the role of these

differences is discussed further below when we compare

with Charike.

a. Point-based metrics of sensitivity and predictability

1) TRACK

Figure 9 depicts the sensitivity of coastal inundation to

the hurricane track perturbations using point-by-point

comparisons of inundation depth (r2 and RMSE; see

section 2e), for each of the three storms examined. This

location-specific inundation depth for all three storms

exhibits a strong sensitivity to the storm track, as in-

dicated by the rapid decrease in correlation coefficient

(increase in RMSE) in each panel as the track deviates

farther to the left or right of the control. This broad

pattern is expected since the level of inundation at any

given point depends on the hurricane’s track, as dem-

onstrated by previous research (e.g., Zhong et al. 2010).

For a small storm like Charley, in particular, perturbing

the storm’s track produces inundation in completely

different locations (Figs. 8a,b).

Comparing the results across the three panels in Fig. 9,

we also see significant differences among the three

storms. These differences indicate that the sensitivity of

coastal inundation to hurricane track perturbations is

influenced by the characteristics of both the storm and

the landfall location. First, we compare the 61.0 per-

turbations (6;50km fromCNTRL landfall) for Ike and

FIG. 4. Maximum water level in meters above mean sea level for CNTRL simulation of Hur-

ricane Ike. Black line denotes storm track.

FIG. 5. Comparison of USGS pressure sensor observations for

Hurricane Ike to CNTRL (see section 3). The r2 is 0.63, the scatter

index is 0.41, and the RMSE is 1.18m.
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Charike (Figs. 9a,b), which represent storms of different

size and intensity making landfall in the same general

location. This shows that Ike’s r2 drops from 1 in the

control to about 0.8 (Fig. 9a), while Charike’s r2 drops to

about 0.4 (Fig. 9b). In other words, even with similar

bathymetric properties influencing inundation, Char-

ike’s much smaller size leads its point-based inundation

depth to be much more sensitive to track perturbations

than the larger Ike.

Second, we compare Charike with Charley (Figs. 9b,c),

which represents the same storm making landfall in a

different location. In this comparison, the correlation

coefficient for the 61.5 (6;50 km from CNTRL land-

fall) perturbations drops from 0.4 for Charike to less

than 0.2 for Charley. Since the storm size and intensity

remain the same in this comparison, this indicates that

(at least for a storm of the size and strength of Hurricane

Charley) the differences in bathymetry over which

the storm travels (Fig. 2) and the landfall location

also influence the sensitivity to track perturbations. In

other words, performing experiments with the hypo-

thetical Charike helps us understand how different

hurricane size and intensity influences the predictability

of inundation, compared to different bathymetry and

landfall location.

What do the results in Fig. 9 mean in terms of

the practical predictability of location-specific surge-

induced inundation, based on typical errors in hurricane

track forecasts? To interpret the results from the sensi-

tivity experiments from this perspective, we overlay on

the x axis of Fig. 9 a mapping of the distance of the track

perturbation from the control at landfall into the lead

times at which current hurricane forecasts exhibit that

mean level of error, based on the NHC 2010–14 track

forecast error statistics. Viewing the sensitivity results in

terms of characteristic forecast errors also allows us, in

later sections, to directly compare the surge pre-

dictability implications of forecast errors in different

storm parameters.

As Fig. 9 shows, when accuracy is measured using

point-based metrics, the predictability of inundation is

severely limited by the average uncertainty in current

forecasts of hurricane track. Using a correlation co-

efficient of 0.6 as a general guide, at best, a large storm

like Hurricane Ike retains some predictive skill for

location-specific inundation for about 24 h prior to

landfall. Themuch smaller storms, Charley andCharike,

reveal a loss of predictive skill for location-specific in-

undation by 12h. As discussed above, this is illustrated

in Figs. 8a and 8b compared to Fig. 6, where a relatively

small change in Charley’s track produces inundation in

different locations.

An alternative way of interpreting these results is in

terms of the hurricane forecast accuracy (on average, or

in a specific case) that would be required for providing

useful forecasts of location-based inundation depth at a

specified lead time. In order for forecasts to provide

skillful predictions of coastal inundation depth at spe-

cific locations at least two days in advance of landfall,

track forecasts for a small storm such as Charley would

need bemuchmore accurate, exhibiting only about 25%

of the mean error in current Atlantic tropical cyclone

forecasts.

2) VMAX

Results for the VMAX perturbations are shown in

Fig. 10, for Ike and Charley. The point-by-point in-

undation depth exhibits similar sensitivity to VMAX for

both storms, as measured by correlation. Overall,

Figs. 7c,d and 8c,d show that increasing storm intensity

produces increased surge, as in previous related work

(Weisberg and Zheng 2006a; Sebastian et al. 2014;

Faivre et al. 2015). However, because varying intensity

produces little change in the location of inundation

along the coast (holding track fixed; Figs. 7c,d and 8c,d),

the point-based correlation coefficient shows little

FIG. 6. As in Fig. 4, but for Hurricane Charley.
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sensitivity to VMAX perturbations for either storm.

Similarly, for the smaller storm Charley, RMSE shows

limited sensitivity to VMAX.

For the larger storm Ike, RMSE shows more sensi-

tivity to VMAX, likely corresponding with the change

in maximum water levels shown for the VMAX per-

turbations in Figs. 7c and 7d. To evaluate the practical

implications of this RMSE sensitivity to changes in

VMAX for Hurricane Ike (Fig. 10a), we can compare

these results with those for changes in Hurricane Ike’s

TRACK (Fig. 9a), from the perspective ofmeanVMAX

and TRACK forecast errors at different lead times. This

comparison shows that an RMSE value of about 0.6 is

reached at about 72-h lead time in VMAX, but at only

24-h lead time in TRACK. Even for the larger VMAX

perturbation, TRACK perturbations produce a larger

decrease in predictive skill. This suggests that, on aver-

age, the error in current hurricane track forecasts is

more limiting to storm surge predictability than the er-

ror in current intensity forecasts, as measured by the

point-based RMSE or correlation coefficient metrics.

3) SIZE

Results from the SIZE perturbations for Ike and

Charley are shown in Fig. 11. For Ike, which was

already a large storm to begin with, increasing or de-

creasing the storm’s size produces an increase in RMSE

for inundation. For increasing or decreasing size, this

likely reflects the increased or decreased spatial area

inundated as well as a corresponding increase or de-

crease in water level at specific locations, as illustrated in

Figs. 7e and 7f. Charley also exhibits sensitivity to size

FIG. 7. Maximum water level in meters above mean sea level for Hurricane Ike perturbations: (a) TRACK

26.08 day21, (b) TRACK16.08 day21, (c) VMAX228 kt, (d) VMAX128 kt, (e) SIZE250%, (f) SIZE1100%,

(g) SPEED 220%, and (h) SPEED 115%. Black line denotes storm track.
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perturbations (Fig. 11b), with overall spatial patterns

similar to Ike (Figs. 8e,f). These results are consistent

with previous studies concluding that storm surge is

sensitive to storm size and generally increases or de-

creases with increasing or decreasing size, respectively

(Weisberg and Zheng 2006a; Irish et al. 2008; Faivre

et al. 2015).

The translation of forecast SIZE errors into lead time

in Fig. 11 is based on Cangialosi and Landsea (2016).

This emphasizes the large contribution of observational

uncertainty in storm size forecast errors. Errors char-

acteristic of 12-h forecasts are 37km, which encom-

passes all of the SIZE perturbations for Charley, and

much of the range of perturbations for Ike. Comparison

of Figs. 9–11 indicates that at short forecast lead times

(e.g., less than 12h), SIZE errors, mainly due to obser-

vational uncertainty, will dominate uncertainty in point-

based coastal inundation forecasts. At lead times of 12 h

or greater, TRACK forecast errors become the greatest

limitation of predictive skill, followed by SIZE errors

and then VMAX.

4) SPEED

The results from the SPEED perturbation runs

(Fig. 12) show that location-based inundation depth ex-

hibits little sensitivity to changes in storm translation

speed for either Ike or Charley, as indicated by the high

correlation values and low RMSE. When SPEED is

perturbed, the spatial extent and magnitude of the max-

imum water levels remain relatively unchanged in both

Hurricane Ike and Hurricane Charley (Figs. 7g,h and

8g,h, respectively). Thus, for these storms the point-based

inundation is relatively insensitive to errors in forecasts of

storm speed, compared to the other storm attributes.

This differs from conclusions from other studies (e.g.,

Zhong et al. 2010; Faivre et al. 2015) who conclude that

storm surge is sensitive to storm speed when considering

peak surge values at specific locations. One reason that

FIG. 8. Maximum water level in meters for Hurricane Charley perturbations: (a) TRACK24.58 day21, (b) TRACK 14.58 day21, (c) VMAX

228kt, (d) VMAX 128 kt, (e) SIZE250%, (f) SIZE1100%, (g) SPEED 215%, and (h) SPEED110%. Black line denotes storm track.
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our results may differ is that we consider the r2 and

RMSE of inundation depth across the inundated region,

as opposed to selected observation points. Note that

changing SPEED does alter the phasing of landfall rel-

ative to the tide, which is included in our experiments.

Thus, the low sensitivity of inundation to SPEED sug-

gests that the storm-induced surge makes a greater

contribution to inundation than the tide for these

storms. Sensitivity to SPEED is likely to be greater in

coastal regions where the tidal signal is stronger.

The change in storm speed does change the timing of

landfall, and thus uncertainty in SPEED leads to un-

certainty in timing of inundation (which can be impor-

tant for evacuation decisions). These differences are not

clearly shown in the r2 and RMSE metrics, and are dis-

cussed in the next section.

b. Inundation volume: Toward a storm-following

integrated metric of coastal inundation

The results shown above begin to quantify the practical

predictability of location-specific coastal inundation

across a range of lead times. However, Figs. 7 and 8

suggest that the point-based metrics do not fully capture

the information that the experiments provide about the

predictability of surge. In particular, Figs. 7 and 8 suggest

that theremaybe a spatially integratedmetric that retains

predictive skill for longer lead times. To quantify the vi-

sual impression, we examine results from the same set of

experiments using inundation volume metrics (section

2e), that is, a bulk characterization of the inundation. This

allows us to explore whether any predictability is gained

by integrating inundation across a region, instead of using

point-based metrics.

We use two measures of inundation volume (storm

following and fixed location; see section 2e), to explore

the predictability of coastal inundation where the storm

FIG. 9. Correlation coefficient (blue) andRMSE inmeters (red) of

the point-by-point inundation produced by TRACK perturbations

compared to CNTRL for (a) Ike, (b) Charike, and (c) Charley.

Shaded red areas translate forecast errors in terms of distance into

lead time, based onmean track forecast errors at different lead times.

Black circles surround the correlation coefficients for the perturba-

tions representing6;50 km from CNTRL landfall. Blue horizontal

dashed line represents a correlation coefficient of 1.0.

FIG. 10. As in Fig. 9, but for VMAX perturbations for

(a) Hurricane Ike and (b) Hurricane Charley.
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goes (storm following) with that in a specific region

(fixed location). The storm-following measure allows us

to evaluate predictability of the volume of coastal in-

undation from storm tide associated with a certain type

of storm wherever that inundation occurs (even when

there is significant uncertainty in the landfall location).

The fixed-location measure may help to discern pre-

dictability for a particular region for example, for

emergency managers and coastal populations who are

making evacuation decisions for that region. Since the

storm-following inundation volume captures the full

inundation, wherever it occurs, it can be larger than the

fixed-location inundation volume because the area of

inundation expands outside the fixed location when the

storm is larger or stronger than the CNTRL storm.

The inundation volume metrics for the TRACK per-

turbations of Ike, Charley, and Charike are plotted in

Fig. 13. Note that for our initial exploration of inundation

volume, we are using a total volume measure which does

not specify inland or coastal extent to the left or right of the

storm center; as shown in Figs. 4 and 6–8, the vast majority

of the inundation is to the right of the storm track.

For Hurricane Ike, when the storm track is perturbed

to the left of the control, the inundation volume de-

creases rapidly, in both measures. However, when the

storm is perturbed to the right, both the storm-following

and fixed-location inundation volumes remain fairly

constant for the first few perturbations (Fig. 13a).

Compared with Fig. 9a, this indicates that Ike’s in-

undation exhibits less sensitivity to those TRACK per-

turbations when using the integrated metrics than the

point-based metrics. In other words, even if the storm

track veers 100 km to the right of the forecast, Ike’s in-

undation volume remains predictable, overall and in the

specific area near Galveston inundated by Ike’s storm

surge. This suggests that, at least for a large storm like

Ike, spatial integration of the inundation may provide a

metric with enhanced predictability compared with

point-specific measures.

For Hurricane Charley and Charike, however, the

storm-following and fixed-location inundation volumes

aremore sensitive toTRACKperturbations (Figs. 13b,c).

This suggests that even with an integrated metric, the

coastal inundation produced by small storms is highly

sensitive to the storm’s track and the characteristics (ba-

thymetry, topography) of the landfall region. In other

words, even though the surge bulge looks similar in maps

such as Figs. 8a and 8b compared to Fig. 6, the inundation

over land can be quite different.

To interpret the inundation volume results in the

context of practical predictability at different lead times,

we again overlay on the x axis of Fig. 13 a translation of

FIG. 11. As in Fig. 9, but for SIZE perturbations for (a) Hurricane

Ike and (b) Hurricane Charley.
FIG. 12. As in Fig. 9, but for SPEED perturbations for

(a) Hurricane Ike and (b) Hurricane Charley.
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the mean hurricane track forecast error in terms of

distance into lead time, based on theNHC 2010–14 track

error statistics. The results suggest that at least for track

perturbations to the right of the control, storm-following

inundation volume retains predictability out to 72 h for

Ike, which is much greater than with the location-

specific inundation metrics discussed in section 4a(1).

However this is not the case for Charley or Charike, for

which predicting coastal inundation within 24h of

landfall remains difficult even with integrated metrics.

For the intensity (VMAX) and storm size (SIZE) per-

turbations, the sensitivity results for the inundation vol-

ume metrics reveal a quasi-linear behavior that is similar

for both Ike and Charley (Figs. 14 and 15). The results are

similar to those presented inRego andLi (2009), where an

increase or decrease in hurricane intensity or size leads

to a corresponding increase or decrease in inundation

volume. The change of inundation volume across the

range of perturbations is approximately a factor of 10 for

both Ike and Charley, indicating that both intensity and

size forecast errors can be important in ways not fully

captured by the point-based r2 and RMSE metrics.

Next, we compare the results in Figs. 13–15 in terms of

lead time. For Ike it appears that VMAX and SIZE

perturbations have a greater effect on inundation vol-

ume than TRACK perturbations, particularly when we

consider a storm-following metric. For instance, VMAX

or SIZE perturbations characteristic of 72-h forecast

errors produce a factor of 2 or greater change in the

inundation volume relative to CNTRL. TRACK per-

turbations produce a comparable change only for per-

turbations to the left of the track in CNTRL. For tracks

to the right, the storm-following inundation volume

exhibits less change.

For Charley, on the other hand, changes in storm-

following inundation volume produced by TRACK

perturbations still dominate those produced by changes

in VMAX or SIZE. These results suggest that the rela-

tive importance of perturbations (or forecast errors) in

different storm parameters varies with the surge metric

and the storm.

The inundation volume results from the SPEED

perturbations are shown in Fig. 16. Similar to the point-

based results (Fig. 12), inundation volume exhibits little

sensitivity to the translation speed of the storm aside

from the timing of inundation (not shown). For both Ike

and Charley, slowing the storm produces an increase in

inundation volume, similar, but lower in magnitude, to

results shown byRego andLi (2009). For Ike, comparing

Fig. 16 with Figs. 13–15 indicates that inundation volume

is less sensitive to changes in SPEED than changes in

TRACK, VMAX, or SIZE. For Charley, changes in

SPEED produce changes in inundation volume that are

smaller than changes in TRACK or SIZE, but of similar

magnitude to changes in VMAX; for example, the

slowest storm shows an increase in inundation volume

that is approximately equivalent to a 28-kt increase in

storm intensity, to a category 5 storm (Fig. 14).

When interpreting the results from the translation

speed perturbations, it is important to consider the role

of tides in the inundation. This tidal signal can be seen

with the increase of inundation volume in the slowest

and fastest storms for Hurricane Charley (Fig. 16b); the

temporal displacement of landfall time for these storms

is approximately 10 h, which covers most of the tidal

period of that region. For Hurricane Ike, on the other

FIG. 13. Storm-following (blue) and fixed-zone (green) in-

undation volumes (km3) produced by TRACK perturbations

compared to CNTRL for (a) Ike, (b) Charike, and (c) Charley. As

in Fig. 9, shaded red areas translate forecast errors in terms of

distance into lead time. Green horizontal dashed line represents

inundation volume of CNTRL.
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hand, the tidal signal is not as evident. These results

indicate that the tidal contribution is a larger portion of

the inundation for a smaller storm with a small in-

undation magnitude compared to a large storm for

which the magnitude of the surge from the storm itself

may overwhelm the tidal contribution.

The impact of tides on inundation volume un-

doubtedly plays a larger role for regions in which tides

are larger (e.g., the U.S. East Coast). For example, Colle

et al. (2008, 2015) show the importance of the tidal phase

for coastal inundation in the New York City region.

Given the large population at risk along the East Coast,

the contribution of tides to the predictability of coastal

inundation is an important area for future work, as is the

influence of changes in storm translation speed and

landfall phasing with the tide on inundation timing.

Overall, the inundation volume results indicate that for

medium or large storms with less complicated bathy-

metric variations along the coast, a volume-integrated

storm-following metric of inundation may offer greater

predictability. This metric does not provide information

about the inundation at any given location. But at longer

lead times where the landfall location is still highly un-

certain and thus the predictability of inundation in a given

location is low, it may still be useful to forecast that the

inundation is likely to be large wherever it occurs. For a

small storm like Hurricane Charley, however, a storm-

following volume-integrated metric fails to offer greater

predictability.

5. Summary and discussion

An ensemble of coastal inundation (storm surge 1

tide) simulations was run for three hurricanes in the Gulf

of Mexico, systematically perturbing four storm param-

eters, to quantify the sensitivity of coastal inundation to

each of the storm attributes using multiple measures of

inundation. The three storms (Ike, Charley, and the hy-

pothetical Charike) were selected so that the ensembles

would span a range of possible storms (in terms of size

and intensity) making landfall in different regions of the

Gulf of Mexico. This allows us to interpret the findings in

terms of sensitivity of inundation to different types of

hurricane forecast errors, for different types of storms. By

translating mean hurricane forecast errors into lead

times, we also examine the implications of those sensi-

tivities for the practical predictability of storm surge.

Results show that when the skill of surge forecasts is

assessed with point-based metrics of maximum in-

undation depth (including tide), the practical pre-

dictability of storm surge is limited, on average, primarily

by current errors in hurricane track forecasts, followed by

FIG. 14. As in Fig. 13, but for VMAX perturbations for

(a) Hurricane Ike and (b) Hurricane Charley.
FIG. 15. As in Fig. 13, but for SIZE perturbations for (a) Hurricane

Ike and (b) Hurricane Charley.
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intensity forecast errors, and then translation-speed

forecast errors. However, if we consider potential im-

provements in track forecasts, such that errors in 72-h

forecasts are similar to mean errors in today’s 24-h NHC

forecasts, then the observational uncertainty in storm

size, measured by the radius of gales, becomes the leading

source of error in coastal inundation forecasts.

Using point-based metrics and a correlation coefficient

of 0.6 as a guideline for useful forecast skill, inundation

from storm tide exhibits practical predictability only for

lead times of approximately 24h for a large storm such as

Hurricane Ike. Predictability lead times are even lower

for smaller storms such as Charley or Charike. Note that

these conclusions are based on mean forecast errors;

in reality, hurricane track forecasts vary significantly

from storm to storm. Thus, if one can accurately assess in

advance that the track of a specific hurricane is more

predictable than average, location-specific inundation

forecasts may be possible further in advance. Alterna-

tively, if track uncertainty is greater than the perturba-

tions used here, storm surge predictability will be even

more limited.

One caveat for interpreting these results is that we only

examined storms in theGulf ofMexico, for which the tidal

phase makes a relatively small contribution to coastal in-

undation. Thus, aspects of our results—especially those

from experiments in which the timing of landfall

changes—are not directly transferrable to other regions

where tides are more significant. Future research would

benefit from examination of hurricanes making landfall in

locations where tides make a larger contribution to the

inundation (e.g., NewYorkCity; Colle et al. 2008, 2015). In

such cases, we anticipate the sensitivity of inundation to

perturbations in translation speed, and in some cases track,

to be greater than shown here, due to changes in how the

surge is phased with the tide. The implications for practical

predictability likely vary with the characteristics of the

storm and landfall region, but we anticipate that when the

tidal signal is larger, this greater sensitivity will cause

the practical predictability limits to be even lower than

those shown here for the Gulf of Mexico storms.

Our results also illustrate how the relative importance

of different factors that contribute to the limits of storm

surge predictability can vary with the storm and landfall

location. For example, for a small storm like Hurricane

Charley in a region of substantial along-coast variations

(e.g., bathymetry or topography), practical predictability

of coastal inundation measured at specific points is nearly

zero. Additionally, our experiments with the hypotheti-

cal Charike compared to Ike indicate that for track

perturbations, a smaller storm over the same landfall

location exhibits a larger sensitivity. This suggests that

both storm size and bathymetric characteristics are in-

fluential. For intensity perturbations, on the other hand,

inundation exhibits more sensitivity for a large storm

than for a smaller storm.

Given the current predictability limits for location-

specific coastal inundation, we also began investigating

the predictability of surge evaluated using spatially in-

tegrated metrics, such as inundation volume. We asked

the following: By using a storm-following integrated

metric, might one be able to predict the potential for a

larger or smaller inundation based on a storm’s charac-

teristics, even at longer lead times when location-specific

surge predictability is low due to uncertainty in the

landfall location? Our results suggest that yes, spatially

integrated metrics can extend surge predictability, but

this appears possible only for large storms, in certain

situations. For example, large storms such as Ike produce

many times the inundation volume of small storms like

Charley and Charike, even if the smaller storm is more

intense.

These results suggest that there is promise for storm-

following volume-integrated metrics to provide guidance

about the potential for inundation from storm surge in the

most widespread, destructive cases, beyond the 12–24-h

lead times at which location-specific coastal inundation is

predictable with current levels of hurricane forecast skill.

Since evacuations in many U.S. coastal areas must be

FIG. 16. As in Fig. 13, but for SPEED perturbations for

(a) Hurricane Ike and (b) Hurricane Charley.
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initiated 36–72h before the anticipated arrival of tropical

storm–force winds, such information has potential to be

useful for emergency management and populations at

risk (e.g.,Wolshon et al. 2005; Lindell et al. 2007; Demuth

et al. 2012; Morrow et al. 2015). Further work would be

needed, however, to explore the potential of different

integrated surge metrics, as well as their limitations.

To systematically explore storm surge predictability in

an idealized context, we used a perfect-model framework

to conduct the experiments and evaluate the results. Al-

though model error is a contributor to errors in real-world

surge predictions, our purpose was to assess the sensitivity

of surge-induced inundation to systematically applied

storm perturbations. Unless our simulation is severely bi-

ased or fails to represent key dynamics of the system of

interest (which section 3 indicates is not the case), sensi-

tivity may be assessed relative to our CNTRL simulation.

If one wishes to assess actual forecast accuracy, the added

error in the CNTRL must also be considered. In this way,

our conclusions about practical predictability are likely

upper bounds; real-world surge predictability, in the

presence of model error, is likely to be even more limited.

Hurricane forecast uncertainty is represented in our

study by using a parametric wind model to generate an

idealized representation of historical storms, and then

systematically perturbing the storm’s track, intensity,

size, and speed. We scaled the perturbations based on

mean errors in current forecasts; for example, track per-

turbations are based on the NHC ‘‘cone of uncertainty.’’

This approach does not include the full range of possible

forecast errors. However, we selected this approach to

provide a simplified, but still realistic, setting for explor-

ing surge predictability, with limited degrees of freedom

and sources of error interactions. We anticipate that fu-

ture work will investigate similar questions with a more

complex representation of atmospheric uncertainty (e.g.,

using ensembles from a numerical weather prediction

model). Results from this more simplified set of pertur-

bations can then serve as a useful guide for interpreting

results from more complicated experiments.

In addition, the bathymetric characteristics and coastal

landscape of the landfall location significantly influence

surge-induced inundation in a region, in ways that we

do not fully explore here. Although we chose not to

emphasize these factors in this study, we created a hy-

pothetical storm, Charike, as a first step toward disam-

biguating the roles of storm parameters and landfall

locations. This study also does not address surge associ-

ated with extratropical storms and storms undergoing

extratropical transition. As with addressing the impact of

tides, examining more storms and landfall locations in

future studies will help further investigate these impor-

tant aspects of surge predictability.

Despite these limitations, this study makes important

contributions to the current understanding of storm surge

predictability. Scientifically, the experiments using a

perfect-model framework combined with systematic

perturbations of idealized representations of historical

storms makes valuable conceptual and methodological

contributions. For hurricane and surge researchers and

forecasters, the results emphasize the importance of

probabilistic (rather than deterministic) storm surge

forecasting for lead times longer than 12–24h, shorter for

smaller storms, given current errors in hurricane fore-

casts. They also suggest that in order to efficiently sample

the probability space, designing an ensemble for proba-

bilistic forecasting (e.g., the relative importance of cross

track vs other types of perturbations) depends on storm

size, landfall location, and other factors. For emergency

managers and populations at risk, the results indicate

that there are currently important practical limitations

to our abilities to accurately predict location-specific in-

undation, especially at the lead times that are required to

implement effective evacuations in many areas.

The findings also raise several important questions

that can guide future research. How do these findings

translate to other storms and landfall locations? How

can we increase the predictability of storm surge given

significant uncertainty in the landfall location at longer

lead times? Is it practical to try and improve storm surge

predictions at specific locations at longer lead times

(.24h) and if not, are there metrics, ensemble, or ex-

perimental designs other than those explored here that

could provide more predictability? What are the pre-

dictability characteristics of surge when measured using

additional metrics relevant for emergency management

decisions, such as timing, depth, area covered, and

along-coast and inland extent of surge? This study

takes a step toward providing a framework for answer-

ing these and other important questions, by investigating

and quantifying storm surge predictability across a range

of lead times, from different perspectives.
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