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Abstract

Multiple alignment is an important problem in computational biology. It is well known

that it can be solved exactly by a dynamic programming algorithm which in turn can be

interpreted as a shortest path computation in a directed acyclic graph. The .A’“ algorithm

(or goal directed unidirectional search) is a technique that speeds up the computation of a

shortest path by transforming the edge lengths without losing the optimality of the shortest

path. We implemented the .A“ algorithm in a computer program similar to MSA [GK595]

and FMA [$197b]. We incorporated in this program new bounding strategies for both, lower

and upper bounds and show that the .A* algorithm, together with our improvements, can

speed up computations considerably. Additionally we show that the .A‘" algorithm together

with a standard bounding technique is superior to the well known Carillo—Lipman bounding

since it excludes more nodes from consideration.

1 Introduction

One of the most prominent problems in computational molecular biology is multiple sequence

alignment. It is used for extracting and representing biologically important commonalities

from a set of sequences. It is easy to generalize the standard algorithm of Needleman and

Wunsch ([NW70]) to more than two sequences. However the time and space complexity grows

exponentially in the number of sequences. Solving the problem to optimality is therefore

only tractable for small problem instances. Nevertheless exact algorithms are important,

because they can be used as a last step of algorithms that use motif-search or- divide—and-

conquer approaches. For example Stoye et a1. ([SMD97]) try in their approach to divide the

sequences at appropriate “slicing” locations which are determined through a branch-and—

bound procedure. The resulting subproblems are solved recursively. The recursion stops if

the lengths of the sequences in a subproblem fall below a certain threshold. The subproblem

is then solved to optimality. Of course this approach tries to end the recursion as soon as

possible. Therefore programs are needed that can solve large instances with many sequences

to optimality. We refrain from citing further seminal papers concerning pairwise and multiple

alignment, because by now a general methodology has been established and the three quite

recently published monographs (Gusfield [Gu597]7 Setubal and Meidanis [SM97], Waterman

[Wat95]) give an excellent overview and motivation for the problem.

In this paper we show that the application of the so—called A“ algorithm, together with

new strategies for computing better lower and upper bounds7 considerably speeds up the

computation of optimal multiple alignments. We implemented the A“ algorithm in a com—

puter program (GSA) in which we incorporated these new bounding strategies and compared

our program with other implementations. Additionally we show that the A* algorithm to-

gether with a standard bounding technique is superior to the well known Carillo—Lipman

bounding since it excludes more nodes from consideration. We conjecture that the speedup
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imposed by our techniques will be transfered to an ongoing implementation of our algorithm

that supports affine gap costs.

We now define the problem formally. Let $1, . ..,SK, K 2 2 be sequences of length

N1, . . . , NK over an alphabet 2 which must not contain the reserved blank character ’—’ and

define 2’ := E U {—}. A multiple alignment of these strings is a K x a) matrix A = (aij)

with the following properties:

1. A has exactly K rows,

2. ignoring the blank character, the i—th row is the sequence 5;,

3. there is no column consisting only of blank characters.

We denote with a = w(A) the number of columns of A and with Aihihnfl-k the projection of

A to the sequences Si1,Si2, . . . , Sik‘. An alignment of a subset {5,1, . . . , 3,3} of the K strings

is denoted by A(S,-1, . ..,S,-k) (e.g. A(Si,$j,Sk) is an alignment of the three sequences 3,,

Sj and 5'").
The quality of an alignment is often measured with a function over the columns. The

cost measure that is most widely used is the (weighted) sum of pairs cost ((W)SOP) which

is defined as follows: If sub is a fixed symmetrical function sub : 2’ x 2’ —) N = {0, 1, 2, . . .}

with sub(-—, —) = 0 then we define C(Az‘yj) = 27:1 sub(au,aj1) as the cost of the projection of

A to the sequences 5',- and Sj. Using this definition the sum of pairs (SOP) cost function is

definedas w

C(A)= Z c(A,-,,-)-= Z (Zsubwz‘uafll)
13i<n 15i<j5K 1:1

The goal is then to compute a minimum cost SOP alignment A“. For convenience we will -

only talk about the SOP cost measure, however, all our results hold for the WSOP measure

as well. In the sequel we will denote optimal alignments with the superscript *, i.e., M} is

the projection of an optimal alignment A“ to the sequences S,- and Sj and A"‘(S,-, Sj) is an

optimal alignment for the sequences 5,- and Sj. ,

Like most multiple alignment problems, the SOP alignment problem can be solved by dy-

namic programming and is equivalent to finding a shortest path from a designated source to

a designated sink in a K-dimensional acyclic meshvshaped graph, the so—called dynamic pro-

gramming graph. The set of paths from the source to the sink codes all possible alignments.

Each (directed) edge of the dynamic programming graph represents a possible column. The

weight of such an edge is the SOP cost of the column it represents. Dynamic programming

yields an algorithm with time complexity 0(K22K N) and space complexity 0(N), where

N = H, N,- which is feasible only for very small problem instances. While the SOP align-

ment problem is NP—complete, Kececioglu et al. presented in [GKSQS] a branch-and-bound

algorithm whose implementation (cf. [KAL94]) — called MSA in the. sequel — can optimally

align some examples of six sequences of length 250 in a few minutes. Larger examples, how-

ever, require excessive space. In their approach, a heuristic alignment of the K sequences

yields an upper bound for the branch-and-bound procedure. Lower bounds are calculated

by adding up the cost of all optimal pairwise alignments over suffixes of the sequences.

The A" algorithm also computes a shortest path in the dynamic programming graph with

redefined edge weights which improves the speed of the computation considerably. Shibuya

et a1. presented in [$197b] an implementation of the A“ algorithm— called FMA in the sequel

— which they used for a parametric analysis for multiple sequence alignment.

In Section 2 we will review the techniques of Kececioglu et al., Carillo and Lipman and

the .A* algorithm in more detail and finally prove that the A“ algorithm bounds the number

of explored vertices in the dynamic programming graph more efficiently than the Carillo—

Lipman technique. In Section 3 we explain three ideas, each of which gives great performance

improvements in the implementation. The first idea is not only to use projections to two but

also to three sequences to obtain a better lower bound. The second idea is to periodically

recompute a better upper bound during the execution of the algorithm. The third idea con—

sists of enumerating the neighbors of a node q in a clever way, so that only small incremental

changes are necessary when moving from edge to edge. Finally we give some computational

results in Section 4 to show how our enhancements compare to the two implementations of

Kececioglu et al. and Shibuya et al.



2 Shortest path computation and the A* algorithm

' An alignment of the K sequences can be interpreted as a path in a K-dimensional grid graph

with node set:

V = {v : (v[1],v[2], . ..,v[K]) : v[i] E {1, . . .,N,~}}'

and edges

15‘: {(IMI) :13q V, pséq andq—pe {0,1}K}
Let us denote the set of all paths from a node p to a node q by p -> q.

p—+q:= {072%, v1, , vwzq) : (vi,vi+1)EE, 0§i<w}

Likewise we write p ——> q —) r for the set of paths from p to r passing through node q. A

path 7r of length w from s = (0, . ..,0) to t = (N1, . ..,NK) corresponds to the alignment

described by the following matrix:

___ — lf’Uj[i]-1)j_1[i]=0 . .- .

'{ 5415M]ifvj[i]—vj—1[i]=1 “”1951" 13’ 5‘“
Thus, the cost of an alignment can be interpreted as the sum of edge costs

w—l

c(7r) :2: 2 c(v,~,v,~+1)
:0u.

with

C(vi,vi+1)3= Z 3Ub(ak:c;al:c)
15k<l§K

where 1: denotes the number of the column corresponding to the edge (1),, 121+ 1). Note that we

overload the notation of c because an edge in the dynamic programming graph corresponds

exactly to a column of a multiple alignment. We denote the shortest path in p —) q by p —9* q

and its length by C(p —)* q). A node r in the grid naturally divides each sequence S,- in a

prefix of and a suffix or,r .

Of course it is not feasible to compute a shortest path in the full grid graph, since its size

is 0(N : H,- Ni). Using Dijkstra’s algorithm for computing shortest paths in graphs with

nonnegative edge costs, Kececioglu et al. described in [GKSQS] an algorithm which reduces

the number of nodes that have to be visited by a bounding procedure. In their approach, a

heuristic alignment Aha” of the K sequences yields an upper bound U = c(A’““”) for the

cost of the optimal alignment A". Lower bounds L(r —) t) are calculated by adding up the

cost of all optimal pairwise alignments over suffixes of the sequences, i.e., for each node r in

the grid graph we have:

L(r —> t) := Z C(A*(a;,a;.)) (1)

19-q

The algorithm uses a priority queue Q, where it stores the values of the best known paths for

prefixes of the sequences as keys. In each step the node q with minimum key I: is extracted

from Q and then expanded, which means that all neighbors r of q are inserted in Q with the

key k + C(q, r). Dijkstra’s algorithm ensures that the key k of the node q with the minimal

key is always the cost of the shortest path from 's to q, i.e., k = C(s —)" g). In the expansion

of a node q one does not need to insert a neighbor r if C(S —)* q) + C(q, r) + L(r —> t) > U.

That means if the sum of the length of the optimal path from s to q plus the length of the

edge (q, 1‘) plus the lower bound L(r —) t) is already greater than an upper bound U, then no

optimal alignment A“ can go through 7'. Later we will see that this simple bounding strategy

applied to a dynamic programming graph with changed edge weights always yields better

results than the well known Carillo-Lipman bounding.

Carillo and Lipman employ a different idea to reduce the number of vertices in the dy-

namic programming graph. The following property holds for any optimal multiple alignment

A’“ (cf. [CL88]):



Theorem 2.1 (Carillo, Lipman) Let A" be an optimal alignment of the K strings

51,...,SK, L :2 L(s —) t) be the lower bound defined in Equation 1 and U = c(A’m‘")

be an upper bound for c(A“). Then the following inequality holds for every projection on a

pair Si, 33' of sequences:

dflflSCMW&flm+U-L
Proof:

Q: l b! V Ejemntwmmasm
15k<15K

c(AZj) —c(A*(s,-,s,-)), v lgi<j s K

c(A
Z

s wasn+U—L2 c(Aij)

Due to Theorem (2.1) an optimal alignment path cannot pass through a node r if for any

pair i, j holds: ‘

CLi’j(T’) := c(A*(a,T, 04)) + c(A*(cr,T, a;- )— c(A*(S,-, Sj)) + L(s —-> t) > U.

We call a node r CL-valid if CLz-J-(r) s U for all pairs i, j. Otherwise we call it CL-invalid.

A representation of the set of CL-valid nodes can be precomputed, so that we can efficiently

decide whether a given node q is CL-valid or not.

The A*-algorithm speeds up computations by directing the search of a shortest source-

to-sink path more towards the sink node t. It redefines the cost of all edges in E as follows:

c’(q,r) :2 Ac(q, r) — l(q —) t) + l(r —-) t),

where l(u —) v) is a lower bound for the cost c(u —>* v) of a shortest path from u to v. If 1()

fulfills the consistency condition

c(q,r) +l(r at) 21(q —)t), V(q,r) E E,

then it is easy to show that the redefinition of the edge costs does not change the optimal

path and the edge costs are still positive so Dijkstra’s algorithm with the simple bounding

. procedure can be used as before. ‘ r

We .can choose L(q —) t) as the lower bound in the redefinition of the edge weights,

because L fulfills the consistency condition:

cmo+uww)= X:@MW##»+MM)
15i<j5K

2 XfieMWae»
15i<n

= L(q -—) t)

The redefinition of the edge weights directs the search in the grid more towards the sink node

it. Therefore this technique is also called Goal Directed Unidirectional Search (GDUS) (of.

[Len90])'. We now want to apply the simple bounding procedure described above. With the

new edge weights a shortest path from s to q has the length c’(s —>* q) = c(s —)* q) + L(q —)

t) - L(s —) t). [Since the value L(s —) t) is a precomputed constant we discard it and insert ,

a neighboring node r with'the key PPiq(r) into the priority queue Q, where

PRq(r) :: c(s —)‘ q) + c(q, r) + L(r —) t). (2)

Applying the bounding procedure, we do not always have to insert a node r into the

priority queue Q, namely if PRIOq(r) > U where U is an upper bound for c(s -—)" t).

The argumentation is as before, because PRq(r) is a lower bound for a path from s

to t passing through q and r. This does not exclude that r might be inserted later if

it is inspected from another neighbor q’. However, if r is never inserted into Q, i.e., if

PRIo(r) :=_min(q,,)€E PRq(r) > U, then we call r U-invalid, otherwise we call it U-valid.

We will now show that the redefining of the edge costs together With the simple bound-

ing strategy always yields better results than the. bounding achieved by the Carillo-Lipman

technique.



Theorem 2.2 CL-invalz'dz'ty implies U-z'nvalz'dz'ty.

Proof:

(ELM-(q) = c(A*(a‘-’a9))+c(A*(a;~’.a3))—c(A*(si.Sj))+L(s—>t) .

= c(A*(a‘1a4>)+c(A*(a;’.o‘¥>)—c(A*(S.-,Sj))+ Z c<A*(sk,sz))
J 1§k<lSK

= c(A*(a‘.1a9))+c(A*(0':-7,a§-l))+ Z c(A*(s,.,sl))
1) J

15k<lSK
(k,l)¢(l.j)

c<A*<a:-’, a3!» + C(A*(a§. a3» + Z (c(A*(az,a;’)) + «Max, of»)
' 15k<15K

(kyl)¢(1,:i)

= 2 meta?» + 2 «New»
15k<t 15k<t

Z C(A*(aZ.a?)) + L(q —> t)
1gk<15K

C(s —>" q) + L(q —> t)

Pruo(q) .

|/
\

,I!
|/\

If CL¢,j(q) > U, then PRIo(q) > U, so q is always U-invalid if it is CL-invalid. |

The above proof was first published in the master thesis of the first author ([Ler97]), however,

the authors acknowledge that the above theorem has been shown independently by Horton

and Lawler in [Hor97].
The U-bounding reduces the number of relevant nodes substantially. However, we still

explore enough of the grid to guarantee that the computed alignment is optimal. Now we

give up that guarantee in order to obtain an even better bounding. This is done similarly to .

the program of Kececioglu et a1. whereas Shibuya et al. do not employ this technique. Let

Ahe‘” be a heuristically computed alignment yielding an upper bound U. We define

es...- := curs-W) — ems.» 5»)
and

EPSi,j :2 min(max(epsi,j , MIN_EPS), MAX-EPS)

where MIN_EPS, MAX-EPS are nonnegative constants with MINEPSSMAXEPS.

We make the (not always true) assumption, that any alignment A7r for a path 7r 6 s —)

r —> t cannot be optimal, if for a pair (i7j)

c(A*(a;-’, 02)) + C(AWULUD) > C(A*(Si,5j)) + EPSiJ (3)

and call r face-invalid in this case, otherwise face-valid. The following choice produces good

results:
2 ‘ Zi<i<j<KleP3iJl

K(.K — 1)

Information on face-invalid nodes can be efficiently precomputed and stored using so—called

faces. For each pair of dimensions (1', j) a face merely consists of two arrays of the size

0(max(N,-, Nj)). The values MIN_EPS and MAX-EPS are crucial parameters. If MIN-EPS

is set too low, it can be that we do not find an optimal alignment, since nodes on an optimal

path in s —> 1‘. might then be ignored. If we set it to high, removing the effect of face—

bounding, the time and space consumption rises. If we set the MAX_EPS parameter too low

it is often the case that we do not find an alignment at all. We will discuss this problem in

more detail in Section 4.

MIN_EPS z:



3 Improvements

In this section we explain three ideas, each of which results in great performance improve-

ments in the implementation. The first idea is not to use only projections to two but also to

three sequences to obtain better lower bounds. The second idea is to periodically recompute

a tighter upper bound during the execution of the algorithm and finally we enumerate the

neighbors of a node q in a clever way, so that only small incremental changes are needed

when moving from edge to edge.

3.1 Triple alignments

Already Carillo and Lipman noted that their idea of reducing the volume of the search—

space by using lower-dimensional optimal alignments can be extended to higher dimensions.

Unfortunately the number of optimal d—dimensional alignments is C(65)), and what is even

worse, the space consumption is 0((5) -N), where N = [Eda—1 N,. In this section we show

how to carefully select a reasonable number of triples of strings, the alignments of which

yield good lower bounds compared to the bounds that are achieved by computing pairwise

alignments.

We replace three optimal pair alignments with one optimal triple alignment. This is

allowed, since the projection of an optimal multiple alignment to three strings can never

yield a better alignment than the optimal alignment of these three strings. On the other

hand, the cost for the optimal triple alignment is never smaller than the sum of the three

optimal pairwise alignment costs.

We want to find a set of triples (more precisely a selection of sets of three elements from

the set of indices)

T: {{2'.j.k} : i,j,ke {1,2,...,K} and i¢j¢ k}

with the additional property

|aflrl<2forallagr€7¢7¢r

That means, we want to find a set of triples with no common pair. For a given set 7 we also

define

For any optimal alignment A” going through node 7“ we define:

L3<Ht> : Z c(A*(a:,a;-,a;>)+ Z c(A*(a;‘.a;-))
{MHET (231M?

2 Z c<A*(a:.a;>>=L(Ht)
15i<j5K

Computing L30" ——>‘ i) usually yields a much tighter lower bound than L(r —> i). The new

lower bound L3 can be shown to fulfill the consistency condition in the same way as L in

Equation 2. Note that U-bounding is also improved, since the the value of PRIo(q) increases

if L3 is used. How much the bounds are improved depends on the choice of the triples. We

adopted the following heuristic which yields good results: for each triple {i, j, k} compute

19031316) I: C(AWSz‘» 5;" SH) - c(A*(S,-, 5m - C(A*(5j»5k)) - C(AWSI'» 50)-

We select a triple {i, j, k} if

1. D(i,j,k) > 0 and

2. there is no triple {i’,j’,k’} with {{i,j, k} n {i’,j’,k’}] Z 2 and D(i’,j’,k’) 2 D(i,j, k).

The difficulty in using triple alignments for better lower bounds is that we have to pre—

compute and store a three-dimensional grid with the values C(A“ (of , (7;, (7,2)) (distance grid)

for every used triple, which is quite space consuming. Such a distance grid for {i, j, k} can be



computed with the Dijkstra-algorithm. In fact, we only need those values c(A*(a'f, 0;, 01))

which we want to compute L3(r —-> t) for, namely for the nodes r that are face-valid for

the K—dimensional problem. Therefore we can cut off large areas of the three-dimensional

distance grids if we use face—bounding with respect to the EP.S'(i, j) of the K—dimensional

problem.

3.2 Dynamic Upper Bound

In the preceding section we described how the volume of the search space in the multi—

dimensional grid can be reduced by ignoring U—invalid nodes. We can do even better if it is

possible to improve the upper bound during the progress of the algorithm.

For each node q we know its optimal distance C(s —->* q) from the source 5 as soon as it

is removed from the priority queue in Dijkstra’s algorithm. The closer we get to the sink t,

the better the chance that ~ ‘

U’ :2 C(s ->* q) + C(Aq’hem)

defines a better upper bound than U. In this term, Aq’he‘” is a heuristically computed

alignment of the suffixes 031,. . . , 0%.
If U’ < U, then more nodes can be ignored because of U-invalidity (more precisely: U’-

invalidity) than it was possible before. Therefore we compute at “promising” trial nodes q,

just removed from the priority queue, a heuristic alignment of the suffixes and try to improve

the upper bound (dynamic upper bound). We have to select those trial nodes carefully because

computing the heuristic multiple alignment is time—consuming, especially in the beginning,

when the path from q to t is still long. Two heuristics were tested in order to select the trial

nodes, each one with acceptable results. In both cases the first trial node is uo = 3.

Heuristic 1

The node q becomes a new trial node ui+1, if

c(A"°'h5“’) — L(s —) t)
—>"‘ —>" -C(s q) > C(s u,) + constl

where ui was the previous trial node and constl 2 1 is a constant, indicating the maximum

total number of trial nodes. Heuristic 1 regards a trial node q as good, if the algorithm has

made enough progress with respect to the cost of the optimal prefix path of the previous

trial node.

Heuristic 2

The node q becomes a new trial node ui+1, if

StepCount(s —-> q) : StepCount(s ——> u,) + constg

where u,- was the previous trial node, constg 2 1 is a constant, and StepCount(s -> r) is

the number of edges on an optimal path from s to r. Heuristic 2 regards a trial node q as

good, if the algorithm has made enough progress with respect to the number of steps the

algorithm has made since visiting the previous trial node.

In our implementation we preferred heuristic 1 because it does not require additional

memory space. After successfully improving the upper bound from U to U’ it is possible

to search the grid for U—valid nodes, which have now become U’-invalid. All edges to these

nodes that have been visited up to that stage of the algorithm can be ignored and the nodes

can be deleted from the grid (garbage collection)

3.3 Gray-Code

For every node q that is extracted from the priority queue theA‘“ algorithm examines all

outgoing edges to neighboring nodes r'. The difference vector r — q is an element of {0, 1}" —

{(0, . . .,0)}. All neighbors r1, . . ”7'21“"1 have to be checked if they are within the bounds
of the grid. If so, ri must then be checked for face-validity. Representing the node ri with

its coordinates in a trie usually takes time 0(K) This time can be substantially reduced

if the neighbors are enumerated in Gray-Code succession. Gray-Code is an enumeration of



all elements of {0, 1}" — {(0, . . .,0)}, where subsequent nodes only differ in one dimension.

If we reuse the representation of 1" in order to get r’+1 by changing only one integer, only

constant time is needed for each neighbor. For notational convenience we define r0 as q. Let

...i[3]i[2]i[1] be the binary representation of 2'. Define

b,- := {0 for 2:0

j else, where j minimal with imzl

and

do 2: 0

d“ := (di'1)XOR 2b'—1for1gig2K—1

The neighbors are given as

ri 1: q + di

= (4i1]+dEK_1]a 4i2l+dfx_2]a 7q[1<]+dE0])

The Gray-Code technique is used in the algorithm in two further ways. Firstly it can be

used to check in two steps if the neighbor ri of a node q is within the grid bounds. We mark

all indices 2' with q[2'] + 1 > N,- in a bit field a of length K by setting the bit um. Before 7'1

is checked, all bits of a should be set to 0. A neighbor 7'2 for 2' > 0 is within the bounds if

0 S r'lK — bi — 1] _<_ NK—b'—1 and (di AND a) = 0'

If ri [K—bi - 1] > NK_b:_1 then this is marked by setting the bit “[i] for subsequent neighbors.
Secondly the computation of edge costs can be speed up. As described above, every edge

(q, r') uniquely defines a column of an alignment. 'We store this column in an array chari of

length K over the alphabet E’ :

.-._ - ifr‘[j]—q[j1=0 ' . ,
Charm—iSj[r[j11ifr‘[j]—q[j]=1 “1951‘

If char0 is initialized with blank characters ’—’, then chart can be obtained from chari—1 by
modification of the single character char[K — bi — 1]. Additionally one could compute the

cost of an edge in time 0(K) One only needs to subtract the pairwise costs between the

' z-th (a: = K — bi — 1) character in char‘"1 and all others and add the pairwise costs between

the x-th character in chari and all others to the previous cost value c(q,rl‘1).

C(q, ri) :: c(q, 7".“1) — Z (sub(chari‘1[k], chari‘1[z]) — sub(chari[k], chari[x])) (4)

19¢n

It is easy to check that for K 2 5 the right hand side of Equation 4 has less terms than the

right hand side of the usual computation of the edge costs which is:

‘c(q,ri)= E sub(chari[k],chari[l]) (5)

13k<zgx

However, in practice it turned out to be faster to use Equation 5 for edge cost computation.

This is due to two reasons:

1. The cost for evaluating Equation 5 are in practice seldom 0(K2) since one can check

for U-invalidity each time after adding K terms, say. Very often only a few checks are

needed to prove that a node is U—invalid.

2. On the other hand, if one uses Equation 4 to compute the edge costs, it is necessary to

compute the costs to all neighboring nodes, even if they are face-invalid. This imposes

a considerable overhead compared to the other method which does not consider face-

invalid nodes.



4 Computational results

We implemented the described algorithm in C++ using the library of efficient data types and

algorithms LEDA (c.f. [MN95]). Although this imposes a time and space overhead by a factor

of 2 to 3 compared to ad hoc implementations it makes the software easy to read, to maintain,

and to extend. Based on our implementation (GSAzgoal directed sequence alignment) there

is an ongoing implementation of a version supporting affine gap costs which is intended to

replace MSA as a last step of the divide-and-conquer approach of Stoye et al. ([SMDQTD. In

their approach they try to divide the K sequences at appropriate “slicing” locations which are

determined through a branch-and—bound procedure. The resulting subproblems are solved

recursively. The recursion stops if the lengths of the sequences in a subproblem fall below

a certain threshold. The subproblem is then solved to optimality, currently using MSA. Of

course this approach tries to end the recursion as soon as possible. Therefore programs are

needed that can solve large instances with many sequences to optimality.

We divide this section into two parts. In the first part we discuss the effect of the al-

gorithmic techniques introduced before (dynamic upper bound, GDUS, triple alignments)

on the time and space consumption of the algorithm. In the second part we compare our

implementation with two other packages for optimal sequence alignment, namely the widely

known program MSA in its latest version 2.1 [KAL94], and FMA, a very recent implemen-

tation by Shibuya and Imai [SIQ7a], which also uses an A" strategy. In order not to have

an advantage against FMA or MSA, we use their two default cost matrices which are called

dayhoff (MSA) and PAM250 (FMA).

All examples were run on an UltraSparc Station 2/200 with 1024 MB memory. The

program together with all examples and converting tools can be obtained via anonymous ftp

from ftp://ftp.mpi-sb.mpg.de/pub/outgoing/reinert/GSA.tgz. The LEDA Software

library can be downloaded from http://www.mpi-sb.mpg.de/LEDA/1eda..htm1. We tested

' combinations of the above mentioned flags on the following three examples. The first is an

benchmark example of five protein fragments that are relatively easy to align:

Example 1:

’ ASVLTQPPSVSGAPGQRVTISCTGSSSNIGAGHNVKWYQQLPGTAPKLLIFHNNARFSVSKSGT

QSVLTQPPSASGTPGQRVTISCSGTSSNIGSSTVNWYQQLPGMAPKLLIYRDAMRPSGVPDRFS

EVQLVQSGGGVVQPGRSLRLSCSSSGFIFSSYAMYWVRQAPGKGLBWVAIIWDDGSDQHYADSV

AVQLEQSGPGLVRPSQTLSLTCTVSGTSFDDYYWTWVRQPPGRGLEWIGYVFYTGTTLLDPSLR

PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYR

: SATLAITGLQAEDEADYYCQSYDRSLRVFGGGTKLTVLR

: GSKSGASASLAIGGLQSEDETDYYCAAWDVSLNAYVFGTGTKVTVLGQ

: KGRFTISRNDSKNTLFLQMDSLRPEDTGVYFCARDGGHGFCSSASCFGPDYWGQGTPVTVSS

: GRVTMLVNTSKNQFSLRLSSVTAADTAVYYCARNLIAGGIDVWGQGSLVTVSS

: VVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKG
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The next two examples are taken from McClure’s globin dataset. In the second example

there are 11 fragments from this dataset.

Example 2: 11 fragments of McClure’s globin dataset

: VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGK

: MLTDAEKKEVTALWGKAAGHGEEYGAEALERLFQAFPTTKTYFSHFDLSHGSAQIKAHGK

: VLSAADKTNVKGVFSKIGGHAEEYGAETLERMFIAYPQTKTYFPHFDLSHGSAQIKAHGK

: VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV

: VHLSGGEKSAVTNLWGKVNINELGGEALGRLLVVYPWTQRFFEAFGDLSSAGAVMGNPKV

2 VHWTAEEKQLITGLWGKVNVADCGAEALARLLIVYPWTQRFFASFGNLSSPTAILGNPMV

: GLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFKHLKSEDEMKASED

: GLSDGEWQLVLKVWGKVEGDLPGHGQEVLIRLFKTHPETLEKFDKFKGLKTEDEMKASAD

: MKFFAVLALCIVGAIASPLTADEASLVQSSWKAVSHNEVEILAAVFAAYPDIQNKFSQFA

10: GVLTDVQVALVKSSFEEFNANIPKNTHRFFTLVLEIAPGAKDLFSFLKGSSEVPQNNPDL

11: MLDQQTINIIKATVPVLKEHGVTITTTFYKNLFAKHPEVRPLFDMGRQESLEQPKALAMT
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The third example is a set from 5 complete sequences from the globin dataset.



E ample 3: 5 sequences of McClure’s globin dataset

: VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKKVAD

: VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHG

: MKFFAVLALCIVGAIASPLTADEASLVQSSWKAVSHNEVEILAAVFAAYPDIQNKFSQFAGKDL

: GVLTDVQVALVKSSFEEFNANIPKNTHRFFTLVLEIAPGAKDLFSFLKGSSEVPQNNPDLQAHA

: MLDQQTINIIKATVPVLKEHGVTITTTFYKNLFAKHPEVRPLFDMGRQESLEQPKALAMTVLAA

ALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKF

KKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQA

ASIKDTGAFATHATRIVSFLSEVIALSGNTSNAAAVNSLVSKLGDDHKARGVSAAQFGEFRTAL

GKVFKLTYEAAIQLEVNGAVASDATLKSLGSVHVSKGVVDAHFPVVKEAILKTIKEVVGDKWSE

AQNIENLPAILPAVKKIAVKHCQAGVAAAHYPIVGQELLGAIKEVLGDAATDDILDAWGKAYGV
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' LASVSTVLTSKYR

' AYQKVVAGVANALAHKYH

: VAYLQANVSWGDNVAAAWNKALDNTFAIVVPRL

: ELNTAWTIAYDELAIIIKKEMKDAA

: IADVFIQVEADLYAQAVE

4.1 Different GSA runs

We demonstrate the effects of the above mentioned algorithmic techniques on the time and

space consumption of GSA. The following flags for GSA were used:

Without any flag, GSA uses the GDUS strategy. It does not use the dynamic upper

bound but the triple alignments (see Section 3.1) to achieve better lower bounds. The

value MIN_EPS is computed as explained in Section 2. By default the unit cost edit

distance is used to compute the cost of an edge.

-2

With this flag, GSA only uses pairwise projections for computing lower bounds.

'11

With this flag, GSA uses the dynamic upper bound strategy described in Section 3.2

'3.

This flag prevents the insertion of U—invalid nodes into the trie. This slightly slows

down the computation but uses slightly less space.

‘8
This flag disables the GDUS strategy.

-e<x>

This flag overrides the computation of the MIN_EPS values described in Section 2 and

sets the value to x.

-c<cost matrix>

This flag overrides the unit cost edit distance and rather computes the cost of an edge

using the specified cost matrix.

The time and space consumption for the different flags is given in the following two tables

using the PAM250 cost matrix (—cpam250). The first table shows the result with the GDUS

strategy:

Example 1 Example 2 Example 3

flags time (sec) | space (MB) I time (sec) | space (MB) 1 time (sec) I

21 17 5.8 6.2 57 47

-a 24 17 6 6 62 47

-2 33 14 4.6 5.6 233 87

-a2 35 14 5.6 5.5 256 87

-u 37 14 20 7.2 80 34

-au 38 14 22 7.1 87 33

The second table shows the results without the GDUS strategy (flag: -g).
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Example 1 Example 2 Example 3

flags time (sec) ] space (MB) l time (sec) 1 space (ME) I time (sec) 1 space (MB)

-g 52 9.1 13.7 6.3 887 23
-ag 58 8.6 16 6.2 998 23

-2g 54 7.2 11.4 5.6 1036 20

-a2g 58 7.2 13.9 5.5 1081 19
~ug 58 7.7 _ 23 7 895 25
-aug 56 7.5 26 7 543 ‘21

The above table justifies the following observations which are strengthened by further exam—

ples:

1. The GDUS strategy considerably speeds up the computations but it uses more space.

This effect gets more dramatic with bigger problem instances. Therefore the user has

to decide whether time or space is the limiting factor and use the —g flag accordingly.

2. The dynamic upper bound slows down the computations but reduces space consumption

for bigger problem instances. The bigger the problem the more one can neglect the

increase in running time compared to the decrease in space consumption. It is always

wise to use the -u flag for big problem instances.

3. The same argument holds for the improved lower bound for triple alignments. For short

examples the relative increase in space and time consumption through the computation

of triple alignments is high. However, this effect diminishes with bigger problem in-

stances (e.g. Example 3 with the PAM250 cost matrix) where again space is the limiting

factor. Therefore it is advisable to use triple alignments for lower bound computation

on big problem instances, instead of switching them off with -2.

4. The flag -a usually gives a small increase in running time and a small decrease in space

consumption. This effect varies but in any case the memory allocation is less. We

therefore recommend to use the -a flag.

4.2 Comparison of GSA with MSA and FMA

In order to allow a comparison we had to adapt some definitions in the MSA code. First we

removed the precompiler definition #def ine MINE 5 in the file ecalc . c which sets the value

for MIN_EPS in MSA. We replaced it by an integer variable MINE which can be set by a new

command line switch -x value and is initialized to 5. Then we replaced the precompiler

definition #define MAXE 50 by #define MAKE 9999 in the file ecaic . c. This actually seems

to be a good idea in general, because the value 50 very often prevents MSA from finding

any alignment, whereas the high value very often finds an alignment. We also changed the

default definition of gap costs in main.c from 8 to 0, since the current implementation of

GSA only supports linear gap costs. Finally we changed the definition of #def ine NUMBER

10 in the file defs .h to #define NUMBER 12 in order to be able to compute alignments of

up to 12 sequences.

It should be explicitly noted that MSA supports affine gap costs7 a feature which is

switched off here in order to yield the same alignments. Nevertheless MSA uses this more

time and space consuming algorithm. Until GSA supports affine gap costs, there can be

no final judgment about the quality of the two programs. Nevertheless we hope that our

comparison illustrates the advantage of the A* algorithm together with our improvements

over the standard bounding techniques.

The code of the program FMA was not changed, because it also uses linear gap costs.

Unfortunately FMA does not use face-bounding, so that it naturally cannot compute larger

examples to optimality. The programs were invoked (at least) with the following flags in

order to compute the same alignments:

fma -g -12 -12 -f <string-file> -c dat/dayhoff.score (dayhoff matrix)

fma -f <string—fi1e) —c dat/PAM250-score (PAM250 matrix)

msa -g -b <string-file> (dayhoff matrix)

msa —-g —b <string-file> -—c pam250.da1; (PAMZSO matrix)

11



gsa -cpam250 <string-file>

gsa -cdayhoff <string-file>

(dayhoff matrix)

(PAM250 matrix)

We regard the computed alignment value as optimal if we compute it with sufiiciently large

MIN_EPS or, since this is not always possible for large examples, if all three programs yield

the same value. The program FMA is invoked only once on each example, since we cannot

influence its face bounding. The programs MSA and GSA are called four times. Once with

their default values for MIN_EPS (5 for MSA and calculated like in Section 2 for GSA), once

with the lowest MIN_EPS that still yields the optimal alignment, once with the lowest value

of MIN_EPS that yields an alignment at all and once with the value of MIN_EPS set to a

very large value so that no face-bounding is done. If a program uses more space than 512

MB or computes longer than one hour we mark this fact by the table entry +. The column

“flags” contains additional flags. Note that the MIN-EPS values for GSA and MSA are not

correlated, although we display the values for MIN-EPS in the same column. For a start

we compare our first benchmark problem computed with the PAM250 cost matrix. GSA

computed the following upper and lower bounds:

37028

37318

38014

37740

The following table shows the results with the PAM250 cost matrix:

lower bound L(s —) t)

lower bound L3(s —> t):

, upper bound U0: '

optimal cost:

I program I flags I min eps. I time (sec) I space (MB) I alignment cost

FMA 426 158 37440

GSA —a 99 21 17 37440

GSA -ae46 46 6.8 6.7 37440

GSA -ae1 1 2.8 4.4 ' 37956

GSA -aue99999 99999 226 135 37440

MSA 5 3.4 2.5 37790

MSA -x46 46 78_ 3.9 37440

MSA -x1 1 1.8 1 37816

MSA -X99999 99999 + + +

With the dayhoff matrix GSA computes the following bounds:

17751

17907

18253

18040

The next table shows the results of the programs run with the dayhoff cost matrix:

lower bound L(s ——> t)

lower bound L3(s —+ t):

upper bound U0:

optimal cost:

I program flags I min eps. I time (sec) I space (MB) I alignment cost

FMA 1954 440 18040

GSA -a 51 80 56 18040

GSA -ae10 10 12 8.8 18040

GSA -ae1 1 4.3 5.8 18202

GSA —ae99999 99999 233 198 18040

MSA 5 81 5.5 18070

MSA -x13 13 555 11 18040

MSA -x1 1 37 3.6 18091

MSA —x99999 99999 + + +

With both cost matrices FMA needs more time and space than GSA run with flag ~e99999.

MSA invoked with —x99999 could not find an alignment within the specified space and time

bounds. Called with the standard option GSA produces always the optimal result within 21

respectively 80 seconds. With its default values MSA solves the problem with the PAM250

cost matrix quicker, however it does not compute the optimal solution due to the small
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MIN_EPS value. If one increases this value until the optimal solution is found then MSA
needs considerably more time than GSA (78 sec. compared to 6.8 sec. with the PAM250 and

555 sec. compared to 12 sec. with the dayhofi‘ matrix).

In the second example we demonstrate that GSA is able to align alot of sequences of
reasonable length in a short time to optimality. This fact makes it particulary useful for the

divide-and-conquer approach of Stoye et al. GSA computed the following upper and lower

bounds with the PAM250 cost matrix:

105136
105670

106782

105990

lower bound L(s -> 1)

lower bound L3(s -—> t):

upper bound U0:

optimal cost:

The following table shows the results with the PAM250 cost matrix:

program I flags I min eps. I time (sec) I space (MB) I alignment cost

FMA + + +

GSA —a 30 5.8 6.2 105990
GSA -ae22 22 4.9 5.3 105990
GSA -ae1 1 5 5.1 106732
GSA —au699999 99999 340 142 105990
MSA 5 0.9 1 105990
MSA —x1 1 0.8 1 105990
MSA -x1 1 0.8 1 105990
MSA -x99999 99999 + + +

With the dayhoff matrix GSA computes the following bounds:

51338
51693
52200]

I51998I

lower bound L(s —> t)

lower bound L3(s —> t):

upper bound U0:

I optimal cost:

The next table shows the results of the programs run with the dayhofi cost matrix:

I program I flags I min eps. I time (sec) I space (MB) I alignment cost
FMA + + +

GSA -au 16 + + +

GSA —ae7 7 40 8.8 51988
GSA —ae1 1 8.5 6.3 52088
GSA -aue99999 + .I. +

MSA
99999

5 44/ 3 52008
MSA -x10 10 + _I_ +

MSA -x1 1 16 2.8 52008
MSA -x99999 99999 + + .I.

The optimal alignment with the PAM250 cost matrix computed by GSA is:
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GSA is the only program, that can compute a guaranteed optimal alignment with the P1111250
cost matrix. If one subtracts the 120MB used for the triple alignments the space consumption

V-L—SPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGK-

M-L-TDAEKKEVTALWGKAAGHGEEYGAEALERLFQAFPTTKTYFSHFDLSHGSAQIKAHGK-

V-L-SAADKTNVKGVFSKIGGHAEEYGAETLERMFIAYPQTKTYFPHFDLSHGSAQIKAHGK—

VHL-TPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV

VHL—SGGEKSAVTNLWGKV--NINELGGEALGRLLVVYPWTQRFFEAFGDLSSAGAVMGNPKV

VHW-TAEEKQLITGLWGKV--NVADCGAEALARLLIVYPWTQRFFASFGNLSSPTAILGNPMV

G-L-SDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFKHLKSEDEMKASED-

G-L-SDGEWQLVLKVWGKVEGDLPGHGQEVLIRLFKTHPETLEKFDKFKGLKTEDEMKASAD-

MKFFAVLALCIVGAIASPLTADEASLVQSSW-KA-VSHNEVEILAAVFAAYPDIQNKFSQFA-

aGVL—TDVQVALVKSSFEEFNANIPKNTHRFFTLVLEIAPGAKDLFS‘F-LKGSSEVPQNNPDL

M—L—DQQTINIIKATVPVLKEHGVTITTTFYKNLFAKHPEVRPLFD—MGRQESLEQPKALAMT
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of the main algorithm is quite moderate thanks to our improved lower and upper bounds.

MSA and FMA in turn need excessive space and time. In the case of the PAM250 cost matrix
MSA very ‘quickly finds an optimal alignment, even with a MIN-EPS value of 1. This shows

that the heuristic alignment is very close to the optimal alignment. However with its default
dayhoff cost matrix MSA is not able to find an optimal alignment within the space and
time bounds, whereas GSA finds an probably optimal alignment in 40 sec.

In the third example we take 5 full length globin seuqences from McClure’s dataset. GSA
computed the following upper and lower bounds with the PAM250 cost matrix:

lower bound L(s —) t) 49860
lower bound L3(s —> t): 50260
upper bound U0: 51320
optimal cost: 50694

The following table shows the results with the PAM250 cost matrix:

I program I flags min eps. I time (sec) space (MB) alignment cost

FMA - - + + +

GSA —a 147 57 ' 47 50694

GSA -ael24 124 53 42 50694

GSA —ae1 1 32 22 » 51194

GSA -aue99999 99999 + + +
MSA - 5 25 3.6 50756

MSA -x90 90 + + +
MSA —X1 1 17 3.0 50762

MSA —x99999 99999 + + +

With the dayhoff matrix GSA computes the following bounds:

lower bound L(s —§ 25) 24012
lower bound L3(s —> t): 24194
upper bound U0: 24575

optimal cost: 24445

The next table shows the results of the programs run with the dayhofi" cost matrix:

I program flags min eps. I time (sec) I space (MB) I alignment cost

FMA - + + +
GSA —a 735 235 24445
GSA —ae6 139 53 24445
GSA -ael 66 38 24486
GSA -aue99999 99999 + '+ +
MSA — 5 757 12 24447
MSA —x10 10 2144 20 24445
MSA —x1 1 352 5.7 ‘ 24450
MSA -x99999 99999 + + +

The optimal alignment with the PAM250 cost matrix computed by GSA is:

: V—-LSPAD~"K-TNVKAAW--GK--V--GA-HAGEYGA-EALERMFLSFPTTKTYFPHF-D——-LS

VH-LTPEE--K-SAVTALW--GK--V--NV-DEVG‘GE—A-LGRLLVVYPWTQRFFESFGDLSTPD

MKFFAVLALCIVGAIASPLTADEASLVQSSWKAVSHNEVEILAAVFAAYPDIQNKFSQFAG-KDLA

GV-LTDVQ--V-ALVKSSF‘-EE--F--NA-NIPKNTH—RFFTLVLEIAPGAKDLFSFLKG--SSE

M--LDQQT—-I-NIIKATV--PV--L--KE-HGVTITT-TFYKNLFAKHPEVRPLFDMGRQ-ESLE.

--HGSAQVKGHGKKVAD-ALTNAVA'HVD-DMPNALSAL—SDL—HAHKLR-VDPVNFKLLSHCLLV

AVMGNPKVKAHGKKVLG-AFSDGLA-HLD-NLKGTFATL-SEL-HCDKLH-VDPENFRLLGNVLVC

SIKDTGAFATHATRIVS-FLSEVIALSGNTSNAAAVNSLVSKLGDDHKARGVSAAQFGEFRTALVA

VPQNNPDLQAHAGKVFKLTYEAAIQLEVN-GAVASDATL-KSLGSVHVSKGVVDAHFPVVKEAILK

QPKALAMTVLAAAQNIE-NLPAILP-AVK~KIAVK-HCQ-AGVAAAHYPI-VGQELLGAIKEVLGD

TLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR---
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VLAHHFGKEFTPPVQAAYQKWAGVANALAHKYH---

YLQANV--SWGDNVAAAWNKALDNTFAIVVPRL----

. TIKEVVGDKWSEELNTAWTIAYDELAI I IKKEMKDAA

: AA'I'DDILDAWGKAYGVIADVFIQVEADLYAQAVE—--

For he longer sequences none of the programs can guarantee optimality. GSA is the only
program that can compute the “optimal” value within the space and time bounds with both

cost matrices. In fact it needs only 53 sec. with the PAM250 and 139 see. with the dayhoff

cost matrix, whereas MSA needs 2144 sec. with the dayhoff matrix.
In all our examples the strategy of GSA for computing the MIN_EPS values is always such

that the optimal alignment is computed. Additionally the strategy achieved in all but one
cases the optimal alignment in reasonable time so that the user can trust this heuristically

computed value. .

In conclusion one can say, that the .A" algorithm together with the proposed improve-

ments considerably speeds up the computation for multiple sequence alignment. It certainly
will do this also with affine gap costs. What needs to be shown is whether our improvements

then still dominate the overhead imposed by C++ and LEDA.
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5 Conclusion

In this paper we showed that the A" algorithm with standard bounding techniques is superior

to the well known Carillo—Lipman bound, because it excludes at least as many nodes in the

dynamic programming graph from consideration. Further on we improved this algorithm in
form of better lower and upper bounds. We implemented the algorithm in a C++ class using

the software library LEDA. This makes the algorithm easy to read and to maintain. We show

that this implementation outperforms similar programs due to our algorithmic improvements
and conjecture that an ongoing implementation of GSA with affine gap costs will be a useful
tool for multiple sequence alignment.
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