The Practice of Logical Frameworks

Frank Pfenning

Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891

fp@cs.cmu.edu

1 Introduction

Deductive systems, given via axioms and rules of inference, are a common con-
ceptual tool in mathematical logic and computer science. They are used to spec-
ify many varieties of logics and logical theories as well as aspects of programming
languages such as type systems or operational semantics. A logical framework
is a meta-language for the specification of deductive systems. Research on log-
ical frameworks is still in its infancy. Nonetheless, different frameworks have
been proposed, implemented, and applied to a variety of problems. In addi-
tion, some general reasoning systems have been used to study deductions as
mathematical objects, without specific support for the domain of deductive sys-
tems. This short survey cannot be complete, but we will try to highlight the
major themes, concepts, and design choices for logical frameworks and provide
some pointers to the literature. We concentrate on systems designed specifi-
cally as frameworks and among them on those that have the most mature
and most heavily exercised implementations: hereditary Harrop formulas (im-
plemented in AProlog and Isabelle) and the LF type theory (implemented in
Elf). The interested reader is referred to the homepage on logical frameworks at
http://www.cs.cmu.edu/"fp/1fs.html for a more complete bibliography, and
pointers to papers, implementations and researchers in the area.

Logical frameworks are subject to the same general design principles as other
programming or specification languages. They should be as simple and uniform
as possible, yet they should provide concise means to express the concepts and
methods of the intended application domain. Meaningless expressions should be
detected statically, yet the language must remain effectively implementable. It
should be possible to structure large specifications. There are also concerns spe-
cific to logical frameworks. Perhaps most importantly, an implementation must
be able to check deductions for their validity with respect to the specification
of a deductive system. Secondly, it should be feasible to prove (informally) that
the representations of deductive systems in the framework are correct. Our task
will be to exhibit some of the central principles underlying logical frameworks
and discuss them in terms of their practical consequences. This will help us to
motivate what we consider the major challenges faced by the field at present.

Historically, the first logical framework was Automath [NGdV94] and its var-
ious languages, developed during the late 60’s and early 70’s. The goal of the
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Automath project was to provide a tool for the formalization of mathemat-
ics without foundational prejudice. Therefore, the logic underlying a particular
mathematical development was an integral part of its formalization. Many of the
ideas underlying the Automath languages have found their way into modern sys-
tems. The main experiment conducted within Automath was the formalization
of Landau’s Foundations of Analysis [Jut77].

In the early 80’s the importance of constructive type theories for computer
science was being recognized through the pioneering work of Martin-Lo6f [MLSO0,
ML85a, ML85b]. On the one hand, this led to a number of systems for construc-
tive mathematics and the extraction of functional programs from constructive
proofs (for example, Nuprl [C*86, CH90], LEGO [Pol94], and Coq [DFH'93]).
On the other hand, it strongly influenced the design of LF [HHP93], also called
the Edinburgh Logical Framework (ELF). Concurrent with the development of
LF, frameworks based on higher-order logic and resolution were designed in
the form of generic theorem provers [Pau86, Pau89, NP92] and logic program-
ming languages [NM88, MNPS91]. The type-theoretic and logic programming
approaches were later combined in the Elf language [Pfe89, Pfe9la, Pfe92a,
Pfe94]. At this point around 1988, there seems to have been in a pause in the
development of new frameworks, while the potential and limitations of exist-
ing systems were explored in numerous experiments. This hiatus has recently
come to a close with implementations of frameworks based on inductive defi-
nitions such as FSO [Fef88, MSB93] and ALF [Mag95]|, partial inductive defini-
tions [Hal91, Eri93, Eri94] and substructural logics [SH91, Gir93, Mil94, Cer96].
There is a different approach to logical frameworks based on equational rather
than deductive reasoning. While one can be interpreted in the other without
much difficulty, the meta-languages based on equational reasoning take a rather
different form and we will not discuss them here. The interested reader is re-
ferred to [MOM93, KKV93, Hab94]. Another approach derives from the notion
of labelled deductive system due to Gabbay [Gab94]. Here the meta-logic is a
classical logic with equality [Gab93].

Two further notes on terminology. Some researchers distinguish logical frame-
works from meta-logical frameworks [BC93], the latter being intended as a meta-
language for reasoning about deductive systems rather than within them. Clearly,
the latter is more general, since meta-logical frameworks must first provide means
for specifying deductive systems before one can reason about them. We view this
as just another application which may or may not be supported in a given frame-
work. Secondly, some researchers prefer the term general logic for systems not
based on type theory. We do not make this distinction, but we will point out
the differences between the methodologies based on logical and type-theoretic
frameworks.

This survey is organized along the specific tasks that are carried out within
logical frameworks, from the representation of expressions (Section 2) and deriva-
tions (Section 3) to methods for search and meta-programming (Section 4) and
development of the meta-theory of encoded systems (Section 5). We specifically
do not discuss the meta-theory of the logical frameworks themselves.



2 Representing Syntax

The specification of a deductive system usually proceeds in two stages: first
we define the syntaz of the object language and then its judgments via axioms
and rules of inference. In order to concentrate on the meanings of expressions
we ignore issues of concrete syntax and parsing and concentrate on specifying
abstract syntazx. Different framework implementations provide different means
for modifying or customizing the parser in order to embed the desired object-
language syntax.

One of the simplest meta-languages is the language of Horn clauses. In such
a framework the expressions of the object language are represented by ordinary
first-order terms. This uni-typed approach (with one universal type of individ-
uals) requires that we axiomatize explicitly, via a set of Horn clauses, when a
given first-order term actually represents an expression of the object language.
Similarly, in a functional meta-language like Scheme, we would have to write a
function to check if a given s-expression denotes an expression of the object lan-
guage. Such definitions are inductive, which has advantages for the development
of the meta-theory as discussed in Section 5, but they are also external to the
representation itself.

A standard method for transforming an external validity condition into an
internal property of the representation is to introduce types. By designing the
type system so that type checking is decidable, we turn a dynamic invocation of
a predicate or function into a static check. In the functional and logic program-
ming communities, many type systems have been proposed, but few of them
interact well with higher-order features needed later. We begin with Church’s
simply typed \-calculus A~ . The representation introduces a new type a for each
syntactic category of the object language. The adequacy theorem states that
the representation function "-7 is a bijection between expressions of the object
language and canonical meta-language objects M of type a. In the realm of log-
ical frameworks, the appropriate notion of canonical form is usually the long
Bn-normal form.

A critical issue for meta-languages in general is the representation of vari-
ables. In informal practice we pervasively use the so-called variable convention,
that is, we identify expressions that differ only in the names assigned to their
bound variables. This can be achieved in the meta-language by using de Bruijn
indices [dB72] where a variable occurrence is replaced by a pointer to the corre-
sponding binder.

Another approach, which remains closer to informal practice, reduces all
binding operators to a single one, namely A-abstraction in the meta-language.
This entails that object language variables are represented by variables in the
meta-language, and variables bound in the object language are bound with cor-
responding scope in the meta-language. This is the fundamental idea of higher-
order abstract syntax [HHP93, PES88] which goes back to Martin-Lo6f’s system
of arities [NPS90]. Higher-order abstract syntax identifies expressions that dif-
fer only in the names assigned to their bound variables through a-conversion
in the meta-language. It also supports substitution through (-reduction in the



meta-language: Since the representation expresses the scope of all variables,
capture-avoiding substitution is automatically available and does not need to
be implemented on a language-by-language basis.

While representation of syntax is relatively well understood, current ap-
proaches are limited in that they do not permit subsorting. With larger examples
it is frequently the case that syntactic categories are not completely disjoint, but
that some are subclasses of others. In a first-order meta-language this problem
can be addressed by using an order-sorted type system, but in higher-order lan-
guages these interact, sometimes in undesirable ways, with other features. Pre-
liminary theoretical work to extend order-sorted techniques to logical frameworks
is reported in [Pfe93, KP93], but to our knowledge none has been implemented
on a realistic scale.

The variable convention is just one example where syntax is considered mod-
ulo a certain equivalence. In classical logic, for example, it is sometimes conve-
nient to think of =(A A B) as the same formula as =A V =B. Building equations
into the representation of syntax has been recognized as a significant challenge
and investigated in the context of logical frameworks by [Nip91] with a rapidly
increasing literature regarding its operational properties [ALS94, Kah95, LP95,
Pre95].

Finally, substitutions are often used in informal developments. Some work on
incorporating them directly into frameworks has been done [Dug94, Mag95], but
further theoretical and practical issues regarding explicit substitutions remain
to be explored.

3 Representing Derivations

The next step is to represent the judgments and the defining axioms and infer-
ence rules of the deductive system under consideration. These might be the type
system and operational semantics of a programming language, or the inference
rules of a logical system in natural deduction, sequent, or axiomatic formulation.
We will generally think of axioms as inference rules with no premises, thus no
formal distinction between them is required. Important recurring notions from
informal practice are parametric and hypothetical judgments, that is, reasoning
from hypotheses and reasoning with parameters as in the implication and uni-
versal introduction rules in natural deduction. We should therefore take care to
support these notions directly in the framework.

The first choice that arises is if derivations should be modelled as objects,
or if we are interested only in derivability. In the latter case we can follow an
approach which is analogous to the first one pursued in the representation of
syntax: We define derivability via axioms in a meta-logic. Using this technique,
a judgment (such as A is true) is represented by a formula (such as true("A™)).
Each inference rule defining a judgment is turned into an axiom in the meta-
language. The adequacy theorem states that we can prove true(" A7) in the meta-
logic iff we can derive A is true.



An appropriate language that supports parametric and hypothetical judg-
ments is the language of hereditary Harrop formulas, which forms the basis of
the logic programming language AProlog and the generic theorem prover Is-
abelle. Variations of this approach to encoding derivability have been devised by
Paulson [Pau86] and Felty and Miller [FM88]. Quantifiers in hereditary Harrop
formulas are typed and range over simply-typed A-terms, thus permitting the
technique of higher-order abstract syntax.

With a general implementation of the meta-logic, we can now reason within
the object language and interpret the results via the adequacy theorem. Many
experiments have been carried out following this methodology, including type
inference [Pfe88], equational reasoning [Nip89], theorem proving [Fel89], func-
tional programming [HM90, Han93], specification languages [MM93], VLSI de-
sign [Ros92], set theory [Pau93, No&93], interpreter verification [BHN'94] and
the Church-Rosser theorem [Nip95, Ras95].

However, in many applications we need to go a step further and design a
representation of derivations themselves as objects in the meta-language. A nat-
ural first choice for this representation is also the simply-typed A-calculus. We
introduce a new type for derivations, where each inference rules becomes a con-
structor of objects of the new type. Functional constructors can be used to model
parametric and hypothetical judgments. This technique has been investigated by
Felty [Fel89] for representing derivations in first-order logic.

One drawback of this representation is that the validity of derivations must
be axiomatized explicitly. This is because the system of simple types is not
accurate enough to capture the expressions which are part of a judgment. Fortu-
nately, it is possible to refine the simply-typed A-calculus so that validity of the
representation of derivations becomes an internal property, without destroying
the decidability of the type system. This is achieved by introducing type families
indexed by the syntactic constituents of the judgment. Simple function types
must be generalized to dependent function types to capture the dependencies
between an argument to a function and its role as an index object. This rep-
resentation technique is often summarized with the phrases judgments-as-types
and derivations-as-objects.

Dependent types create the need for a rule of type conversion which drasti-
cally alters the character of the type theory. The pure type system A preserves
decidability of type-checking, which is very easily lost for language extensions.
AT is the basis of the LF logical framework [HHP93] which also systematizes
the representation techniques for various judgment forms and the proofs of ade-
quacy of these representations [Gar92]. Applications of LF have been numerous,
first with pencil and paper [HHP93, AHMP92], then in the context of the Elf
language which implements LF (see Section 5).

A significant challenge in the area of meta-representation are modal and
other non-local side conditions in the formulation of deductive systems, as they
occur, for example, in the presentation of linear logic. A higher-order classi-
cal linear meta-logic to address some of these problems has been proposed by
Miller [Mil94], a conservative extension of LF by Cervesato [Cer96]. Implemen-



tation projects for these languages have just begun. Besides linear and related
logics, these frameworks also enable a whole new class of languages to be rep-
resented concisely, namely those involving state and concurrency [Chi95]. Also
relevant is the work on labelled deductive systems [Gab93, Gab94].

Another challenge is the development of appropriate structuring principles to
achieve modular presentation of deductive systems. This has been studied in the
abstract [HST94] and in the context of the Elf language [HP92b], but only proto-
type implementations exist. The ALF framework employs explicit substitutions
in a similar structuring role [Mag95].

It is straightforward to encode systems of equational reasoning in any of
the logical frameworks we have discussed [Nip89, Fel91]. The granularity and
efficiency of reasoning in such explicit encodings is generally too low to allow
complex developments—we must look for ways to incorporate equational the-
ories directly into the underlying meta-logic or type theory without sacrificing
decidability and other desirable properties. Some promising work in this direc-
tion includes reflection [Con94] and dependently typed rewriting [Vir95].

4 Search and Meta-Programming

The representation of a deductive system in a logical framework may be used
for a variety of purposes. The obvious application is to construct derivations
within a deductive system, with the support of the framework implementation.
For example, after specifying a logic for reasoning about programs in a particu-
lar programming language, we may now want to prove the correctness of some
program. This process typically involves a mixture of interactive and automatic
deduction. A related, but qualitatively different task, is the implementation of
specific algorithms for the deductive system at hand. For example, after specify-
ing a type system for a programming language as a deductive systems, we may
want to implement algorithms for type checking or reconstruction. Similarly, we
may wish to implement an abstract machine and a compiler after specifying a
high-level semantics for a programming language. A third application is the in-
vestigation of the meta-theory of the deductive systems we have encoded. In this
section we consider search and meta-programming applications and postpone the
meta-theory until Section 5.

It is beyond the reach of current implementations and even undesirable in
many circumstances to conduct completely automatic search. We cannot expect
to obtain an efficient and powerful automatic theorem prover merely from the
specification of a logic as a deductive system, nor can we expect an automatic
theorem prover to find good derivations, which is, of course, a subjective notion.
Instead, we must look for methods that support interactive deduction while per-
mitting heuristic searches to be programmed and automatic methods to be used
when they exist. Tactics and Tacticals provide a popular mechanism to structure
and program search. Tactics and tacticals arose out of the LCF theorem proving
effort [GMW79, Pau83] and are used in such diverse systems as NuPrl [C186],
Coq [DFH 193], Isabelle [NP92], and AProlog [NM88, Fel93]. In all but the last



one, they are programmed in ML which was originally developed to support
theorem proving for LCF.

Logic programming offers a different approach to meta-programming. Rather
than meta-programming in a language in which the logical framework is imple-
mented (typically ML), we endow the logical framework itself with an operational
interpretation via goal-directed search in the spirit of Prolog. This means that
we are working in a uniform language for specifications and implementations
of algorithms, but it should be clear that a specification of a logic under this
approach does not automatically give rise to a theorem prover. Two frameworks
to date have pursued this approach: AProlog, which gives an operational inter-
pretation to hereditary Harrop formulas, and Elf, which gives an operational
interpretation to A\.

Unification is a central and indispensable operation in traditional first-order
theorem provers and logic programming languages. It plays a critical role in the
implementations of tactics and tacticals in Isabelle and AProlog [Fel93, FH94].
Unification allows the search algorithm to postpone existential choices until more
information becomes available as to which instances may be useful. Since most
logical frameworks go beyond first-order terms, traditional first-order unification
is insufficient.

Despite its undecidability, Huet [Hue75] devised a practical algorithm for
higher-order pre-unification, a form of unification where solvable equations of
a certain form are postponed as constraints. Huet’s algorithm has been used
extensively in AProlog and Isabelle and generally seems to have good compu-
tational properties. It also generalizes smoothly from the simply-typed to the
dependently typed case, as discovered independently by Elliott [ElI89, EI1190]
and Pym [Pym90, Pym92].

The practical success of Huet’s algorithm seems to be in part due to the
fact that difficult, higher-order unification problems rarely arise in practice. An
analysis of this observation led Miller [Mil91] to discover higher-order patterns, a
sublanguage of the simply-typed A-calculus with restricted variable occurrences.
For this fragment, most general unifiers exist. In fact, the theoretical complexity
of this problem is linear [Qia93], just as for first-order unification. Miller pro-
posed it as the basis for a lower-level language L) similar to AProlog, but one
where unification does not branch, since only higher-order patterns are permit-
ted as terms. An empirical study of this restriction [MP92, MP93| showed that
most dynamically arising unification problems lie within this fragment, but that
a syntactic restriction rules out some useful programming idioms, since the op-
eration of substitution of terms for bound variables has to be reprogrammed for
each syntactic category.

For this reason, the logic programming language Elf uses neither Huet’s al-
gorithm nor a static pattern restriction, but a general higher-order constraint
simplification algorithm [Pfe91a, Pfe91b|. This algorithm directly solves prob-
lems within Miller’s decidable fragment, while other equations are postponed
as constraints. On the positive side, this can drastically reduce backtracking
compared to higher-order unification and imposes no restrictions on variable oc-



currences. On the negative side, unsolvable constraints may remain until the end
of the computation, in which case the answer must be considered a conditional
solution.

From the considerable practical experience it seems that logic programming
is often superior to implement specific algorithms such as for type inference, eval-
uation, or compilation, while tactics and tacticals work well for general reasoning
and search within a specified logic.

Methods for general proof search for LF have been investigated [PW90], but
a general and practically efficient theorem proving procedure for a logical frame-
work remains an important area for further research.

Generality, as found in a logical framework, often comes at the price of effi-
ciency. For example, compare the undecidability of higher-order unification with
the efficiency of first-order unification. One way to recapture efficiency would be
to compile or specialize the general search procedure to specific encoded logics.
Ouly very preliminary work on this has been done [NJ89, MP93].

5 Representing Meta-Theory

Since logical frameworks are designed to express the language and inference rules
of deductive systems at a very high level of abstraction, one rightly suspects that
they should be amenable to an investigation of the meta-theory of deductive sys-
tems. By far the most common proof technique is induction, both over the struc-
ture of expressions and derivations. Thus one naturally looks towards frameworks
that permit inductive definitions of judgments and support the corresponding
induction principles. Unfortunately, induction conflicts with the representation
technique of higher-order abstract syntax. For example, expressions of the un-
typed A-calculus would be represented by constructors lam : (exp — exp) — exp
and app : exp — exp — exp. This cannot be considered as an inductive type,
because of the negative occurrence of exp in the type of lam. An attempt to
formulate a valid induction principle for the type exp fails.

Several options have been explored to escape this dilemma. The first, for
example used in [BC93, Fef88, MN94, Pol95] is to reject the notion of higher-
order abstract syntax and use inductive representations directly. This is en-
genders a complication of the encoding and consequently of the meta-theory,
which now has to deal with many lemmas regarding variable naming. Using
de Bruijn indices [dB72] alleviates this problem somewhat. In fact, this repre-
sentation was designed in order to be able to give a completely rigorous proof
of the Church-Rosser theorem for the untyped A-calculus. It has subsequently
been used in formalizations of this proof in NQTHM [Sha88], Coq [Hue94] and
Isabelle [Nip95, Ras95].

Instead of completely rejecting higher-order abstract syntax, we can also relax
the notion of inductive definition to obtain partial inductive definitions [Hal91].
These have been used as the basis for a logical framework [Eri93], implemented
in the Pi derivation editor [Eri94], but its potential for formalizing meta-theory
remains largely unexplored.



A third option is to externalize the induction. This reflects one of the ideas
behind Gdédel’s system T in the context of type theory: Instead of proving a
statement Vz. Jy. A(z,y) explicitly by induction over x, we can exhibit a primi-
tive recursive functional f such that V. A(x, f(x)). Since all primitive recursive
functionals are total (which we prove once and for all), the required y is thus
guaranteed to exist. An extension of this idea beyond primitive recursion to gen-
eral pattern matching (without the notion of higher-order abstract syntax) has
been explored in the ALF system [Mag95, MN94, Coq92, CNSvS94]. The empir-
ical evidence suggests that this shortens developments considerably [Coq92] and
also allows the formulations of functions in a manner which is closer to functional
programming practice.

Adding such functions to the simply-typed A-calculus or LF still leads to
inadequate encodings. To eliminate the paradoxes we can formulate functions
of this sort as higher-level judgments relating derivations so that they cannot
interfere with the encodings themselves. They can still be executed due to
the computational interpretation of meta-language EIf via logic programming
search. This technique has been applied in a number of case studies such as
program derivation [And93, And94a, And94b], type preservation [MP91], com-
piler verification [HP92a], CPS conversion [DP95], partial evaluation [Hat95],
theorem proving [Pfe92b], the Church-Rosser theorem [Pfe92c|, and cut elimi-
nation [Pfe95].

With this technique we can implement and execute meta-theoretic proofs, but
LF type checking alone cannot guarantee that a higher-level type family actually
represents a meta-theoretic proof. The design of an appropriate external validity
condition for these relations and its implementation is the subject of current
research described in [PR92, RP96, Roh96]. Presently, the external argument
guaranteeing the meta-theorem has been carried out mechanically only for some
of these above-mentioned experiments.

An important challenge for logical frameworks is to reconcile induction prin-
ciples with higher-order abstract syntax. Two approaches, using existing induc-
tive calculi, are presented in [DH94, DFH95]. Another approach, pursued by the
author in joint work with Joélle Despeyroux and Carsten Schiirmann, employs
modal restrictions to separate closed from arbitrary expressions, thereby recov-
ering adequacy of encodings in conjunction with a system of primitive recursive
functionals for higher-order data representations.

Termination orderings and higher-order, dependently typed rewriting provide
tools which should significantly extend the scope of the methods sketched here.
Some work along these lines can be found in [Geh95, Kah95, LP95, vdPS95].

High-level representations of deductive systems allow proofs of their prop-
erties to be implemented quickly and efficiently. Yet the current degree of au-
tomation is not satisfactory. We should look for ways to apply techniques from
inductive theorem proving in the realm of logical frameworks to automate some
of these proofs.
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