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While the application of normative standards is vital to the practice of clinical

neuropsychology, data regarding normative change remains scarce despite the frequency

of serial assessments. Based on 285 normal individuals, we provide co-normed baseline data

with demographic adjustments and test-retest standardized regression based (SRB) models

for three time points for several measures. These models delineate normal, expected change

across time, and yield standardized z-scores that are comparable across tests. Using a new

approach, performance on any previous trial was accounted for in the subsequent models of

change, yielding serial normative formulas that model change trajectories rather than

simple change from point to point. These equations provide indices of deviation from

expected baseline and change for use in clinical or research settings.
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INTRODUCTION

Because norm-referenced scores provide the basis of interpretative statements
concerning a patient’s functional status, diagnosis, and treatment needs, recent texts
stress not only the importance of informed test selection but also the importance of
selecting norms that are appropriate for the goals of the assessment (Lezak,
Howieson, & Loring, 2004; Mitrushina, Boone, Razani, & D’Elia, 2005; Strauss,
Sherman, & Spreen, 2006). Analysis of change is central to addressing diagnostic
questions, and it is based on a discrepancy model in which an observed performance
is noted to deviate from an expected level (Hawkins & Tulsky, 2003). Heaton and
colleagues (Heaton, Taylor, & Manly, 2003) observe that there is overwhelming
evidence that demographic factors such as age, education, gender, and ethnicity
significantly affect an individual’s observed cognitive performance. By adjusting
normative data for relevant demographic factors, an individual comparison

Address correspondence to: Deborah Attix, Box 3333 Duke University Medical Center, Durham,

NC 27710, USA. E-mail: koltai@duke.edu

Accepted for publication: January 22, 2008. First published online: Month day, year.

� 2008 Psychology Press, an imprint of the Taylor & Francis group, an Informa business

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
w
e
e
t
,
 
J
e
r
r
y
]
 
A
t
:
 
1
7
:
3
3
 
1
9
 
A
u
g
u
s
t
 
2
0
0
8



standard is generated against which a specific patient’s observed scores can be
compared (Mitrushina et al., 2005; Strauss et al., 2006). While population-based
norms describe where a patient’s performance falls relative to the mean of the
general population, demographically adjusted norms inform the clinician how far a
patient’s observed performance deviates from his or her expected performance
(Busch, Chelune, & Suchy, 2006). The diagnostic value of these deviations can be
evaluated using base-rate data, test-operating characteristics such as sensitivity and
specificity, receiver-operating characteristics, and estimates of relative risk (Ivnik
et al., 2000, 2001), and lend themselves to evidence-based research and practice
(APA Presidential Task Force on Evidence-Based Practice, 2006; Chelune, 2002).

Demographically adjusted norms have been developed for many individual
test measures such as the California Verbal Learning Test (Delis, Kramer,
Kaplan, & Ober, 2000), Hopkins Verbal Learning Test (Vanderploeg et al.,
2000), MicroCog (Powell, Kaplan, Whitla, Catlin, & Funkenstein, 1993), Mattis
Dementia Rating Scale (Lucas et al., 1998; Schmidt et al., 1994), Ruff Figural
Fluency Test (Ruff, 1996), and Wisconsin Card Sorting Test (Heaton, Chelune,
Talley, Kay, & Curtiss, 1993). While such norms provide useful individual
comparison standards for evaluating the diagnostic value of the specific test,
caution must be exercised when using such tests within the context of a battery since
the tests were standardized on different populations at different points in time, and
the intercorrelations between measures and the base rate of discrepancies scores are
often not known. To overcome these limitations, there is a growing appreciation of
the value of test batteries that have been co-normed using the same population with
known demographic features. Examples of such demographically adjusted norms
include those for the expanded Halstead-Reitan Battery (Heaton, Miller, Taylor, &
Grant, 2004), the Mayo Older Americans Normative Studies (Ivnik, Malec, Smith,
Tangalos, & Petersen, 1996; Ivnik et al., 1990, 1992a, 1992b, 1997; Ivnik, Tangalos,
Petersen, Kokmen, & Kurland, 1992c; Lucas et al., 1998; Malec et al., 1992),
the third editions of the Wechsler Intelligence and Memory Scales (Taylor &
Heaton, 2001; The Psychological Corporation, 2002; Wechsler, 1997), the
Neuropsychological Assessment Battery (NAB; Stern & White, 2001), and the
Repeatable Battery for the Assessment of Neuropsychological Status (RBANS;
Randolph, 1998). The NAB and RBANS are notable because they are among the
few test batteries that are intended for both single-point assessments as well as
repeated use, albeit using alternative forms.

While neuropsychological tests are generally designed to assess the current
state or capacity of the individual, there are an increasing number of situations in
which patients require serial testing to monitor change in cognitive status as a
function of disease progression, treatment response, surgical or pharmacological
intervention, and recovery of function (Busch et al., 2006; Chelune, 2003; Chelune,
Naugle, Luders, Sedlak, & Awad, 1993; Collie, Maruff, Darby, & McStephen,
2003; Lineweaver & Chelune, 2003; Strauss et al., 2006). In these situations, the
patient’s observed baseline performance becomes the individual comparison
standard against which test–retest change is evaluated, and the variable of interest
is the test–retest discrepancy or change score. Interpretation of the clinical signifi-
cance of these change scores is complicated by practice effects, measurement error,
and regression to the mean (Bruggemans, Van de Vijver, & Huysmans, 1997;
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Chelune, 2003; Lineweaver & Chelune, 2003). Interpretation of change scores at
the level of the individual is further complicated by patient characteristics such as
age, education, and baseline ability, which can influence rate of change although
not necessarily uniformly across individuals. While use of alternate forms has been
suggested as a useful approach to minimize practice effects (Benedict & Zgaljardic,
1998; Delis et al., 2000; Randolph, 1998; Stern & White, 2001), research still
demonstrates significant practice gains (Beglinger et al., 2005; Hinton-Bayre &
Geffen, 2005), as alternative forms do not control for procedural or skill-based
learning or other factors that contribute to the overall practice effect (Busch et al.,
2006). Because alternate forms do not fully remedy practice effects nor meet the
psychometric challenges posed by bias and error inherent in serial assessments,
methods of assessing reliable change have been developed.

Reliable change methods are essentially a family of statistical procedures
that attempt to take into account with varying degrees of success practice effects,
measurement error, and regression to the mean by describing the spread or
distribution of test–retest change scores that would be expected to occur in the
absence of true change (Basso, Bornstein, & Lang, 1999; Chelune et al., 1993;
Dikman, Heaton, Grant, & Timken, 1999; Hermann et al., 1996; Iverson, 2001;
Jacobson & Truax, 1991; McSweeny, Naugle, Chelune, & Luders, 1993; Sawrie,
Chelune, Naugle, & Luders, 1996). Meaningful change is typically determined
when an observed difference score exceeds a specified confidence interval set
around the mean of the expected change score. These procedures are increasingly
being used in outcomes research such as epilepsy surgery (Chelune et al., 1993;
Hermann et al., 1996, 1999; Martin et al., 2002; Sawrie et al., 1996; Seidenberg
et al., 1998), cardiac procedures (Andrew, Baker, Bennetts, Kneebone, & Knight,
2001; Bruggemans, van de Vijver, & Huysmans, 1999; Collie, Darby, Falleti,
Silbert, & Maruff, 2002; Kneebone, Andrew, Baker, & Knight, 1998; Lehrner
et al., 2005; M. S. Lewis, Maruff, Silbert, Evered, & Scott, 2006), traumatic brain
injury (Dikman et al., 1999; Ferland, Ramsay, Engeland, & O’Hara, 1998;
McCrea et al., 2005; Temkin, Heaton, Grant, & Dikmen, 1999), post-operative
cognitive dysfunction (Farag, Chelune, Schubert, & Mascha, 2006; M. Lewis,
Maruff, & Silbert, 2004; Maze & Todd, 2007; Murkin, 2001), and aging (Duff
et al., 2005; Ivnik et al., 1999; Knight, McMahon, Skeaff, & Green, 2007;
Raymond, Hinton-Bayre, Radel, Ray, & Marsh, 2006; Sawrie, Marson, Boothe, &
Harrell, 1999; Tombaugh, 2005).

While there is growing interest in the use of longitudinal multivariate mixed
models to assess cognitive change (Chu et al., 2007; Salthouse, 2007), the use of
Standardized Regression-Based (SRB) models remains one of the most powerful
means for assessing reliable change at the level of the individual (Chelune, 2003).
Introduced by McSweeny and colleagues (1993), the SRB approach involves
regression modeling to derive prediction equations for retest scores based on
initial baseline performances. In addition to baseline scores, these regression
equations are often multivariate and include demographic variables and other
potentially relevant factors that might affect the rate of test–retest change
(Chelune, 2003; Hermann et al., 1996; Sawrie et al., 1996). Norms for expected
change can be derived in the form of standardized z-scores by dividing the
difference between the observed and regression predicted retest scores by the
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Standard Error of the Estimate (SEE) for the regression equation. Similar to
demographically adjusted norms for single-point evaluations, the SRB equations
can be used with individual patients to determine whether the patient’s observed
rate of change deviates significantly from expectation. SRB norms of expected
change also have the advantage of taking into account differences in reliability
and susceptibility to practice between test measures such that change scores for
groups of variables are expressed on a common metric, facilitating between-
variable discrepancy analysis (Chelune, 2003).

The current study is divided into two parts, and presents normative baseline
and test–retest change data over three time points for a sample of normal
individuals. Part 1 provides co-normed data with subsequent demographic
adjustments for 14 variables derived from eight commonly used neuropsycholo-
gical tests. Part 2 provides SRB norms of expected change across three time
points. In addition to providing the SRB prediction equations to forecast expected
change from Time-1 (T1) to Time-2 (T2), we also apply a relatively new approach
(Chelune, Attix, & Story, 2007; Chelune, Ivnik, & Smith, 2006) for predicting
change at Time-3 (T3). Whereas previous authors (e.g., McCrea et al., 2005) have
employed the SRB approach to predict retest performance across multiple time
points using baseline scores alone, we used both baseline (T1) and initial change
(T2–T1) to predict subsequent change scores. This method models the potential
impact of differential practice effects on subsequent retest performances, yielding
prediction equations that reflect neuropsychological trajectories over time.

METHOD

Participants

An archival sample of 285 normal participants who took part in an
investigation of the potential human health effects of exposure to a naturally
occurring dinoflaggellate, Pfiesteria Piscicida, was used. The parent study was an
epidemiological surveillance research project funded by the Centers for Disease
Control and Prevention utilizing a prospective longitudinal design. North Carolina
and Virginia participants were assessed for the detection of Pfiesteria-related health
problems associated with occupational or recreational water contact. While there
were limited Pfiesteria-associated fish kills during the study period, a series of
analyses on variables reflecting various parameters of exposure was conducted.
These parent study analyses failed to reveal any consistent, significant association
between exposure indicators and neuropsychological test performance (Turf et al.,
1999; Moe, 2004).

Participants were aged 18 to 71 (M¼ 43.4, SD� 11.7; 15% aged 18–30; 82.8%
aged 31–64; 2.2% 65þ), with an average education of 12.4 years (SD� 2.5; range
6–20, 23.6%5 12, 39.3%¼ 12, 37.4%412) and a mean Wide Range Achievement
Test-3 Reading scaled score of 92.7 (SD� 13.9). They were primarily male
(244 males/41 females), and all were Caucasian. Participants had no known
neurological conditions, history of treatment for substance abuse, or diagnosis of
psychosis/treatment with antipsychotic agents. Also excluded were participants with
a history of traumatic brain injury with loss of consciousness longer than 30 minutes
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or persisting cognitive sequelae sufficient to interfere with daily functioning, a
history of solvent or pesticide poisoning, insulin-dependent diabetes, or a history of
placement in school classes for developmentally disabled individuals. Finally, those
who had participated in other studies involving Pfiesteria or estuary syndromes
were excluded.

Study participants were examined at entry and every 5 to 7 months with a
medical exam and neuropsychological assessment over a 1.5-year period. The
mean test–retest interval was 177 (SD 51) days for Time 2, and 195 (SD 91) days
for Time 3. In North Carolina participants also completed biweekly telephone
interviews to document perceived symptoms. Some participants completed exams
‘‘triggered’’ by exposure to a fishkill or cognitive symptom complaints. In such
cases, the subsequent assessment was scheduled for 5–7 months after the triggered
exam to maintain an equal exam interval between participants. Performance as a
function of routine versus triggered visits did not differ.

The Institutional Review Board of all participating medical centers approved
the study (Duke University Medical Center, University of North Carolina-Chapel
Hill, Virginia Commonwealth University, and Eastern Virginia Medical School).
Participants provided written informed consent, and were compensated $100 for
each half-day medical and neuropsychological examination. Only participants with
data for all three visits were included in the current analysis for each measure.

Procedures

Table 1 outlines the test instruments used. Standardized administration and
scoring procedures were utilized for each neuropsychological measure, with the
exception of minor modifications for the Rey-Osterreith Complex Figure Test
(ROCFT) and Rey Auditory Verbal Learning Test (RAVLT). Specifically, only
copy and delayed recall trials of the ROCFT were given. In order to avoid ceiling
effects, administration alternated between two versions of the RAVLT (A-B-A;
immediate recall after the interference list was given for all participants, but only a
subset of these data was archived and available for analyses from participating
sites). The use of regression modeling to control for practice effects and other
sources of error was anticipated, and thus alternate forms were only administered
when ceiling effects were expected (i.e., RAVLT), and were administered in the same

Table 1 Neuropsychological measures

Wide Range Achievement Test – 3, (baseline only) Wilkinson, 1993

Symbol Digit Modalities Test, written version Smith, 1982

Trail Making Test U.S. Army, 1944

Letter–Number Sequencing, Wechsler Adult Intelligence Scale-III Wechsler, 1997

Stroop Color and Word Test Golden, 1978

Controlled Oral Word Association, Multilingual Aphasia Examination Benton & Hamsher, 1976

Rey Auditory Verbal Learning Test Schmidt, 1996

Rey-Osterreith Complex Figure Test Meyers & Meyers, 1995

Grooved Pegboard Test Klove, 1963
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order for all participants, such that covarying test version was unnecessary. Time
was also not examined as a performance modifier as the test–retest interval was by
study design restricted in range.

Data analyses

Analyses proceeded in two parts: Part 1 – baseline co-norming, and Part 2 –
normative change over time. In Part 1, stepwise linear regression was used to create
formulas that delineate co-normed demographically corrected baseline performance
for the sample, using age, education, and sex as predictors. These equations provide
indices of deviation from expected baseline performance for use in clinical or
research settings. In Part 2 stepwise linear regression and SRB procedures were
utilized to predict normative change trajectories over time, with age, education, sex,
and previous raw test scores as potential predictors.

RESULTS

Part 1: Baseline co-normed performance

Mean raw scores on the variables of interest for the sample at baseline (T1),
Time 2 (T2), and Time 3 (T3) examinations are presented in Table 2. Significant
differences between time points are noted in Table 2 based on one-way repeated
measures ANOVAs and post-hoc Tukey tests. Based on these analyses, statistically
significant practice effects for each measure were observed over the three time points.

Table 2 Sample means and standard deviations over time

T1 T2 T3

n Mean (SD) Mean (SD) Mean (SD) Change statistic

SDMT 285 46.45 (9.6) 48.36 (10.1) 48.52 (10.3) � ffl
Trails A 284 30.90 (10.9) 29.70 (9.6) 28.37 (9.4) ^ ffl
Trails B 285 79.12 (31.6) 71.49 (28.3) 71.71 (30.0) � ffl
L–N Sequencing – raw 285 10.31 (2.3) 10.77 (2.5) 10.87 (2.4) � ffl
Stroop C/W 278 37.44 (8.7) 40.62 (8.5) 41.68 (9.0) � ^ ffl
COWA 254 33.57 (10.6) 35.85 (11.5) 37.16 (11.9) � ^ ffl
RAVLT Total 234 48.53 (9.0) 46.42 (9.4) 51.05 (9.6) � ^ ffl
RAVLT Short Delay 186 10.26 (2.7) 9.77 (2.8) 11.23 (2.8) � ^ ffl
RAVLT Long Delay 234 9.77 (2.9) 9.17 (3.2) 10.53 (3.2) � ^ ffl
RAVLT Recognition 234 13.59 (1.5) 13.48 (1.6) 13.78 (1.6) ^

Rey-O Copy 284 28.00 (4.5) 28.26 (4.2) 28.69 (4.1) ffl
Rey-O Delay 285 15.35 (5.3) 17.41 (5.4) 18.35 (5.6) � ^ ffl
GP Dom 283 77.78 (15.6) 75.73 (14.9) 73.45 (14.3) � ^ ffl
GP NonDom 285 84.87 (16.0) 82.26 (16.1) 79.68 (15.6) � ^ ffl

SDMT¼Symbol Digit Modalities Test; L–N Sequencing¼Letter–Number Sequencing;

Stroop C/W¼Stroop Color/Word trial; COWA¼Controlled Word Association Test; RAVLT¼Rey

Auditory Verbal Learning Test; Rey-O¼Rey-Osterreith; GP Dom¼Grooved Pegboard Dominant

Hand; GP NonDom¼Grooved Pegboard Nondominant Hand.

T1¼First Exam; T2¼Second Exam; T3¼Third Exam; n¼ sample size; SD¼Standard Deviation. � T1

and T2 different at p5 .05. ^ T2 and T3 different at p5 .05. ffl T1 and T3 different at p5 .05.
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TheRAVLTwas the onlymeasure showing a decline rather than gain at T2, likely due
to differences in alternate-form difficulty.

Normative performance was estimated using linear regression with all data
available for the sample. Age, education, and sex were entered into all models as
potential predictors. Normative formulas based on the models are found in Table 3.
These models account for 5–45% of the variance in the sample as noted by the R2

values in Table 2.

Application. For use of these formulas in a clinical setting, consider the
following case example. A 56-year-old male with 10 years of education obtains a
baseline score of 32 on the Stroop Test. This score falls 5.44 points below the
sample mean of 37.44 (see Table 2), or �0.63 SD (z-scores) below average
(z¼�5.44/8.7¼�0.63). While we know that this individual falls �0.63 SD below
the normative sample’s mean or at the 27th percentile, we do not know whether
this person’s performance actually deviates from other men with similar
demographic characteristics. However, if we apply the regression-based formulas
in Table 3 we can more accurately delineate his actual divergence from his
demographic cohort by considering the relevant modifying demographic
variables, which account for close to half of the variance of some measures.
The patient’s predicted score is first calculated using the regression equation in
Table 3 for Stroop, which is then subtracted from the observed score and divided
by the standard error of the estimate (SEE).

Predicted Stroop¼ (31.37þ (�.18� age)þ (1.12� education))¼ 32.49

Deviation from Expected Score ¼
Observed score ð32Þ � Predicted score ð32:49Þ

Standard Error of the Estimate ð8:04Þ
¼ z-score of� 0:06

Table 3 Formulas predicting baseline performance

SEE R2

SDMT 7.18 ¼41.31þ (Age��.30)þ (Education� 1.84)þ (Sex*��5.66) 45%

Trails A 10.35 ¼25.78þ (Age� .20)þ (Education��.60)þ (Sex*� 4.35) 10%

Trails B 28.41 ¼89.10þ (Age� .68)þ (Education��3.99)þ (Sex*� 11.77) 20%

L–N Seq 2.13 ¼6.72þ (Age��.02)þ (Education� .37) 16%

Stroop C/W 8.04 ¼31.37þ (Age��.18)þ (Education� 1.12) 15%

COWA 10.12 ¼17.74þ (Education� 1.31) 9%

RAVLT Total 7.90 ¼51.14þ (Age��.23)þ (Education� 1.05)þ (Sex*��5.98) 23%

RAVLT Short Delay 2.54 ¼10.75þ (Age��.04)þ (Education� .27)þ (Sex*��2.32) 15%

RAVLT Long Delay 2.65 ¼12.06þ (Age��.06)þ (Education� .20)þ (Sex*��2.64) 19%

RAVLT Recognition 1.50 ¼14.47þ (Sex*��1.01) 5%

Rey-O Copy 4.33 ¼25.32þ (Age��.07)þ (Education� .46) 10%

Rey-O Delay 5.08 ¼14.53þ (Age��.11)þ (Education� .46) 10%

GP Dom 14.08 ¼62.14þ (Age� .40)þ (Education��.84)þ (Sex*� 10.32) 19%

GP NonDom 15.34 ¼71.96þ (Age� .45)þ (Education��1.18)þ (Sex*� 9.57) 19%

SDMT¼Symbol Digit Modalities Test; L–N Sequencing¼Letter–Number Sequencing;

Stroop C/W¼Stroop Color/Word trial; COWA¼Controlled Word Association Test; RAVLT¼Rey

Auditory Verbal Learning Test; Rey-O¼Rey-Osterreith; GP Dom¼Grooved Pegboard Dominant

Hand; GP NonDom¼Grooved Pegboard Nondominant Hand.

SEE¼Standard Error of the Estimate; R2
¼Variance accounted for. *Sex: Male¼ 1; Female¼ 0.
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In this example we see that the patient’s baseline score of 32, while more than
half SD below the average of the general normative sample (z¼�0.63), actually
falls near expectation (z¼�0.06) relative to his demographic peers (48th percentile).

Part 2: Trajectories of neuropsychological change

Mean changes on the variables of interest for the sample across time were
calculated by subtracting the previous raw score from the relevant subsequent raw
score (e.g., T2–T1 for calculation of average change from T1!T2). The means and
SDs of the change scores are presented in Table 4.

Stepwise linear regression and SRB methods were then utilized to model
change over time. Age, education, and sex were entered into all models as
potential predictors of change. Baseline performance and change across previous
trials when applicable was also entered into each model (i.e., baseline raw score
entered into models for T1!T2 change, T2!T3 change, and T1!T3 change;
T1!T2 change score also entered into models predicting T2!T3 change and
T1!T3 change). Raw scores and change scores were used rather than
standardized scores in these models, along with potential demographic predictors.
Table 5 presents the resulting regression formulas for predicting the amount of
expected change for each measure; note that previous performance consistently
emerged as a significant predictor of subsequent performance.

Table 4 Sample change means and standard deviations

Change T1!T2 Change T2!T3 Change T1!T3

n Mean (SD) Mean (SD) Mean (SD)

SDMT 285 1.91 (5.7) 0.16 (6.0) 2.07 (6.0)

Trails A 284 �1.20 (10.4) �1.33 (8.7) �2.53 (10.8)

Trails B 285 �7.62 (24.4) 0.21 (25.6) �7.41 (25.5)

L–N Seq – raw 285 0.46 (2.1) 0.11 (2.1) 0.56 (2.1)

Stroop C/W 278 3.18 (6.2) 1.06 (6.1) 4.25 (6.5)

COWA 254 2.28 (6.4) 1.31 (6.8) 3.59 (7.3)

RAVLT Total 234 �2.11 (8.3) 4.63 (8.9) 2.53(7.6)

RAVLT Short Delay 186 �0.49 (2.6) 1.46 (2.6) 0.97 (2.3)

RAVLT Long Delay 234 �0.60 (2.6) 1.36 (2.7) 0.76 (2.4)

RAVLT Recognition 234 �0.12 (1.8) 0.30 (1.6) 0.19 (1.6)

Rey-O Copy 284 0.25 (4.3) 0.43 (3.6) 0.69 (4.3)

Rey-O Delay 285 2.06 (4.4) 0.94 (4.4) 3.01 (4.6)

GP Dom 283 �2.05 (10.6) �2.28 (9.9) �4.33 (10.7)

GP NonDom 285 �2.62 (11.8) �2.57 (11.1) �5.19 (10.3)

SDMT¼Symbol Digit Modalities Test; L–N Sequencing¼Letter–Number Sequencing;

Stroop C/W¼Stroop Color/Word trial; COWA¼Controlled Word Association Test; RAVLT¼Rey

Auditory Verbal Learning Test; Rey-O¼Rey-Osterreith; GP Dom¼Grooved Pegboard Dominant

Hand; GP NonDom¼Grooved Pegboard Nondominant Hand.

T1¼First Exam; T2¼Second Exam; T3¼Third Exam; n¼ sample size; SD¼ Standard Deviation.

These change scores are average raw scores for the entire sample and do not consider patient

characteristics, change score modifiers, or how these interact. These are the average change scores, and

thus reflect the averaging of the effects of the predictors.
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Table 5 Prediction of change formulas

R2 SEE Predicted �:

SDMT
�T1!T2 5% 5.59 ¼7.82þ (T1��.13)

�T2!T3 23% 5.30 ¼1.12þ (�1–2��.50)

�T1!T3 23% 5.30 ¼1.12þ (�1–2� .50)
Trails A

�T1!T2 39% 8.12 ¼18.53þ (T1��.62)þ (Age� .14)þ (Education��.53)

�T2!T3 30% 7.36 ¼10.83þ (T1��.43)ÿ ÿ þ (�1–2��.58)þ (Ageþ .13)þ (Education��.41)

�T1!T3 54% 7.36 ¼10.83þ (T1��.43)þ (�1–2� .42)þ (Age� .13)þ (Education��.41)
Trails B

�T1!T2 33% 20.20 ¼28.10þ (T1��.49)þ (Age� .34)þ (Education��1.55)þ (Sex*� 8.57)

�T2!T3 34% 21.03 ¼20.38 (T1��.34)þ (�1–2��.73) þ (Age� .41) þ (Education��1.33)
�T1!T3 33% 21.03 ¼20.38þ (T1��.34)þ (�1–2� .27)þ (Age� .41)þ (Education��1.33)

L–N Sequencing

�T1!T2 18% 1.92 ¼2.11þ (T1��.41)þ (Education� .21)
�T2!T3 31% 1.73 ¼3.66þ (T1��.23)þ (�1–2 x�.57)þ (Age��.02)

�T1!T3 33% 1.73 ¼3.66þ (T1��.23)þ (�1–2� .43)þ (Age��.02)

Stroop C/W
�T1!T2 19% 5.63 ¼12.58þ (T1��.32)þ (Education� .38)þ (Sex*��2.59)

�T2!T3 26% 5.34 ¼8.56þ (T1��.16)þ (�1–2��.52)þ (Age��.08)þ (Education� .32)

�T1!T3 33% 5.34 ¼8.56þ (T1��.16)þ (�1–2� .48)þ (Age��.08)þ (Education� .32)
COWA

�T1!T2 2% 6.36 ¼5.45þ (T1��.09)

�T2!T3 16% 6.26 ¼2.27þ (�1–2��.42)
�T1!T3 26% 6.26 ¼2.27þ (�1–2� .58)

RAVLT Total

�T1!T2 16% 7.60 ¼16.03þ (T1��.37)
�T2!T3 41% 6.91 ¼12.37þ (T1��.19)þ (�1–2��.74)

�T1!T3 18% 6.91 ¼12.37þ (T1��.19)þ (�1–2� .26)

RAVLT Short Delay
�T1!T2 19% 2.38 ¼3.91þ (T1��.43)

�T2!T3 42% 1.99 ¼3.35þ (T1��.22)þ (�1–2��.70)

�T1!T3 26% 1.99 ¼3.35þ (T1��.22)þ (�1–2� .30)
RAVLT Long Delay

�T1!T2 12% 2.45 ¼2.41þ (T1��.31)

�T2!T3 38% 2.17 ¼2.54þ (T1��.16)þ (�1–2��.68)
�T1!T3 20% 2.17 ¼2.54þ (T1��.16)þ (�1–2� .32)

RAVLT Recognition

�T1!T2 27% 1.51 ¼8.06þ (T1��.60)
�T2!T3 39% 1.27 ¼5.06þ (T1��.26)þ (�1–2��.62)þ (Education��.11)

�T1!T3 38% 1.27 ¼5.06þ (T1��.26)þ (�1–2 �.38)þ (Education��.11)

Rey-O Copy
�T1!T2 31% 3.58 ¼16.95þ (T1��.54)þ (Age��.04)

�T2!T3 29% 3.06 ¼7.79þ (T1��.34)þ (�1–2��.54)þ (Education� .18)

�T1!T3 50% 3.06 ¼7.79þ (T1��.34)þ (�1–2� .46)þ (Education� .18)
Rey-O Delay

�T1!T2 22% 3.91 ¼6.98þ (T1��.39)þ (Age��.07)þ (Education� .32)

�T2!T3 22% 3.85 ¼4.42þ (T1��.16)þ (�1–2��.51)
�T1!T3 41% 8.30 ¼8.75þ (T1��.23)þ (�1–2� .44)þ (Age� .13)

GP NonDom

�T1!T2 19% 10.67 ¼19.36þ (T1��.33)þ (Age� .13)
�T2!T3 45% 8.30 ¼12.20þ (T1��.23)þ (�1–2��.69)þ (Age� .18)þ (Education��.42)

�T1!T3 36% 8.30 ¼12.20þ (T1��.23)þ (�1–2� .31)þ (Age� .18)þ (Education��.42)

SDMT¼Symbol Digit Modalities Test; L–N Sequencing¼Letter–Number Sequencing;

Stroop C/W¼Stroop Color/Word trial; COWA¼Controlled Word Association Test; RAVLT¼Rey

Auditory Verbal Learning Test; Rey-O¼Rey-Osterreith; GP Dom¼Grooved Pegboard Dominant

Hand; GP NonDom¼Grooved Pegboard Nondominant Hand. SEE¼Standard Error of the Estimate;

R2
¼Variance accounted for. �¼Change. T1¼First Exam; �1-2¼Change from T1 to T2; T3¼Third

Exam; n¼ sample size; SD¼Standard Deviation. *Sex: Male¼ 1; Female¼ 0.
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Application. By performing simple computations, the clinician can use the
SRB formulas presented in Part 2 to determine if a patient’s observed change or

practice effect deviates from expectation based on data from our normative sample.

Rather than relying on accepted tradition or clinical judgment, these formulas

provide an objective estimate of expected variability across multiple testing sessions

while including the effects of variables that modify change. Consider the previous

clinical example.
Our 56-year-old male obtained a score of 32 at baseline, but subsequently

obtained scores of 23 and 25. In terms of reported events, the family described a

change in cognition after he returned from vacation, but he himself was not aware

of any precipitous event or cognitive decline. This prompted the second evaluation.

The patient’s second score of 23 represents a 9-point decrement from baseline, with

the difference between the first and second score (32–23) falling at about 1 SD of the

baseline sample mean (SD¼ 8.7; see Table 2), which is an often applied threshold

for clinically significant decline. By this standard, the observed change is a matter of

concern but is not unequivocal evidence of clinically significant change. To assess

whether this decrement from baseline is truly meaningful, we must consider the

distribution of normal change scores and account for the potential impact

demographic variables have on this distribution.
When considering average change across time in Table 4, it appears that the

patient’s first decline differs considerably from the 3-point gain observed in this

sample. However, the SD in change scores indicates considerable variability in

change scores within this sample. To evaluate the significance of this change while

considering the impact of performance and demographic variables, we apply the

SRBs. We begin by estimating the patient’s predicted change score using the Stroop

regression equation for �T1!T2 in Table 5. We then subtract this score from the

observed T1!T2 difference and divide by the SEE.

Predicted �T1!T2¼ 12.58þ (32��.32)þ (10� .38)þ (1��2.59) ¼ 3.55

Deviation from Expected �T1 ! �T2 ¼
Observed� ð�9Þ � Predicted� ð3:55Þ

Standard Error of the Estimate ð5:63Þ
¼ ðz ¼ �2:23Þ

According to this outcome, the 9-point decline for this patient is indeed

statistically rare, and likely to occur in only 1.3% of the normative sample. Given

these data, which consider the patient’s background as well as sources of error and

bias, we no longer have a questionable change but rather a decline that clearly

deviates from expectation.
The utility of the SRB method is also illustrated when considering this

individual’s change in performance by Time 3. His 2-point gain (23 to 25) actually

falls above the average T2 to T3 change (M¼ 1.06, SD¼ 6.1; see Table 4), which at

first glance might be considered an improved performance and consistent with

expectation. When using the �T2!T3 SRB equation, however, we see that this

improvement actually deviates from his expected change by a z score of �.91

because his baseline performance, the prior T1 to T2 change, and demographic

variables are considered. The use of these variables in the SRB model yields a more

precise assessment of his expected trajectory of change. A similar point is made

when considering the overall 7-point decrement from Time 1 to Time 3 (32–25).
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When compared to group average change scores (M¼ 4.25, SD¼ 6.5; see Table 4)
the patient’s decline falls �1.73 standard deviations below the average practice
effect. Use of the �T1!T3 SRB equation, however, indicates that this overall
decrement falls just short of one standard deviation below expected change when
considering all relevant variables (z¼�.91). In each of these situations we see that
the SRB equation was particularly useful when considering change over multiple
time points and provided more accuracy than comparing performance to group
average practice effects using change score means and standard deviations.

DISCUSSION

The practice of clinical neuropsychology is driven by the systematic application
of measurement tools and principles, and typically boasts sound and strong
normative resources (e.g., Lezak et al., 2004; Mitrushina et al., 2005; Strauss et al.,
2006). Yet the amount of data regarding normative change remains scarce given the
frequency with which the clinician or researcher employs serial assessment for
elucidating diagnosis, monitoring intervention outcomes, and tracking disease
progression or recovery of function (Chelune, 2002; Chu et al., in press; McCrea
et al., 2005). The lack of published data on normative change places the clinician in a
position of estimating practice effect changes for each measure used, while
considering potential patient modifiers that may impact change as well, such as
age, education, and sex. Regression to the mean, measurement error, and the effect
of alternate forms must also be worked into the change gestalt (Lewis et al., 2006).
Longitudinal studies of normal samples offer us the opportunity to replace educated
estimates with concrete data on normative change. Simpler concepts of ‘‘back to
baseline’’ or ‘‘one SD change’’ based on the SD of the test rather than of change
scores are replaced by data illustrating the sophisticated relationship between test
scores and covariates over time. In addition to providing co-normed baseline data,
this study presents formulas allowing for calculation of deviation from normal
longitudinal change across three time points.

The co-standardization of baseline performance measures with appropriate
demographic corrections on the same population has the potential to favorably
facilitate interpretation and conceptualization and hence is presented for this
sample. Co-norming reduces the need for clinically based interpretive adjustments
made to correct for differences in norm group demographics, and methods of
data standardization or data presentation.

In a similar fashion, an important advantage of using SRB models to
construct change norms is that deviations from expected gains are expressed in a
standardized z-score unit that is comparable across measures. Like co-standardized
baseline data, co-normed change formulas yielding a consistent unit of deviation
from change enhances interpretation of change, as modeling the norms using the
same methodology within the same population essentially levels off the differential
effects of practice, demographic modifiers, statistical artifacts, and inconsistent
reliabilities across measures.

The increasing attention to the need for change data based on normals has
produced SRB model norms across two or more time points (e.g., Duff et al.,
2005, Ivnik et al., 1999, Sawrie et al., 1995) for select measures. This study
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augments these pioneering efforts by utilizing a relatively new approach wherein
the normative data considers baseline and previous change in the models of
subsequent change, yielding change estimates that are best conceptualized as
reflecting change trajectories.

This study demonstrates important principles of neuropsychological change
over time. First, while it is well accepted that patient demographics modify cognitive
performance (Heaton et al., 2003), review of age, education, and sex variables in
these SRB models clearly demonstrate that these variables also often independently
modify change in performance. Second, modifiers of baseline performance versus
change performance are not always the same. Third, in terms of variables that most
consistently modify change, the adage that ‘‘. . . the best predictor of future behavior
is past behavior’’ fits well. Baseline and/or previous change always predicted
subsequent change. While age and education often emerged as significant
predictors, the impact of sex on change was minimal, and no demographic
predicted change like previous performance did.

The effect of including baseline performance and previous change when
applicable warrants careful attention. Baseline performance is considered in the
estimates of change, which is critical, as evidenced by the predictive value of
these prior performances in the change models. Low versus high performers will
change differentially over time. However, inclusion of these scores in estimates of
change also raises important interpretative considerations. Specifically, the degree
of change from first to second assessment, through inclusion of these scores in
the T2!T3 and T1!T3 models, will be considered in the predicted change scores
for these latter models. Therefore, if the first change is notably discrepant from
average, this discrepancy will be worked into the expectation for the change in
the next interval. Inaccurate or aberrant baseline scores will also almost always
influence the estimate of change at all time points. Nonetheless, inclusion of
previous performance allows for consideration of known performance data that
is clearly related to subsequent scores. As such, it is most useful to consider the
serial normative formulas as truly modeling trajectories rather than simple change
from point to point.

Given that change scores have their own unique distributions, application of
these formulas, which model the effects of demographic and performance variables
on change, will be most useful when the patient differs from the group average on
these variables. Thus, at a minimum, use of SRB models is advocated over
computations using group change means and standard deviations whenever the
patient’s demographics or performance variables deviate considerably from the
norm group averages. SRB models also consider the sophisticated relationship
among modifying variables and time, and should thus be utilized when estimating
change across several time points. And finally, SRB models provide a level of
precision that may be especially appropriate for research settings. In all of these
cases, use of SRBs will enhance accuracy and precision.

Application of SRB methods to research programs can augment inferential
statistics that show group differences that may be reliable but not necessarily
meaningful by providing data on base rates of normal change (Chelune, 2002). For
instance, a recent study expanded on the inferential analysis of group differences in
post-operative cognitive dysfunction between a high versus low depth of anesthesia
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study by incorporating SRB-based risk calculations. Using normal change base
rates derived from a normal control sample, the investigators compared the
percentage of patients in each anesthesia condition whose change scores exceeded
those expected by chance in the normal sample (Farag et al., 2006).

It is important to note that because this study used a normal sample, the
models are most useful for determining whether scores fall within the range of
normal individuals. Rather than addressing abnormality, these models provide
information about the rarity of change scores in a normal population. In contrast to
those built on normal individuals, SRB models built on patient groups would
provide valuable information about the course of illness, which can be important in
gauging deviation from normal course or the effect of treatment. Indeed, models
based on patient populations would be particularly useful for illnesses involving a
dynamic course, such as the progressive deficits of Alzheimer’s disease or the
resolving deficits of traumatic brain injury. In future studies involving such
populations, it will be important to model change trajectories. As noted, our
application example highlights the effect of a markedly discrepant change score
during the first interval on the subsequent expected trajectories and deviation
scores. Clinically based SRB equations would be particularly useful in such cases, as
the initial decline indicates that comparison to a relevant clinical population would
be most valid for subsequent estimates. Also, it is important to emphasize that these
data will be most applicable to samples similar to the archival one used here, and
would not necessarily generalize to populations that differ considerably. Because
ethnic minorities, women, and elders are either not included or are inadequately
represented in this sample, application of these norms to these groups should be
undertaken with considerable caution. These models may also not be applicable for
patients seen at considerably shorter or longer test–retest intervals than those of the
present sample. Finally, as with baseline norms, change norms require use of the
same test versions as used in the standardization sample.

While performance norms can be found in multiple texts (e.g., Heaton et al.,
2004; Lezak et al., 2004; Mitrushina et al., 2005; Strauss et al., 2006), the paucity of
serial normative data available to the clinician represents a pressing problem for our
field. The challenge facing clinicians in the absence of such change data is
considerable; estimating the differential impact of all the relevant variables
accurately across measures and across time is a tremendous challenge. In addition,
the effects of demographics, error, and bias on change scores for serial assessments
are less understood than the effects of these variables at baseline. The present study
was designed to contribute to the evolving norms and methodologies seeking to
resolve these normative concerns. In addition to providing co-normed baseline data,
these data augment the growing literature on calculating clinically significant,
reliable change by providing averages and SRB models for multiple measures over
multiple time points, and by modeling previous change into subsequent change
formulas, yielding normative change trajectories.
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