
THE PREDICTION THEORY OF MULTIVARIATE STOCHASTIC 

PROCESSES 

I.  T H E  ] ~ E G U L A R I T Y  CONDITION 

BY 

N. W I E N E R  and P. MASANI 1 

Cambridge, Mass., U.S.A. and Bombay, India 

Content s  
Seite 

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111 
2. Boundary values of functions in the Hardy class . . . . . . . . . . . . . . . .  113 

3. Matrix-valued functions . . . . . . . . . . . . . . . . . . . . . . . . . .  117 
4. Matricial Riemann-Stiel t jes integration . . . . . . . . . . . . . . . . . . . .  124 

5. Vector-valued random functions . . . . . . . . . . . . . . . . . . . . . . .  129 

6. Time-domain analysis of multivariate processes . . . . . . . . . . . . . . . . .  134 
7. Spectral analysis of multivariate processes . . . . . . . . . . . . . . . . . . .  140 

8. Some unsettled questions . . . . . . . . . . . . . . . . . . . . . . . . . .  149 

1. Introduction 

To advance  fur ther  in  the predict ion of mul t iva r i a t e  (or m u l t i p l e ) s t o c h a s t i c  

processes, we need the suppor t  of a general  theory  of such processes. I t  is na tu ra l  to 

t r y  to  bui ld  this theory  along the  lines of Kolmogorov ' s  i mpor t a n t  deve lopment  of the  

theory  of un ivar ia te  (or simple) processes [5, 6]. ~ This work was begun  in  1941 by  

Zasuhin,  who was able to announce  some i m p o r t a n t  results  [18]. Bu t  even before 

Kolmogorov 's  work, Cramer [1] had  ob ta ined  a f unda me n t a l  theorem on the spect rum.  

Subsequent ly ,  Wiener  [14-17], Doob [2] a nd  Whi t t l e  [13] have s tudied mul t ip le  pro- 

cesses, b u t  a general  theory has no t  as ye t  been reached. For  instance,  no spectral  

1 This research was carried out at the Indian Statistical Institute, Calcutta, during 1955-56. 

Our sincere thanks are due to the authorities for the excellent facilities placed at our disposal, and 

to Dr. G. KALLIANPUR for valuable discussions and for an English translation of ZASUHIN'S paper [18]. 
A similar development, hut confined to processes with absolutely continuous spectra, was 

given independently by WIENER, cf. [14, p. 59]. 
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characterisation of non-determinacy has been given, nor has a relation been established 

between the prediction error matr ix  and the spectrum. Also, there has been some 

doubt  regarding the spectral criterion for regular processes o/ /ull rank. 1 This is 

the sort of process for which we would expect to have electrically realizable linear 

filters. Such a criterion was stated by  Zasuhin [18, Theorem 3] but  without  proof. 

I t  was rediscovered by  Wiener [151, but  his derivation [17] is incomplete in tha t  the 

case in which two components of his multiple process make a zero angle with one 

another  is left out. ~ To cite another  lacuna in the theory, al though the Wold de- 

composition announced by  Zasuhin [18, Theorem 1] is valid, Doob's  derivation of the 

corresponding decomposition of the spectrum [2, pp. 597-5981 seems to be insufficient. 

Other questions which suggest themselves also remain unanswered, el. see. 8. 

In  par t  I of this paper we shall complete the theory of multiple s tat ionary 

stochastic processes in the discrete parameter  case in several respects, establishing in 

particular a spectral condition for full rank. In  the course of this proof, we shall 

find a connection between the prediction error matr ix  and the spectrum, thus ob- 

taining a determinantal  extension of an important  identi ty of Szeg5 [9, Satz X I I  1. As 

corollaries we shall derive the spectral version of the Wold decomposition and the 

criterion for regularity with full rank, mentioned above. 

We shall draw on the work of Cramcr, Kolmogorov, Zasuhin, Doob, and the 

previous work of Wiener, but  our t rea tment  will depart  f rom theirs in many  ways. 

We shall make strong use of certain theorems on the boundary values of holomorphic 

functions of the Hardy  class, which are due to Szeg5 [101 and to Paley and Wie- 

ner [71. These theorems are recapitulated in See. 2. We shall then discuss the har- 

monic analysis of matr ix-valued functions, which will be needed in studying multiple 

spectra, and also establish a determinantal  extension of the well known logarithmic 

inequality, which will play an important  role (Sec. 3). In  Sec. 4 we will deal with 

Riemann-Stieltjes integration in which both integrand and integrator are matrix-valued.  

See. 5 will be devoted to the analysis of vector-valued random functions. This is needed, 

since a multiple S.P. is a one-parameter  family of such functions, subject to some- 

what  unusual concepts of orhogonality and linearity. These preliminaries will occupy 

a large par t  of this paper. In  Sec. 6 we shall turn to the time-scale (or non-spectral) 

analysis of multiple processes, and in See. 7 take up the spectral analysis, and estab- 

1 Cf. Sec. 6. R o u g h l y  speaking ,  a S.P.  ( s tochas t ic  process)  is regular, if i t s  " r e m o t e  p a s t "  con-  

s i s t s  on ly  of t h e  zero-vec tor  ; i t  h a s  lull rank, if t h e  c o m p o n e n t  r a n d o m  func t i ons  of i t s  " i n n o v a t i o n "  

a re  l inear ly  i ndependen t .  

WlENER'S proof  of t he  fac tor iza t ion  of u n i t a r y  m a t r i x - v a l u e d  func t ions ,  con t a ined  in t h e  s a m e  

paper ,  is also incomple te .  
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lish the conditions for non-determinacy and regularity with full rank (Theorems 

7.10-7.12). In  See. 8 we will mention some unsettled points in the theory. 

The spectral distribution of a simple S.P. with discrete parameter may be re- 

garded as being defined on the unit  circle in the complex plane. The hnear predictor 

for such a process is obtained by factoring the derivative of this distribution into 

an inner and an outer function (Wiener [14, 15]). In the multiple case the corre- 

sponding faetorization is of a non-negative hermitian matrix-valued function. The 

non-commutativity of matrix multiplication makes this faetorization much harder. 

An algorithm for affecting it will be given in part  I I  of this paper, which will appear 

separately. 

2. Boundary values of  functions in the Hardy class 

Throughout the sequel the symbols C, D+, D_ will denote the sets I z l = l ,  

I z I < 1, 1 < I z I -< oo, respeetively, of the extended complex plane. 

2.1 DEFINITION.  For (~>0, the classes L~ and Ha are defined as /ollows: 

(a) La consists of all complex-valued measurable /unctions ] on C /or which 

2y$ 

fl/(r ladO< 
0 

(b) The Hardy  class Ha will consist o/ all complex valued holomorphic /unctions ] 

on D+ /or which there exists a number M such that 

2~  

f l/re'~ dO<_M < oo, 
0 

O < r < l .  

Let  /E  L 1 on C. Since its n th  Fourier coefficient: 

2 ~  

,f an = ~ e- n,a / (e,0) d 0 

o 

Oo 

tends to 0 as n--> • oo, it follows from the Cauehy-Hadamard formula that  ~ an z" 
o 

converges on D+ and ~.. a_ . z  -n on D_. This suggests the following: 
1 

2 .  9. D E F I N I T I O N .  I/ / E L  I on C a n d  has  F o u r i e r  coe//icients 
shall call 

8--  573805. Aeta mathematica. 98. Irnprim6 le 18 novembre 1957 

an, then we 
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/+(z)= ~ a n z n ,  zED+, 
0 

/~_(z)= ~ a _ n z  -n, zED_,  
1 

the inner and outer functions determined by /. 

These functions can also be represented by  Cauchy integrals: 

1 f f(w) dw, 
I+ (z) = ~-i~/ w - ~  

C 

1 f t(w) dw, 
1 - (~)=~  w-z  

C 

zED+ 

zED_ ,  

the sense of integration being counter-clockwise. From this we get the Poisson 

integral representation 
2~ 

2 .3  / + ( z ) + / _ ( 1 / ~ ) = ~  l(e~~176 zED+, (2.3) 
0 

where P(z, w):(Iwl~-I~l~)/Iw-~5 By expressing the difference 

,§ (r e'~ + t- (~ e'~ - l (r176 

as another Poisson integral, and applying the Fejfr-Lebesgue technique used in 

proving the Abel or Cesaro summabil i ty  of a Fourier series in L 1 [19, ch. I I I ] ,  we 

can prove the following basic theorem. 

2.~, THEOREM. I /  / E L  1 on C, then /or almost all OE[O, 2~] 

lim 
r--~l-O 

Now suppose tha t  [ E La, where (5 -> 1 and an = O for n < 0. Then the L.H.S. of 

(2.3) reduces to [+(z). Putt ing z = r e  ~~ in this, and noting tha t  since ~_>1 the func- 

tion x a (x_>0) is convex, we get a uniform upper  bound for the integrals 

2~ 

fl/+(re'~ 0 < r < l ,  
0 

by applying Jensen's  Inequal i ty  [19, p. 68] and Fubini 's  Theorem. Thus 

2.5 COROLLARY. I f  /E La on C, where ~ >_ 1, and its n-th Fourier coe//icient van- 

ishes /or n <  O, then /+ E Ha on D +. 
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The following theorem will play a crucial role in the stochastic theory. The 

proofs of parts (a), (b) due to F. Riesz are given in [19, p. 162]. The proofs of 

parts (e), (d) are essentially the same as those given by Szeg6 [10, w 2] for 0 = 2 .  

2.6 THEOREM. Let  / + E H n  on D+, where c$>0, and supppose that /+ does not 

vanish identically. Then 

(a) /(e '~ lim 1+ (re t~ exists a.e. on C and /ELo; 
r - ~ l - O  

(b) /+-->/ in the Ln-topology, i.e. as r - > 1 - 0 ,  

2 ~  

f I l+ ( 'e '~ - l (.,0)I, d 0-~0; 
0 

(c) log [ / [ e L  1 on C, and 

2~  

log I/+ ( z ) l -<~  flogll(e'~176 
0 

z E D + ;  (1) 

2zg 

in particular log I/§ flog I/(e'O)ldO; (2) 
0 

(d) i/  in (2) we have equality, then /+ has no zeros in D+. 

The converse of (d) is in general false. For instance, Szeg6's function [11, p. 270] 

/+ (z) =exp {(z+ 1) / (z -  1)} 

has no zeros on D+; yet  log I /+(0)l=log ( I / e ) = - 1 ,  whereas 

2~  

flog I/(e~~ ~0 =o, 
0 

since J t(e~a)[= 1, O< O< 2~. I t  may be shown that  the converse of (d) holds in case 

the reciprocal 1/1+ is itself in a Hardy class. 

An obvious corollary of 2.6 is the foIlowing result of F. Riesz and Nevanlinna. 

2.7 COROLLARY. The boundary /unction o/ a non-constant /unction in the class 

H~ on D+, where (~>0, cannot take on the same value on a subset o/ C o/ positive 

measure. 

The following converse of 2.6 will also play an important part in the stochastic 

theory. 
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2.8 THEOREm. I /  r  on C, where 8 > 0 ,  and ~>_O and log CELl ,  then there 

exists a /unction /+ E Ho on D+ and without zeros on D+ such that i / /  is its radial 
2~ 

{if  } limit, 1 then ]/[ = ~ a.e. on C; and /+ (0) = exp ~ log ~ (e '~ d 0 �9 

Proo]. Our proof is a variation of tha t  given by Szeg5 [10, w 1] and Wiener [15] 

for ~ =2 .  Since the function g = log ~ =  2 log ~ is real-valued and in L1, its Fourier 

coefficients satisfy the conditions a_n=g,~, a 0 real.  Consequently, ~ g_(z)='~+ (1/~,), 

whence by '2 .4 ,  as r--->l-0,  

g+ (re '~ +~+ (re'~ log ~(e'a), a.e. (1) 

Legting /+ = exp g+, we get 
2~ 

a 

and II+(re'~162 'a) a.e., as r - + l - 0 .  (2) 

Applying Jensen's  Inequali ty [19, p. 68] to the exponential function, we get 

l I+ (re'~ I e = exp {~-real g+ (re'a)} 

2~ 

1 f ~ ( e , t ) . P ( r e ,  a ' eU)dt. 
a 

Integrating over [0, 2~] and using Fubini's Theorem, we conclude that  /+ E He. By  

2.6 (a), /+ will have a radial limit /, and. by (2) t/l=~ a.e. Obviously /+ has no 

zeros on D+. (Q.E.D.) 

Finally, we will need the following uniqueness theorem. 

2.9 THEOREM. I /  ~ is as in 2.8, then there is only one /unction /+ with the 

properties 
/+ 6Ha on D+ (1) 

l l+ (re'~ I-~4 (e'~ a . e . ,  a s  r - - > l  - 0 (2) 

2n 

o 

1 The  ex i s t ence  of ] follows f rom 2.6 (a) ;  in  fact ,  ] E Lo. 

z For  reasons  of s y m m e t r y ,  we h a v e  here  t a k e n  

g+(z)=�89 ~ anz n, g-(z)=�89 ~1 a-nz -n, 
1 

a n d  to  th i s  e x t e n t  d e p a r t e d  f rom Def in i t ion  2.2. 
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Proo]. The funct ion ]+ cons t ruc ted  in the  last  proof  has  these propert ies .  Since 

i t  has  no zeros in D+, log [ + = u l + i v  x is holomorphic  on D+. The  funct ion u l ( z ) =  

log [[+ (z)l is therefore  harmonic  on D+. Also f rom (1) of the  last  proof and  (2.3) 

2~ 

,f u 1 (z) = ~ log ~b (ei~ �9 P (z, e t~ d 0, 

0 

z E D+. (4) 

Suppose t h a t  g+ is ano the r  funct ion sat is fying (1)-(3). B y  2.6 (d), g+ will have  

no zeros on D+, and  therefore  log g+=u~+iv  2 is also holomorphic  on D+, and  the  

funct ion u S (z) = log I g+ (z) l harmonic  on D+. Also, f rom 2.6 (c) (i) 

2~g 

if u S (z) _< ~ log r (ei~ �9 P (z, e i~ d 0, 

0 

z E D+. (5) 

I t  follows f rom (4) and  (5) t h a t  the  harmonic  funct ion u (z) = u I (z) - u S (z) >_ 0 

on D+. Moreover ,  u(O)=O, since bo th  ]+, g+ sat is fy  (3). Hence  u mus t  vanish  

t h roughou t  D+, i.e. u~=u 1. Thus  

log g+ (z) = u 1 (z) + i v 2 (z). 

B u t  two harmonic  funct ions conjugate  to a given harmonic  funct ion can differ  only  

b y  a real constant .  Hence  v 2 (z)=  v 1 (z)+ ;t, and  so 

g+ (z) = / +  (z). e ~a. 

B u t  since b y  (3) g+ (0 )= [+  (0), we get  e ~a= 1, i.e. g+ =]+ on D+. (Q.E.D.)  

3. Matrix-valued functions 

The analysis  of ma t r i x -va lued  funct ions carried out  in this section will be needed 

in the  s t u d y  of the  spec t ra  of mul t ip le  s tochast ic  processes. 

N o t a t i o n .  Bold face letters x, y, etc. will denote q-dimensional column-vectors with 

complex components xi, y~, etc. The symbol l xl will denote the Euclidean length o] x:  

I x l =  Ix, I , . /3.1) 
1 

Bold ]ace letters A, B, etc. will denote q• matrices with complex entries a~, bit, etc. 
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and F, G, ~P, etc. will denote matrix-valued /unctions. The symbols A, v, * will re/er 

to the determinant, trace and ad]oint (i.e. conjugate transpose) o[ matrices. 

Before dealing with matrix-valued functions, it  will be convenient to recall the 

following basic proposition on the topological and algebraic structure of the space of 

matrices. 

3.2 THEOREM. (a) The space o/ q• matrices with complex entries is a Banach 

algebra under the usual algebraic operations and either o/ the norms 

]AIB=I.u.D. [Axl x*0 - ~ -  (Banach.norm), 

IA[E = ~ / T ( A ~ = V i  i ]a~tl a 
~=I 1~1 

(Euclidean norm). 

(b) This space is a Hilbert space under the same algebraic operations and the inner 

product 
q q 

(A, B ) = z ( A B * ) =  ~, ~ a, jb~j. 
t = l  J= l  

We refer to Hille [4] for the basic properties of Banach spaces and algebras. 

The two norms define equivalent topologies in view of the inequalities 

which in a sense are the best possible. In this topology A.--+A as n-+oo, if and 

only if each entry of As tends, in the ordinary sense, to the corresponding entry 

of A. The following lemma will be needed in Sec. 4. 

3.3 L]~MMA. I f  H is hermitian and A~H-->L as n-->~, then there is a matrix 

A such that L = A t I .  (It is not implied that An-->A.) 

Proo[. I f  II is invertible, then we need only take A = L H  -1. If  H = 0 ,  then 

L = 0, and we can take any A. We may therefore suppose that  A (H)= 0 * v (it), i.e. 

tha t  I t  has both a zero and a non-zero eigenvalue. 

Let  ~1 . . . . .  ~v be the non-zero eigenvalues of H. Then there is a unitary matrix 

U such that  U I I U * = A ,  where A is the diagonal matrix with diagonal entries 

~t 1 . . . . .  ~tp, 0 . . . . .  0. Let  Bn=UA~U*.  Then 

B n A = U A ~ H U * - ~ U L U * ,  as n - - ~ .  
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Now all except the first p columns of BnA vanish. The same must therefore be the 

case with the limit ULU*. Also if l_<j_<p, then since 21~:0, the entries in the ~th 

column of U LU* are expressible in the form mljtl ,  m~j]tj . . . . .  me j l  j. I t  follows that  

U L U * = M A ,  where M is any matrix with the entries m~j in the first p columns. 

Hence, letting A = U * M U ,  we have 

L = U * M A U = A U * A U = A H .  
(Q.E.D.) 

We shall now turn to the Lebesgue classes and the Lebesgue integral for 

matrix-valued functions. 

3.4 DE~X~ITIO~.  The sets Lo, where (~>0, and L~ are de/ined as /oIlows. 

(a) Lo consists o/ all q • q matrix-valued /unctions F = [/tj] on the unit circle C with 

complex-valued entries /is E L~ (c[. 2.1). 

(b) L~ consists o/ such /unctions F /or which each /ij E L~r i.e. each [~j is essen- 

tially bounded. 

Note. In the greater part  of this section we shall imagine that  the closed inter- 

val [0, 27~], and not  the unit circle C, is the domain of functions in Lo or L~. We 

shall thus be writing F(0), where strictly speaking we should write F(e~~ 

The following theorem is provable by essentially classical arguments, el. Zygmund 

[19, pp. 73-74], Hille [4, p. 46] and Stone [8, pp. 29-30]. 

3.5 THEOREM. (a) FEL~, where 

and ]F[E E L~ on [0, 27~]. Lo, (~_> 1, is a 

tions and the norm 

> O, i/ and only i/ F has measurable entries 

Banach space under the usual algebraic opera- 

2~  

0 

(b) L 2 is a Hilbert space under the same operations and the inner product 

2~ 

1 f fi,  ((F, G))=~ ~{r(o) (O)}dO, 
0 

the corresponding norm being 

II F II = r ) )  = [ F 

(c) F E L~r i/ and only i/ F has measurable entries and IF I~ is essentially bounded. 

L~ is a Banach algebra under the usual algebraic operations and the norm 

Ivl  = c s s .  l . u b .  IF(0)I . 
O<O<2n 
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3 . 6  D E F I N I T I O N .  

is de/ined by 

The Lebesgue integral o/a/unction F = [/tj]E L6, where ~ >_ 1, 

f F(o)do= [S/,, (o) d o]. 
0 0 

3,7 LEMMA. (a) F6L~, OELa,, where 1/~+1/5 '=1,  implies that F . 0 E L ~ .  

(b) Fn--~F in Le, On--~O in Le,, as n-~c~, where 1 /5+  1 /5 '=  1 iml~lies that 

fv~(Ole,~(OIdO~fF(O)O(O)dO, ~ n- - ,~ .  
0 0 

(c) FEL~, 5 > 0 ,  OELcr implies that FGEI~ .  

(d) I /  5 ' > 5 > 0 ,  then L~___L,~,~_I~ and Irl.~>-Irl~>-Irt~- 
(e) I /  F E L~, 5 > O, then A F E L~Iq. 

Proo/. The results (a)-(d) follow readily from the corresponding results for com- 

plex-valued functions. As for (e), let F = [fit], and consider a term of A F(0): 

g (0)  = _+ ftj, (0)  . . .  f ,  jq (0) .  

Since Ig(o)l~'~=~(o)l  ~ . I/=,~(o)1~- <-~ ~ I/,,,(o)5 
q t=1 

and the integral of the last term is finite, it  follows that  g E L,vq. Since L~/q is a 

vector-space, A F, which is a sum of q! such functions g, will itself belong to L~tq. 

(Q.E.D.) 

We shall now discuss the harmonic analysis of matrix-valued functions. I t  fol- 

lows from 3.7 (c), taking O(0)=e-n~~ that  every function FELa, where 5___1, pos- 

sesses an n-th Fourier coe//icient 
2r~ 

3.8 An=2~fF(O)e-n iadO.  (3.8) 
0 

If  A. = [a~7 )] and F =  [/i j], then ~j-(n) will be the nth Fourier coefficient of the func- 

tion /~j. In the next theorem we state the matricial extensions of some well known 

results of Fourier analysis. 

3.9 TI~EOREM. (a) I /  A,~ is the n-th Fourier eoe//icient o/ FEL~, 5_>1, then 

A~--->0 as n-->-4-oo (Riemann.Lebesgue Theorem). 
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(b) I /  A. is the n.th Fourier coeHicient o/ F E Lz, then ~ I A .  [~ < ~ ;  eonversdy, 
- o o  

i/ the A.  are such that ~ JAn I~ < ~o, then there is a Function F E L z whose n-th Fourier 
- o o  

coe[/icient is An (Riesz-Fischer Theorem). 

(c) I{ F, G E L~ and have n-th Fourier coeHicients An, B,, then 

2 ~  

1__2~ f F(O) G*(O)dO= -~ AnB* (Parseval's Identity). 

0 

(d) With the hypotheses o/ (c) the n-th Fourier coe//icient o/ FG is ~ l k B n - k  
IC = - oO 

(Convolution Rule). 

As these results follow readily from the corresponding ones for complex-valued 

functions, we shall omit the proofs. Now let F E L 1 on the unit circle C. Its n th  

Fourier coefficient An is given by (3.8) in which, however, we must replace F (0) by 

F(ei~ Since by 3.9 (a) An--->0 as n--~_ ~ ,  it follows that  the series ~ Anz n converges 
0 

on D+ and the series ~ A_nz -n on D_. We are thus led, as in the scalar ease 2.2, 
1 

to the following definition. 

3 . t 0  

shall call 

D~FI~ITION.  Given F E L  1 on C with n-th Fourier coe//icient A,,  we 

F+(z)= ~ A n z  n, zeD+, F_(z)= ~ A _ n z  -n, zeD_ ,  
0 1 

the inner and outer functions determined by F. 

Our last task in this section will be to establish certain determinantal inequalities 

for hermitian matrices, and to derive a determinantal extension of Jensen's inequality 

for the logarithmic function [19, pp. 67-68]. 

3.1t LEMM.~. Let A, B be q• non-negative, hermitian matrices. Then 

q q q 

(a) Vh-(A + B) _> ~ )  + VA (B), 

(b) A (A + B! > A (A), 
~(A+B)-  ~(A) 

(e) A (A + B) >_ A (A). 

Proo/. (a) A proof of the first inequality, due to Minkowski, is given in [3, p. 34]. 
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(b) There is no loss of generality in supposing tha t  A is diagonal; for we can 

always diagonalise it by means of a unitary transformation, and this will not affect 

the trace or determinant of B. We thus have with an obvious notation 

a l T b l l  bl~ ... blq 

A ( A + B ) =  b21 a2+b2~ ... bzq 

bql bq~ ... aq+bqq 

= A (B) + ~ at A (B~) + ~ .  at aj A (B~j) + . . .  + a 1 a~ ... aq, 
t t < 7  

where B~sk .. is the principal minor obtained by  deleting the i th,  ] th,  kth . . . .  rows 

and columns of B. Since A, B are non-negative, each te rm in the last expansion is 

non-negative. Hence retaining only the last two terms, we get 

A(A+B)_> ~ a 1 . . .  a k - l " a k + l  . . .  aqbkk+ A(A). 
k 

Consequently, 

v (A). A (A + B) _> ~ T (A) a 1 ... ak-l"  ak+l ... aq bk~ + ~ (A) A (A). 
k 

(1) 

Now v(A)>_ak, since A is non-negative. Hence the first term on the R.H.S. of (1) 

~ a 1 . . .  a k . . .  aq. bkk = A ( A ) .  v (B) ; 
k 

and from (1) we get 

~: (A). A (A + B) _> A (A) {~ (B) + ~ (A)} = A (A). ~ (A + B). 

(c) follows trivially from (a) or (b). (Q.E.D.) 

3.12 THEOREM. I /  F E L  1 and the values o/ F are non-negative hermit ian,  then 

2z~ 2 ~  

~og A ~ F(o)ao _>~-~ log A{F(O)}dO 
0 o 

> - o o .  

Proo/.  Extending the inequality 3.11 (a) to a finite number of summands, we get 

A ct Ai -> ci A (A~), 
1 

where each ct-> 0 and At is non-negative hermitian. I t  follows tha t  

c~ ~/-A(( Ai) , 
1 
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provided that the two infinite series converge. Now since F EL x and therefore by 

3.7 (e) A F E Lxj~, this condition is satisfied, if ci = meas. S J 2 ~ ,  where S 1, S 2 . . . .  are 

measurable sets belonging to a Lebesgue partition of [0, 2:~], and if A~=F(0~), where 

0~ takes almost all values in S~. Thus 

q 

] / / A ~  x { 1  ~ F(0,, meas. S,} >2_1 ~, ~'A {F(0,}. meas. S,. (1, 

2 ~  

For almost all O~ES~, the sum on the L.H.S. approaches fF(O)dO and that  on the 
0 

2 ~  

R.H.8. approaches ~ { ~  d O, as 1.u.b. (meas. Si)-+0. Hence from (1) we infer that  

0 

q 

Fioleo  A FIOI dO. 
o o 

'raking logarithms on both sides and applying Jensen's inequality for the log-function 

on the R.H.S., we get the desired result. (Q.E.D.) 

3 . t 3  THEOREM. I]  FEL~ on the unit circle C, where O>_l, and its n-th Fourier 

coe]/icient vanishes /or n > O, then 

(a) AF+ eH~IQ on D+, AFEL~/~ on C, 

(b) either A F+ vanishes identically, or log A F E L 1 on C and 

2 ~  

< 1 f l o g l A { F ( e , 0 ) } l d 0 .  log ] A {F+ (0)} ]_  2 
0 

Proo]. (a) By 3.7 (e), A FELo/q on C. Next, each entry ]~j of F is in the class 

L~ and its nth Fourier coefficient vanishes for n < 0. Hence by 2.5 /i j+ E H0 on D+. 

Consider a term of A F+ (z): 

g (z) = + / . , +  (z) . . .  l~Jq+ (z). 

As in the proof of 3.7 (e), 
q 

1  eD+. 

By taking z = r e  ~~ 0 _ < r < l ,  and integrating from 0 to 2~  we see that  gEHo/q. 

Hence A F+, which is the sum of q! such terms, is itself in H01 e. (b) now follows 

from 2.6 (e). (Q.E.D.) 
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4. Matricial  R iem~nn-St i e l t j e s  integration 

We must first consider matrix-valued functions of bounded variation. 

4.1 D E F I N I T I O N .  Let F be a q x q  matrix-valued /unction on [a, b]. We say 

that 

(a) F is o/ bounded variation, i~ and only i/ the set o/ variations 

k=l  

o/ F over di//erent /inite partitions {x 0 . . . . .  xn} o/ [a, b/ is bounded above; 

(b) F is non-decreasing, i/  and only i/ its values are hermitian, and the di//erence 

F (x') - F (x) is non-negative hermitian whenever x' > x. 

The following lemma is easily verified. 

4.2 LEMMA. (a) F =  [/ij] is o/ bounded variation on [a, b], i/ and only i/  each 

entry /~s is o/ this type. 

(b) I /  F =  [/~i] is non-decreasing and bounded on [a, b], then each / ,  is real-valued, 

non-decreasing and bounded on [a, b], and each /fs(i ~= ~) is a /unction o/ bounded varia. 

tion, in general complex-valued. 

From 4.2 and the well known properties of complex-valued functions of bounded 

variation it follows that  if F is of bounded variation, it has at  most denumerably 

many points of discontinuity, all of them simple, and that  F' exists a.e. and is in 

L 1 on [a, b]. But  in general F will not be absolutely continuous, i.e. we will not have 

x 

F ( x ) = F ( a ) +  fF'(t)dt, a < x < b .  
a 

For any function F of bounded variation on [a, b], we define the functions, F (a), 

F (d), F (8) by 

F ~~ (x) = F (a) + J" F' (t) d t, 
a 

4.3 Fee'(x)= ~ { F ( t + 0 ) - F ( t - 0 ) } ,  [ (4.3) 
a < $ < X  ! 

F<8~ (x) = F (x) - F{a~ (x) - F{d>(x), 

and call these the absolutely continuous, discontinuous, singular parts of F, respec- 

tively. We see at once that  F r is continuous on [a, b]. Also, since F r F' a.e., and 

Fr except at  the points of discontinuity of F, it follows that  Fr a.e. 

Adopting the same superscript notation for the entries /~j, we readily obtain 
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4./~ F (a)= [/~?)], F(d)= [/if)], F( ')= [F~)]. (4.4) 

I t  is an important  fact  t ha t  if a real-valued function / is non-decreasing, then  

so are [(~), fd), /!~). We owe to Cramer [1, Theorem 2] the corresponding result for 

matrix-valued functions : 

4.5 T ] t E O R E ~ .  I /  F is non-decreasing and bounded on [a, b], then so are the 

parts F (a), F (a), F (s). 

An immediate  consequence of this is the following corollary. 

4.6 COROLLARY. I /  F is non.decreasing and bounded on [a, b/ then 

I "  

F(x')-F(x)- f F' (t)dt 
~c 

i8 non.negative hermitian /or a <_ x <_ x'  ~ b. 

We now turn  to RS-integration. 

4.7 D E F I N I T I O N .  Let F , G  be q•  matrix-valued /unctions on [a, b]; 

= {x o . . . . .  xn} be a partition o/ [a, b]; 

I ~ l = m a x  (x~-x~_ l ) ,  k = l  . . . . .  n;  

and ~* = (t 1 . . . . .  t,}, where xk_ 1 <- tk <_ xk. 

(a) I /  as I~ I-->0, 

S(F, (~, ;T/:, y~*)= ~ F(tk) {~ (xk)- G(Xk_l) } 
k=l 

tends to a l imit  L, then we call L the left RS-integral o/ F w.r.t. G /rom a to b, and 
b 

denote it by f F (x).  d G (x). 
a 

b 

(b) We similarly define the r ight  RS-integral  f d G ( x ) . F ( x ) .  
a 

(c) I /  as [~]-->0, 

s '  (F, ~, ~, ~*) = ~ F (t~) {(~ (x~) - G (xk-1)} F* (tk) 
kffil 

tends to a limit L, then we call L the bilateral RS-integral o/ F, F* w.r.t. G /rom a to 
b 

b, and denote it by f F (x). dG (x)- F* (x). 
a 

A simple calculation shows tha t  if F = [/~j], G = [g~j], then 
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from which we at once infer the following result. 

4.8 LEMMA. Let F=[ /~ ] ,  G=Lq~,] be /unctions on [a, b]. 

b 

(a) The integral f F(x)dG(x)  will exist, i/ and only i/ all the ordinary RS-inte- 
a 

b 

grals f [~ (x) dg~j (x) exist, and in this case 
a 

b b 

(b) Analogous results hold/or the integrals 

b b 

fdG(x).F(x), fF(x).dG(x)-F*(x). 
a a 

This lemma along with 4.2 permits the immediate extension to the matrix-case 

of many results of the classical Riemann-Stieltjes theory. Thus 

4.9 THEOREM. 

then the integrals 

b 

fF(0) .dG(0), 
a 

exist. 

(a) I /  F is continuous and G o/ bounded variation on [a, b/ 

b b 

fdG(O).F(O), fF(O).dG(O).F*(O) 
a a 

b b b 

(b) f F(O)dGl(O)•  f F(O)dfi2(O)= f F(O)d(GI(O)• }. 
a a a 

b b 

(c) f F (x). d G (x) § f G (x). dF (x) = F (b) G (b) - F (a) G (a). 
a a 

b b 

( d )  I /  G i8 absolutely continuous then f F ( O ) . d G ( O ) =  f F ( O )  G ' ( O ) d O .  
a a 

For non-decreasing integrator-functions we have the following useful result. 



M U L T I V A R I A T E  S T O C H A S T I C  P R O C E S S E S  1 2 7  

&.iO THEOREM. I /  F is continuous and G is non-decreasim] and bounded on 

[a, b], then FG'F*eL1 on [a, b], and 

b b 

f ~ (x) d G (x). r* (z ) -  f F (~) G' (x) ~* (z) d 
a 

is non.negative hermitian. 

Proo/. As remarked after 4.2, G ' e L  1. Also F, F*ELor Hence from 3.7 (c) 

FG 'F*  EL r 

Next, writing A _~ B to mean that  A -  B is non-negative hermitian, and using 

the notation of 4.7 (c), we have from 4.6 

S' (F, G, ~, a*) = ~ F (tk) {G (xk) - O (xk_,} F* (tk) 
k - 1  

x k 

~-- k=l~ F (tk)" f G' (t) dt.F* (tk) 
x k - 1  

b 
C a  

_>j H. . .  (t) dt, (1) 
a 

where the functions H ~ ,  have the same domain S as G', and 

H,~,{t)=F(tk)G'( t )F*( tk) ,  if t E S  and xk_l<_t<_xk. 

NOW let t ES and let k(z~) be the integer such shat t E[xk(,~-l, xk(~)]. Obviously 

as ]~zl-->0. we have tk(~)-->t, whence from the continuity of F, 

H ~ ,  (t)--->F (t) G' (t) F* (t), t e S. (2) 

Also, if M is an upper bound of F, then 

IH.~, (t)l~<_M~lG'(t)l~, t e s .  (3) 

from (2), (3) and Lebesguc's Theorem on Dominated Con- Since G'EL1, it follows 

vergence [4, p. 48] tha t  

b b 

fH~,( t )d t - ->fF( t ) .G' ( t ) .F*( t )d t ,  as I~1-->o. 
a 

The desired relation thus follows from (1) on letting ]~]-->0. (Q.E.D.) 
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We turn finally to the Fourier-Stieltjes analysis of matrix-valued functions. Let 

F be of bounded variation on [0, 2~]. Then from 4.9 (a), F will always possess a 

n.th Fourier-Stielt]es coe//icient 

2r~ 2~ 

4.1t  An=~-~l fe_, ,OdF(O)=[5 fe_,,Od/,,(O)]. (4.11) 

0 0 

Since the function e-n~~ is absolutely continuous, we get using 4.9 (c) (d) 

i.e. 

Since 

ni f e_~,OF(O)dO, 
0 

2n 

1 f e-ni~ (An-Ao), n*O. 
2~ 

0 

2~  j. 1 e-n~~ n*O, 
2~ 

0 

it follows that  A~/ni is the nth Fourier coefficient of F ( 0 ) - A o 0  for n * 0 .  This 

being of bounded variation, we have as in the classical case [19, p. 25]. 

� 8 9  n'~ 0 < 0 < 2 g ,  

A n  �89 ~ - - = ,  
n*0  n $  

where B 0 is the 0th Fourier coefficient of F ( 0 ) - A 0 0 .  Obviously, B o cannot be deter- 

mined from the Fourier-Stieltjes coefficients An, since functions of bounded variation 

differing by constants will have the same An. Eliminating B o between the last two 

relations, we get 

F ( 0 + ) + F ( 0 - )  
4.12 

F ( 0 + ) + F ( 2 ~ - )  

2 2 
A n  (~nio _ 

= A o ( 0 - n  ) + ~ 1), 

4.13 LEMMA. 

0 < 0 < 2 ~ .  

(4.12) 

2~  

(a) I/ for all n, f en'~ then F is constant-valued. 
0 

2~  2 ~  

(b) I /  /or all n, f en'~ en'~ 
0 0 

matrix. 

then F and G di/]er by a constant 
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5. Vector-valued random functions 

A multiple stochastic process is a one-parameter family of vector-valued random 

functions. The basic analytic properties of such functions must therefore be studied 

before we can effectively deal with multiple processes. 

Let  ~ he a space possessing a Borel field ~ of subsets over which is defined a 

probability measure P. Let  ~ =  L2(~ ) be the set of all complex-valued P-measurable 

functions / on ~ for which f [ / (~) t2dP(og)< c~. Then, cf. Stone [8, pp. 208-209], 

~ is a Hilbert space with the usual operations and the inner product ~2 

The corresponding norm is 

For X, Yg~O 2 we shall denote by X~ Y the set of all functions /+g,  with / E X ,  

g E Y. ~(/j)j~j will denote the subspace, i.e. closed linear manifold, spanned by the 

functions /j, for each j in the index-set J .  Finally, (/[~)~l~) will denote the orthogonal 

pro~ection of f on the subspace ~)~ of ~2. 

We shall now define appropriate analogues of these concepts for q-dimensional 

(column) vector-valued functi6ns on ~.  We shall denote such functions by the bold 

face letters f, g, ~ ,  ~ ,  etc. The components of f, g, etc. will be denoted by/o~, g(~), 

etc. i =  1 . . . .  q. 

5.1 D ~ F I • I T I 0 ~. We de/ine the set ~-.2 as consisting o] all q.dimensionql (co- 

lumn) vector-valued /unctions f on ~,  with complex valued-components /(J)E ~2. 

As in 3.5, f E ~2, if and only if the components /r are measurable and 

f lf(eo) 12 dp(oJ)< ~ ;  

where I [ denotes the Euclidean length, (3.1); moreover, cf. Stone [8, pp. 29-30], ~ 

is a Hilbert space under the usual operations and the inner product 

f q 
5.2 ((f, g))= ~ fcJ)(w)g<J>C~o)dP(co ). 

I=I 

9--  573895. Acta mathematica. 98. Imprim6 le 21 novembre 1957 

(5.2) 
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This inner product generates the norm 

f (co)[~ d R  (to) (5.3) 

which in turn induces a topology in the space: if f~, f E/s we shall say that  f~-~f, 

as n - - ~ ,  if and only if I]f=-f][-+0 as n--~c~. This is equivalent to saying that  

for each j =  1 . . . . .  q, [~)--~/(J) in ~ ,  i.e. 

f [1~)(co) - [ (') (to)[2 d P  (~o)-~0, as n-+ ~ .  

Convergence will always be understood in this sense, e.g. the equation f ~  ~ fn will 

N 

mean that I l l -  E fnll-~0, as x-->oo. 
- N  

The inner produkt (5.2) does not play any significant role in the stochastic 

theory, although the corresponding norm (5.3) and the topology it induces do, and 

has to be replaced by Gramian matrices: 

5.~: DEFINITION.  I /  f, gE/s  2 then the matrix 

(f, g) = [(/(0, g(~)] = If t(, (to) g(~)(o) d P  (to)] 

is called the Gramian o[ the pair f, g. 

We see from (5.2)-(5.4) that  

((f, g ) ) :~ ( f ,  g), [If[[ = V~( f ,  f). 

The next two definitions differ from the usual ones in that  Gramians replace inner 

products, and matrix coefficients replace complex coefficients in linear combinations. 

5 . 5  D E F I N I T I O N .  We say that 

(a) f • g i~ and only i/ (f, g ) = 0 ;  

(b) f is a normal vector i/ and only i/ (f, f ) = I ;  

(c) the sequence (f~)~-or is orthonormal i/ and only if (fro, fn)--5,n~ I" 

5.6 DEFINITION.  (a) A linear manifold in /s is a non-void subset ~lt such 

that i/ f, g E ~ ,  then A f + B g  Era, /or all q• matrices A, B. 

(b) A subspace o/ /s is a linear mani/old, which is closed in the topology o] the 

norm [[ [[, (c/. (5.3)). 
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(e) The subspace (linear manifold) spanned by  a subset  HI of P~ is the intersection 

o[ all subspaces (linear manifolds) containing ~lt. t The subspace spanned by the indexed 

set {f~}~ will be denoted by ~ (f~)~:. 

(d) I /  ~ , ~ / s  /or j 6 J ,  then by ~ ~ ,  we mean the set o/ all sums ~ f~, with 
i e J  1 e 1  

f, e HI,, which converge in the topology o/ the norm ll II. 

In  the  nex t  three  l emmas  we sum up  some basic facts  governing the  notions 

just  introduced.  

5.7 L E ~ M A .  (a) ( g , f ) = ( f ,  g)*, (f, f) is non-neffative hermitian. 

(b) I[ fn-->f, gn-->g, as n-->~, then (fn, g,)-->(f, g) '  

(e) Aj fj, ,./=1 1Bk gk = Aj (fj, fk) B~. 
1=1 k = l  

(d) f • g, i /and  only i / /(o • g(J) [or i, j = 1 . . . .  q; this implies Ill + g II 2 = IIfH 2 + II g l[ 3. 

(e) f is normal, i/ and only i/ its components /orm an orthonormal set in ~2. 

(f) The set {fj),~: is orthonormal in E~, i[ and only i/ the components /~o, where 

~" E J ,  i = 1 . . . . .  q, /orm an orthonormal set in ~ .  

(g) I /  (fm, fn)=~mmK, where K is invertible, and g n = V K - l . f ~ ,  then (gn)_~o~ is 

orthonormal. 

The proofs of these obvious results are omit ted .  Somewhat  less obvious are the  

following results regarding the  new concept  of subspace.  Bu t  the  proof being of a 

rout ine na ture  is omit ted.  

5.8 LEMMA. (a) 11t is a subspace o/ !s i/ and only it  there is a subspace ~)~ of 

~ such that HI = ~)~q, where ~/~q denotes the Cartesian product ~)~ | | ~J~ with q/actors. 

~J~ is the set o/ all components o/ all /unctions in HI. 

(b) I /  ~3t is a subspace of ~2 and [ E IL z, then there exists a unique g such that 

geHi; ]lf-gll_<Hf-h]], [or all h 6 H i .  (1) 

For this g, g(~)= ([(~)[~J~), ~ being as in (a). A /unction g EHI satis/ies (1), i[ and only 

if f - g  • HI. 

(c) I /  HI, ~ are subspaces o[ o/ P~, and HI ~ b~r then there exists a unique sub. 

space HI ' ~  _ ~ such that 
V~= HI + HI', HI• 

1 As in the classical case it is easily seen that the intersection of any family of subspaecs 
(manifolds) is a subspace (manifoId). 

9* - 573805. Acta mathematica. 98. Imprim6 le 21 novembre 1957 



132 N .  W I E N E R  A N D  P .  M A S A N I  

(d) g E ~ (fj)jel, i/  and only i/  g =  lira g~, where g~ is a linear combination o/ a 

finite number o/ fj, ~ E J, with matrix eoe//icients. 

(e) I/  ~=|  ~(~=| , j jj~j, i=  1 . . . . .  q, and ~)~ is de/incd as in (a), then 
q 

i = 1  

5.9 D E F ~ T ~ O ~ r  The unique /unction g o/ 5.8 (b) is called the orthogonal  pro- 

jection o/ f on ~1~, and will be denoted by (f[~lt). 

The following can now be proved a lmost  verba t im as in Hilbert  space theory.  

5.10 LEMMA. (a) I [  ~T~, ~ are orthogonal subspaces of ~ ,  then ~ + ~ is a 

(closed) subspace, and /or any f, 

(b) I[  Ht,~'r are subspaces such that Ht~_~'~, then II(fl )ii_<ll(fl )l[. 

(e) I[  ~ =  5 ~ n ,  where ~3~n are subspaces such that ~n~_~n+l ,  then ~ 
- o o  

(fl~l~) = lim (f lmn) .  
n - - > - -  0o 

To any  non-zero vector  in t t i lber t  space corresponds a uni t  vector  which is a 

scalar multiple of the  original. Bu t  to  a non-zero vector  f E/s does not  a lways cor- 

respond a normal  vector  g (Definition 5.5 (b)), which is a mat r ix  multiple of f. This 

is because the  Gramian (f,f) need no t  be invertible;  if i t  were we could take  

g =  ~ /~ , f ) - l . f .  Accordingly,  to  cover the  degenerate cases arising in the  theo ry  of 

multiple processes, we have to  take  Fourier  expansions with respect to  sequences of 

or thogonal  bu t  no t  necessarily or thonormal  vectors. The following is a basic pro- 

position regarding such expansions. 

5 . i i  T H e O R e M .  Let (r K * O .  

co oo 

(a) x/~ f=  EAn~n, g= YBn~n, 
- o o  - ~  

then (f, g) = ~ An K B*, (f, f) = ~ An K A* ; 

Ilf[i~ = ~ IAnK~I2< ~o; (1) 
- o o  

(f, ~n) = An K. 

1 We have to take the closure, for as with other infinite-dimensional spaces, the topological 
closure of subsets X, Y does not imply that of X + Y. 

2 Cf. the footnote to 5.6 (c). 
a Cf. the remarks on convergence after (4.3). 
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(b) The linear manifold ~ ~ (r is closed and identical to the subspace ~ (q~n)~_~. 
n =  - o ~  

(c) For every I 6 ~2, there exist matrices An such that 

(~l~(~. )r~)  = ~ A . $ . ,  X.K=(r,  ~o.). 
- o o  

Proo/. (a) By 5.7 (c) 

An ~o~, B. r ~ An (r r B* = ,~= ~ AmKB*,, (2) 
m=-N n=-N m=-N 

since (~m, cpn)=SmnK. :By 5.7 ( b ) t h e  L .H .S .  of (2 ) t ends  to (f,g). Hence from (2) 
o o  

the infinite series ~ Am KB *  converges to (f, g). Taking g = f, we get the corresponding 
- o o  

result for (f, f). The formula for IIf[[ 2 follows, since 11 ll2= (f,f) Finally taking 

Bm=JmnI in (1) 

(f, r = (_~ Amcp~, r = A~K. 

(b) Let ~1~ = ~ ~ (r Obviously W~_ ~ (r Also 11~ is a manifold containing 

every ~n- Hence if ~ is closed, then ~1t is a subspace containing every ~n and so 

~(~on)-~--_~lt. We have therefore only to show that  ~1t is closed. 

Suppose gk E ~ and gk-~g. Let 

gk =,, ~ k,,,4,.. 
Then el. (a) 

Ilgj-gkl[ ~= ~ I(Aj.-A~.)K~[~. (3) 
n = - o o  

Since by the Cauchy condition, the L.It.S. -->0, as j, k-->~, therefore for all n 

{(Aj~-Ak~)K�89 as ], k-->~. 

Hence for each n, the sequence (A~nK�89 converges. By  3.3 its limit must be of 

the form B~K~. Letting k-->~ in (3) we thus get 

I[gj-g[[ 2= ~ [(Aj,~-Bn)K�89 
n = - o o  

=ll <A,.-Bn)*.II 

B,,..[I'. 

Letting j--> c~, we get g-- ~ Bn r i.e. g 6 ~1t. Thus ~1t is closed. 
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(c) Since g=(fl| e ~(~n)_~= ~(~n) ,  

there exist matrices A n such that  

g = ~ Anon.  
- -  0 0  

By (a), A n K = ( g , ~ ) .  But  f - g •  and therefore ( g , ~ ) = ( f , ~ n ) .  (Q.E.D.) 

Putt ing K = I in the last Theorem we get the following specialisation for Fourier 

expansions with respect to an orthonormal system (Doob [2, p. 595]). 

5 . i2  COROLLARY. Let (~n)~_~ be orthonormal. Then 

(a) the linear mani/old ~ ~ (~n) is closed and identical with the subspace ~ (r162162 
- - o o  

(b) For any f, g E ~ (~,)~-or 

Ilfll = Z I(f, , 
- - ~  - - o 0  

(f, g)= ~ (f, sn)($n, g). 
- - o o  

(c) I /  f = ~ A ,  r then An = (f, q~n). 
- - o o  

6. Time-domain analysis of  multivariate processes 

By a q.variate (or q-ple) stationary stochastic process we shall mean a sequence 

(f~)_~ of vector-valued functions fn E ~.~ (of. Definition 5.1) such that  the Gramian 

matrix 

6.1 (fro, fn) = rm-n = [7[~ n-n)] (6.1) 

depends only on the difference m -  n and not o11 m and n separately, rn  is called 

the covariance or correlation matrix /or lead n, and the sequence (r~)_~ is called 

covariance-sequence of the S.P. 

If (f~)_~ is a q-ple S.P. and /~) . . . . .  /(~q) are the components of f~, then each 

/ ~ ) E ~  and by (6.1) 

6.2 (t~', l~ )) = r~ -n )  (6.2) 

depends only on the difference m - n .  Thus the q-ple process (fn)_~ has associated 

with it q simple process u~H(i)~=-~, i =  1, ..., q, which are stationary in the wide sense 

(Doob [2, p. 95]). 
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I t  follows f rom the  theory  of t t i lbe r t  spaces (Doob [2, pp. 461-462]) t h a t  we 

can associate wi th  a n y  simple S.P. ~r176176 ~ a shift operator U~ on ~2 into itself, 

which i s  un i t a ry  and such t h a t  U'~fo ~) =f~). This opera tor  is not  necessari ly unique. 

H(t)~ where i = 1, ., q, are the  components  of q-ple pro- I f  the  simple processes ~jn j . . . . .  .. 

eess (fn)_~ satisfying the  s t a t ionary  condit ion (6.1), then  we can t ake  U~= Uj, as was 

shown b y  K o l m o g o r o v  [5, Theorem 1], so t h a t  a single un i t a ry  opera to r  U on ~2 

exists  such t h a t  

6 . 3  U n ([(~)) = f~) ,  - oo < n < ~ ,  i = 1 . . . . .  q,  ( 6 . 3 )  

Obviously,  a n y  two un i t a ry  opera tors  sat isfying (6.3) will agree on the  subspace of 

~2 spanned  b y  the  components  f(~), - ~ < n <  ~ ,  i = l  . . . . .  q, so t h a t  U m a y  be 

considered "un ique" ,  as far  as its appl icabi l i ty  in the  s tochast ic  theory  is concerned. 

We  shall call U the  shift operator of the  q-ple process (f~)~or and  wri te  

6 . 3 '  U n  f0 = In ( 6 . 3 ' )  

as an abbrev ia t ion  of (6.3). 1 The  same convent ion  will be appl ied to o ther  t rans-  

format ions  T on ~2 into itself:  

6.4 I f  g =  (g(1) . . . . .  g(q)), then T g =  (Tg (1) . . . . .  Tg(q)). (6.4) 

We  shall denote  b y  ~ltn the  space | (fk)~_o~ (Definit ion 5.6 (c)). This  is called the  

present and past of /n. Obviously ~ltn---11tn+1. The  space Dt_oo = [~ ~l~n will be called 
- o o  

the  remote past of the process, and ~;lIoo = clos. (~ ~ n  = ~ (fk)~o~ the  space spanned by 
- o o  

it. These are all subspaces  of ~L~. The  present  and  pas t  of the  componen t  f~), i.e. 

the  subspaee ~ (]~))~=-~o of ~2, will be denoted b y  ~rj~) and  we shall s imilarly define 

~ J ~  and  ~J~). I t  follows f rom 5.8 (e) t h a t  

q 

6 . 5  g = (g(1) . . . . .  g(q)) E ~ltn, i/ and only i/ each g(O E clos. ~ ~)~). (6.5) 
1=1 

I t  is also obvious  t h a t  if U is the  shift  opera tor  of the  process ( ~)-~o, then  

and  (with the  usual  conventions) 

6.7 U n (HIk) = ~k+n. 

(6.6) 

(6.7) 

1 i.e. we shall regard U as acting on the spacz /L2, rather than on ~O 2. 
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We shall say tha t  the S.P. (fn)_~ is non-deterministic, x if and only if for some 

n, f~ r ~ - 1 .  From the stat ionari ty property (6.1) it  follows tha t  the last  relation 

holds for a single n only if it holds for all n. Hence for any  non-deterministic pro- 

f cess ( n)-~,  

6 .8  gn = f ~ -  ( f ~ ] m ~ _ l ) . 0 ,  -- c~ < n <  oo. (6.8) 

We may  look upon the vector-functions gn as the innovations out of which the fn. 

process is built. Accordingly, we shall call (g~)_~ the innovation-process associated 

with ( f~ )~ .  I t  plays an important  par t  in the theory on account of its simple 

structure, as shown by the following obvious lemma: 

6.9 L EMM),. I ]  (gn)_~ is the innovation-process o / a  non-deterministic S.P. ( f , ) ~  

with shi/t operator U, then 

(a) g~ = U" go 

(b) (gin, gn) = 5ran G, where G = (go, go) = (fn, gn). 

We shall call the Gramian G = (go, go) of 5.9 (b) the prediction-error matrix with 

/ag 1 of the S.P. (f ,)_~, and following Zasuhin [18] refer to its rank ~ as the rank 

of this process. We shall say tha t  the S.P. has /ull rank, if ~ = q. Obviously, the 

S.P. will be non-deterministic if Q>_I, and vice versa, and in this case by  6.9 (b) 

the innovation process ( g , ) ~  will be orthogonal. But  unless G is invertible, i.e. Q=q 

and the S.P. has full rank, we cannot derive from (gn)~r an orthonormal process (cf. 

remarks preceding 5.11). Questions of rank thus render the multiple theory more 

difficult than  the simple theory. 

We shall now establish the Wold decomposition of a multiple process, which was 

announced by Zasuhin [18, Theorem 1] but without proof. We need the following 

lemma. 

6.10 LEMMA. 1/ 

f~, g.~, respectively, then 

(a) /or m < n, ~ n  = ~ m  + ~ (gk)~+l,  

(b) m~ = m_  ~ + ~n ,  

Proo/. (a) Since ~ _ l ~ _ ~ n  and gn E m~, therefore 

m ~ - i  + | (g.) -- ~ .  

fn, gn are as in 6.9, and ~n ,  ~ n  are the present and past o/ 

n 

~ m •  (gk)m+l 

:m_~r _1_ ~ .  

(1) 

x This  t e rm is preferable to the t e rm non-singular used by  KOLMOOOaOV [5], and  the  t e rm 

regular used by  DOOB [2]. 
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Now by (6.8) f ,  = g~ + (f~ I WU_I) E ~ (gn) + mn_l. 

Also, for/c < n, fk E ~1t~_1 _ ~ (g~) + ran-1. I t  follows that  (1) holds with _ replacing ~ ,  

and therefore with equality. By iteration of this equality we get 

~ = m n - ~  + | (gn) 

= ~ n - 2  -~ @ (grt, gn -1 )  

= m m  ~- ~ (gn, gn -1  . . . . .  gm+l) .  

Since by (6.8) gin§ gm+z . . . .  3_ W~m, mm+a . . . . .  respectively, and mm is contained in 

all these subspaces, it follows that  ~ (gk)~+l 3, Dim. 

(b) I f  h6~7_~,  then for each n, hE~tn_t  3, gn. Hence rIt_r162 Z ~,~. Next, since 

g~ EDin, therefore ~7~Di~.  Also m_~___~lI~. Hence 

Di ~ + V~n _ ran.  (2)  

Now let h E ~Vlt,. Then since m_r162 3. ~ and by (a)Dim 3_ ~ k ) ~ + l ,  we have (ef. 5.10) 

(h lm_~ +V~n)=(h lm ~)+  (h]V~) 

= lim (hiram)+ lim (h]~(g~),~+l) 
m - . . ~  - -  ~ m - - ) *  o o  

= l i m  ( h l m . , + |  ~, ~ (~)m+l) 
m ~ -  

= l i m  ( h l m ~ )  = ( h i m . )  = h,  
m---}- ~ 

in view of (a). Hence h E~lI_~+~;n. Thus (2) holds with _~ replacing _ ,  and there- 

fore with equality. (Q.E.D.) 

6.11 THEOREM. (Wold decomposition.) I /  (gn)_~ is the innovation process of a 

non.deterministic q.ple S.P. (f~)_~:r and Din, ~ n  are the present and past o/ fn, gn, 

respectively, then 

(a) fn=un+v~,  where u ~ = ( f ~ l ~ , )  3_ v,=(f~lDi_~);  

(b) the S.P. (u~)_~ is a one-sided moving average: 

o o  

Un=k=o ~ A~ gn-k, Ilu~lt~ =~olA~ G~ I~ < ~ , =  

where G= (go, go) and the A~ are any matrices such that 

A~G = (Uo, g-k) = (fo, g_k), A o G = G = I I A ~ ;  

(c) the S.P. (vk)_~ is deterministic, and [or each n, ~ (v~)~_~ = .~_~ .  
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Proo[. (a) Since f n E ~ n ,  we have |~=(fnl~Ttn). Hence f rom 6.10 (b) and 5.10 (a) 

f .  = ( f . l ~ _ ~ )  + ( fn[~n)  =Vn + Un. 
Obviously vn 3_ u~. 

(b) Since vn 2_ each gj, and by  6.9 (a) g~_~= U~g_k, therefore 

(u~, gn-k) = (u .  + v~, g ~ - k ) =  (f~, g . - ~ ) =  (U~ ~0, Vn g - ~ ) =  (f0, g-~).  (1) 

Now u~ew~=| and by  6.9 (b) (gs, gk)=~Jk G" Hence b y  5.11 (c) and (a) 

U m ~ ~ Ank" gn-k,  
k=0 

o o  

where A ~ k G =  (un, g~-k) ,  Ilu l?= ~ .  

F r o m  (1) we see, however,  t h a t  Ank is independent  of n so t h a t  we m a y  write Ak 

instead of A~k. Final ly by  6.9 (b) 

A o G = (fo, go) = (go, go) = 6 .  

Taking adjoints  we get  (~ = fiA~. 

(c) We first note t h a t  

m ~  = Vz~ + | (vk)'-~, ~ n  • | (vk) ~ _ ~.  (2) 

This is obvious since on the one hand  ~r  and v~ E ~lt_~_-_ ~t~, and on the other  

for all m _< n 
f~ = u~ + v~ e ~ n  + | (vk)~_~. 

Comparing (2) with 6.10 (b), we conclude from 5.8 ( c ) t h a t  | =~l t_~.  (Q.E.D.) 

F rom the  last theorem we easily get  the following corollary for processes of full 

rank  given in Doob [2, p. 597] (ef. 5.7 (g)). 

6 . i 2  COROLLARY.  I /  go is the innovation /unction o/ a ]ull-rank process (tn)~_~, 

then with the notation of the last theorem, 

k = O  O 

where (hk)T~ is the normalised innovation process o/ (fn)Tor 

ho = Y ~ .  go, h~ = U ~ h o, G = (go, go), 

and C O = VG, Ck = (Uo, h-k) = (fo, h_k). 

We shall call a S.P. regular, if (fol~lt_n)-->0, as n-->oo.1 Such a process is ob- 

1 This usage of the term regular is the same as KOLMOGOROV'S [5]. DOOR [2] uses the word in 
a different sense. 
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viously non-deterministic and hence the last theorem is applicable to it. Conditions 

equivalent to regularity are s ta ted  in the next  theorem, which is an extension of 

Kolmogorov [5, Theorem 19]. 

6 . i3  THEOREM. Each Of the /oUowing conditions is equivalent to the regularity o/ 

the stationary S.P. (fn)-~: 

(a) (fn)_~ is a one-sided moving average: 

fn= ~ AkC~n-k, (r q~n)=(~mnK; (1)  
k=O 

(b) m_ oo = {0}. 

Proof. (a) Let  the S.P. be regular. Then by  6.10 we have with the usual notation 

~ o = ~ _ .  + |  +~, ~ _ .  • ~ o ( g ~ ) - n + l -  

Since (g~, g~)=~j~G, it follows from 5.10 (a) and 5.11 (c) tha t  

n+ l  

fo = (re [me) = (re Ira_n) + ~ Ak g-k. 
0 

Since by hypothesis (f0[~lt_n)-->0, we see that  

fo = ~. Akg-k. 
O 

U n upplied to both sides yields (1) with r and K = G .  Thus (fn)_~ is a one- 

sided moving average. 

Conversely, suppose that  (1) holds. Then by  5.11 (a) 

( 2 )  

Letting l ~ n = ~ ( ~ e ) n ~ ,  it follows by 5.11 (e) tha t  

k=n 

o o  

I I ( r o l  - , 

whence from ( 2 ) I I ( f 0 1 ~ - . ) l l ~ 0 ,  as n-->oo. But  obviously from (1) 

~;lI_n---~_,~ and II(Solm-~)l l~l l ( fol~ ~)ll. (3) 

Hence the process is regular. 

(b) Let  the S.P. be regular. Then (1)-(3) hold. From the first relation in (3) it 

follows that  ~lt_ ~ _ Y~_ or So we need only to show that  V~_ ~ = {0}. Suppose ~ E ~ _  ~. 

Then for all n, ~ E 17r and therefore by  5.11 (c) 
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'4'= ~ g~_~, IIq~ll == ~ IB,~K~IL 
n 'r/, 

where BkK- ( t~ ,  ~k). Since ~lB~Kal%< ~ ,  we have ~ IB~K*I%-~o, as ~ - ~ .  Hence 
0 k = n  

~b = 0. Thus ~;rr ~ = {0}. 

Conversely, if W~_~ = (0}, then by 5.10 (c) 

lim (folm-=)= (fo I m - ~ ) = 0 ,  
n--~ oo 

i.e. the process is regular. (Q.E.D.) 

7. Spectral analysis of multivariate processes 

As in the simple ease so in multiple, the chief advantage of turning from the 

time-domain analysis of stochastic processes to the/requency-domain or spectral analy- 

sis is the possibility of using the powerful methods of harmonic analysis. 

U of a q-ple stationary S.P. ( fn)~ have the spectral Let the shift operator 

resolution 

Then 

Doob [2, p. 636], 

2 4  

U = j" e -~~ dEo. 
0 

from (6.3) and the well-known properties of the spectral resolution, cf. e.g. 

2 ~  

(/~), ID ~)) = (u  n l~ i), /(o j,) = f e-'~~ d (Eo l~ ~), l~s)). 
0 

Letting F,j(O)= 2:~(Ea/~)~ /(j)), F(O)=[F~j(O)], 

we see that  the covariance matrix rn  is itself given by 

(1) 

2 ~  

1 fe_,~OdF(O). (7.1) 7.1 rn  = (fn, fo) = 

0 

Following convention (6.4), let us put Eofo= (Eofo 1) . . . . .  Eot~q)). Then by 5.8 (b) 

E0fo=(fol~0),  where 1II0 is the subspace of P~ consisting of vector-functions all of 

whose components lie in the range ~rJ~o ( _  ~ )  of the projection operator Eo. Hence, 

as is easily verified, 

7 . 2  F (0)  = 2 ze (Eofo, fo) = 2 7e(Eo fo, Eo fo)" (7 .2)  
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Since the projection operators Eo, 0 _< 0 _< 2 g, constitute a resolution of the identity, 1 

it readily follows [5, Theorem 4] tha t  

7.3 F is bounded, non-decreasing and right-continuous on [0, 2 z~], and F (0)= O. (7.3) 

In  fact, from (4.12) we get 

iF (0) = (o + ) 

J 7.& (7.4) 
[r l  ( 0 ) - r l  (0)=ro(O 1), 

which shows tha t  F is uniquely determined by  the sequence (Fn)~r 

The function F satisfying (7.1) and (7.3) is called the spectral distribution [unc- 

tion of the S.P. (f~)_~. Every  multiple stat ionary process thus possesses one and 

only one such function. Conversely, as was shown by  Cramer [I, Theorem 5 (b)], 

every function F satisfying (7.3) is the spectral distribution of some multiple sta- 

t ionary S.P. (ef. also [5, Theorem 4]). From (7.3) it follows, as remarked after 4.2, tha t  

7.5 F has a derivative a.e., which has non-negative hermitian values and belongs to L 1. (7.5) 

But  F will not always be absolutely continuous, i.e. in general we will not have 

O 

F(O)=  f F ' ( t ) d t ,  0__<0_<2:~. 
o 

I f  F is absolutely continuous, so tha t  by  4.9 (d) 

2~ 

1 f e -n~~ 7.6 rn = (fn, fo) = ~ ~ (0) d O, (7.6) 

0 

then F'  is called the spectral density /unction of the S.P. 

From here on, it will be convenient to regard F, F '  as functions not on the 

interval [0, 2 ~] but  on the unit  circle C in the complex plane. This will amount  to 

writing e ~~ for the argument,  where previously we have writ ten 0. The next  theorem 

gives a sufficient condition for the absolute continuity of F. 

o o  . 7.7 THEOREM. (a) The moving-average process (fn)-:r 

k =  - - o O  - - o O  

has an absolutely continuous spectral distribution F such that 

1 i.e. E o = 0, E2~ = I, EO+O = EO, and 0 > 0' implies EO- EO, is non-negative hermitian. 
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F' (e ~~ = @ (e~~ �9 r (e'~ ~(e '~  = ~ A~Gte ki~ a.e. 
k ~ - o o  

(b) I] /or this process, Ak= 0 /or b < 0, then 

(e ~~ = ~ A~ O ~ e ~l~ 
k=O 

and either A~+ vanishes identically, or log AF'  EL  1 on C and 

2n 

log A (A o GA~)_< 2 ~  f log A {F' (e'~ dO. 
0 

P r o o / .  (a) By  5.11 (a) 

Next, since ~ [A~ O �89 ]~ < ~ ,  therefore by 3.9 (b) the functions ~ ,  ~ *  e L~, and so 

~ * E  L r Since AkG �89 G �89 A*k are the kth Fourier coefficients of ~ ,  ~*,  respectively, 

it follows from 3.9 (d) that  the nth Fourier coefficient of ~ ~ *  is 

Thus 

AkG~G�89 = ~ A k G A ~ _ . = r . .  
k =  - o o  kffi - ~  

2 ~  2 ~  

f e -hi~ ~ (e~~ �9 ~ *  (e ~~ d 0 = 2 ~ r~ = f e -hi~ d F  (ei~ 
0 0 

where F is the spectral distribution. We easily conclude from this (cf. 4.9 (d) and 

4.13 (b)) that  
0 

F (0) = f ~ (e") ~*  (e ~) dr, 
0 

i.e. F is absolutely continuous, and F'= ~ * ,  a.e. 

(b) The new expression for ~ is obvious. Since ~ E L  2 and its nth Fourier 

coefficient vanishes for n < 0 ,  it follows by 3.13 (b) that  either A ~ +  vanishes iden- 

tically or log A ~ E L 1 on C and 
2 n  

log [A(AoO�89 l = l o g l A  {~+ (0)} I _< ~ log ]A {~(e~~ 

0 

The desired result follows, since 

A (Ao G A ~ ) =  I A (Ao G�89 12, AV=IAV5 
(Q.E.D.) 
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On combining this theorem with Theorem 6.11 on the Wold decomposition we 

get the following useful result. 

7 . 8  MAIN LEMMA I. Let (f~)_~ be a non-deterministic S.P., let u. ,  vn, A~, G be 

as in 6.11, and /et F, Fu, Fv be the spectral distributions o/ the f , - ,  u ~ - ,  v n -  pro- 

cesses. Then 

(a) F = F ~ +  F~; 

(b) Fu is absolutely continuous, and 

F" (e ~~ = 4,  (e ~~ 4,* (e~~ 4 ,  (e ~~ = ~ Ak G~ e ~~ , Ak C, = (fo, g-k); 
kffi0 

(c) i/  (f,)_~ has [uU rank then log A F'u E L 1 on C, and 

2 ~  

< 1 f log A {F'~ (e'~ d O. log A (G) _ 2 ~ 

0 

Proo/. (a) By 6.11 (a), um• and therefore 

( f - ,  fo) = (u~ + v . ,  u 0 + Vo) = ( u . ,  no) + ( v . ,  Vo). 

2 ~  2 n  

In other words, 2-~ e-~i~  e-~t~ 

0 O 

whence by 4.13 (b), F = F ~ + F v +  const. The constant is zero, since all three functions 

vanish when 0 = 0. 

(b) follows from the last theorem, since by 6.11 (b) 

k=O 0 

(c) If the S.P. has full rank, then G is invertible. The relation AoG=G of 

6.11 (b) now shows that  Ao=I.  Hence A(4 ,+(0) )=A(G�89  The integrability of 

log AF~ and the desired inequality now follow from 7.7 (b). (Q.E.D.) 

7.9 MAIN LEMMA II.  Let F be the spectral distribution o/the S.P. (fn)-~, and let 

Then 

(a) 

N N 

v(~)= YA.~ ~, P(f)= ~ A. f_.. 
0 0 

2~ 

if (P (f), P (f)) = ~ P (e~~ �9 d F (e~~ �9 P*  (e ~a) 

0 
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(b) 

2~ 

> 1 f l o g  A { F ' ( e ' ~  ol s, log A (e (f), P (f)) _ 2 

0 

where the integral on the right may  equal - c ~ .  

Proo]. (a) Since P is continuous and F is of bounded variation, therefore by 

4.9 (a) the RS-integral on the R.H.S. of (a) exists. Also by 5.7 (c) and (7.1) 

(m~o Am f-m, 
N 

n = 0  mffiO = 

2 n  

= ~ ~ Am" eW~-~)~176 * 
m~O n=O 

0 
2~ 

1 N N . �9 

: 2 ~  f (m~_ O A m emiO ) " d F (et~ " (m~=o An en'O ) 
o 

from which (a) follows. 

(b) From 4.10 and 3.11 (e) 

2 n  

I ~  f p (e,O). d v (e'~ �9 P* A 12~ 
0 

2~ 

0 

(1) 

But since the values of P F'P* are non-negative hermitian, therefore by 3.12 

2~ 

0 

1 f log A {p (e ~~ F' (e i~ P* (ei~ d 0 ->2~ 
0 

2 ~  2 ~  

> - -  log I ~ {P (~~ 13 a 0 + 2-~ 
0 0 

Now since each entry of P (z) is a polynomial in z, therefore A {p (z)}, being a sum 

of products of such entries, is itself a polynomial in z. Hence by Jensen's Theorem, 

the first term on the R.H.S. of (2) is 

_> log I A {P (0)} [2 = log I A (Ao)[2. 

Also by (a), the L.H.S. of (1) is A (P(/), P(/)). The desired inequality thus follows 

from (1) and (2). (Q.E.D.) 
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7 . 1 0  MAIN THEOREM I. The q-ple S.P. (f,)_~ is o/ ful l  rank i /and  only if it has 

a spectral distribution F such that log A F 'E  L 1 on C. In  this case, i/ G is the predic- 

tion error matrix with lag 1, then 
2zt 

i l l  ] (A) A ( f i ) - e x p  ~ logA{F'(e*~ �9 

0 

Proof. Let the S.P. be of full rank. Then by 6.11, we have the Wold decomposi- 

tion fn = un +vn. Denoting the spectral distribution of the un- and w-processes by 

Fu, Fv, we have from 7.8 (c) tha t  log A F'u E L 1 and 

2zt 

< ~ f log A {F'~ (e'~ d 0. (1) log A (fi) _ 2 
0 

Also by 7.8 (a), F' =F'u + F~. Since F~ has non-negative hermitian values, it follows 

from 3,11 (c) that  
A {F',~ (e'~ _< A {F' (e"~)}. 

Taking logarithms, integrating over [0, 2~], and applying (1), we get 

2~t 

log A (G) _< ~ log A {F' (e'~ d 0. (2) 
0 

The S.P. being of full rank, A (G)>0. The last integral cannot therefore be equal 

to - r  But neither can it be equal to oo; for by 3.12 it is dominated by 

2 g  

0 

which is finite since F' E I, 1 and F' has non-negativehermitian values (of. (7.5)). Thus 

log A F' E L 1. 

Next, suppose that  (fn)_~ is such that  log zXF'E L 1. Consider the innovation 

g = fo - (fo I m - l ) ,  

where ~ - I  is the past of f0. Since (folm_l)GBt_I, we have g=  limgx, where 
N-~oo 

N 

gN = fo -  ~ B(.~) f-~ �9 
n = l  

Since the coefficient of fo is I, it follows from 7.9 (b) that  

2 n  

log A (gN, g~) -> ~ log A {F' (e'~ d 0. 

0 
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Now let N-->~.  Then by 5.7 (b), (gN, gN)--~(g, g )=  G, and the last inequality reduces to 

2~ 

log A (G)>__2- ~ f l o g  A(F'(e'O)}dO. (3) 
0 

Since by assumption the last integral is finite, we conclude that  A (G)> 0, i.e. the 

S.P. has full rank. 

Finally, suppose once more tha t  the S.P. has full rank. As just shown this 

entails (2) and the L-integrabflity of log A F'. The last fact in turn  entails (3). The 

inequalities (2) and (3) together yield the equality (A). (Q.E.D.) 

The equality 7.10 (A) may be rephrased as a result on 'matrix-polynominal ap- 

proximation in a "mean-square" sense with respect to a given matricial measure or 

weighting F;  viz. 

2 g  

0 

2~  

= liN~m~ A {2~ f ( I -  n=l ~ B(nN) e"~ "dF (e'~ ( I - -  ~lB(~N)em')*}, 
0 

where for each N, the matrix coefficients B~ N) . . . . .  B(~ N) are chosen so as to minimise 

2~ 

T ( ~  f ( , -  ~ l B ,  e "'0) d F  (e '0) ( I -  ~_N1B, e ' " )*  } �9 
0 

So interpreted, 7.10 (A) is seen to be a matricial extension of an identity first ob- 

tained by Szeg5 [9, Satz XII] ;  cf. Doob [2, pp. 638-639]. 

As a corollary of 6.10 we get the following spectral version of the Wold de- 

composition. This has been given by Doob [2, pp. 597-598], but  his justification, 

based on an extension of the stochastic integrals of Cramer, seems to us to be in- 

adequate, cf. sec. 1. 

7 . i l  MAIN THEOREM II.  For any full rank S.P. (fn)-~r the spectral distribu- 

tions o/ the u,- and vn-processes of its Wold decomposition (Theorem 6.11) are the ab- 

solutely continuous and discontinuous plus singular parts o/ its spectral distribution. In 

symbols, c/. (4.3), 
F,  = F (a), Fv = F (d) + F (s)- 

Proo/. As we already know from 7.8 that  F = Fu + Fv, and tha t  Fu is absolutely 

continuous, it will suffice to show that  F~ = 0 a.e. on C. Now from 7.8 
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F ' =  Fu §  + F~, ~ e L , .  

Since the values of F~ are non-negative hermitian, we get from 3.11 (b) 

whence 

�9 A {F~, (d~ {F' (r > 
{F' (r - ~ {F~, (r176 

A {F' (e~~ _> A {F" (e'~ �9 [1 
L 

• {F~, (r176 
l'I' (~,o)I~ ' 

{r; r I 

On taking logarithms and integrating over [0, 2 ~t] we get 

2~t 

f log A {F' (eta)} d 0 

0 
2n  2~t 

>_ log A{F~(e*~ log l q  i#(e,e ) j ~ j d 0  

0 0 

2~ 

_ > 2 g l o g A ( G ) +  log l +  ]@(e,e ) ] ~ j d 0 ,  (1) 

0 

the last step being a consequence of the inequality in 7.8 (c), which is available since 

the S.P. has full rank. But by 7.10 (A), the integral on the L.H.S. of (1) equals 

2,~log A(G). Since the integrand on the R.H.S. of (1)is non-negative, it follows that  

[1 ' ~ {r; (r176 log 

i.e. ~ {r" ( ~ ' ~  (~,o)I~ = 0, a . e .  

Now since cI) E L 2, the denominator can become infinite only on a set of zero measure. 

The numerator ~{F~(e~~ must therefore vanish a.e. Since F'v(g ~ is non-negative 

hermitian, we conclude that  F'v vanishes a.e. (Q.E.D.) 

As another corollary we obtain the spectral criterion for regularity with full rank, 

announced by Zasuhin [18, Theorem 3], but not so far fully established (cf. sec. 1): 

7.9.2 MAIN THEOREM III .  The S.P. (fn)_~ is regular and o/ /ull rank, i/ and 

only i/ it has an absolutely continuous spectral distribution F such that log A F 'E  L 1. 

In  this case we have, of course, the equality 7.10 (A). 

Proo[. Let the S.P. be regular and of full rank. Since it has full rank, therefore 

by 7.10, log A F ' E L  r Also, 
In = an + v . ,  (1) 

where (u~)~:r is a one-sided moving average, and v==(f=lm_or 1~_~ being the re- 

mote past of (fn)_~or Now since ( f=)~ is regular, 1~_~r = {0} by 6.13 (b), and there- 
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fore v~=0 .  Hence by (1), fn=u~- The S.P. (fn)-r162 is thus a one-sided moving average. 

Hence by 7.7 its spectral distribution is absolutely continuous. 

Next  suppose (fn)_~or has an absolutely continuous spectral distribution F such 

tha t  log AF '  EL  1. Since log AF '  EL1, therefore by 7.10, the S.P. has full rank. Hence 

by 6.11 we have the Wold decomposition (I) and by 7.11, F , = F ( d ) + F  (s). But  since 

F is absolutely continuous F ( a ) = 0 = F  (s). Hence Fv=0 .  I t  follows tha t  vn=0 ,  and 

hence from (1) tha t  (fn)_~ is a one-sided moving average process. By 6.13 (a), it 

must  be regular. (Q.E.D.) 

We shall now derive a factorization theorem for matrix-valued functions, which 

in a sense is a matricial extension of 2.8. This had been forseen by Wiener in [17], 

but  his proof was incomplete in tha t  the required spectral condition for regularity 

had not been duly established. 

Let  F be a non-negative hermitian matrix-valued function on C such tha t  F E L 1 

and log A F E L 1. Letting 
0 

F ( 0 ) =  f F(t) dt, 0_<0<_2,% 
0 

it follows from Cramer's  Theorem [1, Theorem 5 (b)] tha t  there exists a q-ple sta- 

t ionary process (fn)_~r with spectral distribution F. Since ~" is absolutely continuous 

and log ~F'EL1, w e  see from 7.12 tha t  this process is regular and of full rank. By 

6.13 its remote past ,~TI_~={0}, and hence by the Wold decomposition 6.11 and 6.12, 

it is a one-sided moving average: 

f n :  ~" Ckh~-k, (h,,h~)=5,/ I, ~ : I C k l ~ < ~ .  
kffiO 0 

In this Co= t/G, where G is the prediction error matrix of the process. By 7.7 it 

follows tha t  

F = F' = cIa ~ *  a.e.,  ~ (e ~~ = ~ C~ e ~i~ 
0 

We note that  e~+ (0) = C O = [/G is non-negative hermitian. Moreover by 7.10 (A) 

0 

We have thus proved the following theorem. 

7 . t3  THEOREM. Given a non.negative hermitia~ matrix.valued /unction F on C 

such that F E L 1 and log A F E L 1, there exists a /unction ~ E L 2 on C, the n-th Fourier 

coe//icient o/ which vanishes /or u < O, such that 
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F (e ~~ = ~ (et~ �9 ~*  (e t~ a.e., 

~+ (0) is non-negative hermilian, and 
2~t 

A {~+ (O)}2 =exp [ l~  f log A {F(eta)} dO] �9 
o 

An important problem in multiple prediction is given such a function F, to find 

the Fourier coefficients of the factor ~ .  As it stands, our proof of 7.13 gives no 

clue to determining these coefficients. We shall show in Part  I I ,  however, that  if we 

combine the arguments used in this proof with Wiener's idea of resorting to successive 

alternating projections, then we do get a method of finding these coefficients. 

8. Some unsettled questions 

The relationship between the prediction error matrix G and the spectral distribu- 

tion F needs further investigation. In  7.10 (A) we have only been able to relate the 

determinant of G with that  of F'. But it is clear that  all stochastic processes 

with the same spectral distribution F would have the same G, and that a stronger 

relation exists between G and F. 

No spectral characteri~tion has yet been given of a S.P. having a rank ~ < q, 

and in particular of a non-deterministic process, Q > 1. This question is tied up with 

the one mentioned in the previous para: a full fledged relation between G and F 

would yield the desired characterisations. But it may be possible to tackle questions 

of rank even without the knowledge of such a relation. 

We might also mention a lacuna, which will confront us in Part  II .  This con- 

cerns the necessary and sufficient condition that  the linear prediction with lead v be 

expressible in terms of the past elements fk, k ~ 0, by a single infinite series con- 

verging in-the-mean. This question remains open even in the ease of a simple process. 

We shall show in Part  I I  that  a sufficient condition is that  F be absolutely con- 

tinuous and the eigenvalues of F '  be essentially bounded above and away from zero. 
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