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1. Introduction

To advance further in the prediction of multivariate (or multiple) stochastic
processes, we need the support of a general theory of such processes. It is natural to
try to build this theory along the lines of Kolmogorov's important development of the
theory of univariate (or simple) processes [5, 6].2 This work was begun in 1941 by
Zasuhin, who was able to announce some important results [18]. But even before
Kolmogorov’s work, Cramer [1] had obtained a fundamental theorem on the spectrum.
Subsequently, Wiener [14-17], Doob [2] and Whittle [13] have studied multiple pro-

cesses, but a general theory has not as yet been reached. For instance, no spectral

! This research was carried out at the Indian Statistical Institute, Calcutta, during 1955-56.
Qur sincere thanks are due to the authorities for the excellent facilities placed at our disposal, and
to Dr. G. KALLIANPUR for valuable discussions and for an English translation of ZASUHIN's paper [18].

2 A similar development, but confined to processes with absolutely continuous spectra, was
given independently by WiENER, ef. [14, p. 59].
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characterisation of non-determinacy has been given, nor has a relation been established
between the prediction error matrix and the spectrum. Also, there has been some
doubt regarding the spectral criterion for regular processes of full rank.* This is
the sort of process for which we would expect to have electrically realizable linear
filters. Such a criterion was stated by Zasuhin [18, Theorem 3] but without proof.
It was rediscovered by Wiener [15], but his derivation [17] is incomplete in that the
case in which two components of his multiple process make a zero angle with one
another is left out.? To cite another lacuna in the theory, although the Wold de-
composition announced by Zasuhin [18, Theorem 1] is valid, Doob’s derivation of the
corresponding decomposition of the spectrum [2, pp. 597-598] seems to be insufficient.
Other questions which suggest themselves also remain unanswered, cf. sec. 8.

In part I of this paper we shall complete the theory of multiple stationary
stochastic processes in the discrete parameter case in several respects, establishing in
particular a spectral condition for full rank. In the course of this proof, we shall
find a connection between the prediction error matrix and the spectrum, thus ob-
taining a determinantal extension of an important identity of Szegs [9, Satz XII]. As
corollaries we shall derive the spectral version of the Wold decomposition and the
criterion for regularity with full rank, mentioned above.

We shall draw on the work of Cramer, Kolmogorov, Zasuhin, Doob, and the
previous work of Wiener, but our treatment will depart from theirs in many ways.
We shall make strong use of certain theorems on the boundary values of holomorphic
functions of the Hardy class, which are due to Szegs [10] and to Paley and Wie-
ner [7]. These theorems are recapitulated in Sec. 2. We shall then discuss the har-
monic analysis of matrix-valued functions, which will be needed in studying multiple
spectra, and also establish a determinantal extension of the well known logarithmic
inequality, which will play an important role (Sec. 3). In Sec. 4 we will deal with
Riemann-Stieltjes integration in which both integrand and integrator are matrix-valued.
Sec. 5 will be devoted to the analysis of vector-valued random functions. This is needed,
since a multiple S.P. is a one-parameter family of such functions, subject to some-
what unusual concepts of orhogonality and linearity. These preliminaries will occupy
a large part of this paper. In Sec. 6 we shall turn to the time-scale (or non-spectral)

analysis of multiple processes, and in Seec. 7 take up the spectral analysis, and estab-

t ¢f. Sec. 6. Roughly speaking, a S.P. (stochastic process) is regular, if its “remote past” con-
sists only of the zero-vector; it has full rank, if the component random functions of its “innovation”
are linearly independent.

2 WIENER’s proof of the factorization of unitary matrix-valued functions, contained in the same
paper, is also incomplete.
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lish the conditions for non-determinacy and regularity with full rank (Theorems
7.10-7.12). In Sec. 8 we will mention some unsettled points in the theory.

The spectral distribution of a simple S.P. with discrete parameter may be re-
garded as being defined on the unit circle in the complex plane. The linear predictor
for 'such a process is obtained by factoring the derivative of this distribution into
an inner and an outer function (Wiener [14, 15]). In the multiple case the corre-
sponding factorization is of a non-negative hermitian matrix-valued function. The
non-commutativity of matrix multiplication makes this factorization much harder.

An algorithm for affecting it will be given in part II of this paper, which will appear
separately.
2. Boundary values of functions in the Hardy class

Throughout the sequel the symbols C, D,, D_ will denote the sets |z|=1,
|z] <1, 1<]|z|< o, respectively, of the extended complex plane.

2.4 DEFINITION. For §>0, the classes Ls and Hj are defined as follows:

(a) L consists of all complex-valued measurable functions f on C for which
2n .
[11 € d0<co.
(1}

(b) The Hardy class H; will consist of all complex valued holomorphic functions f
on D, for which there exists a number M such that

2n
JlfrePdo<M <o, 0<r<lL.
0

Let f€L; on C. Since its nth Fourier coefficient:

2m

1 .
@y =2_; J‘ e—nwl(elﬂ)do

[
tends to 0 as n—+ oo, it follows from the Cauchy-Hadamard formula that Y a,z"
[
converges on D, and > a_,2z " on D_. This suggests the following:
1

2.2 DEriNiTION. If f€L, on C and has Fourier coefficients ap, then we
shall call

8 — 573805, Acta mathematica. 98. Imprimé le 18 novembre 1957
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f+ @)= 2 a,2", 2z€D,, f-(2)= Sa_,z" z€D_,
o 1

the inner and outer functions determined by f.

These functions can also be represented by Cauchy integrals:
_ 1 f(w)
f+(z)—2ni ! w—zdw’ 2€D,

_1 [ fm)
f_(z)—2nic w——zdw’ 2€D_,

the sense of integration being counter-clockwise. From this we get the Poisson

integral representation

2.3 nm+ﬁww3%fm%?@ﬂm&zem, (2.3)
0

where P (z, w)=(|w|*—|z|?)/|w—z[*. By expressing the difference
0 L o i0
e i (160) =

as another Poisson integral, and applying the Fejér-Lebesgue technique used in
proving the Abel or Cesaro summability of a Fourier series in L, [19, ch. III], we

can prove the following basic theorem.

24 TarorEM. If f€L, on C, then for almost all 0€[0, 27)
: 1 L i0
lim {f+(re )+ - (—e )}=f(e )-
r—>1-0 r

Now suppose that f€ L;, where 6>1 and a,=0 for n<0. Then the L.H.S. of
(2.3) reduces to f. (z). Putting z=re'® in this, and noting that since §>1 the func-

tion 2°(x>0) is convex, we get a uniform upper bound for the integrals
2n
J'|f+(rew)l"d0, 0<r<l,
0

by applying Jensen’s Inequality [19, p. 68] and Fubini’s Theorem. Thus

2.5 CoroLLARY. If f€L; on C, where d=1, and its n-th Fourier coefficient van-
ishes for n<O0, then f.€Hs on D,.
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The following theorem will play a crucial role in the stochastic theory. The
proofs of parts (a), (b) due to F. Riesz are given in [19, p. 162]. The proofs of
parts (c), (d) are essentially the same as those given by Szego [10, § 2] for §=2.

2.6 THEOREM. Let f, €H; on D., where 6>0, and supppose that [, does not
vanish identically. Then

(@) f(%)= liin0 f+ (r€®) exists a.e. on C and f€ Ls;
(b) fi—f in the Ls-topology, t.e. as r—>1—0,
2n
[ 1tewen=renrao—o;
(1]

(c) log |f|€L, on C, and

27
log |f. (z)|£§1;f10g|f(e“’)]-P(z, ¢ do, z€D,; (1)
0
2x
in particular log | f. (O)IS% flog |f(e9)]d0; (2)
0

(d) ¢f in (2) we have equality, then [, has no zeros in D,.

The converse of (d) is in general false. For instance, Szegd’s function [11, p. 270]

f+ (@) =exp {(z+1)/(z— 1)}

has no zeros on D, ; yet log |f.(0)|=log (1/e)= — 1, whereas
2w .
[log |f(e%)|d6=0,
L]

since |f(¢®)|=1, 0<B<2x. It may be shown that the converse of (d) holds in case
the reciprocal 1/f, is itself in a Hardy class.

An obvious corollary of 2.6 is the following result of F. Riesz and Nevanlinna.

2.7 CoroLLARY. The boundary function of a non-constant function in the class
H; on D., where 6>0, cannot take on the same value on a subset of C of positive

measure.

The following converse of 2.6 will also play an important part in the stochastic
theory.
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2.8 TueorEM. If $€L; on C, where 6>0, and ¢ >0 and log ¢ € L,, then there
exists a function f.€Hs on D, and without zeros on D, such that if f is its radial

2n
Limit,! then |f|=¢ a.e. on C; and f.(0)=exp :Ely—z f log ¢(ew)d0}-
o

Proof. Our proof is a variation of that given by Szego [10, § 1] and Wiener [15]
for 6=2. Since the function g=Ilog ¢®=2 log ¢ is real-valued and in L,, its Fourier
coefficients satisfy -the conditions a_,=a., @, real. Consequently,? g_(z)=g, (1/%),
whence by 2.4, as r—1-0,

g+ (re®) +g. (re®)—>2 log ¢ (), a.e. (1)
Letting f, =exp g,, we get

2n

f+(0)=et* =exp {ﬁ f log $(¢)d 0} ,
0

and |f+(re®)|>¢ () ae., as r—>1-0. 2)
Applying Jensen’s Inequality [19, p. 68] to the exponential function, we get
[f (e = exp {8-real g, (re®)}

2n
1
- T ity 0 it
_2nf¢(e y-P(re?®, e')dt.
0 .

Integrating over [0, 2x] and using Fubini’s Theorem, we conclude that f, € H;. By
2.6 (a), f. will have a radial limit f, and by (2) |f|=4¢ a.e. Obviously f, has no
zeros on D,. (Q.E.D.)

Finally, we will need the following uniqueness theorem.

2.9 TaeorEM. If ¢ is as in 2.8, then there is only one function f, with the

properties
f+ EH@ on D+ (1)
|f+ (re®)|>¢ (£°) ae., as r—>1-0 2)
2n
1
fo @ =exp |- 108 40 a0)- 3)
0

1 The existence of f follows from 2.6 (a); in fact, f € Ls.
z For reasons of symmetry, we have here taken

[l *®
gr@=tat s, g-@)=dat Zaaz

and to this extent departed from Definition 2.2,
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Proof. The function f, constructed in the last proof has these properties. Since
it has no zeros in D,, log f.=u,+ 19, is holomorphic on D,. The function u, (2)=
log |f. (2)] is therefore harmonic on D.. Also from (1) of the last proof and (2.3)

25

uy (2) = ﬁ flog (€% Pz, €%d0, z€D,. (4)

[

Suppose that g, is another function satisfying (1)-(3). By 2.6 (d), g, will have
no zeros on D, and therefore log g, =u,--iv, is also holomorphic on D,, and the

function u,(z) =log |g. (z)| harmonic on D,. Also, from 2.6 (c) (i)

27

Uy (2) < 5!7; flog ¢ (%) Pz, €% d0, z€D,. (5)

0

It follows from (4) and (5) that the harmonic function % (z)=wu,(z)—u,(z)=0
on D,. Moreover, u(0)=0, since both f,, g, satisfy (3). Hence « must vanish
throughout D, i.e. u,=wu;. Thus

log g4 (2) = u, (2) + v, (2).

But two harmonic functions conjugate to a given harmonic function can differ only

by a real constant. Hence v,(z)=v, (2)+ 4, and so

g+ (&) =1 (2)- €™

But since by (3) g, (0)=f.(0), we get e*=1, ie. g, =f, on D,. (Q.E.D.)

3. Matrix-valued functions

The analysis of matrix-valued functions carried out in this section will be needed

in the study of the spectra of multiple stochastic processes.

Notation. Bold face letters X, y, etc. will denote q-dimensional column-vectors with

complex components x;, y;, etc. The symbol |x| will denote the Euclidean length of x:

34 |x|= 1/; |aiff. (3.)

Bold face letters A, B, etc. will denote qxq malrices with complex entries ay, by, efc.
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and F, G, ®, etc. will denote matriz-valued functions. The symbols A, T, * will refer
to the determinant, trace and adjoint (i.e. conjugate transpose) of matrices.

Before dealing with matrix-valued functions, it will be convenient to recall the
following basic proposition on the topological and algebraic structure of the space of

matrices.

3.2 THEOREM. (a) The space of gxq malrices with complex entries is a Banach
algebra under the usual algebraic operations and either of the morms
|Ax|

|A|p=Lub. "= (Banach-norm),
x+0 |Xl

_ q a
|Alz=V7z(AA%)= V > 2 lal?  (Buclidean norm).
i=1j=1

{b) This space is a Hilbert space under the same algebraic operations and the inner

product
(A, B)=1(4B%) =

i

a =
=21: tlijb”.

M.

i

We refer to Hille [4] for the basic properties of Banach spaces and algebras.

The two norms define equivalent topologies in view of the inequalities

[Alz<|Alz= Vg|Als

which in a sense are the best possible. In this topology A,—A as n-—>co, if and
only if each entry of A, tends, in the ordinary sense, to the corresponding entry

of A. The following lemma will be needed in Sec. 4.

3.3 Lemma. If H is hermitian and A,H—L as n—co, then there is a matrix
A such that L=AMH. (It is not implied that A,—A.)

Proof. If H is invertible, then we need only take A=LH™'. If H=0, then
L=0, and we can take any A. We may therefore suppose that A (H)=0=7(H), i.e.
that H has both a zero and a non-zero eigenvalue.

Let 4,, ..., A, be the non-zero eigenvalues of H. Then there is a unitary matrix
U such that UHU*=A, where A is the diagonal matrix with diagonal entries
Ay vees Apy 0, ..., 0. Let B,=UA,U*. Then

B,A=UA HU*-ULU* as n—>oo,
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Now all except the first p columns of B,A vanish. The same must therefore be the
case with the limit ULU*. Also if 1<§<p, then since 2, +0, the entries in the jth
column of ULU" are expressible in the form my;A;, me;dj, ..., mes 4;. It follows that
ULU*=MA, where M is any matrix with the entries m;; in the first p columns.
Hence, letting A=U*MU, we have

L=U*MAU=-AU*AU=AH.
(QE.D.)

We shall now turn to the Lebesgue classes and the Lebesgue integral for
matrix-valued functions.

3.4 DEFINITION. The sets Ls, where >0, and L, are defined as follows.
(a) Ls conststs of all ¢xq matriz-valued functions F=[f;] on the unit circle C with
complex-valued entries f; € Ls(cf. 2.1).

(b) L. consists of such functions ¥ for which each f;;€ L, i.e. each f;; is essen-
tially bounded.

Note. In the greater part of this section we shall imagine that the closed inter-
val [0, 27], and not the unit circle O, is the domain of functions in L; or L,. We
shall thus be writing F(0), where strictly speaking we should write F ().

The following theorem is provable by essentially classical arguments, cf. Zygmund
[19, pp. 73-74], Hille [4, p. 46] and Stone [8, pp. 29-30].

3.5 TaEoREM. (a) FE€Ls; where 6>0, +f and only if F has measurable entries
and |F|z€Ls; on [0, 2n]. Ly, 6=1, is a Banach space under the usual algebraic opera-
tions and the norm

27 16
1
1= {5 [ 1RO a0)
0

(b) L, is a Hilbert space under the same operations and the inner product

2n

((F, G))=% f:{F(@) G* (6)} d6,
0

the corresponding norm being
||| =V(F, F)=|Fl,.

(¢) FE€L,, if and only if F has measurable entries and |F |z is essentially bounded.

L. is a Banach algebra under the usual algebraic operations and the norm

|F|. =ess. Lu.b. |F(8)|z.
0<0<2n
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3.6 DEFINITION. The Lebesgue integral of a function F = [f;;]€ Ls, where 6 =1,
is defined by

2n 27
jF(e)d0=[ojf,-,(e)do].
0

3.7 LEvmma. (a) FEL;, GELy, where 1/8+1/6"' =1, implies that ¥-G€ L,.
(b) F,—»F in Ls, G,—~G in Ly, as n—>co, where 1/6+1/8'=1 implies that

2n 2n
[F.(0)6,(0)d0— [F(6)6(0)d0, as n—>oco.
0 0

() FELy, 6>0, GEL, implies that FG €Ly
(d) If >8>0, then LoSLySLs and |Fl, =|Fly>|Fl,.
(e) If FELy, 6>0, then AF € Ly

Proof. The results (a)-(d) follow readily from the corresponding results for com-
plex-valued functions. As for (e), let F=[f,], and consider a term of AF(0):

g(0)= L[5, (0) ... fas,(0).

. q 1 q
Since lg @1 =VIfiu OF ... T, OF < 2 11, O)F,

and the integral of the last term is finite, it follows that g € L;,. Since Ly, is a
vector-space, AF, which is a sum of ¢! such functions g, will itself belong to Liy,.
(Q.E.D.)

We shall now discuss the harmonic analysis of matrix-valued functions. It fol-
lows from 3.7 (c), taking G (0)=e ™I, that every function F€Ls, where 6=>1, pos-

sesses an n-th Fourier coefficient
2n

f F(6) e do, (3.8)

¢

1

8 A=
3 " 2

I A,=[a’] and F=[f,], then af}’ will be the nth Fourier coefficient of the func-
tion f;. In the next theorem we state the matricial extensions of some well known

results of Fourier analysis.

39 THEOREM. (a) If A, is the n-th Fourier coefficient of F €Ls, 6=>1, then

A,—0 as n— + oo (Riemann-Lebesgue Theorem).
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ocd
) If A, is the n-th Fourier coefficient of F €L,, then D |A,|% < co; conversely,
)
oo
if the A, are such that 3 |A,|%< co, then there is a Function F € L, whose n-th Fourier

coefficient is A, (Riesz—Fischer Theorem).

(¢) If F, GEL, and have n-th Fourier coefficients A,, B,, then
fF(B G*(6)d o= Z A, BY (Parseval’s Identity).

(d) With the hypotheses of (c) the n-th Fourier coefficient of FG is 3 A, B,_,
(Convolution Rule). e

As these results follow readily from the corresponding ones for complex-valued
functions, we shall omit the proofs. Now let FEL, on the unit circle C. Its nth

Fourier coefficient A, is given by (3.8) in which, however, we must replace F(0) by
F(¢%. Since by 3.9 (a) A,—0 as n—> + oo, it follows that the series >, A,z" converges
)
on D, and the series > A_,z " on D_. We are thus led, as in the scalar case 2.2,
1

to the following definition.

3.10 DEFINITION. Given FE€L, on C with n-th Fourier coefficient A,, we
shall call

- (-]
F.(x)= > A,z2", 2€D,, F_(z2)=>A_,27" z€D_,
o T

the inner and outer functions delermined by F.

Our last task in this section will be to establish certain determinantal inequalities
for hermitian matrices, and to derive a determinantal extension of Jensen’s inequality
for the logarithmic function [19, pp. 67-68].

3141 LeMMA. Let A, B be gxq non-negative, hermitian matrices. Then

q

(a) VAA+B)=VAA)+ VA (B)

A(A+B)_A(A)
TA+B)" 7(A)

(b)

(e) AA+B)=A(A).

Proof. (a) A proof of the first inequality, due to Minkowski, is given in [3, p. 34].
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(b) There is no loss of generality in supposing that A is diagonal; for we can
always diagonalise it by means of a unitary transformation, and this will not affect

the trace or determinant of B. We thus have with an obvious notation

ay + bll b12 e blq
AA+B)=| by  aytby... by
bal qu P + bqq

=A(B)+ ;: a,A(B,)-I—kzja,ajA(B,-,-)—{--'-+ala2 oo Qgy

where B,;... is the principal minor obtained by deleting the sth, jth, kth, ... rows
and columns of B. Since A, B are non-negative, each term in the last expansion is

non-negative. Hence retaining only the last two terms, we get

A(A‘l’B)Z gal von ak_l’ak+1 “o aqbkk+A(A).
Consequently,
T(A)-A(A+B)> kz T(A)ay ... Gk_1°Grs1 ... @b+ T (A) A(A). (1)
Now 7(A)>a, since A is non-negative. Hence the first term on the R.H.S. of (1)
> ; ay ... G ... @y b, =A(A)-7(B);
and from (1) we get

T(A)-AA+B)=A(A) {t(B)+T(A)} =A(A)-T(A+B).

(c) follows trivially from (a) or (b). (Q.E.D.)

3.12 THEOREM. If FEL, and the values of F are non-negative hermitian, then

2n 2z
1 1
log A(% fF(O)dB)zg— flog A{F(O)}dO> — oo,

4
0 0

Proof. Extending the inequality 3.11 (a) to a finite number of summands, we get

‘ — /n \ n q
‘/A (z C; Az) 2 Z G VA (Ai) H

where each ¢;>0 and A; is non-negative hermitian. It follows that

q'_m— )
VA (zc,A,)z > aVA A,
1 1
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provided that the two infinite series converge. Now since F €L, and therefore by
3.7 (¢) AFEL,,, this condition is satisfied, if ¢;=meas. S;/27, where S;, S,, ... are
measurable sets belonging to a Lebesgue partition of [0, 2x], and if A;=F(0,), where
0; takes almost all values in S;. Thus

q
1 ® o ¢
VA :ﬂ >, F(6,) meas. Si} 2_—1;; > VA{F(6;} - meas. 8. (1
1 1
2n
For almost all 6;€S8;, the sum on the L.H.S. approaches f F(6)d6 and that on the
0

2n
¢
R.H.S. approaches J VA{F(0)}d0, as L.u.b. (meas. §;)—0. Hence from (1) we infer that
0

a

VA {i an(G)dG}Z%T&W.
0

2n
1]

Taking logarithms on both sides and applying Jensen’s inequality for the log-function
on the R.H.S., we get the desired result. (Q.E.D.)

3.13 TEHEOREM. If FEL; on the unit circle C, where =1, and its n-th Fourier
coefficient vanishes for n>0, then

(a/) AF+ EH@N on D+, AFELL;/G on 0,
(b) either AF, vanishes identically, or log AFE€L, on C and

2n
log | A{F. (0} <5 f log | A {F(¢9)} | 6.
0

Proof. (a) By 3.7 (e), AF€ Ly, on C. Next, each entry f,; of F is in the class
Ls; and its nth Fourier coefficient vanishes for n <0. Hence by 2.5 f;;y €H; on D,.
Consider a term of AF, (2):

9@) = T hus @) ... foigr @)
As in the proof of 3.7 (e),

1 q
g (=) l"’“sa 2 fuy @I, 2€D..

By taking z=re, 0<r<1, and integrating from 0 to 27 we see that g € Hy,.
Hence AF,, which is the sum of ¢! such terms, is itself in Hjyq. (b) now follows
from 2.6 (c). (Q.E.D.) '
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4. Matricial Riemann-Stieltjes integration
We must first consider matrix-valued functions of bounded variation.

41 DEFINITION. Let F be a gxq matriz-valued function on [a, b]. We say
that

(a) F és of bounded variation, if and only if the set of variations
k§1|F(xk)_F(xk—l)|E

of F over different finite partitions {z,, ..., x,} of [a, b] s bounded above;
(b) F is non-decreasing, if and only if its values are hermitian, and the difference

F(x')—F (x) is non-negative hermitian whenever x’' > z.

The following lemma is easily verified.

42 Lemma. (a) F=[f;] ¢ of bounded variation on [a,b], if and only if each
entry f;; is of this type.

(b) If F=[f,] is non-decreasing and bounded on [a,b], then each f;; is real-valued,
non-decreasing and bounded on [a, b], and each fi;(i=4) is a function of bounded varia-

tion, in general complex-valued.

From 4.2 and the well known properties of complex-valued functions of bounded
variation it follows that if F is of bounded variation, it has at most denumerably
many points of discontinuity, all of them simple, and that F’' exists a.e. and is in

L, on [a,b]. But in general F will not be absolutely continuous, i.e. we will not have
x
F@z)=F(@)+ [F@#)dt, a<z<b.
For any function F of bounded variation on [a,b], we define the functions, F®,
FO, FO }
y x
F@(@)=F(a) + [F(t)dt,
4.3 FO(x)= > {F({t+0)-F(¢-0)}, [ (4.3)
a<st<z

F (2) =F (z) — F° (2) - F9(2), )

and call these the absolutely continuous, discontinuous, singular parts of F, respec-
tively. We see at once that F® is continuous on [a, b]. Also, since F**’ =F' a.e., and
F@'=0, except at the points of discontinuity of F, it follows that F®'=0, a.e.

Adopting the same superscript notation for the entries f;;, we readily obtain
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44 FO=[),  FO=[f, FO=[F) (4.4)

It is an important fact that if a real-valued function f is non-decreasing, then
so are @, f9, . We owe to Cramer [1, Theorem 2] the corresponding result for

matrix-valued functions:

45 TueoreM. If F is non-decreasing and bounded on [a,b], then so are the
parts F9, FO FO,

An immediate consequence of this is the following corollary.

46 CorOLLARY. If F is non-decreasing and bounded on [a,b] then

F(z')—F(2)— [F @) dt
is mon-negative hermitian for a <z <’ <b.
We now turn to RS-integration.

4.7 DEriNITION. Let F, G be gxq matrix-valued functions on [a, b];
m={Zg, ..., x,} be a partition of [a, b];
|| =max (z,—2x-1), k=1, ..., 7n;

and 7t ={t,, ..., t,}, where xx_; <t <.
(@) If as |m|—0,
N (F’ G, 7, ﬂ*) = kglF (tk) {G (xlc) -G (xk~1)}
tends to a limit L, then we call L the left RS-integral of F w.rt. G from a to b, and
b
denote it by fF(x)-dG(x).
“ b
(b) We similarly define the right RS-integral J‘ dG(x)-F(x).
(¢) If as |n|—0, ¢

S (F, G, 7, n*) = ké F () {6 (21) — G (z2_1)} F* (8)

tends to a limit L, then we call L the bilateral RS-integral of F, F* w.rt. G from a to

b
b, and denote it by J'F(a:)-dG(x)-F* (z).

A simple calculation shows that if F={[f,], G=[g,], then



126 N. WIENER AND P. MASANI
q
S(F, G = n%)= LZ 8 (fis> 9> 7, n*)] ,
-1
q q
N (F’ G: T, 7'6*)= [ Z z S(.fil.fﬂl’ Gaps TTs n*):l ’
A=1 p=1
from which we at once infer the following result.
4.8 LEmma. Let F=[f;], @=[g;,] be functions on [a, b].
b
(a) The integral fF(x)dG(x) will exist, if and only if all the ordinary RS-inte-
a

b
grals f fur(x) d g (x) exist, and in this case
b B b
[F@ra6@-| 3 L@ o]

(b) Analogous results hold for the integrals

b b
[d6(z)-F(2), [F(z)-dG(x) F*(x).

This lemma along with 4.2 permits the immediate extension to the matrix-case

of many results of the classical Riemann-Stieltjes theory. Thus

49 THEOREM. (a) If F is continuous and G of bounded wariation on [a,b]
then the integrals

b b b
[F(6)-d6(0), [dG(6)-F(0), [F(0)-dG(6)-F*(6)

a

exist.
b b b
(b) [F(0)d6,(0)+ [F(0)dG,(0)= [F(6)d{G, (0)+G,(6}.
b b
(e) fF(x)-dG(z)+ fG(x)-dF(x):F(b)G(b)—F(a)G(a).

b 5
(d) If G is absolutely continuous then fF(B)-dG(0)= fF(H) G (6)d6.

a

For non-decreasing integrator-functions we have the following useful result.
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410 TreEeEOoREM. If F is continuous and G is non-decreasing and bounded on
[@,b], then FG'F* €L, on [a,b], and

b b
[F(2)dG(2) F*(z)— [F(2) 6 (@) F* (z)dz

18 non-negative hermitian.

Proof. As remarked after 4.2, G'€L,. Also F, F*€L,. Hence from 3.7 (c)
FG'F*eL,.

Next, writing A2B to mean that A —B is non-negative hermitian, and using
the notation of 4.7 (¢), we have from 4.6

S (F, G, m, n*) = kZ_IF (t) {6 () — G (ze—1} F* (8)

T
25 F(t)- fG’(t)dt-F*(tk)
k=1
Te-1

k
b

ZJH,,,,*(t)dt, 1)

where the functions H,,. have the same domain S as G, and
H, .« 0)=F()G ) F*(t,), if t€S and x,_, <t<u,.

Now let t€S8 and let k(x) be the integer such shat £ € [%y()-1, Txm]. Obviously

as ]:rzl—>0. we have #;(,,—>f, whence from the continuity of F,
H. .. ¢)=>F@ & @F @¢), tes. (2)
Also, if M is an upper bound of F, then

|Hone () |2 < M2 |G ()|, tES. (3)

Since G’ €L,, it follows from (2), (3) and Lebesgue’s Theorem on Dominated Con-
vergence [4, p. 48] that

b b
JHome 9 dt— [F(t)- & (1)-F* (1) 1, as |n]|—>0.

The desired relation thus follows from (1) on letting |7]|-0. (Q.E.D.)
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We turn finally to the Fourier-Stieltjes analysis of matrix-valued functions. Let
F be of bounded variation on [0, 2x]. Then from 4.9 (a), F will always possess a
n-th Fourier—Stieltjes coefficient

411 =—f e " dF (0 [ f -""’df”(a)] (4.11)

Since the function e "I is absolutely continuous, we get using 4.9 (c) (d)

. ﬂ ~nif
An_Ao+2nfe F(6)d6,
[

ie. 1 f e (V] .(An—Ao), n=+0,
2 ni
]
2.7!
Since —l—J e™0df=—1/ni, n=0,
27

0

it follows that A,/n+ is the nmth Fourier coefficient of F(0)—Ay,0 for n==0. This
being of bounded variation, we have as in the classical case [19, p. 25].

1{FO+)+F(O0—)}—A,0=B,+ 2 Z el 0<0<2m,
J{F(0+)+F@n—)} =B+ S 2n,
z 0 nF0 B

where B, is the Oth Fourier coefficient of F(6)—A,6. Obviously, B, cannot be deter-
mined from the Fourier-Stieltjes coefficients A,, since functions of bounded variation
differing by constants will have the same A,. Eliminating By between the last two
relations, we get

P(O+)+FO-) FOHIF@r=) 4 0 < A 1 g gy

4.12 2 2 - nsont

(4.12)

2n
413 Lemwma. (a) If for all n, fe"iedF(0)=0, then F is constant-valued.
0

2n 2n
(b) If for all m, [ e"*dF(0)=[e"*dG(6), then F and G differ by a constant
0 1]

maltriz.



MULTIVARIATE STOCHASTIC PROCESSES 129

5. Vector-valued randem functions

A multiple stochastic process is a one-parameter family of vector-valued random
functions. The basic analytic properties of such functions must therefore be studied
before we can effectively deal with multiple processes.

Let Q be a space possessing a Borel field {§ of subsets over which is defined a

probability measure P. Let &,=L,(Q) be the set of all complex-valued P-measurable
functions f on Q for which flf(w) PdP (o)< co. Then, cf. Stone [8, pp. 208-209],
Q

¥, is a Hilbert space with the usual operations and the inner product

The corresponding norm is
IfI:leT'f_)=Vf|f<w)FdP(w).
0

For X,Y<¥, we shall denote by X+ Y the set of all functions f+g, with f€ X,
gEY. S(f;);es will denote the subspace, i.e. closed linear manifold, spanned by the
functions f;, for each j in the index-set J. Finally, (f|9) will denote the orthogonal
projection. of f on the subspace I of &,.

We shall now define appropriate analogues of these concepts for g¢-dimensional
(column) vector-valued functions on Q2. We shall denote such functions by the bold

face letters f, 2, ¢, W, etc. The components of f, g, etc. will be denoted by f?, ¢?,
ete. j=1, ... ¢q.

5.1 DEFiNiTION. We define the set £, as consisting of all g-dimensional (co-
lumn) vector-valued functions § on Q, with complex valued-components {7 €L,

As in 3.5, f€L,, if and only if the components f are measurable and

[1H (@) FdP(w) < oc;
Q

where | | denotes the Euclidean length, (3.1); moreover, cf. Stone [8, pp. 20-30], 4,

is a Hilbert space under the usual operations and the inner product

5.2 ((f, g) = f S 1 (w) g (w) d P (w). (5.2)
i=1
Q

9 —573805. Acta mathematica. 98. Imprimé le 21 novembre 1957
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This inner product generates the norm

5.3 £l =V, 1) = ]/flf(w) PdP () (5.3)
Q

which in turn induces a topology in the space: if f,, € £, we shall say that f,—f,
as m—>oc, if and only if ||f,—f||>0 as n—>co. This is equivalent to saying that
for each j=1, ..., q, fP—f? in &, ie.

[ 1/ (@)~ [ () 4P (0)->0, as n—co.
Q

Convergence will always be understood in this sense, e.g. the equation f= > f, will
¥

mean that ||[f— 3 f,[|—0, as N—>oo.
¥

The inner produkt (5.2) does not play any significant role in the stochastic
theory, although the corresponding norm (5.3) and the topology it induces do, and
has to be replaced by Gramian matrices:

5.4 DEFINITION. If f, g€ L, then the matrix

(f, &)= [(/*, g®1 =[] /() g® () d P ()]
Q

is called the Gramian of the pair f, g.
We see from (5.2)-(5.4) that

(en=ttg, |tl=Vat 1.

The next two definitions differ from the usual ones in that Gramians replace inner

products, and matrix coefficients replace complex coefficients in linear combinations.

5.5 DEFINITION. We say that
(@) £1L g if and only if (£ g)=0;
(b) I is @ normal vector if and only if (f,f)=1I;

(c) the sequence (1,)%, is orthonormal if and only if (f,, £,) =01

5.6 DErFINiTION. (a) A linear manifold in £, is a non-void subset Wi such
that if £, g €M, then At+Bg €M, for all gxq matrices A, B.

(b) A subspace of £, is a linear manifold, which is closed in the topology of the
norm || ||, (cf. (5.3)).
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(¢) The subspace (linear manifold) spanned by a subset W of £, is the inlersection
of all subspaces (linear manifolds) containing 1.1 The subspace spanned by the indexed
set {};e; will be denoted by S (1,);c,.

(a If m<h, for j€J, then by ]'EZJ By, we mean the set of all sumsjezj 1;, with

t, €M1, which converge in the topology of the norm || ||.

In the next three lemmas we sum up some basic facts governing the notions

just introduced.

57 Lemma. (a) (g, 1)=(, g)" (£ 1) is non-negative hermitian.

(b) If t,—>1, g.—>g, as n—>oo, then (1, g,)—>(1, g).

(© ( > A, ,ZlBkgk): 5 3 A, 1)BL

j=1 k=1

(d) £ .Lg, if and only if {¥ L g2 for i,j=1, ... q; this implies |1+ g | = 2|2+ g |>.

(e) T is mormal, if and only if its components form an orihonormal set in L,.

(f) The set {§};cs is orthonormal in L,, if and only if the components f°, where
j€J,i=1, ..., q, form an orthonormal set in L,.

@ If (pt)=0nnK, where K is invertible, and g,=VK -1, then (8.)% is
orthonormal.

The proofs of these obvious results are omitted. Somewhat less obvious are the
following results regarding the new concept of subspace. But the proof being of a

routine nature is omitted.

5.8 LEmma. (a) W is a subspace of £,, if and only if there is a subspace M of
L, such that W=7, where M® denotes the Cartesian product M & ---® M with q factors.
M is the set of all components of all functions in M.

(b)y If Wt is a subspace of L, and [E€L,, then there exists a unique g such that
gen; ||[t—g|l<||t—nj, for all hewL (1)

For this g, g© = (f°|M), M being as in (a). A function g €M satisfies (1), if and only
if f—g L.
(c) If M, ¥¥ are subspaces of of L,, and M S Y, then there exists a unique sub-

space W' S ¥¥ such that
Ci=ui+0t, m 1w

1 As in the classical case it is easily seen that the interseetion of any family of subspaccs
(manifolds) is a subspace (manifold).

9* — 573805. Acta mathematica. 98. Imprimé le 21 novembre 1957
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(d) 2€S({)ies, tf and only if g= lim g,, where g, is a linear combination of a
finite number of §;, j€J, with matriz coefficients.
(e) If M=CS{)jecs, MO=S(tP)ses, i=1,...,q, and WM is defined as in (a), then
]
M=clos. > M®,1
i=1
5.9 DEFINITION. The unique function g of 5.8 (b) is called the orthogonal pro-
jection of L on M, and will be denoted by (f|M).

The following can now be proved almost verbatim as in Hilbert space theory.

5.10 LeMMA. (a) If W, ¥% are orthogonal subspaces of L£,, then M+Y¥% is a
(closed) subspace, and for any 1,

(| o+ o) = (1| M) + (£| ¥¥).
(b) If W1, Y% are subspaces such that WS ¥, then ||(E|M)|| <] (E]| %)l
(e) If m= ﬁ;om,,, where M, are subspaces such that W, S, .1, then?
(t|m) =n_l)i£1‘1»(f|mn).

To any non-zero vector in Hilbert space corresponds a unit vector which is a
scalar multiple of the original. But to a non-zero vector f€ £, does not always cor-
respond a normal vector g (Definition 5.5 (b)), which is a matrix multiple of f. This
is because the Gramian (f,f) need not be invertible; if it were we could take
g=V{E 1)1 Accordingly, to cover the degenerate cases arising in the theory of
multiple processes, we have to take Fourier expansions with respect to sequences of
orthogonal but not necessarily orthonormal vectors. The following is a basic pro-

position regarding such expansions.

5.11 THEOREM. Let (@Pm, @n) =0, K, K=0.

@ If° Y N ) X
then 1, g) =_§;°A,.KB:, @, 1) = éAnKA:;
el = 5] Au K3 < oo; )
(1, pn) = A K. ]

1 We have to take the closure, for as with other infinite-dimensional spaces, the topological
closure of subsets X, ¥ does not imply that of X +¥.

2 Cf. the footnote to 5.6 (c).

3 Cf. the remarks on convergence after (4.3).



MULTIVARIATE STOCHASTIC PROCESSES 133

(b) The linear manifold _i S (¢p,) is closed and identical to the subspace S (¢py) .

(c) For every L€ L,, there exist mairices A, such that

WS @)%) = 3 A, AK= (1, @,)
Proof. (a) By 5.7 (¢)

N N N N N
(ZNAn P, ZNBntpn) = z _ENAn (‘Pm: (Pn) B: = z Am KB:;I ) (2)

m=—N m=-N
since (@, @,)=56,,K. By 5.7 (b) the L.H.S. of (2) tends to (f, g). Hence from (2)
the infinite series > A, KB}, converges to (f, g). Taking g=1, we get the corresponding

result for (f,f). The formula for ||f|* follows, since ||f|?=7(f,f). Finally taking
B =01 in (1)

(£, @) = (_2 Am‘Pm» <Pn) =A K.

{b) Let M= § S (¢p,). Obviously M < & (¢p,)°,. Also 117 is a manifold containing
n=—oo

every ¢,. Hence if % is closed, then U1 is a subspace containing every ¢p, and so
S ()7 M. We have therefore only to show that Wi is closed.
Suppose g, €M and g,—g. Let

00

8 =n=z Akn P, .

-0

Then cf. (a)
g —gell'= 3 [(Asm— Awn) K5 (3)

Since by the Cauchy condition, the L.H.S. —0, as j, k—> oo, therefore for all =
[(Ajn—Ar) K[z ~>0  as j, k—>oco.

Hence for each =, the sequence (A;,K!){2; converges. By 3.3 its limit must be of
the form B,K}. Letting koo in (3) we thus get

lg—glP= 3 |4~ B KL
= ”ni bO(Ain -B,) Pn “2
~llg— 3 Bueal®

Letting j—oo, we get g= 3 B,¢p,, i.e. g€UL. Thus M is closed.
N=—0on
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(¢) Since 8= 118 (@a)%) € S(@n)%= 5 S(en)
there exist matrices A, such that

gz_zoAn‘Pn'

By (a), A, K=(g, ¢,). But f—g.Lep,, and therefore (g, ¢,)=(f, ¢@,). (Q.E.D.)
Putting K=1I in the last Theorem we get the following specialisation for Fourier

expansions with respect to an orthonormal system (Doob [2, p. 595]).

542 COROLLARY. Let (¢,)% be orthonormal. Then
(a) the linear manifold E S (¢p,) is closed and identical with the subspace & (@y)%.
(b) For any 1, g €S (¢p,) %,

f=_§°:°(_f, ©n) Pns ”f“2=_§|(f’ ‘Pn)|2E<°°’

e

(f, 8)=2 (1, @) (s, 8).

—00

(©) If 1= Antpn, then An=(f, ).

6. Time-domain analysis of multivariate processes

By a gq-variate (or q-ple) stationary stochastic process we shall mean a sequence
(12)%. of vector-valued functions f, € £, (cf. Definition 5.1) such that the Gramian

matrix

6.1 (fm, fn) = rm—n = [71(;"_11)] (61)

depends only on the difference m—n and not on m and % separately. I', is called
the covariance or correlation matriz for lead n, and the sequence (I'y)Z. is called
covariance-sequence of the S.P.

If (f.)% is a g-ple S.P. and £, ..., /i’ are the components of f,, then each
fP€Q, and by (6.1)

6.2 (2, f)=pit ™ (6.2)
depends only on the difference m —n. Thus the g-ple process (f,)7. has associated

with it ¢ simple process (f)S._o, i=1, ..., ¢, which are stationary in the wide sense
{Doob [2, p. 95]).
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It follows from the theory of Hilbert spaces (Doob [2, pp. 461-462]) that we
can associate with any simple S.P. (fP)7._. a shift operator U, on £, into itself,
which is unitary and such that U} f{=f7. This operator is not necessarily unique.
If the simple processes (f&)%._.,, where ¢=1, ..., ¢, are the components of g-ple pro-
cess (f,)*, satisfying the stationary condition (6.1), then we can take U;=U,, as was
shown by Kolmogorov [5, Theorem 1], so that a single unitary operator U on %,

exists such that

6.3 U"(fP)=fP, —co<m<oo, 1=1,...,q, (6.3)

Obviously, any two unitary operators satisfying (6.3) will agree on the subspace of
{, spanned by the components [, —oo<m<oo, 4=1,...,¢, so that U may be
considered “‘unique”, as far as its applicability in the stochastic theory is concerned.

We shall call U the shift operator of the g-ple process (f,)., and write
6.3’ Ut f, =1, (6.3")

as an abbreviation of (6.3).! The same convention will be applied to other trans-

formations T on &, into itself:

6.4 If g=@g®,...,99), then Tg=(Tg",...,Tg?). (6.4)
We shall denote by M1, the space & (f)",, (Definition 5.6 (¢)). This is called the

present and past of f,. Obviously Wi, S Wi,.1. The space Wi_, = fim,, will be called

the remote past of the process, and N, = clos. an=€5(f,c)i°w the space spanned by

it. These are all subspaces of £,. The present and past of the component {7, i.e.

the subspace & (fP)r._,, of &, will be denoted by MY and we shall similarly define
MD, and MY, It follows from 5.8 (e) that

: q :
6.5 g=(g"®, ..., ¢9) ENM,, if and only if each g© € clos. > M. (6.5)
=1

It is also obvious that if U is the shift operator of the process (£,)*., then

6.6 U™ (4| 90) = (150 | Bisn), (6.6)
and (with the usual conventions)

6.7 U™ (W) = Wiy . (6.7)

1 j.e. we shall regard U as acting on the spacs £,, rather than on ,.



136 N. WIENER AND P. MASANI

We shall say that the S.P. (f,)7. is non-deterministic,! if and only if for some
n, f, ¢ M, ;. From the stationarity property (6.1) it follows that the last relation
holds for a single » only if it holds for all n. Hence for any non-deterministic pro-

cess (f,)%%,
6.8 gn=1t,— (1, |M,_1) =0, —cc<n<oo. (6.8)

We may look upon the vector-functions g, as the innovations out of which the f,-
process is built. Accordingly, we shall call (g,)*, the innovation-process associated
with (f,)®,. It plays an important part in the theory on account of its simple

structure, as shown by the following obvious lemma :

6.9 LEMMA. If (8,)%% ts the innovation-process of a non-deterministic 8.P. (£,)7,,
with shift operator U, then

(a) g.=U"8,

(b) (8m> Bn) =0mn G, where G = (&, &)= (fx, &n).

We shall call the Gramian G=(g,, g,) of 5.9 (b) the prediction-error matriz with
lag 1 of the S.P. (f,)®., and following Zasuhin [18] refer to its rank ¢ as the rank
of this process. We shall say that the S.P. has full rank, if p=gq. Obviously, the
S.P. will be non-deterministic if p>1, and vice versa, and in this case by 6.9 (b)
the innovation process (g,)%. will be orthogonal. But unless G is invertible, i.e. p=¢
and the S.P. has full rank, we cannot derive from (g,)*. an orthonormal process (cf.
remarks preceding 5.11). Questions of rank thus render the multiple theory more
difficult than the simple theory.

We shall now establish the Wold decomposition of a multiple process, which was

announced by Zasuhin [18, Theorem 1] but without proof. We need the following

lemma.

6.10 LEmma. If f,, g, are as in 6.9, and W, ¥¥, are the present and past of
f., 8., respectively, then

(a) for m<m, M, =M, +SEn+1, Wl S(@ms
(b) m,=m_.+ %, Mo L .
Proof. (a) Since M,_, =M, and g, €Ni,, therefore
M1+ S (g,) S W, (1)

1 This term is preferable to the term non-singular used by KorLmocorov [5], and the term
regular used by DooB [2].
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Now by (6.8) =0+ (I, | Ma_1) €6 (g,) + W1

Also, for k<mn, f, €M, =& (g,) +M,_;. It follows that (1) holds with 2 replacing <,
and therefore with equality. By iteration of this equality we get

M, =", 1+ © (gn)
= mn—z + 6 (gm gn—l)

:mm+ @ (gﬂ> gn—l: seny gm+l)-

Since by (6.8) Em+1, Emsg, -or L W, Wnyy, ..., respectively, and 1, is contained in
all these subspaces, it follows that & (g,)w.; L M,.

(b) If heut ., then for each n, h€M, | 1 g,. Hence M__, 1 ¥¥.. Next, since
g, € U1, therefore LI, SU,. Also M_, <M, Hence

M .+, S, (2)
Now let h €u1,. Then since Wi_,, L ¥, and by (a) M, L S(gy)5+1, we have (cf. 5.10)
(|91 +¥%,) = (B[ W_..) + (h] 53,)
= lim (himm)+m1_i£1w(h|6(gk)7:u)

m—>-od
=m1ir{1 |, + S(gu)me)

= lim (h|m,)=(h|m,)=h,

in view of (a). Hence he€NI_,, +¥¥,. Thus (2) holds with 2 replacing <, and there-
fore with equality. (Q.E.D.)

6.11 THEOREM. (Wold decomposition.) If (8,)7 s the innovation process of a
non-deterministic q-ple S.P. (£,)%., and 11,, ¥%, are the present and past of 1,, &,
respectively, then

(a) f,=u,+V,, where u,=(£,|¥¥%,) L v, = (f,|M_.);
(b) the S.P. (u,)%, is « one-sided moving average:
U= 3 A [0l = 3 Ac G <0,
where G =(g,, g,) and the A, are any matrices such that
ArG=(ug, 8-x) = (fo, 8-1), AyG=G=GAg;

(c) the S.P. (V)% is deterministic, and for each n, S (Vy)" =M _o.
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Proof. (a) Since f, €W, we have f,=(f,|17,). Hence from 6.10 (b) and 5.10 (a)

fnz (fnlm—oo) + (fnlwn) =V, 4+ U,.
Obviously v, L u,.

(b) Since v, . each g;, and by 6.9 (a) gn_x=U"g-y, therefore
(un, gn—k) = (un + Va, gn—k) = (fny gn—k) = (Un fo, u" g—k) = (fo, g—k)- (1)
Now u, €¥%, =5 (2,)" , and by 6.9 (b) (g, &)~ 0,,G. Hence by 5.11 (¢) and (a)

o0
= z Ank- 8k
k=0
o
where AnG=(Uy, gn_x), "un ||2=k20| A GE |%2< .
From (1) we see, however, that A,, is independent of n so that we may write A,

instead of A, Finally by 6.9 (b)

AoG = (fo’ gy) = (80> Bo) = G.
Taking adjoints we get G=GAS.
(¢) We first note that

., =¥, + & (vk)ﬁow b2 2R S (vk)zoo- (2)

This is obvious since on the one hand ¥¥,&M91, and v, EM_ S Ui, and on the other

for all m<=n
£, =Up+V, €0, + 6 (V) -

Comparing (2) with 6.10 (b), we conclude from 5.8 (¢) that &(v,) ., =Ui_,. (Q.E.D))
From the last theorem we easily get the following corollary for processes of full
rank given in Doob [2, p. 597] (cf. 5.7 {g)).

6.12 CoroLLARY. If g, is the innovation function of a full-rank process (1,)",

then with the notation of the last theorem,
=S O lmaf= S0fs< oo,
where (h,)%,, ts the normalised innoz)ation process of (£,)%:
hy=V6 " -g,  h,=U*hy,,  G=(g, &)

and Co=V6,  Cc=(ug, h_)=(fy, h_).

We shall call a S.P. regular, if (f,|#1.,)—>0, as n—>co.l Such a process is ob-

) ! This usage of the term regular is the same as KoLMocorov’s [5]. DooB [2] uses the word in
a different sense.
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viously non-deterministic and hence the last theorem is applicable to it. Conditions
equivalent to regularity are stated in the next theorem, which is an extension of

Kolmogorov [5, Theorem 19].

6.13 THEOREM. FHach of the following conditions is equivalent to the regularity of
the stationary S.P. (£,)7.:

(a) (£,)Z, is a one-sided moving average:

L=3A@ns  (@nP)=dnK; M
(b) M= {0}'

Proof. (a) Let the S.P. be regular. Then by 6.10 we have with the usual notation

mo‘_‘m—n'i'@(gn)gnﬂ, w_, L @(gk)gn-pl-

Sinee (g;, g;)=0;, G, it follows from 5.10 (a) and 5.11 (c) that

n+l

f,= (folmo) = (folm—n) + g Arg .

Since by hypothesis (f,|#1_,)—>0, we see that

f0= %Akg‘k-

U" upplied to both sides yields (1) with ¢p,=g, and K=G. Thus (£,)%, is a one-
gided moving average.
Conversely, suppose that (1) holds. Then by 5.11 (a)

%] = 2 1 AcKH[f < oo 2)
Letting ¥¥, =& (¢py)", it follows by 5.11 (c) that
W15 =5 M NI = S ALK,

whence from (2) || (f,|¥¥-4)|| >0, as n—oo. But obviously from (1)
WS, and ||(f| M) || <]l (fo| ¥¥_n)]|- 3)

Hence the process is regular.

(b) Let the S.P. be regular. Then (1)~(3) hold. From the first relation in (3) it
follows that ¥1_.<¥¥_ .. So we need only to show that ¥¥_,, = {0}. Suppose $ € ¥¥_,,.
Then for all n, $ €¥¥.;, and therefore by 5.11 (c)
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‘P:;qu’—k: ||¢“2=;|BkK*I2E,

where B, XK = ({, ;). Since > |B,K}|%< o, we have > |B, K5 —>0, as n—co. Hence
0 [t
$=0. Thus ¥¥_.,={0}.
Conversely, if ¥1_,, = {0}, then by 5.10 (c)

Him (£, |1_,) = (5| M_..) =0,

i.e. the process is regular. (Q.E.D.)

7. Spectral analysis of multivariate processes

As in the simple case so in multiple, the chief advantage of turning from the
time-domain analysis of stochastic processes to the frequency-domain or spectral analy-
sis is the possibility of using the powerful methods of harmonic analysis.

Let the shift operator U of a ¢-ple stationary S.P. ()%, have the spectral

resolution
2.11
U= J e_ie dEg.

0

Then from (6.3) and the well-known properties of the spectral resolution, cf. e.g.
Doob [2, p. 636],

2r

(19, 1)~ @1, )= [ et 1. M
0
Letting Fy@)=2x Ef, ), F(O)=[F, O]

we see that the covariance matrix T, is itself given by

2n
1 —nig
. =(f,, f)) =-—— " . 7.1
7.1 .=, 1) 2nfe dF (0) (7.1)
[
Following convention (6.4), let us put Epf,=(Epf", ..., Bof;”). Then by 5.8 (b)
Eof,= (1,| 1), where 1, is the subspace of £, consisting of vector-functions all of

whose components lie in the range My (S&,) of the projection operator Ep. Hence,

as is easily verified,

7.2 F (0) =2 7 (Bofy, 1) = 2 n(Ba Ty, Eoly). (1.2)
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Since the projection operators Ky, 0 <0 <2z, constitute a resolution of the identity,
it readily follows [5, Theorem 4] that

7.3 F is bounded, non-decreasing and right-continuous on [0, 2x), and F(0)=0. (7.3)

In fact, from {4.12) we get

F(0)=F,(6+)

7.4 .
By (6)—Fy (0)=Ty(0-m)+ 3 22 (¢ —1),

nx0

(7.4)

which shows that F is uniquely determined by the sequence (I';)Z..

The function F satisfying (7.1) and (7.3) is called the speciral distribution func-
tion of the S.P. (f,)”.. Every multiple stationary process thus possesses one and
only one such function. Conversely, as was shown by Cramer [1, Theorem 5 (b)],
every function F satisfying (7.3) is the spectral distribution of some multiple sta-
tionary S.P. (cf. also [5, Theorem 4]). From (7.3) it follows, as remarked after 4.2, that

7.5 F has a derivative a.e., which has non-negative hermitian values and belongs to L,. (7.5)

But F will not always be absolutely continuous, i.e. in general we will not have
0
FO)= [F()dt, 0<0<2x.
0

If F is absolutely continuous, so that by 4.9 (d)

2n

7.6 r.=d,, f0)=21—ﬂ f e "8 (0)d0, (7.6)
0

then F’ is called the spectral density function of the S.P.

From here on, it will be convenient to regard F, F' as functions not on the
interval [0, 2x] but on the unit circle C' in the complex plane. This will amount to
writing €' for the argument, where previously we have written 6. The next theorem

gives a sufficient condition for the absolute continuity of F.
7.7 THEOREM. (a) The moving-average process (1,)%:
fn=k=§_:wAkgn—k, (gi$ gj)=6i]Gy ‘zlAkal%< o,

has an absolutely continuous spectral distribution F such that

lie. Ey=0, Ba,=1, Eg,o=Ep, and §>0’ implies Eg— Ep is non-negative hermitian.
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F )-8 '), ®E)- > MG, ae.
(b) If for this process, A, =0 for k<O, then
D () = éoA" Gt el

and either A® ., vanishes identically, or log A¥ €L, on C and
27

log A (A, GA sﬁl; flog A {F’ (")} d6.

0

Proof. (a) By 5.11 (a)

rn=(fmfo)=(kz Anirg_r Z Akg~k)= z An+kGAz.

=—o0 k=—-00 k=~o00

Next, since  |A;G}|:< oo, therefore by 3.9 (b) the functions ®, H* €L, and so

P P*€L,. Since A, G} G*A*, are the kth Fourier coefficients of ®, ®*, respectively,
it follows from 3.9 (d) that the nth Fourier coefficient of ® ®* is

S AGHGIAL .= 5 A,GAL,.—T,.
k

k=-00 =0
2n 27
Thus [ e ® (%) ®* () d0=22T,= [ e ™ dF (),
0 0
where F is the spectral distribution. We easily conclude from this (cf. 4.9 (d) and

4.13 (b)) that ,
F(0)=[ ® (") ®* () dt,
0

ie. F is absolutely continuous, and F' =& ®*, a.e.

(b) The new expression for & is obvious. Since ® €L, and its nth Fourier
coefficient vanishes for n <0, it follows by 3.13 (b) that either A&, vanishes iden-
tically or log A® €L, on C and

27
1 .
Tog | A (A, 64| = Iog | A (. (0}] < 5~ [ 105 |8 {@ (e a5.
]
The desired result follows, since

AA,GAY) = |A (A,GHE, AF=|AD]
(Q.E.D.)
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On combining this theorem with Theorem 6.11 on the Wold decomposition we
get the following useful result.

7.8 Ma1ix LEMmA I. Let (£, be a non-deterministic S.P., let u,, v,, Ay, G be
as in 6.11, and let F, ¥,, F, be the spectral distributions of the f,—, n,—, v,— pro-
cesses. Then

(a) F=F,+F,;
(b) F, is absolutely continuous, and

() =@ )@ (),  E)=3 A6, A=, g0
(¢) if (}.)%w has full rank then log AF, €L, on C, and

2n

log A (G) s% f log A {F, (¢°)} 6.
0

Proof. (a) By 6.11 (a), u,, Lv,, and therefore

(T, fo) = (0 + Vy, Mg+ Vo) = (U, Wy) + (Vs V).
2n 2n

: 1
In other words, e " dF= o f e " d(F,+F,),
-~ n
H

27
0

whence by 4.13 (b), F=F,+ F,+ const. The constant is zero, since all three functions
vanish when 6 =0.

(b) follows from the last theorem, since by 6.11 (b)
u, =k;)Akgn—-ky (8, 8)=10;;G, %lAkG*FE< e

() If the S.P. has full rank, then G is invertible. The relation A,G =G of
6.11 (b) now shows that A,=1. Hence A{®, (0)}=A (G})=0. The integrability of
log AF, and the desired inequality now follow from 7.7 (b). (Q.E.D.)

7.9 Maix LemMaA IL. Let F be the spectral distribution of the S.P. (£,)%,, and let

P(z)=

M=

N

A, 7", P)=2 A1,
[

Then

27

(a) (P (®), P (1)) =21—n JP(ew)'dF(ew) -P* ()

0
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2n

(b) log AP, P(f)= % flog A{F (€%} d 0+ log |AA, [
0

where the integral on the right may equal — oco.

Proof. (a) Since P is continuous and F is of bounded variation, therefore by

4.9 (a) the RS-integral on the R.H.S. of (a) exists. Also by 5.7 (¢) and (7.1)

N N N N
( Z Am f—m, Z An f—n) = z z Am (f—my f—n)A:
m=0 n

=0 m=0 n=0
2n
> 1[‘( AT (€ - A%
- Am'__ i(m-n ez <AX
m§=:0n§0 2n ¢ (%)
0
2

1 n N . N . *
f( Z A,,,e"‘w)-dF(e’ﬂ)-( z Anemo)
m=0 m=0

T 2x

from which (a) follows.

(b) From 4.10 and 3.11 (c)

27 27

A{%; f P (%) - dF (e - P* (e“’)}z A{%z f P (¢'%) F' (%) P* (e“’)do;- (1)
0 0

But since the values of PF P* are non-negative hermitian, therefore by 3.12

2
bgA%%wa%Fw%F@“dd

0
2n

10y Jr (,i0) P* (i
Zﬂ log A{P (') F' () P* (")} 4 0
0

2n 2x

logIA{P(e’e)}l2d6+% f log A {F" (¢%)}d6. (2)

2»___.
2n
0 0

Now since each entry of P(z) is a polynomial in z, therefore A {P(2)}, being a sum
of products of such entries, is itself a polynomial in z. Hence by Jensen’s Theorem,
the first term on the R.H.S. of (2) is

= log | A{P ()} " = log | A (A,) "

Also by (a), the L.H.S. of (1) is A(P(f), P(f)). The desired inequality thus follows
from (1) and (2). (Q.E.D.)
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7.10 MAIN TEEOREM 1. The ¢-ple S.P. (§,)%, is of full rank if and only if it has
a spectral distribution F such that log A¥ €L, on C. In this case, if G is the predic-

tion error matriz with lag 1, then
2n

(A) A (G)=exp [51—7; flog A{F (€%} d 0] .
0

Proof. Let the S.P. be of full rank. Then by 6.11, we have the Wold decomposi-
tion f,=u,+v,. Denoting the spectral distribution of the u,- and v,-processes by
F,, F,, we have from 7.8 (c) that log AF, €L, and

25
log A (G) < ély_z flog A{F, (¢%} d6. (1)

0

Also by 7.8 (a), F'=F,+F,. Since F, has non-negative hermitian values, it follows
from 3.11 (c) that
A {F, (€9} < A {F' ()}
Taking logarithms, integrating over [0, 2], and applying (1), we get
2n

flog A{F (€9} do. (2)

0

logA((J‘r)SL
2x

The S.P. being of full rank, A(G)>0. The last integral cannot therefore be equal
to — co. But neither can it be equal to oo; for by 3.12 it is dominated by

27
log A {51; f F (¢ d 0} ,
o
which is finite since F' €L, and ¥’ has non-negative.hermitian values (cf. (7.5)). Thus
log AF € L,.
Next, suppose that (f,)%. is such that log AF' € L,. Consider the innovation
g=1,— (f|1_y),

where M1_; is the past of f,. Since (f,|M_,)€M_;, we have g= lim gy, where
N
N
gnv="T— z BV 1.
n=1

Since the coefficient of f; is I, it follows from 7.9 (b) that

2n

1 .
log A (gy, g0) = 2 flog A{F ()} d6.
0
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Now let N—oo. Then by 5.7 (b), (g, gv)—>(g, 8) = G, and the last inequality reduces to
2n
log A () z% flog A{F (¢%} d6. (3)
0
Since by assumption the last integral is finite, we conclude that A (G)>0, i.e. the
S.P. has full rank.

Finally, suppose once more that the S.P. has full rank. As just shown this
entails (2) and the L-integrability of log AF'. The last fact in turn entails (3). The
inequalities (2) and (3) together yield the equality (A). (Q.E.D.)

The equality 7.10 (A) may be rephrased as a result on ‘matrix-polynominal ap-
proximation in a ‘“‘mean-square’” sense with respect to a given matricial measure or

weighting F; viz.

2n
_L ¢ (10
exp [271 flog A{F (e )}d@]
0
2n
N N *
= lim A {L f (I— > B e""’) -dF(e"’)'(I— > B‘,,”’e"“’) }
N->oxo 27Z P n=1 nel

where for each N, the matrix coefficients B{"™, ..., BY’ are chosen so as to minimise

1 in N N %
T {——f (I— > Bne"“’)dl‘(e"’) (I— > Bne""’) }
27 s n=1 n=1

So interpreted, 7.10 (A) is seen to be a matricial extension of an identity first ob-
tained by Szegd [9, Satz XII]; cf. Doob [2, pp. 638-639].

As a corollary of 6.10 we get the following spectral version of the Wold de-
composition. This has been given by Doob [2, pp. 597-598], but his justification,
based on an extension of the stochastic integrals of Cramer, seems to us to be in-

adequate, cf. sec. 1.

741 Maix THEOREM II. For any full rank S.P. (1,) . the spectral distribu-
tions of the u,- and v,-processes of its Wold decomposition {Theorem 6.11) are the ab-
solutely continuous and discontinuous plus singular paris of its spectral distribution. In
symbols, cf. (4.3),

F,=F9%, F,=F% +F®,
Proof. As we already know from 7.8 that F=F,+F,, and that F, is absolutely

continuous, it will suffice to show that F,=0 a.e. on ¢. Now from 7.8
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F=F,+F,=®-®&*+F,, PecL,
Since the values of F, are non-negative hermitian, we get from 3.11 (b)

A{F ()} A{FL (€9} A{FL(eD}
T{F' (%)} " T{F.(e®)} |®(E)|E’

, , 7 {F, (¢
whence A {F (¢%)} = A {F,, (")} - [1 + Tgﬁ%} .
On taking logarithms and integrating over [0, 27] we get
25
flog A{F (%} d0

0
2n

2x
2 , F; i0
= Jlog awienp a0 fiog 1+ 7 a

0
2n

10
zznlogA(GHflog [1+’{L§§§]de, (1)

; |q>(e )lE
the last step being a consequence of the inequality in 7.8 (c), which is available since
the S.P. has full rank. But by 7.10 (A), the integral on the L.H.S. of (1) equals
27 log A (G). Since the integrand on the R.H.S. of (1) is non-negative, it follows that

7 {Fy (°)}] _
log [1 + [® (&) |2E} =0 ae.e,
ie. 7 {Fy (e9}/| @ (%)% =0, a.e.

Now since @ €L,, the denominator can become infinite only on a set of zero measure.
The numerator 7 {F,(¢®)} must therefore vanish a.e. Since F, (¢'%) is non-negative
hermitian, we conclude that F, vanishes a.e. (Q.E.D.)

As another corollary we obtain the spectral criterion for regularity with full rank,

announced by Zasuhin [18, Theorem 3], but not so far fully established (cf. sec. 1):

742 MaiNx TaeorEM III. The S.P. (£,)% is regular and of full rank, if and
only if it has an absolutely continuous spectral distribution F such that log AF’' € L;.
In this case we have, of course, the equality 7.10 (A).

Proof. Let the S.P. be regular and of full rank. Since it has full rank, therefore

by 7.10, log AF' € L,. Also,
fn=un+vn1 (1)

where (u,)%,. is a one-sided moving average, and v,=(f,|_o), W_c being the re-
mote past of (f,)%.. Now since (1,)*. is regular, ¥i_. = {0} by 6.13 (b), and there-
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fore v,=0. Hence by (1), f,=u,. The S.P. (f,)® is thus a one-sided moving average.
Hence by 7.7 its spectral distribution is absolutely continuous.

Next suppose (f,)%< has an absolutely continuous spectral distribution F such
that log AF’ € L,. Since log AF’ € L,, therefore by 7.10, the S.P. has full rank. Hence
by 6.11 we have the Wold decomposition (1) and by 7.11, F,=F% + F®, But since
F is absolutely continuous F@ =0=F®. Hence F,=0. It follows that v,=0, and
hence from (1) that (f,)®, is a one-sided moving average process. By 6.13 (a), it
must be regular. (Q.E.D.)

We shall now derive a factorization theorem for matrix-valued functions, which
in a sense is a matricial extension of 2.8. This had been forseen by Wiener in [17],
but his proof was incomplete in that the required spectral condition for regularity
had not been duly established.

Let F be a non-negative hermitian matrix-valued function on C such that F€L,

and log AF € L,. Letting
0
Fo)- [F@yd, 0<6<2m,
0

it follows from Cramer’s Theorem [I, Theorem 5 (b)] that there exists a g-ple sta-
tionary process (f,),. with spectral distribution F. Since F is absolutely continuous
and log Af"ELl, we see from 7.12 that this process is regular and of fuil rank. By
6.13 its remote past M _., ={0}, and hence by the Wold decomposition 6.11 and 6.12,

it is a one-sided moving average:

I8

0
f,= > Cehay,  (h,h)=0; LY |Cfi<oo.
k=0 0

In this €= VG, where @ is the prediction error matrix of the process. By 7.7 it
follows that
F=F"=®&®"* ae, @ (%) = > C e,
0

We note that . (0)=C= V6 is non-negative hermitian. Moreover by 7.10 (A)

2

A{®., (0)}*=exp [ﬁ f log A{F (%)} d 0] .
b

We have thus proved the following theorem.

743 THEOREM. Given a non-negative hermitian matrixz-valued function F on C
such that F €L, and log AF € L,, there exists a function @ €L, on C, the n-th Fourier

coefficient of which vanishes for n<0, such that
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F (%) = ® (') - ®* (%) a.e.,

@ . (0) s non-negative hermitian, and
2n

A{®, (0)}*=exp [5% (]og A{F (%} d 0] .
0
An important problem in multiple prediction is given such a function F, to find
the Fourier coefficients of the factor ®. As it stands, our proof of 7.13 gives no
clue to determining these coefficients. We shall show in Part II, however, that if we
combine the arguments used in this proof with Wiener’s idea of resorting to successive

alternating projections, then we do get a method of finding these coefficients.

8. Some unsettled questions

The relationship between the prediction error matrix G and the spectral distribu-
tion F needs further investigation. In 7.10 (A) we have only been able to relate the
determinant of G with that of F’. But it is clear that all stochastic processes
with the same spectral distribution F would have the same G, and that a stronger
relation exists between G and F.

No spectral characterisation has yet been given of a S.P. having a rank p<g,
and in particular of a non-deterministic process, ¢=1. This question is tied up with
the one mentioned in the previous para: a full fledged relation between G and ¥
would yield the desired characterisations. But it may be possible to tackle questions
of rank even without the knowledge of such a relation.

We might also mention a lacuna, which will confront us in Part II. This con-
cerns the necessary and sufficient condition that the linear prediction with lead » be
expressible in terms of the past elements f,, k<0, by a single infinite series con-
verging in-the-mean. This question remains open even in the case of a simple process.
We shall show in Part II that a sufficient condition is that F be absolutely con-

tinuous and the eigenvalues of F’ be essentially bounded above and away from zero.
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