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A b s t r a c t  Some forms of  synaptic plasticity d e p e n d  on  the  t empora l  

co inc idence  of presynapt ic  activity and  postsynapt ic  r e sponse .  

This r e q u i r e m e n t  is cons is ten t  wi th  the  Hebbian,  or  corre la t ional ,  

type of  l ea rn ing  ru l e  u sed  in  m a n y  n e u r a l  n e t w o r k  models .  

R e c e n t  evidence suggests  tha t  synaptic  plasticity may  d e p e n d  in  

par t  on  the  p roduc t i on  o f  a m e m b r a n e  permeant -d i f fus ib le  s ignal  

so that  spatial vo lume  may also be  involved in  cor re la t iona l  

l ea rn ing  rules.  This latter form of  synaptic  change  has  b e e n  cal led 

vo lume  learning.  In  both  Hebbian  and  v o l u m e  l ea rn ing  rules ,  

in te rac t ion  among  synaptic inpu t s  depends  on  the  degree  of  

co inc idence  of the  inputs  and  is o therwise  insensi t ive  to the i r  

exact t empora l  order .  Condi t ion ing  expe r imen t s  and  

psychophys ica l  s tudies  have shown,  however ,  tha t  mos t  an imals  

are h igh ly  sensit ive to the  t empora l  o rder  of the  sensory  inputs .  

M t h o u g h  these  exper imen t s  assay the  behavior  of  the  en t i re  

an imal  or  pe rcep tua l  system, they  raise the  possibi l i ty tha t  

ne rvous  systems may be sensit ive to tempora l ly  o r d e r e d  events  at  

m a n y  spatial and  t empora l  scales. We suggest  h e r e  the  ex is tence  

of a n e w  class of l ea rn ing  rule ,  cal led apredictive Hebbian 
learning, rule, tha t  is sensit ive to the  t empora l  o rde r ing  of  

synapt ic  inputs .  We show h o w  this  predict ive l ea rn ing  ru le  cou ld  

ac t  at single synaptic  connec t ions  and  t h r o u g h  diffuse 

n e u r o m o d u l a t o r y  systems. 

I n t r o d u c t i o n  Most biologically feasible theories of how experience-dependent changes 

take place in real neuronal networks use some variant of the notion that 

the efficacy or "strength" of a synaptic connection from one cell to 

another can be modified on the basis of its history. In this theoretical 

work it is generally assumed that modifications of synaptic efficacy, by 

acting over a large population of synapses, can account for interesting 

forms of learning and memory. This theoretical assumption prevails 

primarily because of its intuitive appeal, its accessibility to analysis, some 

provocative relations to biological data, and a lack of good alternatives. 

Recent work demonstrates that simple abstract learning algorithms, if 

given appropriately coded input, can produce complicated mappings 

from input to output. These efforts include networks that learn to 

pronounce written text (Sejnowski and Rosenberg 1987), play master 

level backgammon (Tesauro 1994), and recognize handwritten characters 

(Le Cun et al. 1990). As pointed out by Crick (1989) and others, many 

of these efforts are not good models of the vertebrate brain; however, 

they can be quite valuable for identifying the informational requirements 
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involved in specific tasks. Moreover, they point out some of the 

computational constraints to which brains are subject. An awareness of 

the computational constraints involved in a particular problem can guide 

theories that explain how real brains are constructed (Churchland and 

Sejnowski 1992). 

Although abstract networks have provided some insight into the 

top-down constraints that nervous systems face, these approaches are of 

limited use in gaining insight into how various problems have been 

solved by real brains. For example, the actual learning mechanisms that 

are used in biological systems also satisfy additional constraints that arise 

from the known properties of neurons and synapses. In this paper we 

focus on learning rules that are supported by biological data and consider 

the strengths and weaknesses of these rules by measuring them against 

both computational and biological constraints. Taking this dual approach, 

we show that computational concerns applicable to the behavior and 

survival of the animal can work hand in hand with biologically feasible 

synaptic mechanisms to explain and predict experimental data. 

Theoretical accounts of how neural activity actually changes synaptic 

function typically rely on a local correlational learning rule to model 

synaptic plasticity. A correlational learning rule, often called a Hebbian 

learning rule, uses the correlation between presynaptic activity and 

postsynaptic response to drive changes in synaptic efficacy (Fig. 1 ) 

(Hertz et al. 1991; Churchland and Sejnowski 1992). One simple 

expression of a Hebbian learning rule is 

Aw(t) = ~lx(t)y(t) ( 1 ) 

where, at time t, w(t) is a connection strength (weight), x(t) is a 

measure of presynaptic activity, y(t) is a measure of postsynaptic activity 

(e.g., firing rate or probability of firing), and -q is a fLxed learning rate. 

This kind of learning rule is called local because the signals sufficient 

for changing synaptic efficacy are assumed to be generated locally at 

each synaptic contact. One form of this learning rule was initially 

proposed by Donald Hebb in 1949 (Hebb 1949). Subsequent theoretical 

and computational efforts have exploited Hebb's idea and used 

correlational learning rules to account successfully for aspects of map 

formation and self-organization of visual and somatosensory cortex (von 

der Malsburg 1973; von der Malsburg and Willshaw 1977; Montague et 

al. 1991). For example, various computational schemes employing 

Hebbian learning rules have accounted for the formation of cortical 

receptive fields (Bienenstock et al. 1982; Linsker 1986, 1988), ocular 

dominance columns (Miller et al. 1989), orientation maps (von der 

Malsburg 1973; Obermayer et al. 1990; Miller 1994), directional 

selectivity (Sereno and Sereno 1991), and disparity tuning (Berns et al. 

1993). Correlational learning rules also provide a reasonable theoretical 

framework for synaptic plasticity observed in the hippocampus (Kelso et 

al. 1986; Bliss and Lynch 1988), cerebellum (Ito 1986, 1989), and 

neocortex (Kirkwood et al. 1993). 

Below, we review some of the biological evidence from the vertebrate 

nervous system that supports this simple learning rule as a descriptor of 

synaptic change during both activity-dependent development and 

synaptic modification in the adult. We subsequently suggest that changes 
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Figure 1: Hebbian Learning. (A) inputs x~ provide excitatory drive to a neuron 

through connection strengths or "weights". Inputs x 2 and x 3 are sufficiently corre- 

lated to permit cooperation along a section of dendrite (shaded area) through voltage 

or second messengers. Through an expression like equation 1, the weights of these 

connections will be increased. Input x 1 is not active during this coincident activation 
of x 2 and x 3. The weight of xl's connection could be decreased by a depression rule 
that depressed all synaptic contacts that were not sufficiently correlated with the 
postsynaptic response (shaded area). Without such a rule, weights can grow without 
bound. To prevent this, a homeostatic constraint that limits the total synaptic strength 
supported by the recipient neuron is typically used. This is just one possible way to 
normalize the weights. The issue of how and why normalization is biologically 
reasonable is critical. Normalization can give stability to the Hebb rule, but, de- 
pending on its implementation, it can cause the weight vector to converge to dif- 
ferent values. In the presence of additional constraints (see text) for the learning rule, 

a Hebb rule will extract the principal component from the correlations in the input 
patterns that occur and the vector of weights will come to point in the direction of 

the first principle component of the "data" generated by the input activities (Oja 
1982). The pattern of weights that develops can be analyzed in terms of the cova- 
riance matrix of the input activities (see text). (B) Graph of input activity along two 
inputs, x~ and x 2. Each point is a pair of activity levels for the two inputs in (A). The 
inputs cluster along a straight line, indicating a strong correlation. The approximate 

direction of the principal component is along this line. 

D e v e l o p m e n t a l  
E v i d e n c e  for H e b b i a n  
L e a r n i n g  R u le s  

in this description are required by both experimental  and theoretical 

work. The primary change is predicated on the need for brain 

mechanisms sensitive to temporally ordered input, a problem that has 

most likely been solved by brains across a range of spatiotemporal scales. 

We marshal arguments and review detailed evidence in support  of this 

suggestion and point out those aspects of the proposed changes that are 

important for understanding learning and memory  in the vertebrate 

brain. 

In the vertebrate nervous system, afferent axons find their appropriate 

target structures through interactions with local environmental  cues and 

target-derived information (Bonhoeffer and Huff 1985; Dodd and Jessel 

1988; Stuermer 1988; Harris 1989; Heffner et al. 1990; O'Leary et al. 

1990; Placzek et al. 1990; Stretevan 1990). After reaching target 

structures, there is strong evidence that activity-dependent processes are 

critical in determining the development  of mappings be tween peripheral  

sensory structures and their more  centrally located target structures, 

including the optic tectum, thalamus, and cerebral cortex (Hubel  and 

Wiesel 1965, 1970; Hubel et al. 1977; Meyer 1982; Stryker and Harris 

1986; Stretevan et al. 1988). Specific mappings arise in these targets 

because temporal contiguity in axonal firing is somehow translated into 
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spatial contiguity of synaptic contacts. Hence, activity-dependent 

processes are involved at least with the initial self-organization of 

mappings in the tectum, thalamus, and cortex. 

After normal developmental periods, activity-dependent processes are 

also involved in the reorganization of sensory mappings in the adult. For 

example, the adult cerebral cortex has been shown to be surprisingly 

plastic (for review, see Kaas 1991; Merzenich and Sameshima 1993) 

following changes to the environment such as retinal damage (Kaas et al. 

1990; Gilbert and Wiesel 1992), changes in limb innervation (Merzenich 

et al. 1983, 1984; Wall et al. 1986; Clark et al. 1988), artificial scotomas 

(Pettet and Gilbert 1992), and other dramatic perturbations of sensory 

input (Clark et al. 1988; Garraghty et al. 1988; Garraghty and Kaas 1992). 

The plasticity observed during both activity-dependent development and 

map reorganization is consistent with the hypothesis that changes in 

synaptic efficacy are controlled by Hebbian learning rules (Reiter and 

Stryker 1988; Bear et al. 1990; Singer 1990; Rauschecker 1991; 

Merzenich and Sameshima 1993; Schlagger et al. 1993). 

Collectively, these data suggest that (1) dynamic synaptic changes can 

occur throughout adulthood, (2) there is a strong relationship between 

the rules controlling synaptic change during development and in the 

adult, and (3) the learning rules appear to be Hebbian. 

In the vertebrate, the existence of Hebbian-like learning rules is 

supported further by detailed experimental evidence from work on 

excitatory glutamatergic synapses. Research over the last 20 years, has 

demonstrated that in the adult nervous system, long-term increases (Bliss 

and Lomo 1973; Kirkwood et al. 1993) and decreases (Ito 1986, 1989; 

Artola et al. 1990; Sejnowski et al. 1990; Dudek and Bear 1992; Mulkey 

and Malenka 1992) in synaptic efficacy can occur under appropriate 

conditions. 

One form of long-term increase in synaptic efficacy is called long-term 

potentiation or LTP. The induction of LTP depends on correlated 

presynaptic activity and postsynaptic depolarization and requires an 

increase in postsynaptic calcium ion concentration (Dolphin et al. 1982; 

CoUingridge and Bliss 1993; Davies et al. 1989; Malenka et al. 1989). 

Although Hebb (1949) never mentioned decreases in synaptic efficacy 

resulting from a lack of coincidence in presynaptic activity and 

postsynaptic response, such an extension to the original postulate was 

made by Stent (1973). This idea also finds support in the vertebrate 

nervous system. 

One form of long-term decrease in synaptic efficacy is called long-term 

depression or LTD. In the hippocampus, the induction of homosynaptic 

LTD requires presynaptic activity without a coincident "response" from 

the dendrite (Dudek and Bear 1992; Mulkey and Malenka 1992), that is, 

the presynaptic terminal and the postsynaptic dendrite are not active at 

the same time. The response alluded to above is probably an increase in 

postsynaptic calcium levels subsequent to presynaptic release of 

neurotransmitter (Mulkey and Malenka 1992). Other forms of synaptic 

depression have been described in the neocortex (Artola et al. 1990; 

Artola and Singer 1993). 

In a number of systems, the induction of LTP depends on activation of 

the N-methyl-o-aspartate (NMDA) glutamate receptor (for review, see 

Bliss and Lynch 1988; Nicoll et al. 1988). Because the NMDA receptor 
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provides a pathway for postsynaptic increases in calcium, its function 

influences both LTP and LTD. Interestingly, activation of the NMDA 

receptor is also one key event in the activity-dependent segregation of 

axonal terminals that occurs during the initial development of sensory 

mappings described above (Cline et al. 1987; Kleinschmidt et al. 1987; 

Scherer and Udin 1989; Bear et al. 1990; Cline and Constantine-Paton 

1990; Simon et al. 1992). Thus, the NMDA receptor plays a critical role 

in both activity-dependent development and synaptic change in the adult. 

Experiments have demonstrated that NMDA-dependent LTP can be 

viewed as Hebbian: Sufficient correlation in presynaptic activity and 

postsynaptic depolarization leads to an increase in the efficacy of the 

synapse (Wigstrom and Gustafsson 1985; Kelso et al. 1986; Malinow and 

Miller 1986). Current flow through the NMDA receptor can occur only 

in the presence of bound L-glutamate and a sufficiently depolarized 

membrane, that is, the receptor is ligand and voltage gated. This dual 

control of the NMDA receptor implicates the receptor itself as one 

substrate for detecting the correlation in presynaptic activity (L-glutamate 

release) and postsynaptic response (postsynaptic depolarization). 

Taken together, the data on activity-dependent development of cortical 

maps and NMDA-dependent LTP suggest that a Hebbian learning rule is a 

reasonable theoretical starting point for modeling activity-dependent 

development and adult learning. Figure 1 shows a concrete example of a 

Hebbian learning rule. 

Hebbian learning rules are unsupervised learning rules in that they lack 

a teaching signal that could supervise learning at each synaptic 

connection in a detailed manner, although, as discussed in a later section, 

they can be extended to include an additional reinforcement component. 

Although networks using Hebbian rules have inputs and produce outputs, 

there is no precise error information that instructs the network about 

whether an output was correct or not. Instead, Hebbian rules extract 

particular correlations or regularities among the presynaptic inputs 

through an averaging process, and the results are represented in the 

pattern of weights in the network (Hertz et al. 1991; Churchland and 

Sejnowski 1992). Through averaging, only those features or regularities 

that are redundant are extracted. The kinds of regularities to which 

Hebbian rules are sensitive depends on the network architecture. In this 

discussion, we let x or x(t) represent the vector of input fibers x = 

[Xl(t), x2(t) , . . . ,  x~(t)] at time t, and E[x] represents the vector of 

expected values of the components of x (see Fig. 1). 

Biologically feasible correlational models depend on the assumption 

that learning (weight changes) at synaptic connections is slow relative to 

the time required to present a number of input patterns sufficient to 

represent the statistics of the input. This assumption permits the 

particular learning rule in question to be analyzed in terms of a 

normalized correlation matrix of the input activities, called the 

covariance matrix, defined a s  ~Covi j  ~ -~ [ x  - E(X)][X - E(X)] T (Linsker 

1986, 1988; Miller et al. 1989). As discussed below, this assumption can 

allow extensive analysis of the learning rule. In some models, learning 

(weight changes) takes place as each input pattern is presented (e.g., 

v o n d e r  Malsburg 1973). This latter assumption means that if the 

network contains nonlinearities, the order of presentation of the input 
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pat terns can critically influence the final weight pat terns that  result;  

that is, the network does not necessarily extract  the redundancies  in 

the input activity. 

Figure 1 shows the simplest form of a Hebbian learning rule. In this 

diagram we consider the response of one linear neuron in a target region 

whose output  at t ime t is 

,q 

Y = ~ a w j x j  = w T x  

j= l  

( 2 )  

where  ( ) represents a time average sufficiently large so that condit ion 1 

above is met. 

The expression Cij ~- (x.ycj) defines the correlation matrix for the input 

vector  x and is equivalent 

Using the Hebbian learning rule in equation 1 and assuming that the 

weight changes are slow relative to the time over which the input 

patterns are presented (case 1 above), the change in a synaptic weight 

w i can be represented as ( the  dependence on time is suppressed)  

( A w i ) =  ( x ~ )  = i w i x  = xix~ = Ciiwi 
. =  

(3) 

where  ( ) represents a time average sufficiently large so that condit ion 1 

above is met. 

The expression Cij -= (x ix j )  defines the correlation matrix for the input 

vector x and is equivalent to the covariance matrix when  the individual 

components  of x have zero means. The correlation matrix of the input 

activities is a symmetric matrix and therefore has real eigenvalues and a 

complete  set of or thonormal  eigenvectors. The possibility of analyzing 

the Hebbian learning rule given by equation 1 in terms of the 

eigenvectors of the covariance matrix has made this learning algorithm 

attractive. In the absence of other  constraints, the eigenvectors of the 

covariance matrix represent  synaptic weight patterns that can develop 

independently of one another and the eigenvector associated with the 

largest eigenvalue will determine the final weight  pat tern that develops. 

This way of viewing the development  of weight patterns 

(activity-dependent development)  makes contact  with standard methods 

of analysis used in many fields such as statistics, physics, and applied 

mathematics. 

There are a number  of problems with the simple learning rule in 

equation 1. One problem is that this rule allows the synaptic weights to 

grow without  bound. To prevent  synaptic weights from growing without  

bound, a kind of homeostatic constraint that limits the total synaptic 

strength supported by the recipient neuron is typically used. This is an 

important issue because without  this extra constraint, a simple Hebbian 

learning rule is not stable. 

Below, we consider three proposals for limiting the growth of synaptic 

weights under a correlational learning rule. We measure each proposal 
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WEIGHT DECAY 

(LOCAL CONSTRAINT) 

CLIPPING OR SATURATION 

(LOCAL CONSTRAINT) 

against the nature of the information required to limit the total synaptic 

strength. For clarity, we assume that a synaptic weight represents the 

strength of a single synaptic connection. 

One proposal made by Oja (1982)  suggested that a local decay of the 

synaptic weight is sufficient to give a correlational learning rule stability. 

He considered the following rule (again the dependence on time is 

suppressed) 

Awi = lq[xiy - wiy 2] (4) 

At each update of the synaptic weight, the decay of the weight is 

proportional to the square of the postsynaptic response. This rule 

requires a form of heterosynaptic long-term depression, in that the 

second, negative term depends only on postsynaptic activity. Oja (1982)  

has shown that this learning rule will extract the first principal 

component of the input correlation matrix. In a general sense, the first 

principal component represents the dominant input pattern (Hertz et al. 

1991 ). The important biological aspect of this rule is that weight decay is 

reasonably viewed as a local event that could take place at single 

synapses or groups of cooperating synapses. Other correlational schemes 

have been used to extract all the principal components of the covariance 

matrix (Sanger 1989), but they have not been offered as feasible 

biological models. 

Another local method to limit total synaptic weight involves simply 

clipping the weight at maximum and minimum values. This method has 

been used in a number of different correlational schemes (e.g., Von der 

Malsburg and Willshaw 1976; Bienenstock et al. 1982; Edelman and 

Reeke 1982; Linsker 1986; Gaily et al. 1990; Montagne et al. 1991) 

l 
0 W < Wmin 

AW i ----- q~(Xi -- 0pre)(y -- 0post) Wmi n < W < Wma x 

0 Wmax < W 

(5) 

where 0pr e and 0post are respectively pre- and postsynaptic modification 

thresholds (Sejnowski 1977). Cases where both (x i -  0pre) and (y-0pos t  ) 

are negative are usually ignored in biological models to prevent this 

condition from causing an increase in synaptic strengths contrary to 

experimental findings. Variations on this rule assume nonlinear functions 

for the postsynaptic term and sliding thresholds that depend nonlinearly 

on the postsynaptic activity (Bienenstock et al. 1982; Artola and Singer 

1993). These types of schemes are intuitively acceptable from a 

biological perspective; however, allowing synaptic weights to saturate 

influences the final state of the weight vector by introducing a sensitive 

dependency on initial conditions. MacKay and Miller (1990)have  

provided a good analysis of this situation and have shown that the 

eigenvector associated with the largest eigenvalue does not always 

determine the final pattern of weights under learning rules similar to 

equation 5. The value of this form of learning rule is that only local 

information is needed to prevent uncontrolled growth of synaptic 

weights. 
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WEIGHT NORMALIZATION 

(GLOBAL CONSTRAINT) 

Weight normalization refers to a procedure  whereby  some measure of 

the total synaptic weight onto the recipient neuron is used to limit the 

growth of the synaptic weights. In multiplicative weight  normalization 

(see v o n d e r  Malsburg 1973), each synaptic weight onto a neuron is 

divided by the sum or sum of squares of every other weight  onto this 

neuron. This division is carried out after each update of the weights. This 

form of normalization rescales the synaptic weights continuously when  

they are updated. After updating the weights with Awi computed  

according to equation 1 

wi(t )  = wi(t  -- 1 ) + Awi(t)  (6) 

The weights are then rescaled according to 

w~(t) 
wi(t) <-- w ( 7 )  

INFORMATIONAL CONCERNS 

w = ~ wi(t) 
j = l  

In subtractive weight normalization, a similar procedure  is followed but  

the weights are rescaled according to 

w i ( t ) < " - w i ( t )  - -  Z (8 )  

Z = 

w - X~= l w , ( t )  

There are other ways to normalize the synaptic weights, but  they all 

requi re  that each synapse onto  the neu ron  have access to the  weigh t  of  

every  o the r  synapse on the neuron.  Cur ren t  exper imenta l  evidence  on  

synaptic plasticity suggests that local postsynaptic events are sufficient to 

change the efficacy of a synapse. If true, then how will an inactive 

synapse communicate  its weight so that the total synaptic weight can be 

computed  for the sake of a currently active synapse? Moreover, if one 

considers the kinds of intracellular signals that could actually 

communicate  the total synaptic strength onto a neuron to every afferent 

synapse on the neuron, then the scheme runs into the problem of 

"time-stamping" each total so that delays in collecting the total synaptic 

weight  do not interfere with appropriate normalization. There are ways 

around these problems; however, if we  are to make the assumption that a 

weight is equivalent to the strength of an individual synaptic connection, 

then normalization on a cell by cell basis runs into difficulties. 

Analysis and simulation of these computational constraints on Hebbian 

rules has provided insight into some of the virtues and limitations of 

learning rules that are driven by coincidence detection. Recent evidence 

concerning one biological mechanism of coincidence detect ion suggests 

that the above formulations of a correlational learning rule may have 

omitted a number  of important properties. 
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Retrograde 
Communication and 
Volume Signals in 
Synaptic 
Transmission 

There is evidence for changes in presynaptic terminals following the 

induction of long-term potentiation at Schaffer collaterals in area CA1 of 

the hippocampus (Dolphin et al. 1982; Bekkers and Stevens 1990; 

Malinow and Tsien 1990). Because the trigger for LTP induction is 

postsynaptic, there must be some mechanism that permits retrograde 

communicat ion back to the overlying presynaptic terminal (Bliss and 

Collingridge 1993). One candidate mechanism for this retrograde 

communicat ion is the production, diffusion, and action of nitric oxide in 

response to glutamatergic activity. 

The membrane permeant  gas nitric oxide (NO),  produced in the 

vertebrate central nervous system subsequent to NMDA receptor  

stimulation, can influence both synaptic plasticity (Bohme et al. 1991; 

Haley et al. 1991; O'Deli et al. 1991; Schuman and Madison 1991) and 

transmission (O'Dell et al. 1991; Friedlander et al. 1992; Manzoni et al. 

1992; Montague et al. 1992, 1994a; Kato et al. 1993). Recent 

experiments  have suggested an analogous role for the membrane  

permeant  gas carbon monoxide (CO) (Stevens and Wang 1993; Zhuo et 

al. 1993a,b). 

In 1991, four groups demonstrated that inhibition of the synthetic 

enzyme for NO, nitric oxide synthase (NOS), blocks the induction of 

NMDA- dependent  LTP in the mammalian hippocampus (Bohme et al. 

1991; Haley et al. 1991; O'Dell et al. 1991; Schuman and Madison 1991). 

Although the meaning of these results is not  undisputed (Williams et al. 

1993), the findings suggest that NO product ion is one necessary step in 

LTP induction. This possibility is s trengthened significantly by evidence 

demonstrating that the correlation of presynaptic activity and elevated 

levels of NO is sufficient to potentiate transmission only at recently 

active axonal terminals (Arancio et al. 1993; Zhuo et al. 1993a,b). In 

these experiments  the inactive terminals are unaffected. The amount  of 

potentiation that results from this pairing of activity and NO cannot be 

enhanced further by a tetanizing stimulus that is known to induce LTP 

(Zhuo et al. 1993a). 

Taken together, the above results suggest that NO may play the role of 

conjunction detector for axonal terminals that are active coincident with 

high levels of the gas. NO is a nonpolar gas that moves readily through 

cell membranes. This physicochemical proper ty  suggests that NO would  

not be restricted to its site of product ion but  could move rapidly 

throughout  a surrounding local volume of neural tissue. The interior of 

any nearby synapse can therefore feel the effects of the local NO 

concentrat ion whether  or not its own presynaptic or postsynaptic 

elements have been active. This is a critical possibility because in the 

absence of specialized compartmentalization mechanisms for NO, this 

signal would act throughout  a local volume of neural tissue (Fig. 2). 

Synaptic plasticity will operate in a local diffusion-defined domain 

because NO will simply accumulate in local regions containing multiple 

NO sources. 

Volume Learning A synaptic plasticity mechanism employing NO or some other  diffusible 

substance for the modulation of synaptic function would  permit  plasticity 

to operate beyond the boundaries of conventional anatomically defined 

synapses to influence plasticity throughout  a local volume of neural 

tissue. This novel form of plasticity has been termed volume learning 

because synaptic plasticity operates through a transient diffusion-defined 
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Figure 2: Volume learning. A short-lived membrane permeant substance is re- 
leased at active synapses. The substance diffuses away from its sources to define a 
local domain (shaded zone). Temporal fluctuations in presynaptic firing patterns on 

inputs x~ are thereby transformed into spatiotemporal fluctuations in substance con- 
centration. Specificity in learning is achieved by postulating that synapses that are 
active when the concentration of this compound is high are strengthened. Synapses 
that fire when the concentration of substance is low are weakened. The strength of 

a given synapse is influenced by the firing patterns and three-dimensional locations 
of neighboring synapses whether or not these synapses are made onto the same 
neuron. Associations among inputs x i can develop in small volumes of tissue. An 
influence on synaptic weights in the local volume will occur if the substance tran- 

siently influences synaptic gain or is a direct and necessary signal for longer term 
synaptic plasticity. This mechanism would interact with other signals known to 
influence synaptic interactions on neurons through the postsynaptic compartment, 
e.g., changes in membrane voltage and second messenger production. The volume 
signal would need to reflect the local activity of glutamatergic synapses; however, as 
long as the production occurred subsequent to presynaptic activity, the substance 

could be produced locally from the dendrites of other cells or locally elicited from 
other presynaptic terminals. Note that this mechanism allows postsynaptic responses 
to be integrated in part in the extracellular space. 

domain and permits associations among afferent inputs to form in small 

volumes of neural tissue (Gaily et al. 1990; Montague et al. 1991, 1993; 

Montague et al. 1993b) (Fig. 4, below). 

The case for NO as a membrane permeant  substance involved in 

synaptic plasticity is strengthened by other experimental  observations 

and computational work. For example, the synthetic enzyme NOS is 

calcium dependent  (Bredt and Snyder 1992), and assays for NO 

product ion show that it is made in both the cortex and hippocampus 

subsequent to stimulation of NMDA receptors (Friedlander et al. 1992; 

Montague et al. 1994a). Computational work has shown that a model  of 

synaptic plasticity that uses the covariance of presynaptic activity and a 

postsynaptically produced rapidly diffusible signal can account for the 

development  of sensory mappings in the cerebral cortex and thalamus 

(Montague et al. 1991). 

CO was ment ioned earlier as another possible membrane  permeant  

signaling molecule. CO is a very stable molecule and would enjoy a 

much longer biological half-life than NO; therefore, an associative 

mechanism utilizing CO would act over longer t ime scales than NO. 

Additionally, CO is not known to be made in response to NMDA 

stimulation and its use as a signaling molecule is energetically 

unfavorable (Edelman and Gaily 1992). Hence, if CO is actually used in 

some kind of correlational learning rule in the brain, then the rule 

depends on events different from those known to influence 
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Computational 
Consequences of 
Volume Learning 

SPECIFICITY IN VOLUME 

LEARNING 

NMDA-dependent synaptic plasticity. A correlational mechanism using 

CO would extract more efficiently statistical regularities that exist at 

longer times scales than those regularities reported through NO 

product ion and diffusion. 

Independent  of the identity of the rapid volume signal, there are a 

number  of consequences that follow for any learning algorithms based on 

a volume learning mechanism. A simple version of a volume learning rule 

was proposed previously tO account  for the activity-dependent 

development  of sensory mappings in the vertebrate thalamus and cortex 

and one form of synaptic plasticity in the adult state (Gaily et al. 1990; 

Montague et al. 1991 ): 

Aw(t) = "Q[X(t)  -- 0 p r e ] [ ~ L ( r , t ) -  Tpre] (9) 

where  Aw(t)  is the change in the "weight" or synaptic efficacy of a 

connection, ~1 is a constant controlling rate of change of synaptic efficacy, 

x ( t )  is a measure of presynaptic activity, a n d  Opr e is a threshold that 

determines whether  a terminal is active at time t. Tpr e is a threshold, 

dependent  on the activity of the presynaptic terminal, which determines 

the direction of synaptic change. The postsynaptic factor, formerly y in 

equation 1, is now dependent  on the substance concentrat ion ~( r , t )  at 

t ime t located at position r. 

The substance concentrat ion evolves in time and space according to 

O~(r,t) 

at 
- VZw(r,t) - Kl~(r,t) + p ( r , t )  (lO) 

The first term on the right side of this equation governs the diffusion of 

the substance, whereas the second and third terms represent  the sinks 

and sources of the substance. The constant K controls the rate of 

exponential  decay, whereas the product ion rate of substance [p(r, t)]  at 

location r and time t depends on the synaptic weights and patterns of 

input activity in the vicinity of r. Large-scale computer  simulations have 

demonstrated that a learning rule like equation 9, when  acting against a 

background of axonal growth, can account for the self-organization of 

whisker barrels, the refinement of topographic mappings, formation of 

reciprocal connectivity between cortical regions sharing correlated input, 

and the formation of ocular dominance columns (Montague et al. 1991). 

Specificity in synaptic modification in a volume learning rule is 

maintained by postulating differential effects on active and inactive 

presynaptic terminals (Gaily et al. 1990; Montague et al. 1991). This 

theoretical requirement  is supported by experimental  evidence showing 

that NO differentially affects active and inactive presynaptic terminals 

through activation of soluble guanylate cyclase (Zhuo et al. 1993a,b). 

Also, a form of "synaptic recrui tment"  has been observed in tissue slices 

from mammalian hippocampus and cerebral cortex, where  potentiat ion 

of synaptic contacts spreads from the site of induction only to active 

presynaptic terminals throughout  a local region (Kossel et al. 1990; 

Schuman and Madison 1991; also see Bonhoeffer et al. 1989). This latter 

physiological effect is consistent with the product ion of a diffusible 

& 
i I  

L E A R N I N G M E M 0 R Y 

 Cold Spring Harbor Laboratory Press on August 24, 2022 - Published by learnmem.cshlp.orgDownloaded from 

http://learnmem.cshlp.org/
http://www.cshlpress.com


Montague and Sejnowski 

STABILITY IN VOLUME 

LEARNING 

A REPRESENTATIONAL ISSUE: 

HOW MAPPINGS FUNCTION 

UNDER RAPID VOLUME 

EFFECTS 

volume signal that potentiates only active synaptic contacts and does not 

potentiate or depress inactive contacts. 

Using equation 9, weights can be prevented from growing without bound 

by clipping as described previously or through an appropriate balance of 

competing activity patterns. This kind of volume learning rule can be 

overwhelmed by overactive inputs because the threshold Tpr e does not 

change with activity levels in the vicinity. Hence, this rule is reasonably 

thought of as a set p o i n t  model  where the thresholds for presynaptic 

activity and substance levels necessary for synaptic change do not adjust 

to the ambient conditions. It is likely that this aspect of this volume 

learning rule is biologically incorrect and a better way to express this 

learning rule is in its covariance version 

Aw = ~ l [ x ( t ) -  0pre][W(r,t) - ~(r , t )]  (11) 

Here, ~( r , t )  represents a running average of vL(r,t) in the vicinity of the 

synapse. Equation 11 will adapt to ambient levels of the substance and 

thus adapt the learning mechanism to the average amount of activity in a 

region. This volume learning rule would produce qualitative changes in 

synaptic strengths according to Table 1. 

If the interaction among presynaptic terminals is mediated in part by a 

transient diffusible signal produced by nearby active synapses, then 

lateral interactions can take place throughout a diffusion-defined domain. 

The size and shape of such a domain will depend on patterns of neural 

activity impinging on a region as well as physical factors such as the 

geometrical arrangement of synapses in three dimensions, the synthetic 

and catabolic rates for the substance, and the potential action of other 

unidentified barriers or sinks for the substance. The numerous possible 

implications of a variable distance over which synapses interact are not 

known. Although it has been demonstrated that a volume learning rule 

can direct the appropriate activity-dependent map formation (Montague 

et al. 1991, 1993a,b), the implications of a variable lateral interaction 

scale are crucial and unexplored in detail. 

The robustness of a mechanism that permits associations between 

afferent inputs to develop in small volumes of tissue is not known. Rapid 

Table 1: Volume learning rule 

Active synaptic element 

Inactive synaptic element 

p,(r,t) - ~(r,t) > T p,(r,t) - ~(r,t) < - T  

increase decrease 

decrease no change 

This contingency table shows the direction of change of synaptic weights under a 
volume learning rule. If nitric oxide is the volume signal, then experimental data 
suggest that the learning rule in the lower left portion of the table is incorrect. This 
rule decreases synaptic weights of inactive connections that experience suprathresh- 
old levels of nitric oxide. Using these learning rules, an active synaptic contact must 
correlate with local activity or its weight will be decreased to O. This latter condition 
arises because two depression rules are included in the table: one for depressing 
inactive terminals and one for depressing active terminals. These rules force coop- 
eration throughout a local diffusion-defined domain because they do not allow a 
terminal to be appropriately silent. In this fashion, a local volume of tissue could 
only map information about one variable. 
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From Temporal 
Coincidence to 
Temporal 
OrdermThe Goal of  
Prediction 

volume signals place a premium on the three-dimensional distribution of 

synaptic contacts throughout  a local volume because these contacts 

represent  potential sources of substance in response to neural activity. 

An emphasis is therefore implicitly placed on the dendrit ic morphology 

of the recipient cells in a region. This latter point  gains in importance 

because NO can also influence local blood flow (Iadecola 1993) and 

neurotransmitter  release (O'Dell et al. 1991; Zhuo et al. 1993a,b; 

Montague et al. 1994a). It has long been recognized that electrotonic and 

second messenger communicat ion within branched dendrit ic structures 

is critically dependent  on specific dendrit ic morphology. Rapid volume 

effects add an extra dimension to these interactions and may represent  

another means through which specific dendritic structure performs 

important  and identifiable computational functions. 

In Figure 3 we provide a simple example of how rapid volume signals 

can influence the manner in which information is represented in a 

cortical map in which volume signals operate. In this example we assume 

for simplicity that pyramidal cells are the only recipient cell type in the 

region. In Figure 3A, input 1 and input 2 are located one space constant 

from the soma. If we consider local signals confined to the dendrites, 

then these inputs will interact primarily through depolarization at the 

level of the soma. This assumes that local signals in the dendrites do not  

interact and that the voltage changes are integrated primarily at the 

soma. Changing the orientation of these dendrites, as shown in Figure 3B, 

does not  change these statements; that is, for signals confined to the 

postsynaptic compartment,  the notion of proximity is not changed by 

reorienting the dendrite. In the case where  an active input ( input  1) can 

elicit a rapid volume signal (shaded circular zone), the position of the 

dendri te is critical. Because of the capacity for synapses to interact 

directly through the tissue, proximity through the tissue space does not  

correspond to proximity along dendrites. Accordingly, the exact 

three-dimensional distribution of synapses throughout  a region 

determines the nature of the feed-forward mapping into the region from 

the point  of view of the volume signals. Hence, the distribution of 

feed-forward synapses can be sampled using different dendritic 

structures, so that a given mapping can simultaneously represent  several 

different transformations depending on the dendritic structure of the 

recipient neurons. 

Hebbian learning rules are correlational in the sense that the changes in 

synaptic strengths represent  the associations between inputs. There are 

other  relationships that are important  to learn about events, such as the 

temporal  order of the inputs. Hebbian learning rules are symmetric  in 

time: They are sensitive only to the degree of temporal  coincidence of 

inputs and not the temporal order  (Fig. 4). For example, a Hebbian rule 

is not  sensitive to whether  input A follows input B; rather, it is sensitive 

only to the absolute separation in time of inputs A and B and is therefore 

symmetric  in time. This lack of sensitivity to temporal  order  means that 

alone, a Hebbian rule would not permit  the development  of the 

predictive relationships that occur be tween stimuli during a classical or 

instrumental conditioning task (MacKintosh 1974, 1983). Conditioning 

experiments  have shown that through learning, sensory stimuli can come 

to act as predictors of reward, punishment,  and other  salient stimuli 

(Dickinson 1980). One important constraint that has emerged from this 
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A ''----r--'- 

B 

X2 Xl 

Figure 3: Sampling input activity with volume signals and postsynaptic signals. 
Simplified example illustrating some differences between signaling directly through 
a volume of tissue and confining signals to the postsynaptic compartment. (A,B) 
Fibers 1 and 2 represent inputs that participate in a feed-forward mapping into a 
region of cortex. Input 1 (O) is not firing, whereas input 2 (O) is firing and producing 
a modulatory substance. These two inputs are assumed to be the same electrotonic 
distance d from the soma. This illustration shows how a volume signal would influ- 
ence the representation of information in this mapping. From the point of view of 
signals restricted to the dendritic compartment, the proximity of these synaptic inputs 
is not changed by simply moving the dendrite or repositioning one input at an 
equivalent electrotonic distance on another dendrite (B). Because rapid volume 
signals confer the capacity for synapses to interact directly through the tissue, prox- 
imity through the tissue space does not correspond to proximity along dendrites. (B) 
The repositioned input 1 is influenced by the volume signal elicited by input 2 
although the capacity for interactions strictly through the dendritic compartment has 
not changed. Clearly, the fact that the signal can pass readily through membranes is 
important for understanding its function because the extracellular space may be very 
small in any given region of neuropil. A compound like NO (diffusion constant 
= 2.60 10-5 cm2/sec) would diffuse a root mean square distance of 10 I.~m in about 
6.4 msec. This calculation for the root mean square distance NO diffusion assumes 
an unbiased random walk in three dimensions. In one dimension, the average 
squared distance traversed by a diffusing molecule with diffusion coefficient D is 
<d2> = 2Dt, where d is distance, t is time, D is the diffusion constant. In three 
dimensions we have <r2> = <x 2 + y2 + z2> = <x2> + <y2> + <z2> = 2Dt 

+ 2 D t +  2Dt= 6Dt, where r is the vector (x,y,z). In the mammalian cerebral cortex, 
synaptic densities have been estimated to be -1  billion synapses/mm 3, which yields 
>4000 synapses in a sphere of radius 10 p.m. A volume signal using a low-molec- 
ular-weight membrane permeant molecule can allow a small number of synaptic 
contacts to tell many other synaptic contacts in a region about the statistics of their 
activity. This form of local "broadcast" does not require the use of axons. 
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t tl ~ 2 

A X 1 0 

Predictive Learning 
Rules---Learning 
Driven by Temporal 
Order 

B 0 At X2 

Figure 4: Detection of temporal order through a suppression of plasticity, x 1 and x 2 

represent two inputs into a common region or onto a common cell (see Fig. 3). A 

correlational rule is sensitive only to the absolute separation in time ( A t = t 2 - t l )  of 

x~ and x 2. (A) x 1 occurs before x2; (B) their order is reversed. The two cases are 

equivalent for a correlational rule. Suppose that input x 2 elicits some signal that is 

necessary for learning but that also inactivates learning for some short period of time 

when it rises above a threshold (shaded area). The order of occurrence of xl and x 2 

now becomes important, x~ must be active prior to x 2 or else no changes in synaptic 

weights can occur. This simple scheme represents one of many possible ways to 

express an unsupervised local predictive learning rule (see text). 

work is that this form of learning is asymmetric in time; that is, sensory 

events consistently preceding presentation of rewarding stimuli come to 

act as predictors of the reward, whereas sensory events following the 

presentation of reward do not come to act as predictors of the reward. 

Although these kinds of experiments assay the behavior of the entire 

animal, they highlight the importance of the causal structure of the world 

for the learning displayed by the animal. 

Any system that uses predictions of its most likely next state and the 

most likely next state of the world has information to prepare itself for 

the future given its current inputs and plans for taking action. In this 

sense, prediction can be viewed as a computational goal of a system 

that must operate in an uncertain and variable environment. For example, 

a system that could predict how the sensory input would change as a 

consequence of making a movement would be of great benefit in 

planning actions (Jordan and Rumelhart 1992). A prediction can be 

compared with the actual changes following a movement and the error 

used to improve the prediction. A similar approach can be taken to 

predicting the locations of targets for eye movements. There are 

probably a variety of predictive systems in the brain. Given that 

prediction is an important goal, it is reasonable to expect the existence 

of predictive mechanisms in vertebrate nervous systems at many spatial 

and temporal scales. 

Previous theoretical and modeling work has focused on the need for 

predictive or anticipatory mechanisms for learning to explain animal 

behavior and reinforcement systems (Rescorla and Wagner 1972; Sutton 

and Barto 1981; Klopf 1982). These kinds of models have used 

neuron-like units and adaptive weights to reproduce various aspects of 

classically and instrumentally conditioned behaviors. Other work has 

carefully considered the neurobiological aspects of predictive models in 

the context of classical conditioning (Hawkins and Kandel 1984; Moore 
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A Local Predictive 
Learning 
Rule---Could Synaptic 
Change at 
Glutamatergic 
Synapses be 
Predictive? 

et al. 1986; Gluck and Thompson 1987). In all of this work, some 

sensitivity to the temporal order of inputs is built into the structure of 

the network and the rules for modifying synaptic strengths. 

Because predictive mechanisms are probably represented in the 

vertebrate brain at many spatial and temporal scales, it is reasonable to 

inquire about the nature of these mechanisms at both large and small 

scales. In the following sections we present arguments and modeling 

approaches that address predictive mechanisms in the vertebrate brain at 

the scale of single synapses and at the scale of global signals available to 

widespread recipient regions. We first review data from the behavior of 

glutamatergic synapses suggesting that a predictive learning rule may take 

place at single glutamatergic connections. In the succeeding section we 

review evidence for predictive mechanisms at global levels of processing. 

We focus here on data related to glutamatergic transmission in the 

mammalian hippocampus. In a hippocampal slice preparation, Malenka 

and colleagues (Huang et al. 1992) have shown that weak synaptic 

activity (30 Hz, 0.25 sec) along a synaptic pathway will transiently block 

the subsequent capacity to induce LTP along that pathway. This result 

has been confirmed by Zorumski and colleagues (Izumi et al. 1992). The 

latter group have also extended these findings and have shown that this 

block of LTP induction is itself blocked by agents that inhibit NO 

production or chelate NO in the extracellular space. These results 

suggest an important theoretical possibility, provide important 

mechanistic clues, and construct links to the volume learning framework 

outlined in the preceding discussion. We first consider additional data 

pertinent to these findings and subsequently present the computational 

consequences of a mechanism that allows prior synaptic activity to block 

the subsequent capacity to modulate synaptic strength. 

NO is known to be involved in a variety of feedback mechanisms at 

different spatiotemporal scales: (1)  NO inhibits NOS activity directly 

(Klatt et al. 1992); (2)  NO greatly diminishes calcium fluxes through the 

NMDA receptor (Izumi et al. 1992; Manzoni et al. 1992) through action 

at a site distinct from the glutamate-binding site (Lei et al. 1992; Lipton 

et al. 1993); and (3)  by coupling glutamatergic activity to blood flow 

changes, NO production causes the influx of oxyhemoglobin into regions 

of neural tissue that were active previously and therefore have 

diminished oxygen tension. The oxyhemoglobin would tend to lose its 

oxygen and would be available to chelate free NO. 

These forms of negative feedback that limit NO production in a region 

of neural tissue might have been expected simply on the grounds that 

because NO has so many potential influences, it must be tightly 

controlled. Whereas no definitive conclusions can be reached with these 

experimental results, they do suggest that there may be a substrate for 

negative feedback onto the NMDA receptor following events that are 

sufficient to cause calcium fluxes through the receptor. As explained 

below, this biological possibility has important computational 

consequences. 

One important possibility is that this inhibition of the NMDA receptor 

may represent a blockade of the subsequent ability of synapses in the 

local volume to change their strengths, that is, inhibition of plasticity 

following events sufficient to engender long-term changes in synaptic 

strengths. Although the time scales are not quite appropriate, this 
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interpretation is supported by the above data from glutamatergic 

synapses in the hippocampus (Huang et al. 1992; Izumi et al. 1992). In 

situations where NO production participates in synaptic plasticity, the 

negative feedback to NOS has similar consequences. 

Independent of the exact role played by NO production, these data 

collectively suggest that previously active synaptic contacts may be the 

only eligible candidates for potentiation, that is, only those pre- and 

postsynaptic elements with a decaying trace of activity (e.g., calcium) 

would be eligible for long-term modification. We extend this possibility 

to include both increases and decreases in synaptic strength. The simple 

invalidation of all local connections at the moment  that an elicited 

postsynaptic signal is sufficiently high forces the system to "look 

backward" in time for some trace of activity at the synapses that were 

active previously. Hence, we have a substrate for a plasticity mechanism 

that is sensitive to the temporal order of inputs and may operate at single 

glutamatergic connections in an unsupervised manner (Fig. 4). 

This mechanism may be viewed as a local  predic t ive  l e a r n i n g  rule:  

Those synaptic elements (pre- or post-) whose activity consistently 

precedes (predicts) epochs o f  sufficiently synchronous activity in a 

local volume o f  tissue will  be potentiated Those synaptic elements 

whose activity precedes (predicts) epochs o f  little or no synchronous 

activity in a locale are depressed 

Aw(t)  = ~ x ( t -  h ) [ l ~ ( r , t ) -  ~(r , t ) ]  (12) 

This possibility provides a substrate for an unsupervised learning rule 

that can act predictively. As before, suprathreshold fluctuations in 

Ix ( r , t ) -~ ( r , t )  are necessary for changes in synaptic strength; however, 

now only prior activity is relevant. In this formulation, h represents a 

fixed time interval so that equation 12 changes weights by comparing 

preceding presynaptic activity x ( t -  h)  with current postsynaptic 

responses ~ ( r , t ) - ~ ( r , t ) .  We have cast this rule as a volume learning rule 

primarily because of convenience: It allows a signal to be passed rapidly 

throughout a local domain. The signal would not have to be a rapidly 

diffusible signal but could represent fluctuations of any kind of elicited 

postsynaptic response made available to presynaptic terminals. The 

weights that develop under such a learning rule act as predictions o f  

fu ture epochs o f  correlated activity in the local region. In the 

succeeding section we show how a second predictive learning rule 

acting within a neural system can produce synaptic weights that 

represent predictions of future reinforcement. 

One point to emphasize about this learning rule is that there must be 

some time delay (h)  between the onset of activity in the presynaptic 

terminal and the time that the fluctuation in substance levels actually 

selects the direction and magnitude of the weight changes. A threshold 

for the size of fluctuations ix ( r , t ) -~ ( r , t )  is one way to enforce such a 

delay. This delay would then depend on how fast both I~ and ~ can 

change. Note that allowing rapid changes in ~ could prevent learning 

altogether We mention these possibilities to emphasize that the time 

constant associated ~ is a critical parameter and might actually be 

adaptable (Fig. 5). 

There are other differences between this predictive learning rule and 

the covariance rule presented in Table 1. 
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Figure 5: Two scenarios for a local predictive rule. Two neurons, 1 and 2, are 
connected to one another through connection weights W 1 and W2, respectively. 
Additional input to neuron 1 is provided through connection weight Win. When 
neuron 2 fires, it elicits a local signal (shaded area) that inactivates learning (long- 
term synaptic weight changes) for a short period. The nature of this local signal is left 
unspecified. Only those synaptic contacts that were active just prior to the produc- 
tion of this signal are eligible for weight changes. As discussed in the text, this 
scheme forces the system to " look back" in time for synaptic contacts eligible for 
long-term weight changes. The learning would be predictive because only those 
synaptic contacts whose activity consistently precedes activity in the terminal from 
neuron 2 can be potentiated. A synaptic contact whose activity is not followed by the 
signal elicited from 2 would be depressed (see Table 1). In this illustration, we 
assume that neuron 1 can elicit this signal because its weight is sufficiently large (for 
details, see text). (A) Neuron 2 is separated from neuron 1 by a distance sufficiently 
large that the signal (shaded area) only influences the input to 1. If this input precedes 
activity in 2, then W~n could be potentiated. (/3) The input connections to 1 (Win) as 
well as the output connection from 1 (W,) are subject to the signal elicited by 2. In 
this case, both Win and W 1 are subject to increase if activity in these connections 
precedes the signal elicited by W 2 (shaded area); otherwise, their activity will cause 
them to depress if this activity is not followed by activity in 2. 

INFLUENCE OF LOCAL 

PREDICTIVE LEARNING RULES 

ON DEVELOPING SYSTEMS 

An appropriately silent terminal can remain in a region because 

potentiation and depression only occur for active terminals; that is, a 

terminal must be active to "assay" whether it correlates with activity in a 

local domain, thus allowing more than one variable to be mapped in a 

single local domain. Note also that this rule does not potentiate synapses 

that become active after epochs of correlated activity, possibly suggesting 

that modification of single glutamatergic connections is sensitive to 

temporally ordered events (Huang et al. 1992; Izumi et al. 1992). 

One reason that developmental experiments may appear to be consistent 

with Hebbian mechanisms of plasticity is that they represent long-term 

time averages. These could mask the fact that the terminals that segregate 

together do so because they are predicting the same local events through 

time. For example, consider the case of two axonal terminals, A and B, in 

& 
18 

L E A R N I N G M E M 0 R Y 

 Cold Spring Harbor Laboratory Press on August 24, 2022 - Published by learnmem.cshlp.orgDownloaded from 

http://learnmem.cshlp.org/
http://www.cshlpress.com


THE PREDICTIVE BRAIN 

a common region of neural tissue. Suppose that ( 1 ) activity in A 

precedes the activity in B, (2)  activity in B precedes the activity in A, or 

(3)  both 1 and 2 hold. One would label any of these three conditions as 

supporting the statement that A and B were correlated in their activity. 

Under appropriate conditions, a synaptic learning rule sensitive to 

temporal order could strengthen or stabilize terminal A when its activity 

was followed by activity in B and similarly strengthen terminal B when 

its activity was followed by activity in A. In this fashion, although the 

learning rule is strictly predictive, the stabilization or strengthening of 

synaptic contacts over longer developmental epochs would thus appear 

to be consistent with a correlational rule acting at the individual synaptic 

contacts. 

During activity-dependent phases of neural development, this local 

predictive rule also would tend to incorporate the causal structure of the 

inputs even at the level of single receptive fields: One set of inputs could 

predict future activity in another set of inputs onto a single neuron or 

group of neurons. For a visually responsive neuron, this would allow 

input in one region of the receptive field to predict activity in another 

portion of the receptive field. For a cell receiving inputs from multiple 

modalities, one modality could predict the future onset of inputs carrying 

information from another modality (Montague et al. 1993a; Pouget et al. 

1993). 

Predictive Learning 
through Diffuse 
Ascending Systems 

Thus far we have considered only unsupervised learning rules, but there 

are numerous other signals important for adaptive behavior and learning 

that could be considered supervised, if arising from outside the brain, or 

monitored, if the reinforcement signal is internally generated 

(Churchland and Sejnowski 1992). For example, attentional and 

motivational states (Mountcastle et al. 1981; Cole and Robbins 1992) and 

rewards (Wise 1982) are all important components of learning and 

memory. Information about these kinds of influences is transmitted to 

target structures in part through the diffuse ascending systems of axons 

originating in small nuclei in the midbrain and basal forebrain (e.g., 

Cooper et al. 1970). The axons of these nuclei innervate large expanses 

of the cortical mantle and other structures and deliver to their targets 

various neurotransmitters including dopamine, norepinephrine, serotonin, 

and acetylcholine. Invertebrates have analogous neurons that have been 

shown to be involved in reinforcement and reward processing (Hammer  

1991). 

Behavioral and physiological work has shown that these diffuse systems 

can influence ongoing neural activity (Kaczmarek and Levitan 1987; 

Foote et al. 1991), memory (Damasio et al. 1985; Tranel and Damasio 

1985; Goldman-Rakic et al. 1990; Decker and McGaugh 1991), and 

action choice (e.g., Bernheimer et al. 1973). Some of the same diffuse 

systems are also known to be required for the normal development of 

the response properties of cerebral cortical neurons. For example, 

removal of acetylcholine and norepinephrine disrupts normal ocular 

dominance plasticity (Bear and Singer 1986; Rauschecker 1991) and 

dramatically alters the rules for dendritic development in the 

somatotopic maps of rat cerebral cortex (Loeb et al. 1987). The question 

naturally arises as to how and why the same signals are used during 

development, learning, and behavioral control. 
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PERMISSIVE MODELS There are a number of models of reinforcement learning that explicitly 

or implicitly appeal to one of the diffuse systems to deliver information 

about rewards to target structures. In a number of these models, the 

output of the diffuse system is used as a gating signal that defines epochs 

during which correlational learning can occur (Hawkins and Kandel 

1984; Gluck and Thompson 1987; Rauschecker 1991). These models can 

be expressed as 

Aw( t) = "qx( t )y(  t)r( t) (13)  

where r ( t )  represents the output of a diffuse system that reports on 

reward to its target structures. This particular formulation of permissive 

gating would allow a system to backward-condition if r simply reported 

the occurrence and magnitude of a rewarding stimulus (Fig. 6). In 

general, backward conditioning does not occur; therefore, this rule is an 

incomplete description of how information about reinforcement should 

influence synaptic change. 

Interestingly, experimental data support a coincidence rule for the 

influence that the diffuse system outputs exert on plasticity. If the 

temporal order effects are to be taken into account at the synaptic level, 

then the gating model in equation 13 can be sensibly modified by a more 

detailed consideration of the nature of the information that a diffuse 

system could be expected to deliver to its target structures. It is possible 

that these diffuse systems are not simply reporting the occurrence and 
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PREDICTIVE MODELS: 

MAKING PREDICTIONS IN 

THE REAL BRAIN 

magnitude of rewarding and salient events in the world but, rather, 

information about predicted rewards and events. 

Recent research on computational models has suggested that the diffuse 

ascending systems could be reporting information about predictions of 

future stimuli simultaneously to widespread targets (Quartz et al. 1992; 

Figure 6" Making and using scalar predictions in a real brain. (A) Making predic- 
tions with distributed representations. An activation pattern in one of the illustrated 
cortical areas influences the (scalar) output of P through an effective weight, e.g., W 1 
from area 1. This weight is termed effective because the high convergence from area 

1 onto P throws away topographically coded information forcing the input to P from 
area 1 to represent a scalar drive to P. In this sense, the anatomical convergence 
alone performs an important computational function converting a pattern of activity 
into a scalar drive to P. If an activation pattern in area 1 consistently preceded an eye 

movement reported along r(t), then the output of P would reflect approximately the 
temporal difference between the drive to P through Wl and the drive to P through the 
W r. The more these two inputs to P differ, the larger the change in P's output. Similar 
values along these two inputs cause little or no change in the output of P. Because 
P responds to differences in input through time, its output represents a comparison 
through time of W 1 and W r. This comparison permits the weight W~ to act as a 
prediction of the effective drive that will be delivered along r(t) in the future. P's 

output will reflect a crude error in that prediction, i.e., the degree to which there is 
a mismatch between input through W~ and future input along r(t). A simple means 
to modify the weights W~ and W 2 so that they become better predictors of future 
external events is to change them according to a simple correlational rule (see text). 

Using predictions from distributed representations, B illustrates how B(t) and V(t) 
change with changing patterns of activation in the two converging areas (area 1 and 
area 2). For this example, pattern 1 is restricted to area 1 and influences the output 
of neuron P through its effective weight W~ =0.9. Pattern 2 is similarly defined and 
influences P through an effective weight W2=0.2. There is also a reward pathway 
with weight equal to 0.5. We assume that these weights have already been set by 
some learning process as described in the text. This example considers how switch- 
ing between two distributed patterns influences the output of P. The times during 

which each pattern or the reward pathway is active are indicated: Wl on (solid lines) 
-= pattern 1 active, W 2 on (broken line) = pattern 2 active, and r(t) on - reward on. 
Each input pathway is off unless otherwise indicated. Each input takes the value 1 
when it is active and 0 when it is inactive. At cycle 0, pattern 1 is active and remains 

D 

so until cycle 26. Note that during this period that 8(t) decays to 0 while V(t) builds 
to 0.9 (the value of the weight W~). At cycle 26, pattern 2 becomes active and causes 
a slight increase in A(t). At cycle 27, pattern 1 becomes inactive and pattern 2 
remains active, thus completing the switch from pattern 1 to pattern 2. This switch 
is accompanied by a large negative deflection in A(t). In this example, we assume 

that decrease in the output of P delivers less neuromodulator to its targets. Under this 
assumption, switching from pattern 1 to pattern 2 makes it less likely that the output 
connections from neurons participating in pattern 2 will cause their target cells to 
fire. This output could be connections to motor output or to other cortical areas (see 
A, above). Hence, the weights Wl and W2 store information related to predictions 
made by the inputs to neuron P. These weights subsequently influence learning 
through their influence on the output of neuron P. As pattern 2 remains active, 8(t) 
decays back to 0 and V(t) decreases from W~ (0.9) to its steady-state value W2 (0.2). 
At cycle 100, pattern 2 goes off and pattern 1 comes on, resulting in a positive 
deflection in A(t). This switch would bias the output connections of neurons partic- 

ipating in pattern 2 and permit them to drive their target neurons. The first peak in 
A(t) is the result of the switch to pattern 1, and the second peak is the result of the 
onset of the reward pathway r(t). The negative deflection in A(t) at cycle 123 is 
caused by the offset of the reward pathway. (k = 0.4). 
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Montague et al. 1993a, 1994b; Pouget et al. 1993). These biological 

models are related to more  abstract predictive models that have been 

developed and applied to engineering control  problems and data from 

classical conditioning experiments (Sutton and Barto 1981, 1987, 1989; 

Moore et al. 1986; Sutton 1988). 

The proposal for how predictions could be made in a real brain is 

outlined in Figure 6 (also see Montague et al. 1993a). In figure 6, a small 

subcortical nucleus, labeled P, receives highly convergent  input from 

both  cortical representations and inputs carrying information about 

rewarding or otherwise salient events in the world. The cells in this 

nucleus are assumed to respond transiently to their net  excitatory input, 

that  is, compute the change in activity, or an approximation to the 

temporal  derivative. For this discussion we will represent  this derivative 

as a difference between the ongoing activity and a running average of the 

activity 

~(t) = V ( t ) -  V(t) (14)  

V( t) = £ wjxj + r( t) 

j = l  

where  V(t) is the net  input to the cell at t ime t, including the 

unconditional r eward  stimulus r(t), and V(t) is a running average 

represented by: 

V(t) = XV(t) + (1 - k)V(t  - 1) forO < X < 1 (15)  

where  k is a constant that determines the distance into the past over  

which the activity is averaged. As k approaches 0, the average reaches 

farther into the past. As k approaches 1, the averaging interval becomes 

short, and the output  of P closely approximates the net  input V(t) at 

time t. Combining equations 14 and 15, we have 

a( t )  = (1 - k)[V(t )  - V(t - 1)] (16 )  

The outPut of P reflects a (scaled) temporal difference between the 

current net input and the previous running average of  the net input. 

Plasticity of the weights from the cortex onto P and within the cortical 

layers is assumed to follow a simple correlational rule 

Aw(t)  = lqx(t)~(t)  (17 )  

This rule thus retains a "gating" influence of the output  of the diffuse 

system; however, the output  ~(t) is not simply the magnitude of the 

rewarding stimulus but  instead represents a particular comparison of the 

net  input through time. The net weight converging onto P from the 

cortex, for example, W 1 in Figure 6A, can act as a predict ion of the 

amount  of reward r(t). 
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A MECHANISTIC 

CONSTRAINT SUGGESTED BY 

ANIMAL CONDITIONING 

DATA 

When a rewarding stimulus is first encountered,  it increases the output  

of P because at that moment,  the output  ~(t)  will be proport ional  to 
u 

r(t) + V * ( t -  1), where  V*(t) is the total net  input to P not contr ibuted 

by r(t). As the actual delivery of information about the reward rises and 

falls back to baseline, the running average V(t) will follow slowly (Fig. 

6B). During learning, the weights are changed according to equation 17 

until the running average of the input V(t) from the cor tex correct ly 

predicts delivery of the reinforcement, so that ~(t) = 0. The capacity for 

V(t) to do this clearly depends on a number  of factors including the 

value of ~ and the nature and time course of the rewarding events. 

Following learning, the output  of P remains at zero (or  at a constant level 

of firing if there is a spontaneous level of background activity); any 

change in the output  of P is then a measure of the unexpec ted  reward 

and represents a failure in the predict ion of future reward. Alternatively, 

the output  of P can be used to predict  the likely reward value of a novel 

sensory stimulus based on previous learning with similar stimuli. 

In the learning rule expressed by equation 17, the output  of P chooses 

the direction of learning at its targets because it is a s igned  quantity. The 

sign is interpreted as an increase in weight if V ( t ) - V ( t ) - I > T  
( increased neuromodulator  release at the target) and a decrease in 

n 

weight if V( t ) -  V ( t ) -  1 > -  T (decreased neuromodulator  release at the 

target) for some threshold T. In this sense, the weights onto P act as 

predictions of the (scalar) value of  r( t) and the output  of P could be 

said to represent  a predict ion error. The simple correlational rule that 

acts at the targets of the diffuse axons thus permits these predict ions 

errors to drive learning. There are a number  of subtleties in this 

formulation that have been discussed in an engineering context  (Sutton 

and Barto 1981; Sutton et al. 1987). Although the foregoing discussion 

omits the subtleties of how "on-line" predictions can be used in a 

learning rule, it does give the general character of the information that 

diffuse systems of axons can deliver to their targets. 

As formulated, the above scenario for making predictions about future 

reinforcement would permit  the reinforcement pathway r(t) to predict  

the onset of input from the cortical areas; this is, this scheme would 

permit  backward conditioning under some circumstances. Under almost 

all normal circumstances, animals will not backward-condition. 

Consequently, we propose that the onset of the reinforcement  pathway 

inhibits future plasticity for some period of time. This assumption forces 

the system to use previously active inputs as the predict ions of reward in 

a manner  analogous to our previous proposal for single glutamatergic 

connections. Under this assumption, backward conditioning will not  

occur because only those events that precede the input along r(t) are 
eligible for synaptic change. For example, if r ( t )  was driven by an eye 

movement,  the only synapses eligible for long-term modification are 

those whose activity consistently precedes the eye movement.  This 

requirement  establishes the eligibility for synaptic modification and does 

not  alter the construction and use of the predictions outl ined above. 

The cortical activity patterns that consistently predict  the increases of 

r ( t )  in the world will thus develop weights onto P that act to discount 

the influence that the subsequent increase in r(t) has on the output  of P. 

This framework has been applied to activity-dependent development  and 

registration of mappings in the vertebrate nervous system (Quartz et al. 
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Summary 

1992; Montague et al. 1993a; Pouget et al. 1993). In this paper 

information related to eye movements  and eye position was used to 

influence the diffuse system output  and thus directed the appropriate 

development  of a sensorimotor mapping (Montague et al. 1993b) and the 

registration of this map with a head-centered auditory map (Pouget  et al. 

1993). A similar model has been used to account  for decision behaviors 

in foraging animals (Montague et al. 1994b) and is consistent with 

human data from lesion patients who apparently lack descending inputs 

from the frontal cortex to the corresponding subcortical nuclei (Saver 

and Damasio 1991; A. Damasio and H. Damasio, pers. comm.).  This latter 

result is consistent with physiological studies in behaving rats 

(Castro-Alamancos and Borrell 1992). This framework has also been 

proposed to account for the data of Ljunberg et al. (1992) ,  where  

changes in firing rate observed in dopaminergic neurons in the ventral 

tegmental  area during a conditioning task in awake behaving monkeys is 

consistent with these neurons reflecting a prediction error  (Quartz et al. 

1992; Montague et al. 1993a). 

We have outlined some of the virtues and limitations of Hebbian, or 

correlational, learning rules as mechanisms crucial for appropriate 

development  and learning in the vertebrate brain. We have also reviewed 

some of the consequences of a synaptic plasticity mechanism that 

employs a rapidly diffusible membrane permeant  signal. The learning rule 

that results from the latter mechanism can be viewed as a volume 

learning rule because it permits a small volume of neural tissue to act as 

a single computational unit. Both Hebbian and volume learning rules 

depend primarily on the absolute separation in time of different inputs to 

drive changes in synaptic strengths and are otherwise insensitive to the 

exact temporal order of inputs. 

The critical concept  of predict ion is left out of both Hebbian learning 

and volume learning. Through an appeal to biological evidence and 

computational expediency, we have proposed a local predictive learning 

rule that may act at glutamatergic synapses. This rule is supported by 

experimental  data from the hippocampus and may represent  only one of 

many local predictive mechanisms in the vertebrate brain. Finally, we  

have discussed how more global signals, like those broadcast through 

various diffuse ascending systems, can also be used to provide 

information about predictions to widespread target structures. 

The benefits from being able to make rapid and accurate predictions 

may be sufficiently important that evolution may have favored brain 

systems that supported predictive learning. Learning mechanisms such as 

those explored in this paper  may provide insights into the overall 

organization of brain systems. 
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