
The Predictive Power of Anisotropic Spatial Correlation
Modeling in Housing Prices

Bing Zhu & Roland Füss & Nico B. Rottke

# Springer Science + Business Media, LLC 2009

Abstract This paper develops a method to capture anisotropic spatial autocorrela-
tion in the context of the simultaneous autoregressive model. Standard isotropic
models assume that spatial correlation is a homogeneous function of distance. This
assumption, however, is oversimplified if spatial dependence changes with direction.
We thus propose a local anisotropic approach based on non-linear scale-space image
processing. We illustrate the methodology by using data on single-family house
transactions in Lucas County, Ohio. The empirical results suggest that the
anisotropic modeling technique can reduce both in-sample and out-of-sample
forecast errors. Moreover, it can easily be applied to other spatial econometric
functional and kernel forms.
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Introduction

Houses are heterogeneous goods and thus buying a house always means buying an
entire range of housing characteristics. A house’s fixed location means its value will
tend to induce spatial autocorrelation and spatial heterogeneity. Hence, using
traditional ordinary least squares (OLS)-based hedonic house price modeling will be
inefficient if the assumption of uncorrelated error terms is violated. The OLS error
terms can be spatially autocorrelated for three reasons. Firstly, some of a house’s
structural and neighborhood attributes are unobservable. Thus, some important
characteristics may be omitted. Secondly, even if all or most of the information is
available, some variables are difficult to quantify such as the quality of the public
school system. Moreover, even after taking all available location variables into
account house prices can still be correlated because of their relative proximity to
each other (Valente et al. 2005). To overcome this problem we incorporate spatial
dependence considerations into the traditional hedonic model.

Most approaches to modeling spatial dependence assume that the correlation
structure is isotropic. Under this assumption, the dependence of pairs of observations
is only a function of the distance between properties while the direction separating
the properties is ignored. However, the intensity of spatial dependence often
decreases differently in different directions. For example, land price gradients tend to
be flatter along radial transportation routes than in other directions (Colwell and
Munneke 2009). In some studies, the land price gradient is defined as a function of
the direction around the center of the city under a piecewise linear function.
Therefore, house prices and residuals of hedonic house price regressions will exhibit
anisotropic spatial autocorrelation. They are thus functions of both the distance and
the direction that separates points in space (Gillen et al. 2001).

Several studies have demonstrated the inadequacy of the isotropic assumptions,
directly or indirectly. Gillen et al. (2001) test the difference in parameters of a one-
dimensional semivariogram of house prices. They use data from January 1995
through March 1998 in both the north-south and east-west directions for twenty-one
submarkets of Montgomery County, PA. Colwell and Munneke (2009) examine the
structure of urban land prices. They show that land price gradients vary according to
the direction from the commercial business district (CBD). However, although
insufficiency of isotropic assumptions has been studied in these articles the gain in
forecast accuracy obtained from explicitly anisotropic models has not been shown.

The purpose of this paper is to illustrate the incorporation of an anisotropic
spatial correlation structure into a standard hedonic house price function based on
a spatial econometric model. We use one of the most popular spatial models, the
simultaneous autoregressive model (SAR)1 with the simplest kernel form, the K
nearest neighbor (K − NN) kernel,2 to demonstrate the practical use of anisotropic

1 Other function specifications include the spatial lag model, the spatial error model, and the spatial
Durbin model (see Can 1992; LeSage 1999; LeSage and Pace 2004).
2 Other kernel forms include the negative exponential kernel (Dubin 1988), the Gaussian kernel, and so
on. Thorsnes and McMillen (1998) use a semiparametric estimator to analyze the relationship between
land values and parcel size in a sample of 158 undeveloped parcels in Portland, Oregon. They find that
implementing the alternative kernels Gaussian, Epanechnikov, Quartic Triangular, and Uniform gives very
similar results.
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spatial modeling. However, it is equally applicable to more complex econometric
models.

Our approach is closely tied to the anisotropic approach in non-linear scale-space
image processing (Weickert 1996). In image processing, this local anisotropic
technique preserves or even enhances anisotropic information such as edges, lines,
or flow-like structures that may be blurred by using normal isotropic Gaussian
smoothing methods. Although this anisotropic approach is based on filtering
methodology and not on regression analysis, it defines the spatial correlation
between point pairs in essentially the same way as spatial econometric estimators.
We apply this idea to house price regressions with the aim of demonstrating how
allowing for anisotropic spatial dependence produces more accurate predictions than
OLS and conventional isotropic techniques.

The remainder of this paper is organized as follows. “The Simultaneous
Autoregressive Model” introduces the SAR model with K − NN kernel that will
act as our econometric vehicle for applying the anisotropic spatial correlation
approach. “Modeling Anisotropic Spatial Dependence” discusses the main steps of
this estimation technique. “Estimation Results of Anisotropic Spatial Modeling”
gives our empirical results which are based on transaction data from properties in
Lucas County, Ohio. The final section provides some conclusions.

The Simultaneous Autoregressive Model

The hedonic housing price specification relates the market value of a property to the
set of characteristics that determine its value. In this study, we consider a semi-
logarithmic function form as follows3:

Y ¼ logðPÞ ¼ Xb þ " with " � N 0; s2
� �

; ð1Þ
where P is the n×1 vector of house prices, Y is a n × 1 vector of log of house price,
X is a n × 1 matrix of house characteristics, β is a l×1 vector of unknown hedonic
coefficients, and ε is a n×1 vector of residuals.

If the residuals are spatially dependent, then Eq. 1 becomes:

Y ¼ Xb þ "
" ¼ rW"þ e

with e � N 0; s 2
� �

;

�
ð2Þ

where W denotes a spatial weight matrix and ρ is the coefficient. W is a standard
matrix with each row summing to 1 and contains zeros on the main diagonal. The
non-zero entries of the j th row of W represent the observations whose errors interact
with the error of the i th observation.

3 Basu and Thibodeau (1998) state two reasons for selecting this functional form: 1) it is easy to interpret,
and 2) it reduces heteroskedasticity. Bowen et al. (2001) demonstrate the second point by comparing
different forms of functions.
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If W is known, we can estimate the regression coefficients by maximizing the
log-likelihood value of Eq. 2. We can define the log-likelihood function as
follows:

L ¼ 1
2 ln I� rWð Þ0 I� rWð Þ�� ��� n

2 ln 2ps2ð Þ � Y�Xbð Þ0 I�rWð Þ0 I�rWð Þð Þ�1
Y�Xbð Þ

2s2
ð3Þ

Typically, W is unknown. Standard methods derive the elements of W on the
basis of distance alone. We follow Pace and Gilley’s (1997, 1998) definitions:

wij ¼ 1=N ; ð4Þ
where wij denotes the weight of the interaction between location j and location i. The
basic idea is to find the N nearest properties for the i th property within a search
radius R, where N 2 m; n½ �, and m is the maximum and n is the minimum nearest
properties.

This reliance on the assumption of isotropic spatial dependence in conjunction
with the SAR model of Eq. 2 generates what we refer to as ISAR models. The
alternative suggested here combines a weight matrix W based on anisotropic spatial
dependence with the SAR model of Eq. 2. We will refer to this model herein as the
ASAR model.

Modeling Anisotropic Spatial Dependence

If the spatial structure is anisotropic, the spatial dependence between the two
comparable properties cannot simply be defined as a function of the distance
between them. Coordinate transformation is the most common approach for this
problem. We see that the global anisotropic technique, e.g., geometric anisotropic
kriging, transforms the coordinate of each property uniformly using a certain rotation
angle and a shrinking or dilating rate. But the local anisotropic method transforms
the coordinates more flexibly. The main steps include gradient estimation, coordinate
transformation, and iteration. The gradient estimation is to decide in which direction
and to what degree the coordinates will be transformed at each individual point.
Coordinate transformation is to reform the shape of the neighborhood from a circle
to an ellipse to include more properties with higher spatial autocorrelation to the
neighborhood. After that, we will iterate the previous two steps to generate a more
desirable result.

Gradient Estimation

Just as in image processing we calculate the gradient to measure spatial structure
changes. In a unidirectional one-dimensional space the gradient is defined as the rate
of change to distance, that is, rr ¼ Δ"

d , where Δε is the difference between the
estimated spatial trend ε in two locations and d is the distance between the
properties. Note here that ε in Eqs. 1 and 2 includes the spatial structure information,
the part of the house price that cannot be explained by variables in the house price
specification.
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Under the anisotropic assumption we need to consider direction. So we use
gradient vector r*r in a two-dimensional space under the geodetic system as
follows:

r*r sij
� � ¼ Δ"ij

Δ
*

Dij

¼
b" sjð Þ�b" sið Þ
u sjð Þ�u sið Þb" sjð Þ�b" sið Þ
v sjð Þ�v sið Þ

264
375; ð5Þ

wherer*r sij
� �

denotes the gradient vector at the location i in the direction of ij. Δεij is
the spatial change from location i to location j. b" sið Þ and b" sj

� �
denote the estimated

residuals in location i and j, respectively. b" sið Þ ¼ y sið Þ � bbx sið Þ, i.e. the spatial trend is
measured as the estimated residuals in the OLS regression (i.e. the estimated part of the
residuals in the SAR model). Δ

*

Dij denotes the distance vector from property si to
property sj. Under the geodetic system this is equal to the difference in latitude and

longitude between the property pair, Δ
*

Dij ¼ Δ *uij
Δ*vij

" #
¼ u sj

� �� u sið Þ
v sj
� �� v sið Þ

� �
, where u(si)

and v(si) denote the latitude and longitude coordinates of property si, respectively.
If we define the gradient on a certain property as equal to the average gradient of

each nearby property to the center property we can calculate the gradient according
to Eq. 64:

r*r sið Þ ¼ 1

N

XN
j¼1

r*r si;j
� � ¼ 1

N

PN
j¼1

b" sjð Þ�b" sið Þ
u sjð Þ�u sið Þ

1
N

PN
j¼1

b" sjð Þ�b" sið Þ
v sjð Þ�v sið Þ

26664
37775; ð6Þ

where N is the number of neighbors.

Coordinate Transformation

Figure 1 illustrates the basic idea of this step using an artificial example. Suppose all
the points in Fig. 1 represent houses with similar structural characteristics. Hollow
circles represent properties that are higher-priced because they are near a picturesque
river; black points represent properties that are lower-priced because they face a
noisy street. If we suppose the center property (the gray point) also has a low price,
then we can identify the gradient direction as the arrow in Fig. 1c. Figure 1a and c
illustrates the theoretical isotropic and anisotropic neighborhoods, respectively. An
isotropic neighborhood should be a circle, because distance is the only factor
(Fig. 1a). A typical anisotropic neighborhood is an ellipse because it considers both
distance and direction (Fig. 1c). In an isotropic neighborhood, both black points and
hollow circles are included according to their distances from the center point. But the
elliptical anisotropic neighborhood excludes most properties in the direction of large
spatial structure changes. Thus, some hollow circles are intentionally excluded from
the elliptical anisotropic neighborhood.

4 See the numerical example in the Appendix 1 for detailed calculation steps.
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We can determine such anisotropic neighborhoods by means of coordinate
transformation. Figure 1b and c tells us how such transformation is achieved. We use
the geodetic coordinate system as our original system, as in Fig. 1a. To construct a
local coordinate system, as in Fig. 1b, we first rotate the horizon’s main axis in the
direction of the gradient, and then shrink the coordinate in the perpendicular
direction of the gradient.

Suppose θ is the rotation angle and 8 is the shrinkage or dilation rate of the
principal axis of the ellipse. Then, we can define the transformed coordinates as:

u*
v*

� �
¼ 1 0

0 ϕ

� 	
cos q sin q
� sin q cos q

� 	
u
v

� �
¼ cos q � uþ sin q � v

�ϕ sin q � uþ ϕ cos q � v
� �

; ð7Þ

where
u*
v*

� �
is the transformed coordinate under the new local coordinate system,

and
u
v

� �
is the latitude and longitude coordinates under the geodetic system.

From Fig. 1b, we see that within the perpendicular direction of the gradient
property A moves to the position of A* with shrinkage rate 8 . However, in the
principal direction of the gradient property B remains in the same location.

Under this transformed local coordinate system, we can construct an isotropic
circle neighborhood (Fig. 1b). Note that this isotropic circle is equivalent to an
elliptical anisotropic neighborhood in the original coordinate system as in Fig. 1c.
In other words, coordinate transformation can help us construct an anisotropic
neighborhood using the traditional isotropic spatial correlation definition (the
function of the distance between the property pair). But the distances in each
approach are different. The distances used in anisotropic approach are calculated

Fig. 1 Coordinate transformation
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by using the transformed coordinates under the local coordinate system, as
follows5:

d0 si; sj
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ*uij*
��� ���2 þ Δ*vij*

��� ���2r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos q �Δ*uij þ sin q �Δ*vij
� �2

þ �ϕ sin q �Δ*uij þ ϕ cos q �Δ*vij
� �2r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ

*

D
0
ij
� *tu

� �2
þ ϕΔ

*

D
0
ij
� *tv

� �2r
;

ð8Þ

where Δ*uij* and Δ*vij* are the difference in the transformed coordinates from
property si to property sj under the local transformed coordinate system, Δ

*

Dij

denotes the distance vector from property si to sj under the geodetic system. *tu;
*tv

decide the rotation direction. *tu is the unit vector of the horizon axis of the
transformed local coordinate system; It is the same as the direction of the

gradient, that is, *tu ¼ cos q
sin q

� �
¼ r*

r sið Þ
r*
r sið Þ

��� ���, where r*r sið Þ
��� ��� is the absolute value of

the gradient. *tv ¼ � sin q
cos q

� �
is the unit vector of the vertical axis of the

transformed local coordinate system, i.e. in the perpendicular direction to
the gradient. Obviously, *t

0
u� *tv ¼ 0.

The shrinkage rate 8 can be defined as a function of gradient strength, i.e.,

ϕ :¼ f r*r sið Þ
��� ���� �

and

f r*r sið Þ
��� ���� �

< 1 if r*r sið Þ
��� ��� 6¼ 0

f r*r sið Þ
��� ���� �

¼ 1 if r*r sið Þ
��� ��� ¼ 0

8<: .

In this study, we define the function as follows:

f r*r sið Þ
��� ���� �

¼ 1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r*r sið Þ

��� ���.br
; ð9Þ

where b is the parameter of the shrinkage rate equation indicating an increase in ellipse
eccentricity with the unit change of gradient value. In image processing this equation is
called the diffusivity function. It is an ad hoc function and can be applied in different
forms (Weickert 1997). Here optimal value for parameter b is selected by maximizing
the log-likelihood value in the regression.

The above steps6 follow the anisotropic techniques of image processing. This
technique helps to identify the neighbors with potentially higher autocorrelation to
the center property. Therefore, the spatial weight matrix W can better represent the
structure information retained in the residuals of the house price specification.

5 The distance in this study is calculated as the straight line between the latitude and longitude using the
distance formula for the rectangular plane coordinate system. This is because, for a neighborhood, a
spherical angle is negligible. In addition, we require only an approximate relative distance.
6 Detailed calculation steps can be found in the numerical example in the Appendix 1.
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However, within image processing pixels are always in a regular grid. Houses, on the other
hand, may be quite irregularly located. They may be very isolated or very tightly grouped.
We define a search radius R and assume that properties located beyond such range have
no spatial correlation with the center property. This is reasonable because spatial
correlation usually declines as distance increases. Different radii will generate different
prediction results for both ISAR and ASAR model. However, in spatial econometric
models it is difficult to decide the optimal R before running the models. Therefore, we
conduct the isotropic and anisotropic model under varied R and compare the results.

Scene I

For more isolated properties, most of the nearby properties usually have a longer
distance to the center point than R. Figure 2a shows the isotropic neighborhood
which is comprised of properties within this range.

Under the transformed local coordinate system we construct an isotropic
neighborhood with a new search radius R′, R0 ¼ R � ϕ (Fig. 2b). This is equal to
an elliptical neighborhood under the original coordinate system with a semimajor
axis of R R0=ϕ ¼ Rð Þ in the perpendicular direction of the gradient, and a semiminor
axis of R·8 in the principal direction of the gradient (Fig. 2c). Based on the new
distances under the transformed local coordinate system, we select those properties
with a smaller distance than R′ to form the anisotropic neighborhood.

Scene II

For more tightly grouped properties, however, the maximum distance of the
nearest N neighbors may be less than R.7 In that case, we can construct the

Fig. 2 Coordinate transformation with sparse properties

7 The numerical example in the Appendix 1 is obtained under this situation.
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isotropic neighborhood using these N properties (Fig. 3a). We again establish a
local coordinate system with the help of the gradient. To expedite the process, we
choose to recalculate the distance of the nearest 2N properties under the local
coordinate system, instead of calculating the distance of all the properties in the
district. According to the new distances, we then choose the N nearest properties
(Fig. 3b).

The properties perpendicular to the gradient will be our priority because their
distance in this direction has been shortened. Figure 3c shows that the nearest
properties chosen to form the neighborhood are different before and after the
transformation.

Scene III

Figure 4 illustrates the case when the gradient is very large. Under this circumstance
R′ could be dramatically smaller because 8 is small. Under the original coordinate
system, the maximum distance of the nearest N properties may be smaller than R.
Therefore the isotropic neighborhood is comprised of N properties (Fig. 4a). But
after the transformation fewer properties are chosen because of the shortened
anisotropic range R′ (Fig. 4c). This is a reasonable consideration, because when the
spatial structure changes greatly the neighborhood should be smaller.

Scene IV

In some special cases houses may be located so close to each other that they even
share a common fence. In this situation, the gradient would be abnormally large
because the distance is so short. Thus, the noise in Δεij is amplified by the extremely

Fig. 3 Coordinate transformation with intensive properties
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short distance. So, if the distance between the coordinates of the property pair is less
than 135 m8 we assume a gradient of 0

0

h i
. Within such a short distance we suppose

that we would not see material changes in the spatial structure. This helps us reduce
the influence of the noise in Δεij when calculating the gradient.

When the number as well as the distances of ‘nearest neighbors’ under the
transformed local coordinate system are identified, we can use the isotropic
definition in the last section to define the spatial weight matrix W.

Iteration

The purpose of this step is to use the prior information to modify the estimated
gradient in order to ensure a precise neighborhood transformation. The shape of the
transformed neighborhood is determined directly by the gradient (see Fig. 5). From
Eqs. 5 and 6 it is apparent that the spatial trend b" sið Þ, which determines the gradient,
can be affected by the prior regression coefficients. However, the initial OLS
coefficients are usually not efficient, because they are estimated under the
independent error assumption.

Thus, to use the prior information and improve predictive power, it is necessary to
conduct an iteration of the entire process. In our study, we find that the log-
likelihood value various only slightly after the second iteration. Therefore, we
perform two iterations.

Fig. 4 Coordinate transformation with large gradients

8 The value depends on the spatial structure in the dataset. In our data, a value of 135 m fits the data best.
Compared with other values, the anisotropic approach can best enhance the fitness of the model.
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Estimation Results of Anisotropic Spatial Modeling

The database we use here consists of 4,378 single-family home transactions
from 1998:1 to 1998:4 in Lucas County, Ohio. The data are provided by the
county auditor and contain structural housing descriptions (e.g., building year,
lot size in square feet, room numbers), sale prices, sale time, and geographic
coordinates.

Our sample data consists of two groups: We use 3,978 transactions for the
estimation sample and another randomly selected 400 transactions (i.e. 10% of the
database) are reserved for the prediction sample. Table 1 provides the descriptive
statistics (mean and standard deviation) of these housing characteristics for the in-
and out-of-sample dataset.

Figure 6 illustrates the estimated gradient using different numbers of neighbors.
Each arrow represents the gradient at a certain point. The length of the arrow
represents the value of the gradient; the direction of the arrow identifies the direction
of the gradient. Figure 6a is derived using the nearest four properties, while Fig. 6b
is derived using the nearest twenty properties.

Gradients based on larger neighborhoods tend to capture the average spatial trend
and smooth the individual spatial structure. In contrast, using a smaller neighbor-
hood retains more individual spatial characteristics. However, the gradients show

Fig. 5 Different neighborhoods under different gradients
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stronger noise and discontinuity. Thus, we cannot determine which number is best at
this stage because there are no criteria for gradient accuracy. This can only be made
by examining the final results.

We find that the best results are achieved by using different neighborhood
numbers to calculate gradient in each time of iteration. Our first run included up to
the four nearest properties, and our second run included up to twenty properties. We
posit that including both larger and smaller neighborhoods allows us to take
advantage of both common and individual spatial information.9

Table 1 Descriptive statistics for sample dataa

Variables Estimation Sample Prediction Sample

Mean Standard Deviation Mean Standard Deviation

LP 11.085 0.787 11.048 0.758

AGE 0.638 0.274 0.650 0.253

AGES 0.482 0.375 0.486 0.345

LTS 8.938 0.772 8.871 0.723

LTSS 80.478 14.848 79.216 13.863

ROOM 6.077 1.297 6.025 1.292

BED 2.961 0.719 2.940 0.740

TLA 7.196 0.361 7.164 0.346

GAR 0.853 0.355 0.853 0.355

STOR 1.374 0.451 1.385 0.455

WALL_SIM 0.466 0.499 0.478 0.500

WALL_BRI 0.356 0.479 0.343 0.475

Q2 0.381 0.486 0.383 0.487

Q3 0.376 0.484 0.355 0.479

Q4 0.018 0.134 0.025 0.156

XCOORD 41.686 0.045 41.658 0.041

YCOORD −83.602 0.079 −83.598 0.075

a The sample data consist of 4378 transactions in 1998 in Lucas County, Ohio; 400 transactions are
randomly selected as the prediction sample; the rest are estimation sample. LP: log of sell price in US
dollars; AGE: (sold year – building year)/100; AGES: AGE squared; LTS: log of lot size in square feet;
LTSS: log of lot size squared in square feet; ROOM: number of rooms; BED: number of bedrooms; TLA:
log of total living area in square feet; GAR: dummy variable for garage; STOR: number of stories;
WALL_SIM: dummy variable for using asbestos or composite tile shingles or stone or wood siding;
WALL_BRI: dummy variable for brick siding; Q2: houses sold in the second quarter; Q3: houses sold in
the third quarter; Q4: houses sold in the fourth quarter; XCOORD: latitude; YCOORD: longitude

9 We use up to two times the nearest neighbors (i.e. 4/20 nearest neighbors in our case) to calculate the
gradient, because in the anisotropic approach the final nearest 2/10 neighbors are selected from the nearest
4/20 neighbors, see Appendix 1. In doing so, we include all potential neighbors to calculate the gradient.
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The input parameters of the isotropic approach include the range R, the
maximum, and the minimum number of nearest properties. The anisotropic approach
includes one additional parameter, namely parameter b in the shrinkage rate. In our
dataset, best results in the ISAR model are obtained with a maximum of ten and a
minimum of two properties. We use ten and two as the maximum and minimum
number of neighbors in both isotropic and anisotropic approach.

Fig. 6 Gradients with 4/20 nearest neighbors
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The remaining parameters are the range R in the isotropic approach and R, b1,
b2 in the anisotropic approach.10 Figure 7 illustrates the sensitivity of these
parameters to the maximized log-likelihood (LL) values from both the isotropic
and anisotropic approach. The different likelihood values are sorted first by R, then
by b1, and then by b2. From Fig. 7 we can see that, with optimal b1 and b2,11 the
ASAR model always yields higher LL-values than the ISAR model for R between
700 to 3,500 m. The difference increases as R increases. After 2,500 m, the LL-
value of the ISAR model does not change much because most of the ten nearest
properties are within a radius of 2,500 m. For each value of R there is little
variation in the LL value which implies that parameter b1 does not affect the final
LL-values too much. This is because the purpose of the first iteration is to provide
a more precise gradient but not to generate final estimation result. In contrast, the
final LL-values are more sensitive to parameter b2. However, the degree of the
sensitivity decreases as R increases.

Figure 8 provides empirical examples of the isotropic and anisotropic neighbor-
hoods. Different grey intensities reflect the spatial trends b" sið Þ. Properties chosen to
form a neighborhood are identified by ▲, while the center property is denoted by ★.
Other outside properties are denoted by ♦.

Fig. 7 Comparison of log of maximized likelihoods with different radii and parameters (R is the
neighborhood radius; b1 denotes parameter b in the diffusivity equation in the first run of iteration, from
1.5 to 46.5 and 5 as interval; b2 denotes the parameter b in the second run of iteration, from 1.5 to 11.5
and 1 as interval. The different likelihood values are sorted firstly by R, then by b1, then by b2, i.e. the
first LL-value is generated by R=700, b1=1.5 and b2=1.5, the second by R=700, b1=1.5 and b2=2.5, et
cetera, then twelfth LL-value is by R=700, b1=6.5 and b2=1.5, et cetera, then the 111 LL-value is by R=
900, b1=1.5 and b2=1.5, et cetera)

11 The optimal b1 and b2 are selected by iterating the procedure in the given range from 1 to 50 for b1 and
from 1 to 12 for b2 and comparing the log-likelihood value.

10 Because we iterate twice and use different neighborhoods in each iteration step to measure the gradient
(i.e. a smaller neighborhood in the first run and a larger one in the second run), we have two parameter b:
b1 in the first iteration and b2 in the second.
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In the isotropic K-NN approach, the selected neighbors for property ★ are located
over several regions where b" sið Þ differs from −1.4 to −0.4. In contrast, the
anisotropic K-NN approach makes the shape of the neighborhood much flatter in the
gradient direction. The b" sið Þ of the neighbors changes from −1.4 to −1.

Fig. 8 Comparison of property selection in neighborhood by ISAR and ASAR models (★ represents the
center property; ▲ represents the neighborhood; ♦ represents other properties; ➔ represents the gradient)
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Table 2 presents one set of the estimation results for the OLS hedonic regression
as well as the ISAR12 and ASAR models. The OLS model has an adjusted R2 of
0.766. The ASAR model raises the LL-value from 684.15 to 817.28 compared with
the ISAR model. Most exogenous variables in the OLS regression are statistically
significant except for the “number of rooms” variable, the “number of bedrooms”
variable, the “brick siding wall” dummy variable and the “ sold in the forth quarter”
dummy variable.

In the ISAR model, the “number of bedrooms” variable, the dummy variable
“simple siding wall” and the dummy variable “sold in the forth quarter” are
statistically insignificant; other variables are significant at a 10% significance level.
In the ASAR model, only the variable “number of bedrooms” is statistically
insignificant; all other variables are significant at a 10% level. Both spatial
dependent matrices in these two spatial models are highly significant.

Spatial autocorrelation models (the ISAR and ASAR models) provide a more
logical explanation than the OLS model for the coefficient signs. For example, the
coefficients for variable age in OLS regression indicates that for houses under 28
years old, age is positively correlated to the price, which is counterintuitive since the
age of such houses is usually negatively correlated to its price. All the significant
coefficients in spatial autocorrelation models have reasonable signs. The dependence
matrix has a positive coefficient meaning that the spatial structure is positively
autocorrelated.

Table 3 compares the prediction accuracies under different neighborhood
ranges. Mean squared errors (MSE) is used to compare forecasting accuracy by
different models (Dubin 1988; Pace and Gilley 1998; Bao and Wan 2004). For the
ASAR model, in-sample MSEs are always smaller than those from ISAR model.
At a radius of 2,500 m, the ASAR model can reduce the MSE by 53.38%
compared to the OLS model and by 7.53% compared to the ISAR model.
Furthermore, the out-of-sample MSE from the ASAR model is 55.38% less than in
the OLS model and 12.69% less than in the ISAR model. Similar results hold for
other ranges.

BT represents the percentage of times when the squared errors by the ASAR
model are less than those of the ISAR model (Basu and Thibodeau 1998). We found
that in most cases the ASAR model yields more accurate estimation results
compared with the ISAR model both in-sample and out-of-sample. At a range of
2,500 m, for instance, ASAR in-sample estimations were 57.79% more accurate than
ISAR estimations, while out-of-sample predictions were 59.75% more accurate than
ISAR predictions.

To further test the ISAR and ASAR models forecasting performances, we use
Wilcoxon’s (1945) signed-rank test and the Morgan-Granger-Newbold zero
correlation test (Granger and Newbold 1977) which are used by Bao and Wan
(2004). In many cases, we found that both tests reject the hypothesis of equal
predictive accuracy at a highly significant level for the in- and out-of-sample
predictions.

12 When building the ISAR model we referred to the Spatial Econometrics Library by LeSage.
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Table 2 Regression results a (Neighborhood Range = 2,500 m; b1=0.5 and b2=2.5)

Variables OLS ISAR ASAR

AGE 0.885b −0.181d −0.185c

(0.106) (0.095) (0.093)

AGES −1.579b −0.441b −0.393b

(0.075) (0.068) (0.067)

LTS 1.702b 0.544b 0.388b

(0.121) (0.033) (0.104)

LTSS −0.076b −0.021b −0.013c

(0.006) (0.002) (0.005)

ROOM −0.001 0.019b 0.017c

(0.010) (0.010) (0.007)

BED −0.023 −0.006 0.003

(0.014) (0.010) (0.010)

TLA 0.657b 0.551b 0.525b

(0.033) (0.025) (0.024)

GAR 0.289b 0.139b 0.139b

(0.018) (0.013) (0.013)

STOR 0.206b 0.083b 0.072b

(0.017) (0.013) (0.012)

WALL_SIM −0.084b −0.034b −0.021d

(0.018) (0.013) (0.012)

WALL_BRI −0.017 0.017 0.029d

(0.020) (0.014) (0.014)

Q2 0.077b 0.066b 0.065b

(0.017) (0.012) (0.011)

Q3 0.080b 0.072b 0.071b

(0.017) (0.012) (0.011)

Q4 0.034 0.048 0.066d

(0.047) (0.032) (0.031)

CONSTANT −2.999b 3.862b 4.791b

(0.601) (0.066) (0.646)

rho 0.849b 0.880b

(0.003) (0.009)

R2 0.767

R2
adjusted 0.766

ML 684.15 817.28

a Calculations are based on the neighborhood range of 2,500 m and parameters b1=0.5 and b2=2.5; standard
errors are in parentheses; rho is the coefficient of dependence matrix; ML is the log value of maximum
likelihood; the OLS model assumes that house prices or corresponding residuals are independent of each
other; ISAR is the traditional dependence matrix based on the assumption that the correlation between two
comparable properties is a function of distance; ASAR is the SAR model with an anisotropic dependence
matrix based on the assumption that the decay of dependence changes both in distance and direction
b, c, and d denote significance at the1%, 5% and 10% levels, respectively
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Unlike some global anisotropic neighborhood transformation methods, ours is
more flexible because it is based on a local coordinate system transformation. Each
neighborhood can be transformed differently according to the gradients in each
point.

In order to compare our method with the global anisotropic method, we use the
geometric anisotropic kriging method (GAKriging).13 Table 4 shows the forecast
accuracy for the OLS method, the isotropic kriging model (kriging), and the
GAKriging. GAKriging produces greater MSEs and lower BTs than the isotropic
kriging method for in-sample and out-of-sample predictions. In contrast, the ASAR
model, when compared with the ISAR model, improves all four indices in most
cases.

Table 3 Predictive accuracy of the OLS, ISAR, and ASAR models under different neighborhood rangesa

R MSE BT Wilcoxon’s Signed-Rank
Test

Morgan-Granger-Newbold Zero
TestOLS ISAR ASAR

In-Sample

700 0.0739 0.0707 44.29% −8.094b 5.272b

900 0.0734 0.0696 56.25% −8.780b −0.092
1200 0.0730 0.0687 55.38% −8.350b −1.818d

1500 0.1448 0.0728 0.0681 55.86% −9.213b −10.459b

2000 0.0728 0.0681 55.93% −14.394b −8.678b

2500 0.0730 0.0675 56.91% −9.802b −17.907b

3500 0.0731 0.0676 55.86% −9.826b −21.442b

Out-of-Sample

700 0.0902 0.0807 58.75% −4.283b −4.415b

900 0.0903 0.0814 63.50% −7.703b −6.183b

1200 0.0898 0.0811 64.50% −5.928b −6.197b

1500 0.1804 0.0898 0.0807 65.00% −6.675b −6.059b

2000 0.0917 0.0842 63.75% −6.737b −3.456b

2500 0.0922 0.0805 62.50% −5.486b −5.698b

3500 0.0918 0.0824 66.25% −6.575b −8.739b

a Calculations are based on the neighborhoods with the maximum ten nearest neighbors and minimum two
nearest neighbors, but with different radii; R stands for the radius, in meters; MSE is the mean of squared
errors; BT is the percentage of times that the squared error in ASAR model is smaller than that in the
ISAR model. Both tests are used to determine whether the ASAR model contains significantly more useful
information than the ISAR model. Both Wilcoxon’s Signed-Rank Test and Morgan-Granger-Newbold
Zero Test are used to determine whether the ASAR model contains significantly more useful information
than the ISAR model
b, c, and d denote significance at the 1%; 5%; and 10% level, respectively

13 The isotropic Kriging method has been applied on housing price spatial correlation analyses by many
studies, see Dubin (1998); Basu and Thibodeau (1998); Gillen et al. (2001); Bourassa et al. (2007).
Differently with the spatial econometric approach, which defines the spatial autocorrelation by spatial
weight matrix, the Kriging method derives the correlation by semivariogram.

The Predictive Power of Anisotropic Spatial Correlation Modeling in Housing Prices 559



Conclusions

Based on the anisotropic technique in scale-space image processing we propose an
approach to modeling anisotropic autocorrelation in house prices. We apply the
proposed anisotropic method to a simultaneous autoregressive model with K nearest
neighbor kernel. The method can also be used for other spatial econometric models,
such as the spatial lag model, the spatial Durbin model, and the general spatial
model. It is also easy to pair with other kernel forms, such as a Gaussian kernel and a
spherical kernel.

The basic steps include gradient estimation, neighborhood transformation, and
iteration. In our study, we fitted a database consisting of transaction data from Lucas
County, Ohio, to the model. We conducted both isotropic and anisotropic
simultaneous autoregressive model using different search radii. In each circum-
stance, the anisotropic approach yields higher maximized log-likelihood values and
reduces both in-sample and out-of-sample MSEs. In most cases, both Wilcoxon’s
signed-rank test and the Morgan Granger-Newbold test show that the anisotropic
model performs substantially better than the standard isotropic model. Taking the
results from 2,500 m neighborhood radius, for example, in-sample MSEs are
reduced by 7.53% compared with a simultaneous autoregressive model with
isotropic weight matrix and by 53.38% compared with an OLS model without
spatial considerations. Out-of-sample MSEs are decreased by 55.38% and 12.69%,
respectively.

Unlike the isotropic spatial dependence matrix the anisotropic spatial dependence
matrix considers both distance and spatial structure information, measured by the
direction and strength of the gradient. This is accomplished by two kinds of
transformations: first, the shape of the neighborhood is altered from a circle to an
ellipse; second, at some locations where the spatial structure develops extremely
uneven the radius of the neighborhood is shortened to include fewer neighbors.
These two transformations are accomplished automatically and differently at each
location according to the gradient.

Table 4 Predictive accuracy of global anisotropic approacha

OLS Kriging GAKriging

In-sample

MSE 0.1148 0.0784 0.0790

BT 49.50%

Out-of-sample

MSE 0.1804 0.1841 0.1891

BT 47.75%

aMSE is mean squared error; BT is the percentage of times that the squared error is smaller than that in the
OLS model; kriging refers to the kriging method, as per Bourassa et al. (2007); GAKriging refers to
geometric anisotropic kriging, which is also referred to as Easykrig 3.0 when calculating one- and two-
dimensional semivariograms
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Compared with some global isotropic approaches (e.g. Geometric Anisotropic
Kriging), the advantage of our local approach is twofold: First, the method can adapt
to local characteristics more flexibly because the neighborhood is transformed
differently at each point. Second, parameter estimates and prediction accuracy can be
improved to the desired degree by iterating on the spatial dependence matrix without
arbitrary choices by the researcher.

The importance of the anisotropic approach also depends on the urban growth
pattern. It is difficult to expect a dramatic improvement in each region, especially
when the spatial structure develops isotropic or nearly isotropic in each direction. In
contrast, when the urban growth pattern has stripes or flow-like structures, e.g.
rivers, commercial corridors along with major transportation arteries, a greater
enhancement can be expected.

Because the gradient is the direct determinant of the neighborhood transforma-
tion it plays an important role in the proposed method. Properties are not usually
located symmetrically in a grid, as are points in image processing. So we use an
approximate method to avoid solving the non-linear diffusion filtering equation
directly.

Future work in this area may want to improve the gradient calculation to better
reflect spatial structure changes. Another objective could be to extend the method in
the spatial-temporal dimension. Spatial econometric modeling is advantageous for
temporal house price autocorrelation analyses. It would be useful to apply the
anisotropic method to the temporal dimension in order to improve panel analyses
such as those used to construct house price indices.
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Appendix 1 Numerical example of anisotropic neighborhood definition

Using the properties in Fig. 8 as examples, we illustrate here how to construct an
anisotropic neighborhood. The center property A has latitude and longitude of
(49.665556, −83.5686870).

Table 5 shows the latitude, longitude, and spatial trends b" sið Þ of property A and
the nearest twenty properties. When defining an isotropic neighborhood, we must
first use latitudes and longitudes to calculate the straight line distances under the
geodetic coordinate system from each of the twenty properties to property A
(Table 7, column 3). These properties are then sorted by ascending distance
(Table 7, column 2) and we construct the isotropic neighborhood by using the ten
nearest properties within a range of 0.027 (c.a. 2500 m), i.e., properties 1 to 10
(identified in Fig. 8a). The following steps show how to construct an anisotropic
neighborhood.
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Gradient Estimation

We first calculate the two-dimensional gradient from the nearest twenty properties to
property A using Eq. 5. Table 2a shows spatial changes ΔεAj, distance vectors Δ

*

DAj,
and the estimated gradients. For example, the gradient from property A to property
A1 can be calculated as follows:

r*rðsA1; sAÞ ¼ Δ"A1

Δ
*

DA1

¼

b"A1 � b"A
uA1 � uAb"A1 � b"A
vA1 � vA

26664
37775 ¼

�1:191223þ 1:170891

41:669310� 41:665556
�1:191223þ 1:170891

�83:569028þ 83:568687

2664
3775 ¼

�0:020332

0:003754
�0:020332

�0:000341

2664
3775

¼ �5:419533
59:624633

� �
:

The difference between the two longitudes is 0.000341 (about 20 m).
Because of the small distance the gradient is unusually large while the spatial
condition is unlikely to exhibit large changes. If the difference in latitude or

Table 5 Property descriptions

Property Latitude u(si) Longitude v(si) Spatial Trend "̂ sið Þ

A 41.665556 −83.5686870 −1.170891
A1 41.669310 −83.5690280 −1.191223
A2 41.668978 −83.5663320 −0.724011
A3 41.669209 −83.5656100 −1.046372
A4 41.660378 −83.5705240 −0.772146
A5 41.659139 −83.5705730 −0.990804
A6 41.662057 −83.5747290 −1.535109
A7 41.670743 −83.5638990 −0.931271
A8 41.662094 −83.5624770 0.318190

A9 41.666295 −83.5615320 0.550640

A10 41.670043 −83.5627040 0.105691

A11 41.672400 −83.5717510 −1.948181
A12 41.660337 −83.5740990 −0.872759
A13 41.658450 −83.5655000 −1.064081
A14 41.658698 −83.5641470 −0.701871
A15 41.657130 −83.5680390 −0.529503
A16 41.661816 −83.5610050 0.299630

A17 41.673925 −83.5666800 −1.157957
A18 41.657092 −83.5706570 −1.024243
A19 41.672542 −83.5633070 −1.088521
A20 41.671855 −83.5748730 −1.170891
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longitude is less than 0.0015 (about 135 m) we set the gradient equal to zero;

hence, r*r sA1ð Þ ¼ �5:419533
0

� �
: The 20 estimated gradient vectors are in Table 6.

Using Eq. 6, the gradient at location SA is calculated as the average gradient of the
nearest neighbor properties:

r*rðsAÞ ¼ 1

20
ðr*rðsA1Þ þ r*rðsA2Þ þ . . .þr*rðsA20ÞÞ ¼ �26:8191

53:0670

� �
;

as in Fig. 8b. The strength of r*rðsAÞ is r*rðsAÞ
��� ��� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�26:8191Þ2 þ 53:06702
q

¼
65:373. We can represent the direction of r*rðsAÞ as a unit vector *tu ¼ r*

r

r*
r sAð Þ

�� �� ¼
�26:8191
65:373
53:0670
65:373

� �
¼ �0:43184

0:90195

� �
, and the perpendicular direction as *tv ¼ �0:90195

�0:43184

� �
.

Coordinate Transformation

We can define the shrinkage rate 8 as a function of the gradient strength using
Eq. 9. For b=2.5, the shrinkage rate 8 for property A is given as ϕ ¼
1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 65:373=2:5
p ¼ 0:192. When *tu,

*tv, and 8 are known, the distances in the

Table 6 Gradient estimation

Property Spatial change ΔεAj Distance vector Δ
*
D

Aj
Gradient vector r

*
r sA;j
� �

A1 −0.020332 [0.003754, −0.000341] [−5.415933, 0]
A2 0.446880 [0.003422, 0.002355] [130.590382, 189.758083]

A3 0.124519 [0.003653, 0.003077] [34.086948, 40.467865]

A4 0.398745 [−0.005178,−0.001837] [−77.007558, −217.063221]
A5 0.180087 [−0.006417, −0.001886] [−28.064048, −95.486210]
A6 −0.364218 [−0.003499, −0.006042] [104.092088, 60.281068]

A7 0.239620 [0.005187, −0.004788] [46.196189, 50.045872]

A8 1.489081 [−0.003462, −0.006210] [−430.121605, 239.787600]
A9 1.721531 [0.000739, 0.007155] [0, 240.605275]

A10 1.276582 [0.004487, 0.005983] [284.506782, 213.368198]

A11 −0.777290 [0.006844, −0.003064] [−113.572474, 253.684729]
A12 0.298132 [−0.005219, −0.005412] [−57.124392, −55.087190]
A13 0.106810 [−0.007106, 0.003187] [−15.030910, 33.514166]
A14 0.469020 [−0.006858, 0.004540] [−68.390259, 103.308457]
A15 0.641388 [−0.008426, 0.000648] [−76.120080, 0]
A16 1.470521 [−0.003740, 0.007682] [−393.187361, 191.424203]
A17 0.012934 [0.008369, 0.002007] [1.545509, 6.444625]

A18 0.146648 [−0.008464, −0.001970] [−17.326043, −74.440421]
A19 0.082370 [0.006984, 0.005380] [−11.790739, 15.310428]
A20 0.832537 [0.006299, −0.006186] [132.169775, −134.584107]
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local transformed coordinate system can be calculated using Eq. 8. For example, the
new distance between properties A and A1 can be calculated as:

d0 sA; sA1ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ

*

DA1

0

� *tu

� 	2

þ ϕΔ
*

DA1

0

� *tv

� 	2
s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:003754
�0:000341

� �0

� �0:43184
0:90195

� � !2

þ 0:192� 0:003754
�0:000341

� �0

� �0:90195
�0:43184

� � !2
vuut

¼ 0:002020:

Similarly, the distance between properties A and A2 can be recalculated as:

d0 sA; sA2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ

*

DA2

0

� *tu

� 	2

þ ϕΔ
*

DA2

0

� *tv

� 	2
s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:003442
0:002355

� �0

� �0:43184
0:90195

� � !2

þ 0:107� 0:003442
0:002355

� �0

� �0:90195
�0:43184

� � !2
vuut

¼ 0:001024:

Table 7 Distances under the geodetic and local coordinate systems

Property Geodetic Coordinate System Local Coordinate System

Rank Distance d Rank Distance d′

A1 1 0.003769 5 0.002020

A2 2 0.004154 1 0.001024

A3 3 0.004776 3 0.001498

A4 4 0.005494 2 0.001192

A5 5 0.006688 4 0.001650

A6 6 0.006982 12 0.004102

A7 7 0.007059 7 0.002460

A8 8 0.007110 18 0.007096

A9 9 0.007193 16 0.006184

A10 10 0.007479 11 0.003698

A11 11 0.007499 14 0.005785

A12 12 0.007518 10 0.002967

A13 13 0.007788 15 0.006011

A14 14 0.008225 17 0.007094

A15 15 0.008451 13 0.004437

A16 16 0.008544 20 0.008544

A17 17 0.008606 6 0.002408

A18 18 0.008690 8 0.002473

A19 19 0.008818 9 0.002484

A20 20 0.008829 19 0.008314

Range 0.027000 0.005184
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The new distances between the twenty properties and property A under the local
coordinate system are given in Table 7, column 5. Comparing the distances under
both the geodetic and the local coordinate system, we can observe ordering
changes. For example, property 17 is the seventeenth nearest property to property
A under the geodetic coordinate system, but it ranks sixth under the local
coordinate system.

For the local coordinate system, we can calculate range R′, to determine which
properties make up the revised neighborhood, as follows: R0 ¼ Rϕ ¼ 0:027�
0:192 ¼ 0:005184. In this case, the nearest ten properties under both the geodetic
coordinate system and transformed local coordinate system are with their own range
(0.027 and 0.005184, respectively). So ten properties are chosen by both isotropic
and anisotropic approach, but they are different ten properties.
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