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1 Introduction

Rankings in sports have a number of important applications. One of the roles of
ranking tables is to provide an objective indication of the strength of individual
competitors, based on their previous performance. In this way, rankings provide
information about the actual level and current progress for competing parties,
and encourage competition. Accurate rankings can be used in scheduling match-
ups by pairing teams or players of similar strength. This is strongly connected to
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perhaps the most important application of rankings in scheduling competitions:
when tournaments are preceded by a draw, teams or players are seeded according
to official rankings. It is common to pair higher and lower ranked rivals to prevent
the strongest opponents (those ranked highest) to meet in an early stage of the
competition. Therefore, rankings have a crucial impact on the competition.

Another use of rankings, in association football, is that the UK Government
uses national teams’ rankings for granting work permits for players outside the
European Union. According to the rules, a player is eligible to play in England
when his country has a ranking position higher than the 70th rank, averaged over
a period of two years (Internationalworkpermits.com, 2012). Hence, the official
rankings influence player careers as well.

In this paper we focus on international football, and rankings of national
teams, whose corresponding official ranking is maintained by FIFA – Fédération
Internationale de Football Association – the international governing body of
football. We provide an overview of existing ranking methods in sports, including
that by FIFA, and compare them using two evaluation measures described later
in this paper. The goal is to assess the predictive capabilities of these ranking
systems.

The remainder of the paper is structured as follows. After presenting related
work, we describe and briefly discuss several ranking methods used in our
experiments. Afterwards, we present our experiments comparing these ranking
methods. Finally, we discuss the results and conclude with future work.

2 Related work

The FIFA ranking method is often subject to criticism. A constructive judgment
of the ranking was done by McHale and Davies (2007). By building and analyzing
several statistical models for predicting match results, the authors conclude that
the ranking does not use the information on past results efficiently and it does not
react quickly enough to recent changes in team performance. A suggestion is made
to look for another ranking system or improving the current one.

Several authors studied the efficacy of predictions in terms of agreement
between the ranking and results of major football competitions. Suzuki and
Ohmori (2008) evaluate the accuracy of predictions based on the official ranking
with respect to the results of four World Cup tournaments between 1994 and 2006.
The authors conclude that ranking-based predictions are reasonably accurate.
Luckner et al. (2008) compare predictions based on the FIFA ranking against
forecasts derived from a market for football teams specifically created for this
purpose. The predictions are evaluated against the final standings of the World
Cup tournament in 2006 and the market forecasts turn out to be more accurate
than those based on the FIFA ranking. Leitner et al. (2010) compare the
accuracy of the FIFA ranking and bookmakers’ predictions of the results of the
2008 European Championships. They measure accuracy using Spearman’s rank
correlation between the final tournament standings and ranking tables. They show
that bookmakers are more accurate than the FIFA ranking in their predictions.

In the related work described above, evaluation of the FIFA ranking is based
solely on the position of a team in the table. Predictions are made by indicating
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that the higher ranked team will win the game. In our work we examine the
accuracy of predictions based on the rating points rather than only the ranking
position. We treat the official rating method as a benchmark and discuss several
methods for measuring team strength. Based on a day’s rating points, we make
predictions for games played the next day.

It is worth mentioning the work spent on rating of the chess players, which
has a long history (Glickman, 1995). These rating systems receive much attention
and serve as basis for rating methods in other sports. They are also constantly
improved. For example, in recent years the website Kaggle.com hosted two
competitions where the goal was to improve accuracy of current chess player
ratings methods (Kaggle.com, 2010, 2011). We also used chess-based ranking
methods in the work described in this paper.

3 Overview of ranking systems

In this section, we describe several rating systems whose performance we will later
compare. Though the list of methods described here is not exhaustive, we believe
our sample contains the main ranking methods used in sports, and it is sufficiently
diverse to provide a meaningful comparison of ranking method types. Throughout
the text, when we refer to a ranking system, we are in fact interested in the
rating points provided by the described ranking methods, which are then used to
determine actual rankings by each of these methods.

We begin with discussing ‘earned rating’ methods, where teams accumulate
points after each game. Two examples here are the official FIFA ranking and the
Elo rating system. Then we present two methods that estimate strengths from the
global look at match result data rather than by an iterative updating of ratings
after each game. The methods of this kind are the Elo++ rating system–the winner
of the first Kaggle competition on rating chess players–, and the least squares
ratings. Finally, we discuss graph-based ranking methods.

3.1 The official FIFA ranking

The current FIFA World Ranking methodology was introduced after the World
Cup in Germany in 2006. Its original description is available via the official FIFA
website (FIFA.com, 2012b).

To calculate ranking points for teams, four years of play are considered. During
that period of time a weighted average of points is computed that results in a
team’s rating points.

For a chosen team the formula for the calculation of points P awarded after a
single game is as follows

P = M × I × T × C, (1)

where the letters stand for:

• the outcome of the game (M points);

• the importance of the game (I);
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• the strength of the opposing team (T ) and the average of confederation
strengths (C) of participating teams.

For the outcome of the game a standard convention is applied. For a win 3 points
are awarded, 1 for a draw, and 0 for a loss. The matches that ended after a
penalty shoot-out are treated differently – a winning team receives 2 points while a
losing team gets 1 point. The multiplier for the importance of a game, I, assumes
values between 1 and 4. The World Cup games are considered the most important,
while friendly games the least important, with I set to 4 and 1, respectively.
The confederation strength is a number between [0.85, 1]. Currently, European
(UEFA) and South American (CONMEBOL) football confederations are assigned
the maximal value of confederation strength. The lowest rated confederation is
the Oceania Football Confederation (OFC). When two teams play, C is computed
as the average of the confederation strengths to which they belong. Finally, the
strength of opposition is computed as 200 minus the position of the opponent in
the current ranking release. As an exception to the formula, the team at the top is
assigned the maximum strength of 200 and teams ranked at position 150 or lower
get the minimal strength of 50.

Once we calculate the points that a team earned over a period of four years, we
compute a weighted average of points in the following manner. In the consecutive
years the mean of the accumulated points is computed. In case a team played less
than five games in a chosen year, instead of calculating the average, we divide
its total number of points by five. Then the four yearly averages are summed up
with weights 0.2, 0.3, 0.5, and 1, where more recent results are assigned a higher
number.

The FIFA ranking is released on an approximately monthly basis. To get
better insight into the capabilities of the official rating system we implement the
algorithm to obtain team ratings on a daily basis.

3.2 The Elo rating system

The Elo rating system was created by the Hungarian physicist and chess master
Arpad Emrick Elo. It is one of the most prominent systems for rating skills in two-
player games. Due to its general merits, it is the first system we introduce after the
official FIFA ranking. It has several generalizations including Glicko (Glickman,
1999) or TrueSkill (Herbrich et al., 1999) rating systems. Primarily it was used for
rating chess players. For a more detailed discussion of the Elo rating system we
refer to the work by Glickman (1995).

Similar to the official FIFA ranking, the Elo model is an earned rating system.
The ranking points are updated iteratively after every match. The main idea is
that the update rule can be seen as a correction to the teams’ rating points subject
to actual results and what we expected from the ratings prior to the match.

The update formula for rating points for a team A against an opponent B is
as follows:

r′A = rA +K(sA − pA), (2)

where
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• rA and r′A are the old and updated mean rating (performance) values for
team A respectively,

• sA is the actual result of the match from the perspective of team A against
its opponent B,

• pA is the expected score of team A against B, derived from the values rA,
rB prior to the mutual game between A and B,

• K, called a K-factor, is a positive constant.

If we follow the convention from chess player ratings, the actual result of the
match sA is mapped to the value of 0, 0.5, or 1 in case team A loses, draws
or wins the game, respectively (accordingly for team B). The K-factor governs
the magnitude to the changes in ratings after a single game. It can be modelled
according to discipline characteristics.

The original Elo model assumes a normal distribution for player A’s
performance in a match around the mean value of rA. A simplifying assumption
is that the variance is homogeneous among all players, σA = σ for every player
A. When two players, A and B, meet in an encounter we are comparing two
performance distributions PA and PB with PA ∼ N (rA, σ

2) and PB ∼ N (rB , σ
2).

The probability that player A wins the game is equal to the probability of the
event that it draws a higher value from its performance distribution. From the
properties of the normal distribution we have that PA − PB ∼ N (rA − rB, 2σ

2)
under assumption of independence. In this manner we compute the expected result
of the game from the perspective of player A:

pA = P(PA > PB) = Φ

(
rA − rB

σ
√
2

)
, (3)

where Φ denotes the cumulative distribution function for a standard normal
variable N (0, 1). The draws are disregarded. If the computed value of pA is around
0.5 then we would expect a draw. Possible extensions to the prediction model (3)
to express the probability of a draw are discussed by Rao and Kupper (1967)
or Davidson (1969).

In applications, it is common to use a logistic distribution for the players’
performance distribution difference and compute pA as

pA =
1

1 + e−a(rA−rB)
, (4)

where a is an appropriate scaling factor. Formula (4) derived from the logistic
distribution seems to be more tractable.

The main idea behind the model is that if a team performed better than
expected against its opponent B, i.e., sA > pA we shall increase its rating
accordingly and decrease the rating of the opponent. The rating points in Elo
model are self-correcting. Based on current ratings we perform prediction of
the future game. The bigger discrepancy between the observed result and our
expectations the bigger magnitude of changes to the performance rating estimates
for both teams.
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An important part of the Elo model is the choice of prior ratings, i.e., initial
values for the rA in the rating period. To reduce the influence of the prior in
accurately determining the teams’ strength estimates it is necessary to have many
games played by every team in the dataset. Otherwise we cannot see the rating as
a reliable estimate of a team’s strength.

There are several choices for prior ratings. One possibility is to set ratings
for every team to a fixed number, e.g., 1500. With such choice the ratings
would approximately distribute between 1000 and 2000 points. However, what
is important from the ranking point of view is only the difference in teams’
ratings. Another option is to pose a question: what if FIFA would have changed
its rating system to that applied in FIFA Women’s World Rankings? To answer
this, we set prior ratings for the teams to the FIFA ranking points from the 12
July 2006 release. We expect that this prior is better-informed than initializing
ratings equally. We compare the predictive powers of these ranking system in our
experiments, along with other other methods described in this section.

3.2.1 FIFA Women’s World Rankings

FIFA uses a different algorithm to rate and rank women’s national teams. In fact,
we can recognize an Elo version of the model behind this rating method. The
description of the algorithm can be found on the official FIFA website (FIFA.com,
2012a).

In the official FIFA Women’s ranking after each game the ratings are updated
according to the formula (for chosen team A)

rA
′ = rA +K × I × (sA − pA). (5)

Next to the basic K-factor, which is set to the constant value of 15, we have an
additional multiplier associated with the importance of the game. Analogously to
the FIFA men’s ranking, its values are tabularized. Table 1 presents possible values
that the multiplier I can assume, extracted from the analogous table for women’s
competition.

Table 1 Match importance multipliers.

Competition Multiplier

Friendly match (including small competitions) 1
Confederation-level qualifier 2
FIFA Confederations Cup 3
FIFA World Cup qualifier 3
Confederation-level final competition 3
FIFA World Cup final competition 4

Yet another modification to the original formulation is included in mapping of
the actual result to the number sA. It is assumed that a team losing, for example
1:0, receives the actual score equal to 0.15 rather than 0. The winner is awarded
the remainder of the points. The idea is that a team after scoring many goals
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and losing with a small margin is awarded a small positive value for its actual
performance. A complementary argument applies to the winning team. The values
of the actual results are presented in Table 2.

Table 2 Actual result of the game in FIFA Women World ranking methodology from
the losing team perspective.

Goals Goal difference
scored 0 1 2 3 4 5 6+

0 0.5 0.15 0.08 0.04 0.03 0.02 0.01
1 0.5 0.16 0.089 0.048 0.037 0.026 0.015
2 0.5 0.17 0.098 0.056 0.044 0.032 0.02
3 0.5 0.18 0.107 0.064 0.051 0.038 0.025
4 0.5 0.19 0.116 0.072 0.058 0.044 0.03
5+ 0.5 0.20 0.125 0.080 0.065 0.05 0.035

Finally, the expected result of the game is computed with the use of the logistic
distribution function. Moreover, a correction is made to incorporate the advantage
of the home team. Namely, the probability that team A wins the game is calculated
as

pA =
1

1 + 10−(rA+100−rB)
, (6)

where 100 additional points are credited for the host of the game (here by default
set to team A).

3.2.2 EloRatings.net

In this subsection we describe another version of the Elo model maintained on the
website EloRatings.net (2012). The update formula in the EloRatings.net model is
as follows:

rA
′ = rA +K ×G× (sA − pA). (7)

In this model, sA is mapped to one of the three possibilities from the set {0, 0.5, 1}
and the prediction function is the same as above (6). The K-factor is again
determined by the relative importance of the game. One may read possible values
it may assume from Table 3. The magnitude of K is modified by the goal difference
G. In case the absolute value of the difference of goals scored by both teams is
equal to N , K is multiplied by an additional factor G set to

• 1 if N ≤ 1,

• 1.5 if N = 2,

• N+11
8 if N ≥ 3.
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Table 3 Match importance in the EloRatings.net model.

Competition Multiplier

Friendly match 20
All minor tournaments 30
World Cup and continental qualifiers and major tournaments 40
Continental championship finals and major intercontinental tournaments 50
FIFA World Cup finals 60

For the EloRatings.net method we managed to obtain historical tables on the
website Football-rankings.info (2012) from 9 July 2010. Thus, in addition to the
choice of the priors discussed above (uniform and the FIFA ranking release) we
can initialize the ratings with retrieved ones.

The next method we discuss is the winning solution of the first Kaggle
competition on chess ratings (Kaggle.com, 2010).

3.3 Elo++ model

Kaggle’s competition on chess player ratings was an exciting event with over 250
active participants. In this section we briefly introduce the winning model, which
was proposed by Sismanis (2011).

Before going further we note how the competition’s solutions were assessed.
For each game in the test set the participants were supposed to provide a single
number that expressed the probability of the event that the first player from an
ordered pair wins the game. As in the Elo model, draws were disregarded from the
analysis. The accuracy of predictions was measured by a monthly aggregated mean
squared error. This measure differs from the standard mean squared error only by
a minor modification that a player’s actual and predicted results are summed in
each month. The mean squared error is then calculated on aggregated results and
predictions rather than on individual matches. If in every month each player takes
part in at most one game, this error measure is exactly equal to the mean squared
error.

Next in this subsection, we describe the model, automatically adapting
appropriate terminology to football.

Outcome prediction function

From the dataset of the results we want to estimate rating ri for every team i. For
two teams i and j, that are rated with ri and rj , respectively, the probability of
team i winning the match is calculated with the logistic cumulative distribution
function

pij =
1

1 + e−(ri+h−rj)
, (8)

where h is a parameter for modelling the advantage of the home team. If the game
is played on neutral ground we set h = 0. The probability of the opposite team’s
win is calculated as pji = 1− pij .
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Time scaling

Each match in the database is assigned a weight that depends on how long ago it
was played. Let tmin and tmax denote the minimal and the maximal month number
in the data. Then a game between two teams i and j taking place in the t-th
month is associated with the weight

wij =

(
1 + t− tmin

1 + tmax − tmin

)2

. (9)

In this way the weighting factor assumes values in the interval (0, 1] for all games
in the database and increases monotonically in t.

Neighbors

Another idea in the Elo++ model is that team strength should not deviate much
from the ratings of teams that it competes against. It seems to be a reasonable
assumption not only in chess or football but in general in sports. Incorporation of
the schedule of games in rating computations may be concisely summarized by the
saying “you are known by the company you keep”.

Let us define Ni as the multiset of opponents that a chosen team i played
against in mutual games, with |Ni| the size of this multiset (possibly it includes
the same team a few times in case of multiple matches). We would expect that the
average rating of rivals of team i should be close to the team i rating itself. The
weighted average is computed as

ai =

∑
k∈Ni

wikrk∑
k∈Ni

wik
, (10)

where we sum over all the opponents of team i and weight the corresponding
ratings with the previously introduced time factor.

Calculation of the ratings

The ratings r are computed by finding the minimum of the loss function

L(r1, r2, . . . , rk) =
∑
games

wij(sij − pij)
2 + λ

∑
teams

(ri − ai)
2, (11)

where λ is the weight we assign to the regularization component. With application
of numerical methods we hope to find the minimum of the loss function on the
training set. In this setting there are two parameters that need to be optimized: h
that stands for the home team advantage and λ which governs the importance of
regularization component.

To focus our attention on the comparison rather than optimization of
individual models we will apply a stochastic gradient descent for the problem
of minimization of the error function (11). This algorithm was suggested by the
author in his original description of the method.

In stochastic gradient descent, the database of results is scanned for a fixed
number of P iterations. Initially, we set ri = 0 for every team. During each
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iteration, we scan the entire database of results. We perform the following updates
for every game (here between teams i and j) in random order:

ri ← ri − η

[
wij(sij − pij)pij(1− pij) + λ

1

|Ni|
(ri − ai)

]
,

rj ← rj − η

[
−wij(sij − pij)pij(1− pij) + λ

1

|Nj |
(rj − aj)

]
,

where η is the learning rate set to

η =

(
1 + 0.1 · P
p+ 0.1 · P

)0.5

, (12)

with p being the number of the current iteration. The averages ai are recomputed
only after each iteration.

In this setting we have two parameters to optimize: λ for the regularization
component and h that measures the impact of home advantage. The choice of the
parameters is experimental based on the accuracy of predictions on the validation
set.

Elo++ in its primary application in the rating of the chess players performed
very well. We hope for similar results when applied to rating football teams.

3.4 Least squares ratings

The next model can be summarized as least squares ratings. We sketch the main
idea of the model based on the work by Stefani (1977, 1980). A detailed analysis
of the least squares ratings may be found in the work by Massey (1997).

The model assumes that the margin of victory of team A against the other
team B, denoted as y, is proportional to the difference in both team ratings rA,
rB:

y = rA − rB + ε, (13)

where ε is an error in the measurement. The model can be estimated by minimizing
the sum of squared errors across all the games. In this setting it is not possible
to identify the parameters. We shall impose a sum-to-zero constraint or agree on
some reference state and set the rating for a chosen team i to a default level, say,
ri = 0.

A simple modification to the method may be applied by introducing the home
advantage parameter. Because home teams tend to score usually more goals we
may capture this by setting

y = rA − rB + h+ ε. (14)

Again, after imposing a proper constraint to identify parameters, the model is
estimated by least squares.

The ratings are computed on daily basis in a sliding window approach. On a
current day, we include 4 last years of play to compute the ratings.
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3.5 Network-based rating system

The following two methods are derived from graph analysis with the teams
represented as nodes and the edges corresponding to the games played between
them. The first method we mention originates from social network analysis and can
be viewed as a version of Katz centrality measure of a graph (Katz, 1953), which
was introduced to determine the relative importance of individuals in a network of
actors. This was done by counting direct and indirect acquaintances of an actor. If
person A knows B one point is awarded. If person B knows person C the indirect
connection between A and C is counted with a discount factor α ∈ (0, 1). More
generally, if there is a path of length k in a network of actors between two persons,
it is computed as one point discounted with αk−1.

The adaptation of the method to rating sport teams was done by Park and
Newman (2005). Let A be a following modification to an adjacency matrix of a
graph. The (i, j) entry of the matrix A, aij , i, j = 1, 2, . . . , n, where n is the number
of teams, corresponds to the number of victories of team j over the team i. We
assume that a draw corresponds to a half loss and a half win. In analogy to social
network ratings we may define a win and a loss score for the teams. The win score
counts the total number of direct and indirect victories of a team, where indirect
matches are discounted by an appropriate power of the discount factor α. For a
chosen team j, we have that all direct wins of the team can be written as

direct wins for team i =
∑

j aji,

where the summation is over all indexes j ∈ {1, 2, . . . , n}. The number of indirect
wins at distance 2 is given by

indirect wins of distance 2 for the team i =
∑

j,k akjaji,

and so forth. We can compute the win score wi for team i weighted with discount
factor αk−1 for the wins at distance k as

wi =
∑
j

aji + α
∑
j,k

akjaji + α2
∑
j,k,l

alkakjaji + · · ·

=
∑
j

(1 + α
∑
k

akj + α2
∑
l,k

alkakj + · · · )aji

=
∑
j

(1 + αwj)aji = dini + α
∑
j

(AT )ijwj ,

(15)

where dini is the number of edges pointing to the vertex i, i.e., the number of direct
wins of team i and AT is the transpose of matrix A. From the above we see that
the win score for team i is the sum of the number of teams that i beat in direct
encounters and these teams’ win score. Analogously we define the loss score l.

The power series (15) converges whenever α < λ−1
max, where λmax denotes the

largest eigenvalue of matrix A. In case λmax = 0, then in fact all eigenvalues of
matrix A are zero and there are no restrictions on the choice of the parameter α.

Working out Equation (15) in matrix notation we arrive at the following
formula for the vector of win scores w

w = (I − αAT )−1din, (16)
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and an analogous expression for the vector of loss scores

l = (I − αA)−1dout, (17)

where dout is a vector of length n in which the i-th coordinate stands for the
number of edges pointing out of the vertex i, i.e., the number of direct losses by
team i. As the ratings set r = w − l.

For social network ratings we need to optimize parameter α. To this purpose,
we express the parameter α as the percentage of the largest possible value it can
assume, i.e., λ−1

max. We search from 0 to 95% with the step size of 5% and calculate
the ratings. Next, we make predictions for the games in the validation set (in a
4-year sliding window apprach) and measure their accuracy. Our final choice fot
the parameter α is the one yielding the best accuracy of predictions.

3.6 Markovian ratings

The method described in this subsection is derived from the analysis of an
appropriate Markov chain. Application for rating sport teams was considered by
several authors including Callaghan et al. (2007) or Mattingly and Murphy (2010).
Perhaps one of the most spectacular applications of Markovian ratings in other
domains is the Google’s PageRank algorithm for rating web pages (Brin et al.,
1999). The approach described below resembles mostly the ideas incorporated in
the works Mattingly and Murphy (2010) and Kenner (1993) for estimating the
probabilities of transitions.

We construct a simple Markov chain that models the behavior of a football
fan, which is not stable in his feelings. When supporting a particular team, the
fan looks for all the opponents that his team has played and either remains with
his current team or switches his support in favor of another team. The better a
team performs, the bigger chance for the supporter to choose it. With an appealing
assumption that the fan is memoryless we can analyze an appropriate Markov
chain with the states corresponding to teams. By calculating the probability
distribution of which teams the fan is going to support in the long run we obtain
the ranking for the teams.

We formalize the discussion as follows. Let i, j be two teams which played a
certain number of matches in the past with team i scoring Gi goals in total. The
probability that the supporter prefers team j over i, pij , is proportional to the
expression

p̂ij =
Gj + 1

Gi +Gj + 2
, (18)

where the corrections made by adding 1 to the nominator and 2 to the
denominator aim to prevent division by zero and zero transition probabilities as
well. Another possibility is to set

p̂ij =
Wj + 1

Wi +Wj + 2
, (19)
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where Wi counts the number of victories of team i over team j (we treat draws as
a half win and a half loss). The probability pii of the event that the fan remains
with his current team i is proportional to the value

p̂ii =
∑
j

(1− p̂ij). (20)

If two teams have not played against each other, then it is not possible to make
a transition between them. We plug the computed values to a square matrix
(p̂ij)i,j=1,2,...,n and normalize its rows by dividing by n to obtain stochastic matrix
M with entries (pij)i,j=1,2,...,n. Matrix M is a model of the fan’s behavior.

To assure existence of a stationary distribution we may use similar idea as in
the PageRank algorithm. Let E be a n× n matrix with all entries equal to 1

n and
consider the convex combination of the matrices

M̃ = αM + (1− α)E, (21)

where α ∈ (0, 1). The modified matrix M̃ is also a stochastic matrix and
corresponds to an irreducible and aperiodic Markov chain for any α ∈ (0, 1]
(possibly for α = 0, if the original Markov chain has both properties itself). For
the team ratings we compute stationary distribution π of the chain

π = πM̃, (22)

which gives us team ratings, ri = πi for the i-th coordinate of the vector π
corresponding to the i-th team.

The optimization of parameter α is done in analogous manner as in the case of
the discount factor in the network-based system above. In our work, we compute
different ratings by varying the parameter from 90% to 99% with the step of 1%
again with the use of 4-year sliding window. Next, we measure the accuracy of
derived predictions on the validation set (see Section 4.2), and set α to its optimal
value.

3.7 The Power Rank

The Power Rank rating system is the last algorithm under our consideration.
The ratings produced by this method for different sports are maintained on the
website ThePowerRank.com. Predictions for comparison were provided by Dr.
Edward Feng, inventor of the method. The author does not publish the details on
how exactly his algorithm works. We only know that it is a combination of the
PageRank algorithm with certain techniques applied in statistical physics.

Having described several ranking methods now we describe how their predictive
powers were compared.

4 Experimental setup

In this section, we describe the dataset used for our experiments, validation and
test sets, how we turned ratings into predictions, and what evaluation measures
were used to assess the methods’ performance.
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4.1 Dataset

The data used for experiments described in this paper is concerned with
international football matches, and it was obtained via the official FIFA website.
The games were played between 15 July 2006, when the new version of the FIFA
ranking was introduced, and 2 May 2012. For each game we have information on
the outcome, possible extra time or penalty shoot-out, the date it was played,
its location and the type of the game (friendly, World Cup match etc.). For the
purposes of the analysis below we are interested only in the final score of the match
with no special treatment of the games ended after extra time or penalty shoot-
out. In a few cases the victory has been awarded to either of the teams, or the
game was suspended. We deleted such matches from the dataset.

Using the location of matches, we derived an additional attribute indicating
the host of a match. It is a well-known phenomenon in sports, and particularly in
football, that the team playing at home has some advantage over the opposition.
Its sources and variations have been studied extensively (see, e.g., Pollard, 2008,
Seckin and Pollard, 2008, Pollard et al., 2008). A corresponding phenomenon in
chess is the advantage due to playing white. The information about the home team
is used explicitly by some methods under our consideration – Elo models and the
least squares ratings.

4.2 Validation

Calculation ratings is done on a daily basis, i.e. ratings calculated for one day
might be different from those a day before or after. The matches taken into
account are either those having been played in a four-year period before the day
in question (as in the FIFA ranking – we employ the same convention in the least
squares ratings, network-based and Markovian ratings), or from the first date in
the dataset (Elo methods, The Power Rank). Note that because of our particular
dataset, the latter also covers a period not significantly longer than four years.

The performance reported in the next section is calculated based on 979 games
played between 1 April 2011 and 2 May 2012.

As some rating methods require parameter tuning, the introduction of a
validation set was also necessary. The validation set covers 726 games played
between 15 July 2010 and 31 March 2011.

4.3 Prediction function

In this section, we describe how we turn ratings into predictions of the outcome of
individual games.

Some of the methods we consider (Elo, Elo++) are self-contained in the sense
that they not only estimate the ratings but also provide a way to predict future
games. In fact, the prediction function is the core of the Elo model and its main
driving force. In case of other methods, we need to transform the ratings produced
by them to predictions.

Given two teams A and B with ratings rA and rB, respectively, the prediction
of the match outcome is given by the model

P(s|rA, rB) =
(ea(rA−rB)+h·1{A at home})s

1 + ea(rA−rB)+h·1{A at home}
, (23)
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where the component associated with the parameter h aims to capture the
advantage of the home team and 1{A at home} is equal to 1 if team A is the host
of the game and 0 otherwise (we assume such an ordering that team B is always
a guest of the game). As usual, s stands for the actual result of the game, i.e.,
s = 1 and s = 0 corresponds to the win of team A and team B, respectively.
To incorporate draws we follow the convention adopted in Glickman (1999). We
assume that a single draw yields the same likelihood as a win followed by a loss.
The probability of team A’s win over B followed by a loss against the same team
(or the other way around) is equal to (under assumption of independence between
these events)

ea(rA−rB)+h

1 + ea(rA−rB)+h
· 1

1 + ea(rA−rB)+h
.

For modelling a single draw we take the square root of the expression above to
arrive at

(ea(rA−rB)+h)0.5

1 + ea(rA−rB)+h
.

Therefore draws are included in the model by setting s = 0.5 in (23).
The likelihood function for the observed match results as the function of the

parameters a and h is as follows (provided that outcomes of the matches are
independent events):

L(a, h) =
∏

i−th game

(
(ea(r

(i)
A −r

(i)
B )+h·1{A at home})s

(i)

1 + ea(r
(i)
A −r

(i)
B )+h·1{A at home}

)
. (24)

The parameters (a, h) are set to their maximum likelihood estimates. To perform
predictions on ratings for a match at a given day we estimate the prediction
function with the use of games in the period prior to that day. For the first game
in the test set, these parameters are obtained by estimation on the games in the
validation set. The ratings ri that we plug to the likelihood function (24) are
the most recent (daily updated) estimates derived by a given method. We make
one exception to this rule by providing accuracy measurements for monthly FIFA
ranking releases that are published on the official website.

4.4 Evaluation measures

When predicting the result of a future match we follow the same convention as
in the Elo model. In other words, we attempt to calculate the probability that a
chosen team from an ordered pair wins the game.

In our experiments, we consider two evaluation measures, i.e., the binomial
deviance and the squared error of the predictions.

Our main accuracy measure is the statistic of the binomial deviance which for
prediction pi for the i-th game is equal to

− (si log10 pi + (1− si) log10(1− pi)) ,

where si ∈ {0, 0.5, 1} is the actual result of the game from the perspective
of a chosen team. The binomial deviance is undefined (infinite) in case of
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sure predictions pi = 0 or pi = 1 when yi = 1 or yi = 0, respectively. In the
computations of this statistic, we round values of pi lower than 0.01 to 0.01 and
for the values of pi greater 0.99 we set 0.99.

Since we estimate the prediction function by maximum likelihood we consider
the binomial deviance as our main quality indicator.

Nevertheless, we also calculate the squared error of the prediction, as it is a
common measure used in evaluating predictions:

(si − pi)
2.

The accuracy of a given method is measured by averaging prediction errors for
individual games.

Similar accuracy measures were used for assessment of proposed solutions in
both Kaggle chess players rating competitions.

5 Results and discussion

Table 4 shows the accuracies of various ranking methods and their versions, as
measured using binomial deviance and mean squared error. The 90% confidence
intervals derived by normal approximation are also reported.

In addition to the methods described in Section 3, we report performance on
three additional methods. Two of these are considered baselines aimed at providing
context to performance values. One of these two methods always predicts draws,
while the other always predicts the home team to win. The third method is an
ensemble, i.e., its predictions are formed by combining the predictions individual
methods. Combination is done by using the best performing four individual
methods (Elo WWR, EloRatings.net, Least squares and The Power Rank), by
averaging individual predictions. The introduction of this method is motivated by
the fact that ensembles often work better than individual predictors (see, e.g.,
Dietterich, 2000).

Individual methods

As shown in Table 4, all described methods outperform the two baselines, i.e., All
draws and Home team, significantly.

Among the single methods, the best accuracy is achieved by two Elo models:
The EloRatings.net system is the most accurate with respect to binomial deviance,
and the Elo model applied by FIFA in ranking women’s teams, when we look at
the mean squared error. The difference in accuracy between the FIFA ranking and
two versions of the Elo model, Elo++, the least squares and The Power Rank
predictions are significant with respect to binomial deviance, based on the 90%
confidence intervals. Slightly better performance is achieved by the two versions
of the Markovian ratings. This shows that the FIFA ranking method can be
outperformed by several alternative methods.
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Table 4 Accuracy of predictions.

Ranking system Binomial deviance Mean squared error

FIFA ranking daily 1.3681 (1.3481, 1.388) 0.1443 (0.1244, 0.1643)
FIFA ranking release 1.3705 (1.3504, 1.3905) 0.145 (0.125, 0.1651)

Elo WWR 1500 1.3698 (1.3498, 1.3898) 0.1447 (0.1246, 0.1647)
Elo WWR FIFA06 1.2674 (1.2489, 1.2861) 0.1268 (0.1081, 0.1455)
Elo WWR FIFA06 WDL 1.2934 (1.2744, 1.3123) 0.1302 (0.1113, 0.1492)

EloRatings.net 1.2634 (1.2446, 1.2821) 0.1271 (0.1084, 0.1458)
EloRatings.net 1500 1.3265 (1.307, 1.346) 0.137 (0.1176, 0.1565)
EloRatings.net FIFA06 1.2811 (1.2624, 1.2999) 0.128 (0.1092, 0.1468)

Elo++ (λ, h) = (0.05, 0.4) 1.3062 (1.2871, 1.3254) 0.1336 (0.1144, 0.1527)

Least squares 1.2786 (1.2597, 1.2975) 0.1288 (0.11, 0.1477)
Least squares home team 1.2681 (1.2493, 1.2869) 0.1272 (0.1085, 0.146)

Network-based ratings 1.4268 (1.4061, 1.4476) 0.1556 (0.1348, 0.1763)

Markovian ratings Wins 1.3605 (1.3407, 1.3803) 0.1406 (0.1208, 0.1604)
Markovian ratings Goals 1.3557 (1.336, 1.3754) 0.1402 (0.1205, 0.1599)

The Power Rank 1.2735 (1.2546, 1.2924) 0.1286 (0.1096, 0.1475)

Ensemble 1.2358 (1.2174, 1.2543) 0.1223 (0.1038, 0.1407)

All draws 1.5960 - 0.1902 -
Home team 4.1733 - 0.3325 -

Method versions

Looking at the performance of different versions of Elo models, we see that the
choice of the prior has a major impact on accuracy. For instance, uniform priors
(see ‘1500’ versions) are outperformed by better-informed priors.

Experimenting with the the parameters (λ, h) in Elo++ we obtain best
results when setting the values to (0.05, 0.4). Despite Elo++ winning the Kaggle
competition, even its optimized version does not give best performance for football.
However, this might be because of the fact that it uses less information, i.e., it does
not incorporate either information on goals scored or match type. The importance
of goals scored is shown by our results on the Elo WWR WDL model version in
which the actual result is mapped to an appropriate value from the set {0, 0.5, 1}
rather than to the values in Table 2.

The significance of the information on margin of victory is also stressed by
good performance of the simple least squares model. The least squares method
can further be improved by taking into account home team advantage (already in
Elo++).

Regarding the Network-based ratings model, we could not achieve good
performance even by tuning its parameter (the best performance, reported in
Table 4, was achieved using α set to 20% of the bound λ−1

max). This low performance
might be due to the issue of regional grouping of games (confederations), the lack
of the time dimension and possible ‘loops’ in matches (e.g., Team A beat Team B,
B beat C and C beat A).

Concerning Markovian ratings, the optimal values of parameter α for the chain
with transitions computed on goals is α = 0.96, and for the transitions calculated
solely on win/draw/loss information, it is α = 0.99. In both of these versions, the
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same graph structure of the teams is explored, which results in virtually the same
performance.

Method combination

As Table 4 also shows, a simple combination of predictions (Ensemble) based
on several rating methods produces superior performance to any single method
described in this paper. However, if one is to create rankings based on such
combination, it is not straightforward how to do this, and also, it is often desirable
that the ranking algorithm is transparent and easy to understand. Based on this,
we recommend that if the goal is to make predictions, several methods need to be
combined, and if rankings are to be created, a well performing individual method
might be more desirable, so as to balance predictive performance and method
transparency.

6 Conclusions and future work

The aim of the paper was to provide an overview of, and investigate the predictive
capabilities of different ranking systems for national football teams. The main
benchmark was the FIFA ranking. Our experiments has shown that it is possible
to outperform the official ranking procedure by relatively simple algorithms, which
is surprising given the high influence of this ranking on football competitions. On
the other hand, the FIFA methodology used for ranking women’s teams, based on
the Elo rating system, is indeed a very competitive rating method. Applying an
analogous procedure in ranking men’s national teams might be worth taking into
consideration.

We see two possible directions of future work on the topic of ranking football
teams. First, we may develop better performing ranking methods, which we would
base on one of the two discussed Elo rating system. Their performance is high,
they are not overly complicated, and perhaps they can be improved further for
even better predictive performance.

Second, it may be worth investigating how possible inefficiencies in the FIFA
ranking can be exploited by national football associations. We have seen in this
paper that the official ranking system does not award points in the most accurate
manner. Using this information, and a better model, a team might be able to
advance in the current rankings by choosing opponents for friendly games that
they are likely to gain the most ranking points against. Hence, we may want to
seek an optimal strategy for scheduling friendly matches, or to identify if some
teams apply such strategy already.
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