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Stel 1 i ngen 

1. Bij de veredeling van zei fbevruchtende gewassen kan het selektiekriterium 

gebaseerd zijn op schattingen van kwantitatief-genetische parameters. Deze 

methode voldoet niet, indien de in het selektie-milieu aan genotypen 

gemeten fysieke grootheid niet in redelijke mate overeenkomt met dezelfde 

fysieke grootheid van deze genotypen in het doel-milieu. 

dit proefschrift 

2. Bij een hoge tussen-1ijnen erfelijkheidsgraad ligt de schatting van de 

genetische variantie van een F3 gemiddeld dichter bij de waarheid dan op 

grond van een Williams-Tukey betrouwbaarheidsinterval te verwachten is. 

dit proefschrift 

3. Een publikatie van een genetische kaart, die geen melding maakt van de 

statistische betrouwbaarheid van de positie van de loei, is onbetrouwbaar. 

Helentjaris, TIG (1987) 3: 217-221: Young & Tanksley, TAS (1989) 77: 95-101 

4. De grote interesse in de literatuur voor de kans op negatieve ANOVA-

schattingen van variantiekomponenten leidt de aandacht af van het 

werkelijke probleem: de relatief grote mate van onnauwkeurigheid van 

schatters van variantiekomponenten. 
Bridges & Knapp, TAG (1987) 74: 269-274: Tan & Wong, Biom.J. (1978) 20: 69-79; Verdooren, Biom.J. 

(1982) 24: 339-360 

5. Bij de ontwikkeling van een praktisch toepasbaar model dient men de 

uiteindelijke bruikbaarheid van het model te toetsen aan realistische 

praktijkomstandigheden in plaats van aan andere model systemen. 

Jinks S Pooni, Heredity (1976) 36: 253-266, en Heredity (1980) 45: 305-312 

6. Met behulp van over het genoom verspreide merkergenen verloopt de 

introgressie van een gen in een ras van een zei fbevruchtend gewas enkele 

malen doelmatiger dan met konventionele methoden. 

7. Het in gebruik nemen van snellere methoden door plantenveredel ingsbedrijven 

komt overeen met een wapenwedloop. 



8. Een "QTL" (quantitative trait locus) is een hoofdgen (major gene). 

Paterson et al, Nature (1988) 335: 721-726 

9. Honden moeten wettelijk worden gelijk gesteld aan wapens. 

Stellingen behorend bij het proefschrift "The predictive value of estimates 

of quantitative genetic parameters in breeding of autogamous crops" van 

Johan W. van Ooijen 

Wageningen, 29 november 1989 
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V o o r w o o r d 

Dit proefschrift is het eindprodukt van mijn promotie-onderzoek, uitgevoerd aan 

de vakgroepen erfelijkheidsleer en plantenveredeling. Het is een samenbundeling 

van drie artikelen die in wetenschappelijke tijdschriften gepubliceerd of in de 

pers zijn, en een hoofdstuk waarvan tezijnertijd nog één of twee artikelen van 

geschreven gaan worden. Dit geheel wordt voorafgegaan door een inleidend 

hoofdstuk, en afgesloten met een algemene diskussie. 

U moet dit boekje niet zien als een produkt van slechts één persoon. Er zijn 

een groot aantal mensen betrokken geweest bij het onderzoek, zowel bij de 

praktische uitvoering van de proeven, als bij het uiteindelijke opschrijven van 

de resultaten in wetenschappelijke artikelen. Daarom wil ik op deze plaats de 

mensen nog eens noemen en bedanken voor hun bijdrage. 

Voor het uitvoeren van de veldproeven met zomertarwe heb ik technische 

assistentie gehad van Herman Veurink. Van de proefveldmedewerkers van de 

vakgroep plantenveredeling wil ik Frans Bakker noemen als degene die het 

grootste deel van de verzorging van de proeven heeft gedaan. Ook de medewerkers 

van de proefboerderij de Minderhoudhoeve in Swifterbant hebben een goed aandeel 

gehad in de uitvoering van de tarweproeven. 

Voor het uitvoeren van de kasproeven met Arabidopsis heb ik assistentie gehad 

van Corrie Hanhart en Patty van Loenen Martinet-Schuringa. De verzorging van de 

proeven werd gedaan door het tuinpersoneel van de vakgroep erfelijkheidsleer. 

Een grote bijdrage hebben een zevental studenten geleverd. Zij waren 

intensief betrokken bij de uitvoering en verwerking van de experimenten. In 

chronologische volgorde waren dit Leo Braams, Peter Kruyssen, Ton Scheepens, 

Petra Wolters, Siebe Haalstra, Angélique Monteiro en Peter Metz. 

De mensen die een aandeel hebben geleverd bij het schrijven van het 

proefschrift zijn: prof. J.E. Parlevliet, de promotor, prof. J.H. van der Veen, 

en dr. L.R. Verdooren. 

De wetenschappelijke begeleiding was in handen van dr. Piet Stam, dr. Thomas 

Kramer en dr. les Bos, waarvan Piet het leeuwedeel voor zijn rekening heeft 

genomen. 

Al deze mensen, in het bijzonder Piet, dank ik van harte voor de zeer 

prettige samenwerking en voor hun bijdrage aan het tot stand komen van dit 

proefschrift, ook de mensen die ik hier niet met naam heb genoemd. 

Ik dank de vakgroep erfelijkheidsleer ("mijn standplaats") in het algemeen 

voor de prettige werksfeer. En natuurlijk dank ik N.W.O. voor het subsidiëren 

van het onderzoek. 

Johan W. van Ooi jen 



1- General introduction 

During the last four decades quantitative genetics theory has developed models 

in order to provide a scientific basis for the selection on quantitative 

characters in self fertilising crops. With the quantitative genetic models, 

among other possibilities, the genotypic variation can be described, and more 

importantly, the progeny of crosses between pure lines can be predicted. The 

prediction concerns the mean and variance of the Fm-generation. Knowing the 

mean and variance, and assuming a normal distribution, the probability of 

obtaining superior segregants in the F^-progeny of a cross can be calculated. 

In a breeding programme the two parameters (the Fm-mean and F^-variance) can be 

estimated in an early generation (e.g. the F3) for all crosses. Subsequently, 

the probability to obtain segregants superior to a certain threshold level can 

be predicted for each cross. The breeder can select the most promising crosses, 

and concentrate in the subsequent breeding programme on the progeny of these 

crosses. 

Though the theory has been available for some time now, the only current 

usage of the theory in practical plant breeding is describing the amount of 

genotypical variation, and choosing accordingly the appropriate selection method 

by some rule of thumb. Practical plant breeding does not apply the prediction 

procedure, because of serious doubt about its predictive value. The predictive 

value has only been established for traits with high heritability (cf. Jinks 

& Pooni, 1976, 1980; Snape & Parker, 1986). The prediction procedure is prone 

to various types of errors, which possibly invalidate the procedure: 1) 

stochastic variation, 2) the genetic assumptions on which the theory is founded 

are incorrect, and 3) genotype-environment interaction, in particular 

intergenotypic competition. The present study intends to evaluate the prediction 

procedure by studying the effects of the individual sources of error. The study 

has employed field experiments, computer simulation, and mathematical statistics 

theory. 

The estimation and prediction procedure, and the assumptions 

In order to predict the probability of obtaining superior segregants in the 

Fm-progeny of a cross, one needs to know the probability distribution of the 

quantitative character of this F^-progeny. It is generally assumed that a 

quantitative trait is determined by a large number of independently segregating 

genes with equal individual effects on the genotypic value. A second assumption 
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is that epistatic effects are absent, i.e. there is no interaction between the 

loci. If these assumptions are valid, then the F^-generation (when it is 

obtained without selection) has a normal probability distribution, which is 

fully determined by its mean and variance. 

This mean and variance must be estimated using an early generation of the 

cross, so that the plant breeder can predict the F^-progeny as early as 

possible, and hence make an early decision on whether to select the cross for 

the succeeding breeding programme. A number of estimation methods, which have 

been developed, such as the North Carolina experiment III (Comstock & Robinson, 

1952), the triple test cross design (Kearsey & Jinks, 1968), and the method 

using basic generations (F1; F2, Bx and B2) described by Jinks & Perkins (1970), 

require large numbers of test crosses to be evaluated. Since this is very labour 

intensive, it makes these methods very unattractive for application in practical 

breeding. The present study concentrates upon the procedure, which employs the 

F3-generation. The F3 is still an early generation, that can be obtained without 

further crossing, and it has the advantage over the F2 of having more 

individuals to assess, and thus offers a greater precision for the estimation 

of the parameters. Another advantage is that the dominance component of the 

genotypic effects (if present) ([h] in the terminology of Mather & Jinks, 1971) 

in the F3 is half the size of that in the F2. 

A breeding programme employing the F3 has the following appearance. A number 

of crosses are made between pure breeding lines. The F/s and F2's are grown, and 

if necessary, selection between crosses is applied for qualitative traits only. 

The F3's are grown in an appropriate statistical design, that enables the mean 

(mF3) and the between and within line genotypic variance (V1F3 and V2F3 
respectively) to be estimated for each F3. An assumption, necessary with respect 

to certain confidence intervals of the estimates, is that the residual 

variances, i.e. both the genotypic and the environmental, are homoscedastic. 

This means that all F3-lines should have equal residual variances. For a good 

comparability of the F3's the design has to ensure, that there are no non-

genetic systematic differences between the F3's, and that the random differences 

are as small as possible. The estimated F3-mean is taken as the prediction of 

the F^-mean: 

A A 

œFœ = m^. 
Under the above mentioned assumptions the Fm-variance (VFJ equals the additive 

component of genotypic variance (D), while V1F3 and V2F3 are different functions 

of both the additive and the dominance (H) component of the genotypic variance: 
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V1F3 = 2
, D + Î^*H' and 

v*s = rD + rH-
The unbiased estimator of D is taken as the predictor of the F,„-variance: 

A A 4 A A 

Y F m = D = J-(2-v1F3 - y 2 F 3 ) . 
The definition of superior segregants in the Fm depends on the breeding goal. 

A logical choice would be the lines superior to the level of the currently best 

cultivar, or, probably better, superior to the expected level of the cultivars 

at the time when the breeding programme has to produce the new cultivar. This 

level will be called the selection threshold level (T). Since we have a 

prediction for the mean and the variance of each F^-progeny, and we have defined 

a common threshold level, we can predict for each Fm-progeny the probability of 

obtaining superior segregants (PT). This prediction is based upon the assumption 

that the genotypic values of the F«, follow a normal distribution: 

PT = Pr{ mF(0 + (VVpJ'X > T } (x is a standard normal random variable). 

The crosses with the highest probabilities are selected for further line 

breeding. The numbers of evaluated and selected crosses depend on the capacity 

of the breeding programme; this is not subject of the present study. The 

justification for the use of a normal distribution of genotypic values rests on 

the assumption, that in a quantitative trait many genes with small individual 

effects are involved. 

Error through stochastic variation 

The prediction of the Fm is based on estimated parameters. The estimators are 

random variables. The stochastic variation is caused by genetic sampling and 

by environmental (residual) error. The latter includes the internal 

developmental differences that occur in plants. An F3-population of finite size 

is a genetic sample (through the meiosis of the fx and the F2) of all possible 

F3-genotypes that are embedded in the fl. Residual and genetic sampling error 

determine the accuracy of the estimators. Jinks & Pooni (1980) introduced an 

alternative method of estimating the additive genotypic variance, which showed 

an improved accuracy relative to the above mentioned estimator. The method 

performs a trade-off between bias and variance. Jinks & Pooni did not extend 

their conclusion on the accuracy of the estimator beyond their specific case of 
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two traits in tobacco. 

The accuracy of both estimators can be improved by taking more F3-lines, by 

increasing the number of plants per line, and/or by cultural practices for 

reducing environmental error. Chapter 2 presents for both estimators an 

optimization of the F3-structure (i.e. the number of plants per line) given the 

F3-size, such that each estimator has minimum mean square error. Subsequently, 

both estimators are compared, each under their optimum F3-structure, for various 

combinations of heritability, dominance level and F3-size. 

Bias through invalidity of (genetic) assumptions of the theory 

One of the important assumptions in the quantitative genetic theory on 

autogamous crops is that the studied quantitative trait is determined by a 

large number of independently segregating genes of small effect. This assumption 

enables the theory to utilize the normal distribution (because of the central 

limit theorem), which greatly simplifies further estimation and prediction 

procedures (cf. Bulmer, 1985). However, careful study of some traits that were 

previously believed to be polygenic turned out to be oligogenic or even 

monogenic (Thompson & Thoday, 1974). It is very difficult, not to say virtually 

impossible, to obtain an accurate estimate of the number of genes, that are 

involved in the segregation of a quantitative trait, just by studying its 

phenotypic frequency distribution (Thoday & Thompson, 1976). This may have 

important consequences for the applicability of the theory. Simulation studies 

with data of a quantitative trait in Arabidopsis thaliana, which was known to 

be determined by two independently segregating genes, produced some interesting 

results regarding the precision of the estimate of D. This study is described 

and elaborated in chapter 3. 

In this Arabidopsis study violations of the assumption of homoscedasticity 

were encountered. First, if a quantitative trait is determined by only two 

loci, then the various lines will differ in the genotypic within line variance, 

because some lines will segregate for both loci, some for one locus, and some 

will not segregate at all. So, in this case the requirement of homoscedasticity 

of residual genotypic effects cannot be satisfied through the very nature of 

genetic segregation in the generation following a cross between two pure lines. 

This effect will, of course, diminish when many loci are involved. The second 

violation of homoscedasticity in the Arabidopsis study was that the various 

genotypes had rather deviating environmental variances. Often an observed 

heterogeneity of variances can be cured by a suitable transformation of the 
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data. For some data, though, it may be hard to find a proper transformation. 

Chapter 3 describes the investigations on the robustness of the estimation of 

D to heterogeneity of variances. 

The genotypic variance components of a breeding population are usually 

considered as parameters of the probability distribution from which the actual 

population was sampled. Consequently, statements about these parameters, such 

as confidence intervals, apply to this conceptual probability distribution. In 

the case of a cross between two pure lines this means that the confidence 

interval for the parameter D is a characteristic of the cross. D is the 

genotypic variance of the F^-generation to be obtained by subsequent selfing 

an infinite number of plants. The plant breeder, however, is not so much 

interested in parameters of this probability distribution, i.e. the potency of 

the cross, but rather in the potential future of the actual, and finite, 

F3-population. The estimated value will on the average be closer to the true 

value of the actual sample than to the true value of the cross from which the 

actual F3 was sampled. As a consequence the confidence interval for the 

parameter D (the method of Williams and Tukey, described by Boardman, 1974) 

will be conservative. There is no standard method for a confidence interval of 

D, that is correct for inference with respect to the actual F3. The behaviour 

of the Will iams-Tukey confidence interval on D, when the inference concerns the 

current F3, is studied by means of computer simulation in chapter 3. 

Bias caused by genotype-environment interaction 

Normally, when a quantitative trait is investigated in an early breeding 

generation it is assumed (sometimes tacitly), that it corresponds to the same 

phenotypic trait in the commercial growing environment, which is the environment 

the breeding programme is aimed at. One of the characteristics of an early 

generation breeding method is, that, as a consequence of genetic segregation, 

each evaluated population consists of many different genotypes. For an 

agriculturally important trait like grain yield of wheat or barley, it is known 

that yield of a genotype measured in a mixed stand of many genotypes can deviate 

substantially from yield of the same genotype in a pure stand (monoculture) 

(Spitters, 1979, 1984). This phenomenon is called intergenotypic competition. 

Spitters (1984) concluded that competitive ability in spring wheat is 

uncorrelated to yield capacity in a pure stand. Yield assessed in an F3 of wheat 

is subject to intergenotypic competition. So, in this case the trait measured 

in the early breeding generation does not correspond to the same phenotypic 
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trait in the commercial growing condition. As a consequence parameters like m 

and D are also affected by intergenotypic competition. To reduce the effects of 

intergenotypic competition, it is sometimes advised to grow at very wide stands 

(Fasoulas, 1977). But in that case the adverse effects of intergenotypic 

competition are replaced by the adverse effects of differential reactions of 

genotypes to wide stands (Spitters, 1979). 

In this thesis the growing conditions of an F3, with its mixture of many 

genotypes, are referred to as the "selection environment", whereas the 

commercial growing conditions are referred to as the "goal environment". 

Intergenotypic competition is a specific type of genotype-environment 

interaction. It is specific to the proposed early generation breeding system. 

Other types of genotype-environment interaction, such as genotype-location and 

genotype-season interaction, are not specific to this breeding system. On the 

contrary, any breeding system will have to cope with the problems that arise 

from these interactions. Chapter 4 and 5 present the research on the effects 

of intergenotypic competition on the estimation of the parameters m and D, 

respectively. The research was performed with spring wheat. The experiments 

were set up in such a way, that estimation of the parameters (m and D) in both 

the selection environment and in the goal environment was possible. For this 

purpose F3's were simulated in a special way, called "pseudo-lines" method. In 

the "pseudo-lines" method Mendelian segregation is mimicked by using mixtures 

of true breeding genotypes (varieties and other accessions). On the one hand, 

simulated F3's were grown according to the proposed procedure, imitating a 

practical breeding programme with realistic plot sizes, numbers of lines, etc.; 

this enabled estimation of parameters in the selection environment. On the other 

hand, large monoculture trials of the varieties, that were used for the 

simulation of the F3's, enabled calculation of the same parameters in the goal 

environment. 

Linkage and epistasis 

It is most likely that the assumptions of absence of linkage and epistasis will 

be violated in many quantitative genetic traits. A number of studies (Weber, 

1982; Kearsey, 1985) conclude that the influence of linkage is unimportant. When 

a trait is determined by many loci, it is very likely that these loci will be 

scattered over all chromosomes. Since chromosomes segregate independently, the 

loci will more or less behave as independent linkage blocks (corresponding to 

the chromosomes) with joint genotypic effects of the loci within the blocks. 
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The presence of epistasis can be tested with the so-called analysis of means 

(Mather & Jinks, 1971; Bulmer, 1985). Subsequently, epistatic variances can be 

included in the estimation and prediction procedure. Expressions have been 

derived that include only digenic interactions (Van der Veen, 1959), but there 

seems little reason why higher interactions should not be important if epistasis 

is present at all (Bulmer, 1985). However, the formulas become very complicated 

with many parameters, that have to bt estimated. As a consequence, the 

experimental size necessary to obtain ac:urate estimates of the interaction 

parameters would be far beyond a manageable breeding programme. 

Effects of linkage and epistasis are not the subject of a separate chapter, 

but they are discussed briefly in chapters 2, 4 and 5. 
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2. E stimation o-F a d d i t i v e g e n o t y p i c 
var-iance with the F3 of a u t o g a m o u s 
cmops 

This chapter is published in Heredity 63 (1989): 73-81. 

Summary 

The additive genotypic variance, D, estimated with the F3 of autogamous crops 
can be taken as an estimate of genotypic variance of its F«,-progeny. Two 
possible ways of estimating D are compared on the basis of their mean square 
error. For each of the two estimators the F3-population design, i.e. the number 
of lines, the number of plants per line and the number of parent plants, is 
chosen such that for a given experimental capacity its mean square error is 
minimal. Subsequently the two estimators are compared for various combinations 
of Fm-heritability, dominance level and experimental size. In by far the most 
cases the second estimator, D2, which takes twice the between F3-line genotypic 
variance as its estimate, outperforms the first estimator, Dx, which uses both 
the between and the within F3-line genotypic variance. Further it is shown that, 
when it is necessary to work with plot totals because of low F^-heritabil ity, 
the performance of Dx becomes very poor. With respect to the estimator of the 
dominance component of genotypic variance, H, its very large mean square error 
and its highly negative correlation with Dj are demonstrated. 

INTRODUCTION 

Quantitative genetic theory has developed models that enable the prediction of 

the Fœ-progeny (its genotypic mean and variance) of a cross between two 

pure-breeding lines (e.g. Mather & Jinks, 1971). With the predicted mean and 

variance, and with a normality assumption, the ability of the cross to produce 

superior inbred lines can be predicted (Jinks & Pooni, 1976). The necessary 

parameters have to be estimated in a time and labour extensive way in order to 

be applicable in a practical breeding programme. One of the few approaches that 

meet these requirements is the method employing the F3-generation. This paper 

concentrates on the estimation of the FE-variance. In the absence of epistasis 

and linkage this F^-variance equals the additive genotypic variance D. We will 

assume that epistasis and linkage are absent, but in the discussion we will 

comment on these assumptions and try to relax these assumptions. 

There are two straightforward methods to estimate the additive genotypic 

variance D from an F3 of a cross between two inbred lines. One method is to 

estimate the genotypic between line variance (V1F3) and the genotypic within line 

variance (V2F3), and successively estimate D and H (H is the dominance component 
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of the genotypic variance). Since the genotypic variances are different linear 

combinations in D and H (e.g. Mather & Jinks, 1971): 

V1F3 = — D + — H and V?F3 = — D + — H, 
iF3 2 16 3 4 8 

D and H can be estimated from the estimated V1F3 and V2F3 (defining estimators Dx 

and Hi): 

Di =f' |-(2-î1F3 - Y 2 F 3), and (1) 

def. 16 A A 

t i i = ^ - (2 -Y 2 F 3 - y1F3). (2) 

The second method is to estimate only V1F3, and successively estimate D as 

follows (Jinks & Pooni, 1980) (defining estimator Q 2): 

D2
 d=ef- 2-V1F3. (3) 

A disadvantage of D2 is, in contrast to Dj, that it is biased if dominance 

variance is present (H>0): 

£(D2) = f(2-y1F3) = D + H/8. 

Another supposed disadvantage is that the dominance component H cannot be 

estimated. However, H describes genetic variation that cannot be exploited in 

autogamous crops, unless one is interested in making hybrid varieties (which we 

are not in the present study). An advantage of D2 is that there is no need to 

estimate the residual (environmental) variance by growing isogenous material 

(mostly the parents), for this may take up a fairly large proportion of the 

experimental field. D2 was introduced by Jinks & Pooni (1980), and they 

concluded that the D2-estimate could be used with the same confidence as the 

estimate from the (elaborate) triple test cross. However, they did not extend 

their conclusion beyond their case of two traits in tobacco. The purpose of this 

paper is to show that in many situations (i.e. combinations of heritability, 

dominance level and experimental size) D2 is a better estimator of D than Dlt 

i.e. the mean square error of D2 is smaller than that of D1. We make the usual 

assumptions: 1) the quantitative trait is determined by a large number of 

independently segregating loci, and hence that the trait will have a normal 

distribution, 2) the residual error also has a normal distribution, 3) there is 

no epistas is . We define the FD-heritabi l i t y : h (Fm)=D/(D+E) 
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EXPERIMENTAL DESIGN BASED ON INDIVIDUAL PLANTS 

Numerous experimental designs are possible. A standard design is a completely 

randomized design (a 1-way classification), in which each F3-line is represented 

by the same number of plants and all plants of all lines are randomized. To 

estimate the residual error usually parent plants are added. The accompanying 

analysis of variance is given in Table 1. 

Table 1. Analysis of variance of a completely randomized F3. 

MS name df £(MS) 

MSB 
MSW 
MSI 

between 1ines 
within 1ines 
within parents 

1-1 
l.(n-l) 

Z-(i-l) 

E + V2F3 
E + V2F3 

E 

+ n-V 1F3 

1 - No. of lines; n - No. of plants per line; 
i - No. of plants per parent; E - residual variance; 
V1F3 - genotypic between line variance; 
V2F3 - genotypic within line variance. 

Mean square errors of the estimators 

A measure for comparing estimators is the mean square error (WSf). It comprises 

both the variance and the bias of the estimator. We will derive the mean square 

error of both estimators {^ and D 2). The mean squares of Table 1 have 

chi-square-1ike distributions: 

f(MS) , (^(df) is a chi-square random variable 
MS - -i=^-xz(df). 

df with df degrees of freedom.) 

Since var(x2(df))=2-df, the variance of the mean squares is: 

.„as,. £!§> .2.df. i^Ml . (4) 
df df 

As a consequence of the experimental design the three mean squares are mutually 

stochastically independent. The estimators of V1F3 and V2F3 are: 

V1F3 = (MSB -MSJ)/n, resp. V2F3 = MSW - Mil. (5) 

Combining equations (1),(2) and (3) with (5) results in (simultaneously defining 

coefficients fx up to f 8): 



y-x 

H, 

U2 

-HOL» 1 - . 

3-n 3-n 

-16 „ 16+32-n 
= MSB + 

3-n 3-n 

2 -2 
= —MSB + —MSW 

n n 
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8 -8-4-n 4 def. 
•MSW + --MS1 = f^MSB + f2-MSW + f3-MSJ, (6) 

•MSW + — -MSI = f f4-MSB + f5-MSW + f6-M£I, (7) 

def. 
= f7-MSfi + fg-MSW. (8) 

The variances of the estimators are: 

var(Ü!) = f1
2-var(MSB) + f2

2-var(MSW) + f3
2-var(MSI), (9) 

vardlj = f4
2-var(MSB) + f5

2-var(MSW) + f6
2-var(MS_I), (10) 

var(D2) = f7
2-var(MSB_) + f8

2-var(MSW). (11) 

The covariance of D: with Hx is: 

c o v ^ U ! ) = fj-^-vardüSB) + f2-f5-var(MSJ) + f3-f6-var(MSJL). (12) 

The (usual) definition of the mean square error of a (possibly biased) estimator 

X of a certain parameter 8 is: MS£(X)=£(X-8)2. If the bias is S, i.e. £(X)=8+8, 

then: WSf(X)=var(X)+62. Thus, the mean square errors of the three estimators 

are: 

MSE{VX) = varCDj), «Sf(H1) = var(Hi), and «Sf(D2) = var(D2) + —- H
2 . 

64 

If there is no dominance variance, then D2 is unbiased and hence its mean square 

error is equal to its variance. Comparing equation (9) with (11) we can see that 

in this case the MSE of Dj will always be larger than the MSE of D2: 

, 64 7.111 4 o 
f, = - — Ô - = — Ô — > —ô = f ? , and 1 9-n2 n2 n2 ' 

, -8-4-n , -2.667 , -2 , , 
f2

2 = (— ) 2 = ( 1.333)2 > ( — ) 2 = f8
2. 

3-n n n 

and additionally the variance of MSI contributes to the variance of Dx. 

Furthermore, the experimental size needed for Dj in this comparison is larger 

because of the need to estimate the residual variance. Therefore, we conclude 

that in the absence of dominance it is always better to use D2. Of course it is 

realized that one never knows beforehand the presence or level of the dominance 

variance (which also applies to epistasis and linkage). Thus subsequently only 

situations in which dominance is present need to be studied. 
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We define the scale independent parameter, the coefficient of error (CE) of 

estimator X of 9: CE(X)=7(WSf(X.))/6- For an unbiased estimator the coefficient 

of error equals the coefficient of variation. 

Optimum allocation of the experimental size 

Equations (9) and (11) show that, at a given experimental size k, the variance 

of Dx and D2 depends on the design of the F3-population and, additionally for Dl5 

on the proportion of the experimental size that is assigned to parent plants. 

In order to make a fair comparison between the two estimators we need to find 

the design, in which the number of lines (1), the number of plants per line 

(n), and the number of plants per parent (i) are optimal, i.e. the design in 

which 1, n and i are chosen such that the MSE, and consequently the variance, 

of the estimator is minimal. In practice, of course, the maximum number of seeds 

produced per F2-plant may be smaller than the optimum number of plants per line, 

in which case one will have to settle for a sub-optimal situation. 

The variance of D2 can be minimized for a given F3-population size k=l>n by 

substitution of 1 by k/n in an elaborated form (using equations (4) and (8)) of 

equation (11). The variance of D2 becomes a function in n (as far as the 

allocation of the experimental size is concerned), and using the first 

derivative of this function (6var(D2)/6n), the optimum number of plants per line 

for a given F3-population size k, and given magnitudes of variance components 

(viF3> V2F3 and E) can be found: 

(l+k).(E+V2F3)+k.V1F3 

2.(E+V2F3)+k.V1F3 
, and hence lopt = k/nopt. 

Since n and 1 are integer numbers, we have to evaluate var(D2) at the smaller 

and the larger integer numbers next to nopt; consequently the product l0pt*n0pt
 may 

sometimes not be exactly equal to k. The constraints on account of the ANOVA 

are: 1>2 and n>2. Fig. 1 presents the optimum number of plants for a few 

situations. It shows that nopt depends chiefly on the Fœ-heritabil ity and for 

medium to low F„-heritability also on the experimental size. There is very 

little influence of the dominance level. 

The minimization of var(D1) is somewhat less straightforward, because the 

experimental size is a function of three parameters: k=l«n+2-i. However, 1 and 

n appear only in the first part of (the elaborated form of) equation (9) 

[f1
2-var(MSB)+f2

2-var(MSW)], and i appears only in the last part [f3
2«var(MSI)]. 

For a given number of F3-plants c=l-n we can obtain the optimum number of plants 
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Figure 1. Optimum number of plants per line (nopt) for D̂  for various F^-heritabil ities, two experimental sizes 

(k) and two dominance levels. 

per line by minimizing this first part of equation (9) in a manner similar to 

the minimization of var(D2). This results in: 

(2+3-c).(E+V2F3)+2-c-V1F3 
5.(E+V2F3)+2.c.V1F3'

 a"U "CMl-C '°Pt - -'"opt-
-, and hence 1, c/n0 

Since i=(k-c)/2, we can now rewrite equation (9) by taking the minimum of the 

first part plus the second part, in which i is substituted by (k-c)/2. The 

resulting equation for varfDj) depends solely on c (as far as the allocation of 

the experimental size is concerned): 

64.(E+V2F3+c.V1F3).(5.(E+V2F3)+2.V1F3)
2 

var(Di) 
9.((2+3-c).(E+VZF3)+2.c.V1F3).(c-l) 

96.((4+c).(E+V2F3)+2.c.V1F3)
2.(E+V2F3) 32-E' 

9.((2+3-c).(E+V2F3)+2-c-V1F3).(c-l)-c 9-(k-c-2) 

The first derivative of this function in c, 6var(D1)/6c, could not be solved 
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o k=50 

+ k=1600 
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h(F<») 

0.9 

Figure Z. Optimum fraction of the total experimental size taken up by the F3 (copt/k) for D, for various 

F.-heritabilities, two experimental sizes (k) and dominance level H=%-0. 

to find a solution for c. Therefore, the behavior of vard^) was studied 

numerically; it appeared that a unique minimum exists (at c=copt) for l<c<k-2. 

Fig. 2 shows the optimum fraction of the total experimental size taken up by the 

F3 (copt/k). It depends mainly on the F„,-heritabil ity, it varies only slightly 

with the experimental size. For situations without dominance (H=0) up to a high 

dominance level (D=2-H) the fraction deviates, for the same value of k, not more 

than 0.02 from the fractions presented in Fig. 2 (with H=^«D). Since l,n and i 

are integer numbers, vard^) must be evaluated at the smaller and larger integer 

numbers next to iopt=(k-copt)/2 and next to nopt. The constraints on account of the 

ANOVA are: ls=2, n>2 and i>2. 

Comparing Dx with fi2 

Now that we have established ways to obtain optimum population designs for any 

situation (within the boundaries of the current experimental design), both for 

Dj and D2, we can compare the two estimators. Above it has already been stated 
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b 
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Figure 3a,b,c. Ratio of the coefficients of error of D: and 0^ a for various F^-heritabilities, three dominance 

levels and experimental size k=100; b for various F^-heritabilities, three dominance levels and experimental 

size k=I600; c for various experimental sizes (k), three dominance levels and F^-heritabil ity of 0.75. 
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Figure 3c. 

that for situations with no dominance (H=0) D2 is always better than Dj. For 

situations with dominance the ratio of the CE's of Dl and D2 depends as well on 

the ratio of the variances of the two estimators as on the dominance level. 

The variance of D2 is always smaller than that of D1. However, at very large 

experimental sizes and/or at high F„-heritabil ities the difference between the 

variances of Dj and D2 will be small, and hence the CE of D: will eventually 

become smaller than the CE of D2 because of the contribution of the dominance 

level to the CE of Q2. We computed the CE's of Dj and D2 for all combinations of 

seven F.,-her i tab il ity values (h2(FM)=0.05 , 0.10, 0.25, 0.50, 0.75, 0.90, 0.95), 

six experimental sizes (k=50, 100, 200, 400, 800, 1600), and four dominance 

levels (H=0, Sj-D, D, 2'D). The ratio CE^/CE^) varied from 0.54 (at 

h2(Fm)=0.95, k=1600, H=2«D) up to as large as 4.59 (at h
2
(Fco)=0.05, k=800, H=0). 

Fig. 3 shows that the relative performance of Dj increases with the 

Fm-heritabil ity level and the experimental size, but that Dj only outperforms D2 

at a high dominance level combined with a large experimental size and a medium 

to high F^-heritabil ity level. Of all the 168 studied combinations only 11 

combinations showed a Dj outperforming D2, of which 9 were situations with 
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extreme overdominance (H=2*D). 

UI 

The optimum allocation of the experimental size with respect to Hj can be 

determined in a very similar way as applied to Dj. This optimum is different 

from the optimum with respect to Dj. This can already be seen at the optimum 

number of plants per line for a given F3-population size (c=1«n): 

(l+3.c).(E+V2F3)+c.v1F3 
n„ -

A.(E+V 2 F 3) +C.V 1F3 

We determined the optima for Hj numerically for all previously mentioned 168 

combinations of F<„-heritabil ity, experimental size and dominance level, and 

subsequently evaluated the mean square errors at these optima. The optimum 

number of parent plants and the optimum number of plants per line were higher 

than for D1. In effect this means that H: needs a more accurate estimate of V2F3. 

The CE is in many of these cases rather high, e.g. at a h2(Fao)=0.25 for k=1600 

with H=2-D Cf=1.4 up to as large as C£=32.0 for k=50 with H=^«D. 

For all 168 combinations, for which the allocation of the experimental size 

was optimized for Dj (!), we also computed the correlations of Hj with d (using 

equations (9), (10) and (12)). These were found to be highly negative: ranging 

from -0.83 to -0.95. Graphical demonstrations of these highly negative 

correlations can be found in Van Ooi jen (1986) and in Shaw (1987). 

EXPERIMENTAL DESIGN BASED ON PLOT TOTALS 

Sometimes the F„-heritability of a certain trait is so low that the experimental 

size, necessary for an accurate estimate of D, expands too much to be able to 

score each individual plant. In that case the experimental design will be based 

on plot totals (or plot means). A corresponding standard design is also a 

completely randomized design, but now based on plot totals (or plot means). The 

accompanying analysis of variance is presented in Table 2. 

Working with plot totals instead of with individual plants means loss of 

information on genotypic within line variance. As plot size increases there 

will be hardly any information left on genotypic within line variance. For 

example, the mean of 2 plots of 100 plants of the same line will hardly differ 

genotypically, instead most of the difference will be of environmental origin 

(residual variance). Thus V2F3 will become hard to estimate, its estimator will 

have a very large variance, and as a result the CE of D: will increase. For 
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Table 2. Analysis of variance of a completely randomized design of plots of 
F3-lines, based on plot totals. 

MS name df £(MS_) 

MSB between lines 1-1 n«Ew + n
2«Eb + n«V2F3 + p-n

2»V1F3 
MSW within lines l-(p-l) n-Ew + n

2«Eb + n-V2F3 
MSI within parents 2-(i-1 ) n-Ew + n

2«Eb 

1 - No. of lines; n - No. of plants per plot; p - No. of plots per line; 
i - No. of plots per parent; V1F3 - genotypic between line variance; 
V2F3 - genotypic within line variance; Ew - residual within plot variance; 
Eb - residual between plot variance. 

example, doubling the experimental size by taking a plot of two plants instead 

of just one plant resulted in an increase (!) in the CE of Q: for all studied 

combinations (mentioned above) with an FM-heritability of up to 0.75; only the 

studied combinations with an F^-heritability of 0.90 or 0.95 showed a slight 

decrease in the CE of Qj. (Rem.: for these calculations E was split into Ew and 

Eb by using the empirical law of H.F. Smith (1938) with a coefficient of 

heterogeneity b=0.5). 

In contrast with this is the effect on D2. D2 does not need an estimate of 

V2F3, it only depends on the accuracy of the estimator of V1F3, which is even 

raised by increasing plot size. Theoretically there will, of course, be an 

optimum allocation of experimental size regarding plot size, number of plots and 

number of lines. However, for many crops plot size will primarily be dictated 

by agricultural practice, such as the number of seeds produced per plant and the 

capacity of the harvesting equipment. Therefore it is not attempted in this 

paper to determine a way of obtaining the optimum allocation of such an 

experiment. 

DISCUSSION 

It will be clear that estimator D2 is more accurate than Dj in many cases. When 

it is necessary to use plot totals because of low F„-heritabil ity, the 

performance of Dj becomes very inaccurate. When working with individual plants 

the accuracy of Qj can only be better than that of D2 in combinations with a high 

dominance level, a higher F„-heritability, and/or a large experimental size. In 

practice there need be no doubt about D2 when H<D, h
2
(Foo)<0.75, and n<400. For any 

situation it will be possible to approximate the mean square errors of both 
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estimators once the variance components have been (roughly) estimated in a pilot 

experiment. The experimenter can decide on which estimator to use, thereby also 

considering the available experimental capacity and the desired accuracy. 

The results may be extended to other experimental designs, such as a complete 

block design. These designs mostly aim at reducing the residual error. 

Therefore, we expect to find similar results. Of course it would be best to 

consider the mean square errors of both estimators for any specific desired 

design. 

Linkage and epistasis may bias both estimators. Depending on the magnitude 

of the linkage and epistasis parameters, D2 may even have a somewhat larger bias 

than D ^ A number of studies (Weber, 1982; Kearsey, 1985) conclude that the 

influence of linkage is unimportant, when we are regarding D as the Fm-variance 

and not as the "true" additive variance (Pooni & Jinks, 1986). The latter can 

be interpreted as the theoretical Fm-variance that would be obtained if linked 

loci were segregating independently. Because from the breeder's point of view 

the Fra-variance rather than the true additive variance is relevant, the present 

paper focuses on D as the F^-variance. Therefore, linkage is not likely to 

invalidate the main results. The influence of epistasis depends on the relative 

magnitude of its parameters. Pooni & Jinks (1979) describe methods to obtain 

estimates of these parameters. However, and this applies also to the paper of 

Jinks & Pooni (1982), in which methods are introduced that try to correct for 

linkage, 1) these methods are always too elaborate to include in a practical 

breeding programme (cf. Van der Veen, 1959), and 2) the more parameters have 

to be estimated, the less accurate the estimates usually become. 
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Summary 

Genotypic additive variance (D), with respect to a certain quantitative trait, 
estimated in the F3 of autogamous crops can be used to predict the probability 
to obtain superior recombinant inbreds in the offspring of the cross between two 
pure breeding lines. Confidence intervals for the estimated genotypic variance 
are based on the assumption, that genotypic and environmental effects have a 
normal probabil ity distribution, and on the assumption of homoscedasticity of 
residual variances. Normality of genotypic effects is in turn based on the 
assumption, that the quantitative trait is determined by a large number of 
independently segregating genes with equal and infinitesimal effect. This paper 
investigates the behaviour of the confidence interval (method of Williams, 1962, 
and Tukey, 1951) on the genotypic variance when only a limited number of genes 
determine the quantitative trait. The paper also investigates the robustness of 
the confidence interval to heteroscedasticity of residual effects. 

The confidence interval of the method of Williams and Tukey is inference 
about the genotypic variance that is enclosed in the original cross between the 
pure breeding lines. The breeder, however, is not so much interested in the 
potency of the original cross, but more in the potential future of the actual 
Fj-population, because he will want to continue the breeding programme with this 
material. Since there is no standard method for a confidence interval when the 
inference is about the current F3, one might still apply the Williams-Tukey 
confidence interval. The behaviour of this confidence interval in this situation 
is studied. 

1. INTRODUCTIOM 

Estimates of the additive genotypic component of phenotypic variance in a 

population with respect to a quantitative character are indicative for the 

future success of directional selection in that population. In outbreeding 

species the heritability (the genotypic part of the total variance) can be used 

to predict future selection response. In self fertilizing species the genotypic 

variance, which is generated by crossing two pure breeding lines, changes with 

generations (F2, F3, etc.) and the purpose of estimation is slightly different. 

Usually, the genotypic variance of the FM-generation (VFm or D) is taken as an 

indication of the potential genotypic progress enabled by such a cross; the 
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larger D is, the larger the probability of obtaining transgressive recombinants 

in future generations. Estimates of D can be obtained in several ways from early 

generations. One of the most efficient ways (in terms of experimental effort and 

accurateness) is to use the estimated variance between F3-lines (Jinks & Pooni, 

1980; Van Ooi jen, 1989). 

Confidence intervals for the estimated variance component are mostly based 

on the (usual) assumptions about the distribution of genotypic and environmental 

effects, i.e. normality and homoscedasticity. A normal distribution of genotypic 

effects is in turn based on the assumption of the polygenic nature of 

quantitative characters, i.e. a large number of genes with small individual 

effects. In quantitative genetics theory this assumption of normally distributed 

joint effects of the genes plays an important role (see e.g. Bulmer, 1985). 

Though the theory assumes that many genes are involved in quantitative 

characters, the actual number of genes contributing to the genotypic variation 

is generally unknown and very hard to determine (Thoday & Thompson, 1976). 

Recently, a renewed interest in the possible oligogenic basis of quantitative 

genetic variation has arisen from studies in which molecular genetic markers 

have been used to detect possible quantitative trait loci (QTL) (Soller & 

Beekman, 1988; Helentjaris, 1987; Paterson et al, 1988). In cereals partial 

resistance to fungal diseases, a character of quantitative nature, seems to be 

governed by a few major genes (Parlevliet, 1978; Broers & Jacobs, 1989). For 

this reason the present paper investigates in some detail the confidence 

intervals of D-estimates under the assumptions of a limited number of genes 

being involved in a quantitative character. 

In addition to this, the influence of heteroscedasticity (i.e. heterogeneous 

within line variances) on the confidence intervals was studied. The most 

commonly observed form of heterogeneity of variances is of the type "constant 

coefficient of variation". When this is due to the multiplicative nature of the 

character (such as sizes and weights of organs and developmental times) this 

can, of course, be "dealt with" by a suitable transformation of the data. 

However, apart from environmental influences, heterogeneity of variances also 

results from the very nature of the genetic segregation in the generations 

following a cross of pure lines. When a limited number of major genes are 

segregating, the within line genotypic variance in an F3-generation may vary 

considerably, not necessarily leading to constant coefficients of variation. 

Therefore, the robustness of confidence intervals (based on the usual 

assumptions) to violations of these assumptions was investigated briefly. 
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The genotypic variance components in a breeding population are usually 

considered as parameters of the probability distribution from which the actual 

population has been sampled. Consequently, statements about these parameters, 

such as confidence intervals of estimates, apply to this conceptual probability 

distribution. The hypothetical nature of this probability distribution is 

evident in a breeding programme: the breeder's interest is in the potential 

future of the actual population rather than in the genotypic variance of the 

imaginary population from which the actual population was sampled. Referring to 

the case of a cross between pure lines, the parameter D (additive genotypic 

variance) is a characteristic of that cross; it is the genotypic variance that 

would be observed in the F^-generation to be obtained by subsequent selfing of 

an infinite number of plants. From the breeder's point of view this parameter 

is less relevant than the genotypic variance which is to be expected in future 

generations derived from the plant material from which the estimate was 

obtained. In order to deal with this problem we introduce, in addition to the 

parameter D in the usual sense, a sample dependent parameter, Ds, which is the 

Fm-variance which would be observed upon selfing of the sample population. The 

discrepancy between D and Ds is entirely due to genetic sampling. D is the 

Fjo-variance which corresponds to (exact) gene frequencies, p=q=%, per locus, 

whereas Ds depends on the actual gene frequencies in the sample population. Q^ 

and DF3 will refer to (sample) generations F2 and F3 respectively. Since 

estimates of D are most efficiently obtained from F3 data, DF3 is the parameter 

which is of interest when the estimate (D) is used in the prediction of the 

potential future of the actual population. For these reasons we have studied the 
A - A 9 

behaviour of the mean square errors f(D-D) and £(D-DF3) , and of the confidence 
A 

interval, formulated for inference on Q with respect to D, but now applied to 

DF3-

2. BEHAVIOUR OF THE D-ESTIMATOR IN A SIMULATED EXPERIMENT 

As a first approach to study the behaviour of the D-estimator, a classical 

experimental setup was simulated using data collected on flowering time of 

Arabidopsis thaliana. Two true breeding lines were differing for two 

independently segregating genes for flowering time (fb- and fy-locus, Koornneef 

et al, 1983). The nine possible genotypes at this pair of loci had been obtained 

by crossing and line breeding. Of each genotype 20 plots of 6 plants had been 

grown in the greenhouse. The data collected with this oversized experiment were 

taken as the "true" values of the genotypes. Table 1 shows the estimates of the 
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population mean, the within plot variance and the between plot variance for each 

of the genotypes. It is clear that the heterogeneity of variances is not of the 

type "constant coefficient of variation". 

Table 1. Estimates of mean (m), within plot residual variance (EJ, and 
between plot residual variance (Eb) of the nine genotypes of a cross between 
two pure lines of Arabidopsis thaliana differing for two independent genes 
(loci fb and f ) with respect to flowering time, m is in days, and Ew and Eb 

are in days2. 

BB 
Bb 
bb 

YY 

23.4 
24.6 
41.8 

m 

Yy 

23.1 
24.7 
42.0 

yy 

32.6 
34.3 
50.3 

YY 

1.80 
2.17 
2.50 

E« 

Yy 

0.49 
0.89 
7.64 

yy 

8.53 
21.77 
7.00 

YY 

0.40 
0.52 
0.85 

Eb 

Yy 

0.25 
0.45 
1.50 

yy 

6.42 
0.81 
0*) 

*) The ANOVA estimate was -0.41. 

2.1 Methods 

The (computer) simulated experiment consisted of a number of random F3-lines, 

each derived from individual F2-plants, grown in individual plots in a balanced 

completely randomized design. In the simulation random sampling of genotypes, 

which applies both for sampling of F2-parents and for sampling of F3-genotypes 

from the sampled F2-parents, was done according to the Mendelian ratio's of two 

unlinked loci. The genotypic values of Table 1 were used. Within plot residual 

deviations were sampled for each individual from a normal distribution with zero 

mean and variance depending on the genotype from Table 1 (EJ. This implies 

heteroscedasticity for the residual plant effects. The between plot residual 

deviates were sampled as follows: for all plants within a plot one single 

standard normal random deviate was sampled, and for each individual plant 

translated in an individual between plot deviation by multiplying this deviate 

with the residual between plot standard deviation depending on the genotype of 

the plant (the square root of Eb from Table 1). This implies heteroscedasticity 

for the residual plot effects. The phenotypic value of a plant was the sum of 

its genotypic value, its within plot residual deviate, and its between plot 

residual deviate. 

From the simulated F3 the parameter D was estimated using the ANOVA of Table 

2. D was estimated as twice the between F3-l ine variance, i.e. 
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Table 2. Analysis of variance of a nested design of an F3. 

source 

1 ines 
plots within 1ines 
within plots 

Ew - within plot 
Eb - between plot 

MS 

MSL 
MSP 
MSR 1 

residual 
residual 

df 

1-1 
l-(p-l) 
•p-(n-l) 

variance; 
variance; 

f(MS) 

V2F3 + Ew + n-Eb + p-n.V1F3 
V2F3 + Ew + n-Eb 
V2F3 + Ew 

1 - number of 1ines; 
p - number of plots per line; 

V1F3 - between line genotypic variance; n - number of plants per plot; 
V2F3 - within line genotypic variance. 

D=2'V1F3=2'(MSL-MSP)/(p.n) (parameters defined in Table 2). (Though this 

estimator is biased when dominance and/or epistasis are present, it is generally 

to be preferred to unbiased estimators because of its small mean square error; 

see Van Ooi jen, 1989.) For each simulated F3 an approximate confidence interval 

of D was calculated using the method of Williams-Tukey. Boardman (1974) has 

shown that the methods of Williams (1962) and Tukey (1951) are equivalent; it 

is based upon normality and homoscedasticity of all random effects. He has also 

shown that this method is one of the best available. Confidence intervals using 

this method will hereafter be referred to as WT-confidence intervals. The lower 

and upper WT-confidence bounds for D are (confidence coefficient = 1-a): 

UT ! , MCD M S L / M S P - ̂(^,^,1-0/2) WT-lower = 2-MSP-

WT-upper = 2«MSP 

P'n«F(r!,<x.,l-a/2) 

MSL/MSP - l/F(r2,r1,l-a/2) 

p.n/f(»,r1,l-a/2) 

in which F(a,b,l-a) is the right a-point of the F-distribution 

( Pr{F(a,b) < F(a,b,l-a)}=l-a ), r^l-1, r2=l-(p-l); 1, p, n, MSL and MSP 

are defined in Table 2. The confidence coefficient used in all simulations 

was 0.95 (a=0.05). (Rem.: since D=2«V1F3 the confidence bounds for D are 

obtained by multiplying those for V1F3 by 2.) 

Since the true genotypic values are known, the expected value of the estimator 
A 

D, including the bias from dominance and epistasis, can be calculated. 

Subsequently, the realized confidence, which is the frequency with which a 

calculated confidence interval includes the true value, also referred to as 

coverage, can be determined from a large number of simulated F3's. For each 
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situation we simulated 1000 F3's, hence for a 95% confidence interval one 

expects 950 cases in which the true D is comprised in the calculated interval. 
A 

Additionally, the variance of 0 was estimated over the simulated F3's; the 

expectation of this variance was calculated assuming a normal and homoscedastic 

distribution of all effects (and hence a chi-square type distribution of the 

mean squares: MS=£(MS)-x2df/df ); this expected variance will be labeled 
A A 

var(D! normality) (or var(D|norm.)). 

In order to study the effect of unequal vs. equal Ew and Eb over the 

genotypes (hetero- vs. homoscedasticity), a set of simulations was performed 

with equal (average) Ew and Eb. In another set of simulations the (relative) 

magnitude of the residual variances was increased. The parameter used to 

describe the relative magnitude of the genotypic vs. the residual effects is the 

between line heritability : h2(bl )=(V2F3+p'n«V1F3)/(V2F3+Ew+n'Eb+p'n'V1F3) 

(parameters from Table 2). 

2.2 Results 

The results are presented in Table 3. A first remark is that the between line 

heritability of the studied character (flowering time) is very high. For five 

experimental designs (Ew and Eb unmodified from Table 1, the five upper left 

cases of Table 3) we found a coverage of the WT-confidence interval of D above 

the 95% level (which means that the interval is conservative). Accordingly, the 
A 

variance of D, estimated from 1000 replicate runs, was smaller than 
A 

var(D|normality) for all five cases. We realize that estimating variances over 

1000 replicate runs can be inaccurate. Therefore we performed for all situations 

two extra sets of 1000 replicate runs. These simulations showed results (data 

presented in the addendum of this chapter) very similar to those presented in 

Table 3. 

Possible causes for the effects on the WT-confidence interval and the 
A 

variance of D are: 1) non-normality of the genotypic effects, 2) 

heteroscedasticity of the genotypic effects, and 3) heteroscedasticity of the 

residual effects. To identify the main cause another set of simulations were 

performed, but now with equal, i.e. homoscedastic, Ew and Eb. The new Ew was the 

weighted (according to the genotype frequencies) mean of the individual 

Ew-values, and the new Eb was the square of the weighted mean of the square 

roots of the individual Eb-values. (Using the homoscedastic Ew and Eb, calculated 

this way, results in mean squares with the same average over replicate runs as 

the mean squares in the heteroscedastic cases.) The results with equal residual 
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Table 3. Results of simulations of F3 of Arabidopsis. 2 loci; 6 plants per plot; 
varying numbers of lines (lines) and numbers of plots per line (plots); 
variances of D in (days2)2. 

heteroscedastic Ew and Eh homoscedastic Ew and Eh 

1 ines 
plots 

25 
2 

50 
2 

100 
2 

25 
4 

25 
8 

25 
2 

50 
2 

100 
2 

25 
4 

25 
8 

fw and Eb unmodified from Table 1: 
h2 (bl) 0.985 0.985 0.985 0.992 0.996 
%ACoyerage 98.3 98.7 99.1 97.2 98.2 
vâr(D) 839 412 199 828 737 
var(ü|norm.) 1251 613 303 1168 1129 

fw and fb 100 x the values of Table 1: 
h2 (bl) 0.396 0.396 0.396 0.561 0.716 
% coverage 94.8 94.4 94.5 97.0 97.4 
var(D) 15836 
var(D|norm.) 10618 

7888 
5230 

4103 
2596 

4278 
3897 

1941 
2211 

0.985 0.985 0.985 0.992 0.996 
98.2 98.7 98.9 97.5 97.4 
912 419 198 813 753 
1251 613 303 1168 1129 

0.395 0.395 0.395 0.560 0.716 
96.3 96.1 96.4 98.2 96.7 
10321 5190 2699 3436 1992 
10628 5235 2599 3900 2212 

variances for both the coverage and the variance of D are similar to those with 

unequal residual variances (Table 3, upper right part). This indicates that the 

heteroscedasticity of the residual effects is not the main cause of the raised 
A 

coverage of the WT-confidence interval and the lowered variance of Q. 

Since the heritability in the previous simulations is rather high, the 

influence of heteroscedasticity of the residual effects was also studied with 

lower heritability. The simulations with equal and unequal Ew and Eb were carried 

out with 100 times increased values of Ew and Eb. Their results are in the lower 

part of Table 3. Here the coverages of the confidence interval of D are closer 

to the desired 95% level, both for homo- and heteroscedastic Ew and Eb, and 

especially for the cases with a lower between line heritability (i.e. cases with 

2 plots per 1ine). 

Referring to Table 3 it is seen that in the case of a low heritability, 

heteroscedasticity of Ew and Eb influences the discrepancy between estimated 

variance of D and var(D|normality). Homoscedasticity of Ew and Eb causes the 
A 

estimated variance to be much closer to var(D|normality). We can look at the 
A 

components of the variance of D in Table 4. This table presents the estimated 

variances of the mean squares together with their expected values based upon 
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Table 4. Continuation of results of simulations of Table 3; estimated variances 
of the mean squares (from Table 2) and their expected values based upon 
normality assumptions (var(MS|norm.)); variances in (days2)2/100, except for the 
variances of MSP and MSR in the upper part of the table, that are in (days2)2. 

heteroscedastic Ew 

lines 25 
plots 2 

fw and Eb unmodifi 

vâr(MSL) 284 
var (MSJ,! norm.) 449 
vâr(MSP) 279 
var(MSP|norm.) 178 
vâr(MSR) 55 
var(MS_R|norm.) 14 

50 
2 

ed from 

140 
220 
151 
89 
29 
7 

100 
2 

Tabl 

67 
109 
76 
44 
15 
4 

fw and Eb 100 x the values of 

var(MS_L) 3412 
var(MSL|norm.) 2782 
vâr(MSP) 2545 
var(M£P|norm.) 1041 
vâr(MSB) 132 
var(MSB|norm.) 31 

1633 
1363 
1421 
520 
69 
15 

900 
674 
677 
260 
32 
8 

înd Eb 

25 
4 

e 1: 
1162 
1681 
117 
59 
51 
7 

Table i 

5357 
5265 
1122 
347 
108 
15 

25 
8 

4183 
6502 
71 
25 
42 
4 

: 
10445 
12589 
804 
149 
87 
8 

homoscedastic 

25 
2 

315 
449 
266 
178 
51 
14 

2534 
2784 
1074 
1042 
30 
31 

50 
2 

141 
220 
160 
89 
27 
7 

1354 
1364 
532 
521 
15 
15 

Ew and Eb 

100 
2 

67 
109 
73 
44 
14 
4 

669 
675 
259 
261 
7 
8 

25 
4 

1145 
1681 
114 
59 
47 
7 

4784 
5269 
365 
347 
16 
15 

25 
8 

4288 
6502 
70 
25 
42 
4 

11315 
12594 
150 
149 
7 
8 

normality assumptions (and homoscedasticity). In the heteroscedastic cases the 

estimated variances of the mean squares are larger than their expected values, 

except for the variance of MSL for the case with 8 plots per line. This is in 

contrast to the homoscedastic cases, where the estimated variances are all 

approximately equal to their expected values, except for the variance of MSL 

for the cases with 4 or 8 plots per line. It is clear that heteroscedasticity 

of the residual variances rises the variances of the mean squares and hence the 
A 

variance of D. In both the hetero- and the homoscedastic case with 8 plots per 

line the estimated variance of MSL is smaller than the expected value. One 

expects that heteroscedasticity of the genotypic (within line) effects has a 

similar variance increasing effect on the mean squares as heteroscedasticity of 

the residual effects. This cannot be detected in the homoscedastic cases with 

low heritability, but in the cases (both hetero- and homoscedastic) with high 

heritability the estimated variances of MSP and MSR were larger than their 
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expected values (Table 4). But even in those cases the estimated variance of MSL 

was smaller than the expected value. The only remaining invalid assumption 

responsible for this smaller variance of MSL is non-normality of the genotypic 

effects. Therefore, we can state that non-normality of genotypic effects most 

likely reduces the variance of MSL. In one of the heteroscedastic cases (25 

lines, 8 plots/line) the between line heritability is of such a high level 

(0.716, Table 3), that the variance increasing effect of heteroscedasticity of 

the residual variances is counteracted so much by the variance reducing effect 
A 

of the non-normality of the genotypic effects, that the variance of D has become 

smaller than its expected value. 

2.3 Non-normality of the genotypic effects 

In order to further investigate the influence of non-normality of the genotypic 

effects, caused by the oligogenic nature of the quantitative trait, we simulated 

F3's for various small numbers of loci, analogous to the simulation described 

in section 2.1, i.e. genotypes were sampled at random according to the Mendelian 

segregation ratio's. Dominance, linkage, and epistasis were absent. The value 

of the additive genotypic effect per locus (d) was equal for all loci and was 

chosen depending on the number of loci such that the true value of D was always 

equal to 1 (it can be shown that in the absence of epistasis and linkage D 

equals the sum of d2 for each locus, i.e. D=Ed2, e.g. Mather & Jinks, 1977). 

Residual effects were normally distributed with equal variances for all 

genotypes. The F3's consisted of 25 lines, 2 plots per line and 6 plants per 

plot. The simulations were performed for three levels of the residual variances. 
A 

For each level var(D|normal ity) of was calculated. For each situation the 
A 

coverage of the WT-confidence interval was determined and the variance of D 

estimated over 1000 replicate runs. (Rem.: as stated before, we repeated the 

1000 replicate runs two more times, of which the results showed the same trends; 

see addendum of this chapter.) 

The results are presented in Table 5. The effects of non-normality decrease 

with increasing number of loci and with decreasing heritability. The ratio of 
A A 

the estimated variance of D and var(D|normality) rises above 0.90 when more 

than eight loci are involved at high heritability, when more than two loci are 

involved at intermediate heritability, and even starting at one locus at low 

heritability. The coverage of the WT-confidence interval only deviates 

substantially from the desired 95% level at one or two loci combined with high 

or intermediate heritability. (Rem.: Since the WT-confidence interval is not an 
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Table 5. Results of simulations of F3's with 25 lines, 2 plots per line, 6 
plants per plot, at varying number of loci, and at 3 levels of Ew and Eb; 
1000 replications per situation; Ew and Eb in days

2. 

loci 1 2 4 5 8 10 14 16 

E„=0.252, Eb=0.102, h2(bl)=0.98 : 

%ACoyerage A 99.2 97.6 96.8 96.0 96.3 96.5 96.7 96.7 
vâr(D)/var(D|norm.) 0.51 0.77 0.86 0.84 0.90 0.96 0.95 0.93 

fw=i.5
2, Eh=0.52, h2(bl)=0.63 : 

%ACoverage A 98.6 97.6 96.3 97.8 97.1 96.8 95.9 97.6 
vaY(D)/var(D|norm.) 0.77 0.97 0.97 0.95 0.97 0.96 1.07 0.97 

Ew=2.52, Eb=1.02, h2(bT)=0.34 : 
%ACoyerage 97.1 96.8 97.2 96.7 96.9 96.7 96.6 97.0 
vaY(D)/var(D|norm.) 0.92 0.98 0.92 0.92 0.97 0.89 1.01 0.97 

exact confidence interval, the approximate confidence was determined for the 

case in which all effects (genotypic and residual) do have a normal 

distribution, using a comparable computer simulation (100,000 repl ications). For 

the above used F3-size and -design and for the same three levels of Ew and Eb the 

coverage of the 95% WT-confidence interval was approximately 96.5%). 

3. DISCRETENESS OF THE DISTRIBUTION OF GENOTYPIC VALUES 

The results from the previous section indicate that the D-estimator of 

oligogenic quantitative characters has a smaller variance than would be expected 

based on normality assumptions. This resulted in some cases in a higher realized 

confidence of the WT-confidence intervals. Therefore we will investigate the 

variance of the estimator of D when the number of genes is limited, and compare 

it to its variance when normality is valid. 

The estimator of D in an experiment as described in the previous section 

essentially estimates twice the genotypic variance between F2-individuals. Since 

the estimator of the F2-variance is much simpler than the D-estimator for the 

F3, we will concentrate on properties of the estimator of the F2-variance. We 

will use a general formula for the variance of the usual variance estimator in 

terms of cumulants, and subsequently use the cumulants of the presupposed 

distributions to compare the variances for oligogenic and polygenic (i.e. 

infinite number of independent genes with small equal effects) characters. 



Statistical aspects of estimation and prediction of additive genotypic variance 3 1 

Let x1( ,xN be N identically distributed sample values. The variance of 

this distribution is estimated by: 

Z x2 - (E x)2/N 
Vx = var(x) = — = v -' ' . 

' N-l 

The variance of V can be expressed in terms of the cumulants of x. Let ns be 
the ith cumulant. Then: 

var(Vx) = '"
2 (~} + ̂ ~ (e.g. Kendall & Stuart, 1958, Chapter 12). 

If the phenotype p is the sum of two independent variables (genotypic value 
g and environmental/residual error e), then the cumulant of this sum of 
independent variables is the sum of their cumulants (e.g. Cramer, 1946, Chapter 
15). Thus, 

if: p = g + e, then: Ki(p) = Ki(g) + «,(£). 

Accordingly, the variance of Vp can be written as: 

v a r(V )=
 2 ' K 2 Z ^ ) «4(9) 2-*2

2(e) + «„(a) + 4->cg(g)-<c2(e) 
V3r p N-l + N N-l N N-l 

If we assume independently segregating loci with equal effects without 
epistasis, then the distribution of g is binomial. With L segregating loci and 
no dominance or epistasis the distribution of g is g=ß(2'L,^); with 
(unidirectional) dominance the distribution of g is g=ß(L,^) (or equivalently: 
g=ß(L,3/4)). ( ß(n,p) refers to a binomial distribution with parameters n 
(number of trials) and p (probability of success).) We further assume that the 
residual error e is normally distributed with mean zero and variance o2

e 

(e=W(0,o2
e)). When comparing the alternatives, i.e. a normal vs. a binomial 

distribution of genotypic values, we will assume that the normal distribution 
has mean and variance equal to mean and variance of the corresponding binomial 
distribution. Thus, using expression (1) and the cumulants of the distributions 
of g and e, we are in a position to compare the variances of Vp under the two 
alternative assumptions. Abramowitz & Stegun (1970, 26.1.20) give a recurrent 
equation for the cumulants of the binomial distribution ß(n,p) : 

Ki+1 = p«(l-p)-6/ci/6p (for i>l), while «^n-p. 

From this equation the second and fourth cumulants can be derived: 

K2 = n-p«(l-p), 
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/c4 = n-(p-7.p
2+12.p3-6-p4). 

For the normal distribution one has (Abramowitz & Stegun, 1970, 26.1.26): 

«i = ß, «2 = o , and «4 = 0. 

As an example of a comparison consider the case of L loci, no dominance: 

g » B{Z-l,\), Kl(g) = L, /c2(g) = \-l, and «4(g) = -\-l, 

then under the alternative assumption one has a normal distribution with mean 

L and variance k'i: 

g » N{L,k-L), Kl(g) = L, «2(g) = %-L, and «4(g) = 0; 

using these cumulants, the cumulants of a normally distributed e, and expression 

(1), the variance of Vp can be calculated for the alternative assumptions. In 

the calculations the relative magnitude of the environmental variance (oe
2) is 

expressed in terms of the heritability (h2), i.e.: 

k2 °g 2 2 1 - h2
 z 

h = ~2 T> S 0 ° e = U ° 9' 
Og

i + 0 / h2 9 

or equivalently /c2(e) = —-^—*re 2(g). 

The results of the calculations are summarized in Fig.l, where the variances 

of \£p under the alternative assumptions are expressed as a ratio. Since the 

results expressed in this way do not critically depend on the sample size N (as 

can be seen from (1)), only a single sample size (N=40) is represented in Fig.l. 

It is seen that assuming a normal distribution of genotypic effects in case 

that the true distribution is binomial, may lead to considerable overestimation 

of var(Vp), especially when heritability is high. As a result the WT-confidence 

interval (which assumes a normal distribution) will be very conservative. Of 

course, the discrepancy decreases with an increasing number of loci and with a 

decrease of heritability (both changes result in a more normal appearance of the 

distribution of the phenotype p). When more than five loci of equal effects are 

involved the difference is always less than approximately 7%. 

These results are in accordance with the observations of the previous 

section, where the same trend was observed in the simulations. With only a few 
A 

genes segregating, the observed variance of D was less than the variance 

calculated from the data assuming a normal distribution of phenotypes and 

correspondingly the coverage of the Will iams-Tukey confidence interval was 
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Figure 1. Ratio of the variance of the phenotypic variance between F2-individuals under the assumption of a 

binomial distribution, var(Vp]bin.), and under the assumption of a normal distribution of the genotypic values, 

var(V Jnorm.). Dominance, epistasis and linkage are absent; the sample size N is 40. 

higher than expected. For example, in Table 5, we found for the case of two loci 

and h2(bl)=0.98 a value of 0.77 for the ratio of the observed and the expected 
A A 

variance of Q. Since the estimator D essentially estimates twice the genotypic 

variance between F2-individuals, Vg, the heritabil ity used for the F2 corresponds 

to the between line heritabil ity of the F3. The ratio of Vp's under the 

alternative assumptions in an F3 corresponds to the ratio of MSL's under the 

alternative assumptions. Since heritability is very high (0.98), the variance 

of MSP is very small compared to the variance of MSL, therefore this ratio is 

very close to the 0.77: var(MSL)/var(MSL|norm.)=0.75 (data not shown). For a 

binomial distribution with two loci we have: L=2, K2(g)=l, and «4(g)=-0.5, while 

for the corresponding normal distribution we have: K2(g)=l, and /c4(g)=0; with 

h2=0.98 we get: /c2(e)=0.02. This results in a value of 0.76 for the ratio of the 

variances of VD, which is close to the observed 0.75. 
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4. GENETIC SAMPLING AND PREDICTION 

As mentioned in the introduction, estimation of D in an early generation of a 

breeding programme primarily serves a practical goal, i.e. the prediction of the 

genotypic variance which is to be expected in future generations. Since the 

latter depends on the actual genetic composition of the population from which 

the estimate is obtained (mostly the F 3), such a predictive estimate should 

refer to the actual sample population rather than to the probability 

distribution from which the sample was taken (mostly determined by the F x). For 

this reason we introduce the sample dependent value of D. The sample dependent 

value Ds is the expected value of the variance of the FM-generation (VFJ that 

can be derived by (continued) selfing the sample population: Ds=f(VFm!sample). 

We will consider the following sample dependent D-values: 

Fj-generation: DF1 (is a constant); 

in the F1 allele frequencies are exactly equal {%), so DF1 is the parameter 

D in the usual sense; 

F2 and F3-generation: ß F 2 and DF3 respectively; 

DF2 and D^ may differ from DF1 as the result of genetic sampling, i.e. 

deviations from p=q=^ in the actual population; given a certain F2 or F3 
the respective parameters DF2 and ßF3 are fixed constants (DF2 and D F 3), 

rather than random variables. ( DF2=(DF2|F2) and DF3=(DF3|F3) ). 

Obviously, the distinct D-types correspond to fixed or random genotypic effects. 
A 

When D is an estimator of DF1, then the genotypic effects have to be treated as 
A 

random. But when D is an estimator of DF3, then both the genotypic between and 

within line effects have to be treated as fixed. DF3 is a quadratic function of 

both the fixed genotypic between and the within line effects. These effects are 

only temporarily fixed: the next generation is determined by genetic segregation 

and hence genetic sampling of the F3-genotypes. Since there are no standard 

methods for determining a confidence interval on this parameter DF3, one might 

simply neglect the fact that one has to do with fixed effects, and apply the 

Williams-Tukey method. 

In the following it is assumed that the estimate D is obtained from an 

F3-generation in the way described in section 2. In order to obtain an 

impression as to which degree D is a better estimator of £(VFœ|sample) than 

might be expected by considering it as an estimator of DF1, we calculated the 

following quantities in a number of simulations: 

- the mean square error MSE1=E(D-DF1)
2/n (n=number of simulations), which 
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reflects the error with respect to the probability distribution from which 
A 

the sample was taken; it is also an estimator of the variance of D (slightly 

biased); 
A . 

- the mean square error MSE3=S(D-DF3) /n, which reflects the deviation due 

partially to environmental error in the F3-generation, and partially to the 

realized distribution of genotypes over the lines; 
A 

- the correlation corr(D,DF3), which is the correlation between the estimator 

and the goal parameter of the actual sample population; 

- and the correlation corr(DF3,DF2), which shows the amount of genetic sampling 

that occurs in advancing from F2 to F3. 
As stated above, £(D-DF3)

2/n rather than E(D-DF1)
2/n describes the predictive 

A 

performance of D. 
4.1 Method 

The simulations were analogous to those described in section 2.3. The F3-size 

and the number of loci could be varied. All loci had equal genotypic additive 

effects d, such that DF1 equals 1, independent of the number of loci. Linkage, 

dominance and epistasis were absent. All genotypes had equal residual variances 

Ew and Eb. Of each situation we determined the above mentioned parameters over 

1000 replicate runs. (Rem.: as stated before, we repeated the 1000 replicate 

runs two more times, of which the results showed the same trends; see addendum 

of this chapter.) 

4.2 Results 

First we will look at the effects of different population structures and sizes, 

of which the results of the simulations are presented in Table 6. In these 

simulations the heritability was of the same high level as found for the 

Arabidopsis flowering time. MSEj is in all cases reasonably close to 
A 

var(D|normality), meaning that the influence of the discreteness of the 

distribution of genotypic values (determined by four loci) is limited. The 

correlation between DF3 and DF2 is in all situations high to very high. The 

smallest correlation coefficient was found, when each F2-plant is sampled as 

only 2 F3-plants (Table 6, case H) : 0.78, while already at 6 F3-plants (Table 

6, case J) the correlation is higher than 0.90. This means that the F3 is a 

genetically very close sample of the F2. 

Since the ratio MSE3/MSE! is around 0.40 in all cases (except maybe case H), 
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Table 6. Results of simulations of F3's at different population sizes and 
structures, with 4 loci determining the genotypic effects; Ew=0.25

2 days2; 
Eb=0.10

2 days2; 1000 replications per situation; MSE! and var(Djnorm.) in 
(days2)2. 

case: A B C D E F G H I J 

l ines 25 50 100 25 25 25 25 25 25 25 
plots 2 2 2 4 8 2 2 2 2 2 
plants 6 6 6 6 6 12 24 1 2 3 
h2 (b l ) 0.981 0.981 0.981 0.990 0.995 0.985 0.988 0.945 0.965 0.972 
var(D|norm.) 0.094 0.046 0.023 0.089 0.086 0.090 0.087 0.154 0.116 0.104 
MSEj 0.082 0.043 0.022 0.078 0.078 0.075 0.077 0.136 0.095 0.094 
MSE3/MSE! 0.40 0.40 0.39 0.40 0.40 0.41 0.39 0.50 0.45 0.43 
corr(D,DF3) 0.90 0.91 0.91 0.91 0.92 0.90 0.91 0.81 0.85 0.88 
corr(DF3,DF2) 0.95 0.95 0.96 0.98 0.99 0.97 0.99 0.78 0.87 0.91 
% coverage DF1 96.5 97.0 96.3 96.8 96.5 97.2 96.3 97.4 98.2 96.7 
% coverage DF3 99.7 99.8 100.0 99.9 99.8 99.9 99.9 99.9 99.9 99.9 

th is indicates that th is ra t i o does not depend much on the population size, 

although i t varies with the between l i ne h e r i t a b i l i t y (which depends on the 

population s t ructure) , which is smallest in case H. I t demonstrates our point 
A 

that D is much closer to DF3, the sample dependent parameter, than to DF1, the 

parameter of the population that the F3 was sampled from. Likewise, this affects 

the coverage of the 95% WT-confidence intervals. The coverage with respect to 

DF1 is around 96.5% (which is close to the expected coverage, see section 2), 

whereas the coverage with respect to D,:3 is around 99.9%. Thus, the WT-conf idence 

interval with respect to DF3 is in these cases very conservative. Because the 
A 

heritability in these simulations is very high, the correlation of D with D^ 

is also quite high (± 0.90, Table 6). 

In order to get an impression of the influence of the heritability level and 

the number of loci, we performed some simulations with a fixed population 

structure of 25 lines, 2 plots per line, and 6 plants per plot, at varying 

numbers of loci and at 3 levels of residual variance. The results are given in 

Table 7. 

The effects of the discreteness of the genotypic effects, which are described 
A 

in section 2.3 for the variance of D and the coverage of the WT-conf idence 

interval, are similar to the effects here for the corresponding parameters MSEi 

and the coverage of the WT-confidence interval with respect to DF1. 
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Table 7. Results of simulations of F3's with 25 lines, 2 plots per line, 6 
plants per plot, at varying numbers of loci and at three heritability 
levels; 1000 replications per situation; Ew and Eb in days

2; MSE's and 
var(Djnorm.) in (days2)2. 

loci 1 2 4 8 16 

E„=0.252, Eb=0.10z, h2(bl)=0.98, var(D\norm.)=0.094: 
MSEi 0.045 0.069 0.087 0.089 0.092 

MSE3 0.044 0.038 0.036 0.033 0.031 
MSÊ MSEj 0.96 0.55 0.41 0.37 0.33 
corr(D,DF3) 0.19 0.78 0.90 0.94 0.95 
corr(DF3,DF2) 0.96 0.95 0.95 0.95 0.95 
var(DF3) 0.001 0.011 0.017 0.019 0.020 
% coverage DF1 99.7 97.8 96.2 97.1 95.9 
% coverage DF3 99.7 99.7 99.9 100.0 99.8 

fw=i.52, £b=0.52, hz(bl)=0.63, v a r ( D j n o r m . ) = 0 . 2 6 7 : 
MSEj 0 . 2 0 0.23 0.25 0.27 0.26 
MSE3 0 . 2 0 0 . 2 0 0 . 2 0 0.21 0.20 
MSÊ MSEj 1.00 0.86 0.82 0.78 0.79 
corr(D,DF3) 0.06 0.42 0.49 0.56 0.54 
corr(DF3,DF2) 0.96 0.95 0.95 0.95 0.95 
vâr(DF3) 0.001 0.010 0.016 0.018 0.018 
% coverage DF1 98.7 97.8 97.5 96.7 96.5 
% coverage DF3 98.7 98.9 98.8 98.2 97.9 

E„=2.52, Eb=1.02, h2(bl)=0.34, var(D\norm.)=1.139: 
MSEX 1 . 1 0 1 .07 1 .13 1 .18 1.11 
MSE3 1.09 1.04 1.08 1.13 1.06 
MSE3/MSE! 1.00 0 . 9 7 0 . 9 5 0 . 9 6 0.95 
corr(D,DF3) 0.06 0.18 0.26 0.23 0.25 
corr(DF3,DF2) 0.96 0.95 0.95 0.95 0.95 
vâr(DF3) 0.001 0.011 0.017 0.018 0.019 
% coverage DF1 96.2 96.7 95.8 96.3 96.2 
% coverage DF3 96.2 97.0 96.1 96.3 96.2 

The correlat ion between DF3 and DF2, which is purely genetic and thus not 

influenced by the h e r i t a b i l i t y l eve l , is in a l l cases about 0.95. This shows, 

that there is not much variance introduced by genetic sampling going from F2 to 

F3 (as was already evident from Table 6) , and th is appears to be independent of 

the number of l o c i . 

The (estimated) variance of DF3 is very small when only one locus determines 
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the genotypic effects. Obviously, with the used F3-size there will be hardly any 

variation possible in F3 samples concerning the DF3-value. 

MSE3 is only visibly influenced by the number of loci at high heritability 

(h2=0.98). As stated above, this mean square error reflects the estimation error 

due partially to environmental variance, and partially to the distribution of 

genotypes over the lines, i.e. DF3 is a function of both the genotypic between 

and within line variance, whereas D in fact just estimates twice the genotypic 

between line variance. For example, two genetically different F3's may have the 

same DF3-value, but different genotypic between line variances and hence 
A 

different expected D-values (expectation over all environments). When more loci 

become involved, the average difference (reflected in MSE3) between the expected 
A 

D-value and twice the between line variance reduces, because with increasing 

numbers of loci the heterogeneity of genotypic within line effects decreases. 
A 

This is seen to happen, even while the variance of D (MSEJ increases when more 

loci become involved, due to the normalization of genotypic between line 
A 

effects. Since the (estimated) variance of D increases and MSE3 decreases at 
A 

more loci the correlation corr(D,DF3) can only but rise, as is evident from 

Table 7. Because of the extremely small variance of DF3 at one locus, this 
A 

correlation at one locus is very low. The correlation between D and DF3 is, 

apart from the number of loci, influenced by the heritability level. The 
A 

ß-estimation error, given an F3, i.e. MSE3, is only visibly affected by the 

numbers of loci at high heritability. Apparently, when heritability decreases, 

the error due to environmental variance becomes much more important than the 

error due to the distribution of genotypes over the lines. At the lowest tested 

heritability the MSE3 even approaches MSEj (cf. the quotient MSEJ/MSEJ in Table 
A 

7). So, at low heritability D is on the average about as close to DF3 as expected 

by considering it an estimator of DF1. But at intermediate and high heritability 

DF3 is evidently closer, and thus describing the F3-sample better. 

At the three heritability levels the coverage of the WT-confidence interval 

with respect to DF3 is approximately the same for all tested numbers of loci. 

However, the coverage clearly depends on the heritability level. At the high 

heritability level the WT-confidence interval is rather conservative with 

respect to DF3, while at the low heritability level (h
2=0.34) the coverage is 

close to the [desired 95%] expected 96.5% level. At the intermediate 

heritability level the effect can still be detected. 
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5. DISCUSSION AND CONCLUSIONS 

This paper presents results of research on some statistical aspects concerning 

the estimation of the genotypic additive variance in autogamous crops. These 

aspects are: 1) the possible invalidity of usual assumptions in quantitative 

genetic theory: a) the quantitative trait is determined by a limited number of 

genes, instead of by an infinite number of genes with equal and infinitesimal 

effect, b) there is heteroscedasticity of genotypic effects, and c) there can 

be heteroscedasticity of residual effects, as we found in our Arabidopsis 

experiment; and 2) the erroneous interpretation of an F3-experiment: treating 

fixed effects as random when the statistical inference actually concerns the 

current F3-sample, instead of the Fj from which the current F3 is realized. 

Although the research has not been extensive for all aspects, there are some 

interesting results. 

From the simulation of an Arabidopsis experiment (section 2) already some 

aspects become clear. Heterogeneity of residual effects has a variance 
A 

increasing impact on the estimator D. But this is only visible when the between 

line heritability is intermediate or low (i.e. when the residual effects are 

relatively large) and when the heterogeneity has a magnitude that is used in the 

simulations. Whether this magnitude of heterogeneity of residual variances at 

lower heritability is present in real experiments, remains a question, although 

we consider it to be quite great. In any case it should not be hard to detect 

in an experiment. Additionally, this type of heteroscedasticity is not very 

likely when more loci become involved in the determination of a trait; in that 

case the only likely type of heteroscedasticity of residual effects would seem 

to be of the "constant coefficient of variation" type, which can be cured by a 

data transformation. 

Heteroscedasticity of residual effects has, though, a limited impact on the 

WT-confidence interval. The influence of heteroscedasticity of residual effects 

is that sometimes residual effects of predominantly large residual variances are 

sampled, sometimes of predominantly small variances, and sometimes of both. But 

in each particular case the residual variance part of the expectation of the MJ>P 

is the same as that of the MSL. This explains why the WT-confidence interval is 

relatively unaffected by heterogeneity of residual variances. 

We could only detect influence of the heteroscedasticity of genotypic effects 

at very high heritability. It only increased the variances of MSP and MSR in the 

studied case with 2 loci (Table 4), while the variance of MSL is concurrently 

and stronger decreased as a result of non-normality; as a result the variance 
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of D was decreased. The magnitude of the heterogeneity is too small to become 

important, because when more loci become involved the influence of non-normality 

decreases, the influence of heteroscedasticity will also decrease. 

The non-normality of genotypic effects, caused by a limited number of loci 

determining the quantitative trait, may have an evident impact on the variance 
A 

of D, and thus on the WT-confidence interval on D. Only when the number of loci 

determining the trait is small, combined with an intermediate to high between 

line heritability, is the deviation from normality large enough to have a 
A 

significant influence. In such a case the variance of Q is smaller than 

expected, and the WT-confidence interval is rather conservative. A theoretical 

study on this subject in section 3 leads us to the conclusion that the effect 

of only a limited number of loci being involved can only become important when 

the number of loci is less than five, together with a higher heritabil ity. 

Kelleher et al. (1958) have investigated the presence of non-normality (i.e. a 

significant fourth degree statistic) with respect to the precision of estimates 

of variance components on yield data in a large corn experiment. They did not 

indicate any possible cause of non-normality. They concluded, that the estimates 

of variance components of their corn yield data were unaffected by non-

normality, to the level investigated. Yield is considered a trait of really 

polygenic nature, therefore their results meet the expectations, unless the non-

normality is caused by environmental effects. 

When the inference concerns the actual sample F3, the (erroneously applied) 

Williams-Tukey procedure may lead to rather conservative intervals, i.e. the 

estimate is much closer to the true value than expected when observing the 

WT-confidence interval. This is especially manifest, when the between line 

heritability is high. But when the between line heritabil ity is below 0.6 the 

procedure is reasonably accurate. 

An interesting observation has been that the correlation between DF3 and D ^ 

is always very large. For practical breeding this means that the sample size of 

the F2 is the bottleneck for the range of recombinant inbreds that can be 

expected in the offspring of a cross. 

Summarizing, we may conclude 1) that heteroscedasticity of genetic and 

residual effects are not important; 2) that, if the quantitative trait is 

determined by a limited number of genes (say <5), the observed estimate of D is 

closer to the true value than expected with the WT-confidence interval, but this 

is only so when heritability is larger than say 0.5; 3) the erroneous use of 

the WT-confidence interval leads only to important deviations when between line 
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heritability is above 0.6. 
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Table 3a. Results of first extra set of simulations described with Table 3. 

1 ines 
plots 

F„ and Eb 

h2 (bl) 
% coverage 

vâr(jj) 
var(D|norm.) 

fw and fb 
h2 (bl) 
% coverage 
var(D) 
var(Djnorm.) 

heteroscedastic Ew and Eb 

25 50 100 25 
2 2 2 4 

unmodified from Table 1: 

0.985 0.985 0.985 0.992 
98.3 98.8 99.4 98.3 
904 377 195 738 
1251 613 303 1158 

100 x the values of Table 

0.396 0.396 0.396 0.561 
93.7 93.9 94.8 95.3 
17528 8881 4031 4591 
10618 5230 2596 3897 

25 
8 

0.996 
98.5 
756 
1129 

1: 
0.716 
97.4 
1902 
2211 

homoscedastic Ew and Eb 

25 
2 

0.985 
98.2 
847 
1251 

0.395 
97.4 
9807 
10628 

50 
2 

0.985 
99.1 
392 
613 

0.395 
96.9 
5143 
5235 

100 
2 

0.985 
99.4 
195 
303 

0.395 
97.2 
2472 
2599 

25 
4 

0.992 
97.8 
828 
1168 

0.560 
96.5 
3821 
3900 

25 
8 

0.996 
97.6 
778 
1129 

0.716 
97.4 
1864 
2212 

Table 4a. Results of first extra set of simulations described with Table 4. 

heteroscedast 

lines 25 
plots 2 

50 
2 

ic Ew 

100 
2 

fw and Eb unmodified from Tabl 

var(MSL) 309 
var(MSL|norm.) 449 
vaY(MSR) 283 
var(MSP!norm.) 178 
var(MSR) 57 
var(MSRjnorm.) 14 

127 
220 
148 
89 
26 
7 

66 
109 
71 
44 
14 
4 

fw and fb 100 x the values of 
var(MSi) 4198 
var(MSL|norm.) 2782 
var(MSR) 2420 
var(MSPjnorm.) 1041 
vâr(MSR) 120 
var(MSR!norm.) 31 

1957 
1363 
1367 
520 
72 
15 

899 
674 
655 
260 
33 
8 

and Eb 

25 
4 

e 1: 
1031 
1681 
119 
59 
46 
7 

Table i 
5617 
5265 
1221 
347 
104 
15 

25 
8 

4294 
6502 
67 
25 
43 
4 

: 
10061 
12589 
743 
149 
83 
8 

homoscedastic 

25 
2 

290 
449 
277 
178 
54 
14 

2634 
2784 
1068 
1042 
29 
31 

50 
2 

132 
220 
145 
89 
26 
7 

1331 
1364 
526 
521 
14 
15 

E„ and Eb 

100 
2 

66 
109 
70 
44 
13 
4 

602 
675 
272 
261 
7 
8 

25 
4 

1163 
1681 
117 
59 
47 
7 

5129 
5269 
355 
347 
15 
15 

25 
8 

4426 
6502 
72 
25 
42 
4 

10548 
12594 
152 
149 
7 
8 
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Table 3b. Results of second extra set of simulations described with Table 3. 

heteroscedastic Ew and Eb 

lines 25 50 100 25 
plots 2 2 2 4 

fw and Eb unmodified from Table 1: 

h2 (bl) 0.985 0.985 0.985 0.992 
% coverage 98.8 98.2 99.3 98.3 
var(D) 825 431 189 750 
var(D|norm.) 1251 613 303 1168 

25 
8 

0.996 
97.5 
771 
1129 

homoscedastic 

25 50 
2 2 

0.985 0.985 
97.9 98.0 
869 423 
1251 613 

Ew and 

100 
2 

3.985 
99.7 
184 
303 

Eb 

25 
4 

0.992 
98.6 
748 
1168 

25 
8 

0.996 
98.2 
745 
1129 

fw and Eb 100 x the values of Table 1: 
h2 (bl) 0.396 0.396 0.396 0.561 0.716 
% coverage 93.9 94.8 94.3 95.5 98.2 
var(D) 17197 
var(D|norm.) 10618 

8248 
5230 

3955 
2596 

4370 
3897 

1915 
2211 

0.395 0.395 0.395 0.560 0.716 
96.0 96.4 97.0 95.8 97.4 
11066 5183 2750 3796 1772 
10628 5235 2599 3900 2212 

Table 4b. Results of second extra set of simulations described with Table 4. 

heteroscedast 

lines 25 
plots 2 

50 
2 

ic Ew 

100 
2 

fw and Eb unmodified from Tabl 
var(MSL) 279 
var(MSL|norm.) 449 
var(MSP) 306 
var(MSP|norm.) 178 

var(MSR) 55 
var(MSRjnorm.) 14 

146 
220 
147 
89 
27 
7 

63 
109 
75 
44 
14 
4 

fw and Eb 100 x the values of 
var(MSL) 3958 
var(MSL|norm.) 2782 
var(MSP) 2616 
var(MS£!norm.) 1041 
var(MSR) 133 
var(MSR|norm.) 31 

1860 
1363 
1404 
520 
60 
15 

868 
674 
699 
260 
34 
8 

and Eb 

25 
4 

e 1: 
1048 
1681 
119 
59 
47 
7 

7af>7e j 

5365 
5265 
1209 
347 
105 
15 

25 
8 

4381 
6502 
74 
25 
46 
4 

: 
10445 
12589 
748 
149 
76 
8 

homoscedastic 

25 
2 

295 
449 
299 
178 
52 
14 

2759 
2784 
1044 
1042 
29 
31 

50 
2 

144 
220 
147 
89 
26 
7 

1315 
1364 
469 
521 
15 
15 

Ew and Eb 

100 
2 

63 
109 
72 
44 
13 
4 

697 
675 
276 
261 
7 
8 

25 
4 

1052 
1681 
115 
59 
46 
7 

5055 
5269 
348 
347 
15 
15 

25 
8 

4245 
6502 
65 
25 
39 
4 

9978 
12594 
157 
149 
7 
8 
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Table 5a. Results of first extra set of simulations described with Table 5. 

loci 1 2 4 5 8 10 14 16 

Ev=0.252, Eb=0.10z, hz(bl)=0.98 : 

%ACoyerage A 99.1 98.0 96.4 97.1 97.4 96.9 96.7 95.9 
vâr(D)/var(Û!norm.) 0.50 0.76 0.91 0.87 0.88 0.91 0.86 0.96 

£>i.52, fb=0.5
2, h2(bl)=0.63 : 

%ACOverage 98.2 97.0 95.2 97.6 97.2 97.5 97.4 97.5 
vâr(D)/var(ûinorm.) 0.85 0.93 1.06 1.02 0.96 0.98 0.94 0.99 

£w=2.5
2, fb=J.0

2, h2(bl)=0.34 : 
%ACOverage A 96.9 97.3 97.6 95.8 96.7 95.4 96.6 95.6 
vâr(D)/var(D!norm.) 0.94 0.92 0.94 1.01 0.99 1.01 0.95 1.01 

Table 6a. Results of first extra set of simulations described with Table 6. 

case: 

1 ines 
plots 
plants 
h2 (bl) 
var(Q|norm.) 
MSEi 

MSEa/MSE! 
corr(D,DF3) 
corr(D_F3,QF2) 
% coverage DF1 
% coverage QF3 

A 

25 
2 
6 

0.981 
0.094 
0.081 
0.39 

0.90 
0.95 
97.1 
100.0 

B 

50 
2 
6 

0.981 
0.046 
0.042 
0.40 
0.90 
0.95 
97.0 
100.0 

C 

100 
2 
6 

0.981 
0.023 
0.021 
0.39 
0.90 
0.96 
97.2 
100.0 

D 

25 
4 
6 

0.990 
0.089 
0.073 
0.41 
0.90 
0.97 
97.0 
99.7 

E 

25 
8 
6 

0.995 
0.086 
0.080 
0.39 
0.92 
0.99 
96.0 
99.9 

F 

25 
2 
12 

0.985 
0.090 
0.088 
0.41 

0.91 
0.98 
95.8 
99.6 

G 

25 
2 
24 

0.988 
0.087 
0.078 
0.40 
0.91 
0.99 
95.7 
99.9 

H 

25 
2 
1 

0.945 
0.154 
0.130 
0.53 
0.79 
0.77 
97.4 
99.7 

I J 

25 25 
2 2 
2 3 

0.965 0.972 
0.116 0.104 
0.107 0.097 
0.46 0.41 
0.86 0.88 
0.87 0.92 
96.4 96.4 
99.7 100.0 
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Table 5b. Results of second extra set of simulations described with Table 5. 

loci 1 2 4 5 8 10 14 16 

Ev=0.252, Eb=0.102, h2(bl)=0.98 : 
%ACoyerage A 99.1 97.8 97.3 95.7 96.3 95.7 96.9 96.0 
vâr(Ô)/var(D|norm.) 0.52 0.76 0.80 0.94 0.94 1.00 0.94 0.99 

£w=i.5
2, Eb=0.5z, h2(bl)=0.63 : 

% coverage 98.6 97.8 97.1 96.7 96.2 97.3 96.3 96.7 
vaY(Q)/var(Ûjnorm.) 0.75 0.85 0.93 1.04 0.98 0.99 1.00 1.03 

E„=2.52, Eb=1.02, hz(bT)=0.34 : 
%ACoverage A 96.6 96.3 96.3 95.9 97.0 96.7 96.8 96.9 
vâr(D)/var(D!norm.) 0.94 0.94 1.02 1.00 0.96 0.97 0.97 0.87 

Table 6b. Results of second extra set of simulations described with Table 6. 

case: 

1 ines 
plots 
plants 
h2 (bl) 
var(D|norm.) 
MSEj 

MSE3/MSEJ 

corr(D,DF3) 

corr(DF3,DF2) 

% coverage DF1 

% coverage DF3 

A 

25 
2 
6 

0.981 
0.094 
0.081 
0.40 
0.90 
0.95 
97.4 
99.8 

B 

50 
2 
6 

0.981 
0.046 
0.040 
0.40 
0.89 
0.95 
96.9 
99.9 

C 

100 
2 
6 

0.981 
0.023 
0.020 
0.39 
0.90 
0.95 
97.7 
99.9 

D 

25 
4 
6 

0.990 
0.089 
0.077 
0.39 
0.91 
0.98 
96.7 
99.6 

E 

25 
8 
6 

0.995 
0.086 
0.074 
0.39 
0.91 
0.99 
96.4 
99.6 

F 

25 
2 

12 
0.985 
0.090 
0.074 
0.41 
0.90 
0.97 
97.2 
99.9 

G 

25 
2 

24 
0.988 
0.087 
0.075 
0.39 
0.91 
0.99 
96.3 

100.0 

H 

25 
2 
1 

0.945 
0.154 
0.130 
0.52 
0.80 
0.79 
97.7 
99.8 

I 

25 
2 
2 

0.965 
0.116 
0.109 
0.45 
0.86 
0.87 
97.2 
99.6 

J 

25 
2 
3 

0.972 
0.104 
0.095 
0.41 
0.89 
0.91 
96.6 
99.7 
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Table 7a. Results of f i r s t extra set of simulations described with Table 7. 

l oc i 16 

E =0.25' Eb=0.10z, h2(bl)=0.98, var(D\norm.)=0.094: 
MSEj 
MSE3 

MSEa/MSEi 
corr(D,DF3) 
corr(DF3,DF2) 
var(DF3) 
% coverage DF1 

% coverage QF3 

0.046 
0.044 
0.96 
0.21 
0.96 
0.001 

99.6 
99.5 

0.072 
0.039 
0.55 
0.79 
0.95 
0.011 

98.2 
99.8 

0 
0 
0 

97 
100 

0.086 
0.035 
0.41 

90 
95 
016 
3 
0 

fw=J.52, fb=0.52 , hz(bl)=0.63, var(D\norm.)=0.267: 
MSEj - " - " "" 
MSE3 

MSE3/MSE! 
corr(D,DF3) 
corr(DF3,DF2) 
var(DF3) 
% coverage DF1 

% coverage DF3 

0.20 
0.20 
0.99 
0.07 
0.95 
0.001 

98.0 
97.9 

0.25 
0.22 
0.87 
0.41 
0.95 
0.011 

97.5 
98.5 

0.27 
0.21 
0.78 
0.56 
0.95 
0.016 

96.6 
98.3 

E„=2.5Z, Eb=1.0z, h2(bl)=0.34, var(Djnorm.J=1.139: 
MSEi 

MSE3 

MSE3/MSE! 

corr(D,DF3) 
corr(DF3,DF2) 
var(DF3) 
% coverage DF1 

% coverage DF3 

1.16 
1.16 
1.00 
-0.00 
0.96 
0.001 
96.3 
96.1 

1.05 
1.01 
0.97 
0.19 
0.95 
0.011 

97.1 
97.1 

1.12 
1.07 
0.95 
0.27 
0.95 
0.016 

96.6 
96.9 

0.087 
0.032 
0.37 
0.93 
0.94 
0.018 
96.7 
100.0 

0.29 
0.22 
0.77 
0.57 
0.96 
0.019 

96.1 
97.5 

1.21 
1.14 
0.94 
0.29 

0 
0 
95 
96 

.95 

.020 

.5 

.1 

0.090 
0.030 
0.33 
0.95 
0.95 
0.020 
96.2 
99.8 

0.27 
0.21 
0.77 
0.56 
0.95 
0.020 

96.7 
98.2 

1.19 
1.12 
0.94 
0.28 
0.95 
0.018 

95.5 
95.6 
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Table 7b. Results of second extra set of simulations described with Table 7. 

loci 

E^0.252, Eb=0.10 
MSEj 

MSE3 

HSEj/MSE! 

corr(0,DF3) 
corr(QF3,DF2) 
var(QF3) 
% coverage DFJ 

% coverage DF3 

E„=1.52, Eb=0.52, 
MSEj 

MSE3 

MSEa/MSEi 

c o r r ( D , D F 3 ) 

co r r (D F 3 ,D F 2 ) 

va r (D F 3 ) 

% c o v e r a g e DF1 

% c o v e r a g e DF3 

Ev=2.52, Eb=1.0z, 
MSEj 

MSE3 

MSE^MSEj 

c o r r ( D , D F 3 ) 

c o r r ( D F 3 , D F 2 ) 

va r (D F 3 ) 

% c o v e r a g e DF1 

% c o v e r a g e DF3 

1 2 

2, hz(bl)=0.98, var(D\ 
0.048 
0.047 
0.99 
0.15 
0.96 
0.001 

99.3 
99.4 

hz(bl)=0.63, 
0.23 
0.23 
1.00 
0.10 
0.96 
0.001 

98.0 
98.1 

h2(bl)=0.34, 
1.13 
1.13 
1.00 
0.01 
0.96 
0.001 

96.6 
96.6 

0.074 
0.040 
0.53 
0.80 
0.96 
0.012 

98.0 
99.7 

4 8 

norm.)=0.094: 
0.081 
0.032 
0.41 
0.90 
0.96 
0.016 

97.0 
100.0 

var(D\norm.)=0.267: 
0.23 
0.19 
0.85 
0.44 
0.95 
0.011 

97.6 
98.0 

0.27 
0.22 
0.82 
0.50 
0.96 
0.017 

96.5 
98.0 

var(D\norm.)=1.139: 
1.13 
1.09 
0.97 
0.21 
0.95 
0.011 

96.4 
96.3 

1.09 
1.04 
0.95 
0.26 
0.96 
0.018 

96.9 
96.8 

0.089 
0.032 
0.36 
0.93 
0.95 
0.019 

96.7 
99.9 

0.27 
0.22 
0.79 
0.54 
0.95 
0.017 

96.6 
98.0 

1.20 
1.14 
0.95 
0.25 
0.95 
0.019 

96.1 
96.5 

16 

0.087 
0.029 
0.33 
0.95 
0.95 
0.020 

96.5 
99.8 

0.28 
0.22 
0.77 
0.56 
0.96 
0.020 

96.1 
98.1 

1.17 
1.10 
0.94 
0.29 
0.95 
0.020 

96.1 
96.9 
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4. Bias caused by intergenotypic 
c o m p e t i t i o n : 1. F m-mean 

This chapter is in press for Euphytica. 

Summary 

Quantitative genetic theory for autogamous crops enables the estimation of the 
parameters m (FM-mean) and D (Fw-variance) in the F3-generation. With these 
estimated m and D a prediction can be made of the probability of finding 
superior inbred lines in the F^-offspring of the cross. The accuracy of this 
procedure is influenced by the correctness of the genetic model, by the 
magnitude of the error variance, and by the bias caused by intergenotypic 
competition, which is present in the environment in which the F3 is grown and 
absent in the monoculture environment at which the selection is aimed, 
especially in a cereal crop like wheat. The influence of the intergenotypic 
competition was investigated by a special method of simulating segregating 
populations. In this method genotypes in the offspring of a cross are 
represented by varieties and segregating populations are composed by mixing the 
appropriate varieties according to the proper segregation frequencies. Growing 
the simulated population enables the estimation of m and D in the normal 
selection environment, while simultaneously growing the varieties in a large 
monoculture trial enables the calculation of "true" values of m and D in the 
monoculture environment. Hence, a comparison is possible. 

The first of this set of two papers presents the investigations on the 
influence of intergenotypic competition on the estimation of the parameter m. 
The correlation coefficient of the estimates from the selection environment with 
the calculated "true" values from the monoculture environment was small. 
Sometimes the selection environment estimation significantly underestimated the 
(true) monoculture value of m, sometimes it significantly overestimated the 
monoculture value. On the average the smaller true values of m were 
underestimated and the larger ones overestimated. 

INTRODUCTION 

Quantitative genetic theory provides models for the prediction of the progeny 

of crosses between two pure-breeding lines with respect to a certain 

quantitatively inherited character (see Mather & Jinks, 1971,1977). The theory 

enables the estimation of quantitative genetic parameters, i.e. m (FM-mean: mean 

of all possible pure-breeding lines derived from the cross) and D (Fœ-variance: 

genotypic variance of all possible pure-breeding lines). With these estimates 

the ability of a cross to produce superior recombinant inbred lines can be 

predicted. In order to be useful in a practical breeding programme the 

estimation procedure should be time and labor extensive. This requires that the 
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estimates can be obtained in early generations without many (test) crosses to 

be made. The North Carolina Experiment III (Comstock & Robinson, 1952), the 

triple test cross design (Kearsey & Jinks, 1968) and the method using basic 

generations [Fl,¥z,Bl and B2) described by Jinks & Perkins (1970) require large 

numbers of test crosses to be evaluated, making these methods very unattractive 

for use in practical breeding programmes. One of the few remaining methods, that 

do not suffer from this disadvantage, is the estimation of the relevant 

quantitative genetic parameters using F3-lines. This method, which is described 

by Jinks & Pooni (1980), comprises of estimating m as the mean of the 

F3-offspring and estimating D as twice the genotypic between F3-line variance. 

Assuming a normal distribution of the genotypic values of all possible 

Fn-lines derived by inbreeding a cross between two pure-breeding lines, only two 

parameters, i.e. m and D, need be estimated in order to predict the distribution 

of the Fm-offspring. Given a certain threshold value T, e.g. the value of the 

best currently available variety, the probability, PT, of finding in the 

FK-offspring of a cross a recombinant inbred line superior to the threshold 

value can be predicted. Estimating m and D for a number of crosses allows thus 

for the ranking of these crosses based upon their (predicted) probability of 

finding superior inbred lines. Hence, selection of the potentially better 

crosses will be possible, enabling the breeding programme to concentrate on 

these crosses. 

Several factors may influence the accuracy of the predictions based on this 

theoretical model. First, the underlying genetic model may be erroneous. In its 

simplest form the model assumes absence of dominance, linkage and epistasis. 

Dominance, linkage and epistasis will, in general, result in biasedness of the 

estimators (see Mather & Jinks, 1971). Second, the error variance of the 

estimates may be considerable. Especially estimators of variance components have 

large error variances (compared to estimators of means). Third, genotype x 

environment interactions may seriously affect the estimates, especially in a 

cereal crop like wheat. Ideally, the growing conditions of the F3-lines (from 

which the estimates are derived) should be as similar as possible to the 

commercial growing conditions. (In this paper the growing conditions of an 

F3-generation are referred to as the "selection environment", whereas the 

commercial growing conditions are referred to as the "goal environment".) The 

main differences between selection environment and goal environment in a wheat 

breeding programme are: 

- presence of intergenotypic competition in the selection environment, which is 
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absent in the goal environment. An F3-generation is segregating both within 

and between lines, causing intergenotypic competition to be present within and 

between plots. It is well known that genetic variation among genotypes in 

competitive ability may result in large errors when yield in the selection 

environment (mixed stand) is extrapolated to the goal environment (pure 

stand). See e.g. Spitters (1979,1984) for a detailed account on the effects 

of intergenotypic competition on yield. 

- difference due to plot type. Though sowing density in the selection 

environment can be taken the same as in the goal environment, the experimental 

layout of an F3-trial, with empty space at the front and rear ends of the 

plots, will result in a growing condition different from the goal environment. 

The aim of this set of two papers is to investigate the effects of these 

genotype x environment interactions on the predictive value of the estimated 

parameters m and D. The first paper concentrates on m; in the second the 

influence on D will be evaluated. 

MATERIALS AND METHODS 

Simulation of segregating populations - pseudo-lines 

In the investigations presented here a special method of simulating segregating 

populations of a self fertilizing crop is used. The basic idea of the approach 

is that mixtures of varieties (or pure-breeding lines) can be used to simulate 

a segregating generation by letting each genotype in the offspring of a cross 

be represented by a variety. A simulated segregating line is called a pseudo-

line, a simulated F3 is called a pseudo-F3. In this research segregation of two 

unlinked loci was simulated. The cross can be symbolized by: AAbb x aaBB. This 

cross has transgressive segregants. After assignment of varieties to genotypes, 

the composition of pseudo-F3-lines is determined. For example, the 

pseudo-F3-line, which is to mimic the F3-line derived from the homozygous 

F2-genotype AABB, will consist of 1/1 of the variety representing the genotype 

AABB. The pseudo-F3-l ine, which is to mimic the F3-l ine derived from the 

F2-genotype aaBb, will consist of 1/4 of the variety representing genotype aaBB, 

1/2 of the variety representing genotype aaBb, and 1/4 of the variety 

representing genotype aabb. The pseudo-F3-l ine, which is to mimic the F3-line 

derived from the F2-genotype AaBb, will consist of respectively 1/16,2/16,1/16, 

2/16,4/16,2/16, 1/16,2/16,1/16 of the varieties representing the genotypes 

AABB,AaBB,aaBB, AABb,AaBb,aaBb, AAbb,Aabb,aabb. Et cetera. Segregation ratio's 



Bias caused by intergenotypic competition: 1. F.-mean 5 1 

between and within pseudo-F3-l ines were chosen according to the expected 

Mendelian ratio's (no genetic sampling error). 

A pseudo-F3 is grown and analyzed as if it were a real F3. Means and variance 

components are estimated in the usual way (except for the between line effect 

which has become a fixed effect). Simultaneously, the varieties are grown in 

large plots, representing the goal environment. The yields obtained from these 

plots can be taken as the true genotypic values (within the limits of 

experimental error) of the components of each pseudo-F3. The advantage of this 

approach will be obvious: since the "true" genotypic value of each genotype in 

the goal environment is known, the "true" parameter values (m and D) of a 

pseudo-F3 can be calculated (predicted) and can be compared with the estimates 

obtained directly in the selection environment. 

General 

In this paper we refer to four experiments: 

a. the pseudo-F3 experiment, in which simulated F3's were grown as real F3's, 

enabling estimation of m and D in the selection environment; 

b. the monoculture experiment, in which the varieties, that were used in the 

simulation of the F3's, were grown in pure stand in a large yield trial, 

enabling, for each simulated F3, calculation of m and D in the goal 

environment; 

c. the competition experiment, in which most of the varieties used in the 

simulation of the F3's were grown in mixed stand, enabling, for each 

simulated F3, calculation of m and D in a competition environment, which was 

expected to be comparable to the selection environment; 

d. the experiment with real F3's and related Fg-lines, which will give an 

impression of the values of m and D with real crosses. 

The pseudo-F3 experiment and the monoculture experiment were both carried out 

at two locations: APM (ir.A.P.Minderhoudhoeve, Agric.Univ.Wag., Swifterbant) and 

IVP (Dept.of Plant Breeding, Agric.Univ.Wag., Wageningen). The APM location has 

better growing conditions, which in general lead to higher yields. The 

competition experiment was performed only at APM. The experiment with real F3's 

was carried out only at IVP. The character under investigation was grain yield 

of spring wheat, which is the most important quantitatively inherited character 

of spring wheat. Sowing was done in the first week of April 1987. Harvesting was 

done in September 1987. Dry matter content was determined, enabling correction 

of all yield data to 100% dry matter yield. All yield data were converted to 
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kilograms dry matter per hectare (kg-ha"1, 0% moisture). Harvesting, threshing, 

drying and weighing were done replicate-wise. 

Table 1. List of used varieties. The 23 spring 
wheat varieties are ordered according to their 
approximate yielding capacity. The two spring 
barley varieties are marked with (*). 

No. Name No. Name No. Name 

Material 

23 (commercial) varieties or 

pure-breed i ng lines 

(hereafter referred to as 

varieties) of spring wheat 

and two varieties of spring 

barley were used. Spring 

barley was included for its 

known competitive ability 

(Estramil & Van Balen, 1983) 

in order to ensure inclusion 

of strong competitors in 

some of the pseudo-F3's. The 

two barley varieties were chosen on the basis of their late maturity date, 

enabling harvest at the same time as spring wheat. The varieties of spring 

wheat were ranked for their yield capacity, based upon a number of yield trials 

in the 2 previous years. This rank cannot be considered to be more than an 

indication of the yield capacity. The 25 varieties are listed and numbered in 

Table 1. 

1 Prinqual 
2 Axona 
3 Sicco 
4 Wembley 
5 Sunnan 
6 Kokart 
7 Heros 
8 Ralle 

9 Spartacus 
10 Melchior 
11 Adonis 
12 Bastion 
13 G 8005 
14 vdH 3132 
15 Darima 
16 Stratos 

17 vdH 1132 
18 vdH 1166-76-2 
19 G 74010 
20 TK 2832 2 
21 TK 2832 3 
22 ZESC 1963-6 
23 Minaret 
24 Dauphne (*) 
25 Minerva (*) 

Pseudo-F3 experiment 

15 crosses (pseudo-cross A to 0) were created using the 25 varieties. They were 

composed in such a way that the pseudo-crosses would have clearly distinct 

values of the parameters m and D. For this purpose use was made of the estimated 

yield capacities of the varieties. Table 2 shows the intended levels of the 

parameter values. Table 3 shows the composition of the pseudo-F3's. 

The composition of pseudo-lines was based on numbers of seeds. 1000 grain 

weights were determined of all varieties. Using these 1000 grain weights the 

numbers of seeds were determined by weighing. The components of the pseudo-

lines were mixed according to the expected segregation frequencies. Each F3 
consisted of 48 lines. The frequencies of lines also exactly mimicked the 

expected segregation frequencies, i.e. 3 (=1/16) lines derived from each 

F2-genotype AABB, aaBB, AAbb and aabb, 6 (=2/16) lines derived from each 



Cross 

A 
B 
C 
D 
E 
F 
G 
H 
I 

m 

low 
low 
low 
med i um 
medium 
medium 
high 
high 
high 

D 

low 
low 
low 
low 
low 
low 
low 
low 
low 

Cross 

J 
K 
L 
M (*) 
N (*) 
0 (*) 

m 

med i um 
medium 
med i um 
med i um 
med i um 
med i um 

D 

high 
high 
high 
high 
high 
high 
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F2-genotype AaBB, Aabb, AABb Table 2. Intended levels of parameter values 
•>„A ,,Dh ^A 10 i A/TC\ -n™,. of m and D °f all pseudo-F3's. Crosses marked and aaBb, and 12 (=4/16) lines ,,.+. ,*, „„„+.,.:„ „„:„„ u,d-i«w v ' ' with (*) contain spring barley. 
d e r i v e d f r o m 

F2-genotype AaBb. 

Each pseudo-F3 was grown in 
a randomized block design with 
two replicates (=blocks). Each 
line was grown in one 3-row 
plot per block. Actually, an 
F2-plant of spring wheat will 
produce just enough seed for 
growing its F3-line in two of these 3-row plots. So this is the largest 
practically applicable design with respect to the size of the F3-line. Of each 
of the 'pseudo-parents' of the pseudo-F3, i.e. genotypes AAbb and aaBB, six 
3-row plots were added to each replicate, in order to enable estimation of the 
mean value of the parents (the mid-parent value), and the residual variance. The 
mid-parent value is another estimator of the F^-mean. Because the means of all 
F3's have to be comparable, the replicates of the F3's were grown as superplots 
in a superimposed randomized block design, i.e. there were two superblocks, each 
containing one replicate of each F3. 

3-row plots were sown with a 6-row 'Seedmatic' plot seeder manufactured by 
the firm Walter and Wintersteiger (two neighboring plots simultaneous). Sowing 
density was 240 seeds m"2. Plot length was 2.0 and 1.8 m at APM and IVP 

Table 3. Composition of pseudo-F3's. The numbers correspond with the 
varieties in Table 1. 

Genotype 

AABB 
AaBB 
aaBB 

AABb 
AaBb 
aaBb 

AAbb 
Aabb 
aabb 

Pseudo 

A 

9 
8 
7 

6 
5 
4 

3 
2 
1 

B 

10 
9 
8 

7 
6 
5 

4 
3 
2 

-h 

C 

11 
10 
9 

8 
7 
6 

5 
4 
3 

D 

13 
12 
11 

10 
9 
8 

7 
6 
5 

E 

14 
13 
12 

11 
10 
9 

8 
7 
6 

F 

15 
14 
13 

12 
11 
10 

9 
8 
7 

G 

21 
20 
19 

18 
17 
16 

15 
14 
13 

H 

22 
21 
20 

19 
18 
17 

16 
15 
14 

I 

23 
22 
21 

20 
19 
18 

17 
16 
15 

J 

21 
20 
19 

10 
9 
8 

3 
2 
1 

K 

22 
21 
20 

11 
10 
9 

4 
3 
2 

L 

23 
22 
21 

12 
11 
10 

5 
4 
3 

M 

24 
20 
19 

10 
25 
8 

3 
2 
1 

N 

24 
21 
20 

11 
25 
9 

4 
3 
2 

0 

24 
22 
21 

12 
25 
10 

5 
4 
3 
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respectively. Row distance was 20.8 cm. Plots were harvested with a Mitsubishi 

row binding machine. Afterwards the harvested plots were threshed with a 

combine. 

Monoculture experiment 

The 25 varieties were grown in a randomized block design with 12 and 9 

replicates at locations APM and IVP respectively. The plots were sown with a 

12-row sower (make 0yord). Sowing density was 240 seeds nf2. Plot length was 

8.0 and 7.0 m at resp. APM and IVP. Row distance was 12.5 cm. The experiment was 

combine-harvested. 

Competition experiment 

In order to demonstrate differences in competitive ability, especially of 

barley, 1-row plots were grown of 18 of the 25 varieties in a randomized block 

design with 24 replicates at the APM location. These were the varieties 1 to 5, 

7 to 12, and 19 to 25. The plots were sown with the 6-row 'Seedmatic' plot 

seeder. Sowing density was 240 seeds m~2. Plot length was 2.0 m. Row distance was 

20.8 cm. Plots were harvested with a Mitsubishi row binding machine. Afterwards 

the harvested plots were threshed with a combine. 

Analysis of pseudo-F3's 

The statistical model applied to analyze the pseudo-F3 experiment is: (random 

effects are underl ined) 

y_ijk = P + %3i + Ej + s ( j j ) + gk(l) + e ( j j k ), 

p - overall mean, 

mF3i f i xed , Hi mF3i = 0 - mean of pseudo-F3 i ( i=1 . .15) , 

I j = /V(0,or
2) - ef fect of repl icate j ( j =1 . .2 ) , 

S(ij) = /V(0,oeS
2) - superplot e f fec t , 

gk(j) f i xed , Zk gk (1 ) = 0 - mean of l i ne k of pseudo-F3 i (k=1..48), 

e(ijk) = /V(0,oeP
2) - residual (plot) effect. 

The statistical model applied to the parents of the F3's is: 

yijkl = ß + mPj + Ej + s(jj) + pk(1) + e1(jjk), 



ß 

mPi 

Ej 

*<i 

Pk( 

Êl( 

fixed, E, mP1 = 

- W(0,or
2) 

i) - «(0,oeS
2) 

i) fixed, Sk Pk(l 
ijk) - « ( < W ) 

0 

) = 0 
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- o v e r a l l mean, 

- mean of the parents of pseudo-F3 i ( i=1 . .15) , 

- ef fect of repl icate j ( j =1 . . 2 ) , 

- superplot e f fec t , 

- mean of parent k of pseudo-F3 i (k=1. .2) , 

- residual (p lo t ) ef fect (1=1..6). 

The F -̂mean m of each pseudo-F3 was estimated as the average y ie ld over a l l i t s 

96 p lo ts : IÜP3PS (= estimator of //+mF3i). The mid-parent value was estimated as the 

average over a l l 24 plots of the parents: n^ps (= estimator of //+mPi). The 

variance of these estimators is resp. : 

var y,.. = or
2/2 + oJ/2 + oeP

2/(2.48), 

var y,... = or
2/2 + oJ/2 + oj/(2-2-6). 

These variances are estimated using the analysis of variance of Table 4 and a 

similar ANOVA of the parents. 

Table 4. Analysis of variance of pseudo-F3 experiment. 
mF3i - mean of pseudo-F3 i (fixed effect); 
gkn) - mean of line k of pseudo-F3 i (fixed effect); 
or - between replicate variance; 
oeS

2 - between superplot residual variance; 
oeP

2 - between plot residual variance; 
c - No. of pseudo-F3's = 1 5 ; 1 - No. of lines per pseudo-F3 = 48; 
r - No. of replicates = 2. 

Source of Mean Degrees of Expected mean square 
variation square freedom 

between F3's MSBF c-1 oj + 1-oeS2 + r«1« Z mF312/(c-l) 
1=1..c 

between repl icates MSBR r-1 oeP
2 + l*oeS

2 + c - l -o r
2 

residual MSR ( c - l ) « ( r - l ) oeP
2 + 1 «oeS

2 

residual wi th in F3's MSWF c - ( l - l ) . ( r - l ) oeP
2 

f o r each F3 i = l . . c : 

between l i n e s MSBL 1-1 oeP
2 + r- S g k ( 1 )

2 / ( l - l ) 
k = l . . l 
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Prediction of pseudo-F3's using monoculture data 

The monoculture experiments were analyzed as a randomized block experiment. 

Applied model : 

y u = ß + ai + bj + £(i:) i=1..25; j=l..B, B=12 at APM, B=9 at IVP; 

ai fixed, E, ai 

bj - W ( < W ) 

fid!) - «(0,o2) 

= 0 - variety effect, 

- replicate effect, 

- residual plot effect 

The mean variety yields were estimated. Error variance of the mean variety 

yield was estimated by: 

A _ A 0 A . A „ „ 

var y, = o2/B + oB
2/B = ov

2 = sv
2 

Replicates are treated as random effects, because the yields in the monoculture 

experiment have to be comparable with yields in the F3-experiment on an adjacent 

part of the experimental field. 

Since the pseudo-F3's simulate the segregation of two independent loci, the 

genotypic values of the nine genotypes can be described in terms of the 

parameters for a two-locus model (Mather & Jinks, 1971, p 83; 1977, p 100). This 

model is given in Table 5. The nine parameters of the model uniquely define the 

nine genotypic values. Thus, the monoculture yields of the constituent 

genotypes, which can be taken as estimates of the genotypic values, provide 

estimates of the nine parameters for each pseudo-F3. In turn, these estimates 

can be used to predict the parameters m and D, which are also estimated directly 

from the pseudo-F3's. The F^-mean m of the goal environment (monoculture), 

unbiased by intergenotypic competition, was predicted by: 

% « » = S g, /4 , with variance var mFaJmo = ov
2/4. 

1=1.3.7.9 — 

The F3-mean of the goal environment could be predicted using some of the 

(estimated) 9 parameters: 

%3.no = m + h a / 4 + hb/4 + 1/16-

mF3mo could also be predicted d i rec t l y in terms of g i } since the pseudo-F3's were 
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Table 5. Model of Mather and Jinks (1977) describing the genotypic values 
of the nine possible genotypes of a digenic cross. 

Genotype Genotype 1st locus 
2nd locus 

AA Aa aa 

BB 

Bb 

bb 

Parameter 

9i 
m 
da 
db 
ha 
hb 
i 

Jab 
Jba 
1 

g x = m g2 = m 
+ da + db + ha + db 
+ i + J'ba 

g4 = m g5 = m 
+ dd + hb + ha + hb 
+ Jab + 1 

g7 = m 9s = m 

+ da - db + ha - db 
- i - J'ba 

Effect 

genotypic value of genotype i 
F^-mean, mean of g1; g3, g7 and g9 
additive effect of 1st locus 
additive effect of 2nd locus 
dominance effect of 1st locus 
dominance effect of 2nd locus 
effect of homozygote x homozygote 

93 

96 

99 

= m 
- da + db 
- i 

= m 
- da + hb 
' Jab 

= m 
- da - db 
+ i 

interaction 
effect of homozygote x heterozygote 
effect of heterozygote x homozygote 
effect of heterozygote x heterozygot 

interaction 
interaction 
3 interaction 

composed exactly according to the Mendelian segregation frequencies: 

%3*o = [ 9- E g( + 6- E g, + 4-g5 ]/64. 
i=l,3,7,9_ i=2,4,6,8 ~ _ 

This expression enables the derivation of the variance of mF3mo: 

var mF3mo = 121 • ov
2/1024. 

The ultimate comparison to be made is that between mF3ps and mFœmo. However, 

this comparison involves the effects of dominance, epistasis and intergenotypic 

competition. These effects can be separately studied by comparing mF3mo to mF3ps, 

which comparison studies the effect of intergenotypic competition, and by 
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comparing mFmmo to mF3lT)0, which comparison studies the confounded effects of 

dominance and epistasis. 

A short description of all used estimation and prediction parameters is 

given in Table 6. Since intergenotypic competition (which is absent in 

monoculture) may affect the genotypic values, it is to be expected that the 

parameter values predicted from the monoculture yields will show a poor fit 

with the direct estimates from the pseudo-F3's. 

Table 6. Description of estimation and prediction parameters. Predictions 
are done with data either from the monoculture or from the competition 
experiment. 

mPps mid-parent value, average of the 24 plots of the "pseudo-parents" 
mF3ps F3-mean, average of the 96 plots of the pseudo-F3 
mF3mo F3-mean, prediction of m+ha/4+hb/4+l/16 
"Wra FM-mean, prediction of m 

Prediction of pseudo-F3's using competition data 

The competition experiment was analyzed similar to the monoculture experiments. 

There is only a difference in the number of varieties and in the number of 

replicates. However, not all varieties, that were used in the composition of 

pseudo-F3's, were present in the competition experiment. Therefore, not all 

pseudo-F3's could be predicted completely. In order to still be able to make 

predictions about all pseudo-F3's, the yields of the varieties not present in 

the competition experiment were traced back in the pseudo-F3 experiment from all 

3-row plots, that consisted of only one variety (pseudo-lines from F2-genotypes 

9i> 93» 97! and g9 (Table 5), and also the pseudo-parents). Variety 18 was 

present only in segregating lines in the pseudo-F3 experiment. For this variety 

a 3-row plot yield was predicted by linear regression of 3-row plot yields on 

monoculture yields. With the average yields of the varieties in the competition 

experiment, together with these traced yields, predictions could be made exactly 

like with the monoculture data. This resulted in six completely predictable 

crosses (J,K,L,M,N,0), three crosses with one dependent variety yield (A,B,C), 

three crosses with two to three (D,E,F), and three crosses with four to six 

dependent variety yields (G,H,I). Of course, the predictions based on a number 

of dependent yield data should tend to show a better fit. In contrast to the 



Bias caused by intergenotypic competition: 1. F^-mean 5 9 

prediction from monoculture data, it is expected to find a better fit of the 

prediction to the directly estimated parameters, because both the yields in the 

competition experiment and the yields in the pseudo-F3 experiment are realized 

under conditions of intergenotypic competition. 

Additional experiment with real F3's and related Felines 

In order to obtain an impression of the parameter values that are to be expected 

in real F3's and later generations of spring wheat, some material descending 

from three crosses made at IVP in 1981 was analyzed. These crosses involved a 

breeding line, TK 2832, as one parent, and each of the commercial varieties 

Stratos, Heros and Minaret as the other parent. From each of the three crosses 

24 random F7-lines were obtained by normal line breeding and single seed descent 

for two generations. During the winter 1985/86 the F7-lines were multiplied in 

the greenhouse and in the normal 1986 growing season the F8-l ines were 

multiplied in the field in order to obtain sufficient seed for sowing a large 

1987 yield trial. The TK 2832 line was expected to be pure-breeding. However, 

protein analysis of the seed showed, that the crosses had been made with two 

sub-lines, i.e. TK 2832 2 and TK 2832 3. Of the cross with Stratos 12 F9-lines 

had been derived from a cross with sub-line 2, and 12 from a cross with sub-

line 3. The same was the case for the cross with Heros. All 24 lines of the 

cross with Minaret were from TK 2832 3. In 1985 the five crosses of Table 7 (F3 
column) were made. The Fj-generation was grown in the greenhouse during winter 

1985/86. In the 1986 season the F2's were grown in the field at wide stand (40 

x 40 cm2) in order to obtain enough seed of the F3-lines. 

Table 7. 

Cross 

Real crosses and related Fg-lines. 

F3 Cross F9 

ï T K 1 S 3 2 3 x J S ô s « » TK 2832 2/3 x States 

? £ » ! ! ; ! ! £ : » ' TK 2832 2/3 X Heros 

Z TK 2832 3 x Minaret Z TK 2832 3 x Minaret 

In 1987 the real F3's were grown at the IVP location in an experiment 

identical to the pseudo-F3's, except for the larger number of lines per F3, 

which was 172. The statistical model is the same as for the pseudo-F3's except 
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for the genotypic between line effect, which is now a random effect: 

9k(i tf(0,ogB
2), in which ogB

2 is the genotypic between line variance. In the 

ANOVA of Table 4 the expected mean square of MSBLi becomes: oeP
2 + r-ogË

z. The 

mean of each F3 is the best available estimator of m, which is of course 

determined in the selection environment. 

On an adjacent part of the experimental field the related Fg-lines were grown 

in three randomized block experiments with each ten blocks (per cross a separate 

experiment). The experimental conditions were exactly the same as for the 

previously described monoculture experiment. These experiments were analyzed as 

a normal randomized block experiment. The F9-generation can be considered as an 

approximate F«, The mean of each F9 is therefore an estimate of m in the goal 

environment. 

RESULTS AND DISCUSSION 

General 

The variety yields in the monoculture and competition experiment, and also the 

variety yields of the 3-row plots traced back in the pseudo-F3 experiment are 

presented in Table 8. The mean squares of the pseudo-F3 experiment (except for 

Table 8. Variety yields in kg«ha ' l, 0% moisture. No. are the varieties, see 
Table 1. APM and IVP are monoculture experiments, comp is the competition 
experiment,and 3-row is the yield in 3-row plots traced back in the 
pseudo-F3 experiment at APM. s.e. - standard error. *' This is the average 
s.e., it varies from 65 up to 226; the 3-row plot values are averages based 
on 6 to 72 plots with an average of 31 plots. 

No. 

1 
2 
3 
4 
5 
6 
7 

APM 

3990 
4842 
4752 
4460 
4948 
4468 
5062 

IVP comp 3-row No. APM IVP comp 3-row 

3724 5885 5102 
3895 4772 5561 
3883 6943 6137 
3679 4000 4930 
4057 6539 6067 
3895 5362 
4236 7914 6696 

8 4982 4193 6200 6611 
9 4809 4243 5725 6082 
10 4749 4017 5699 5592 
11 4727 3966 7108 5716 
12 4754 4016 4794 5697 
13 4919 3638 6626 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

s.e. 
mean 

5118 
4798 
5493 
5225 
5287 
5344 
4511 
4877 
5054 
4534 
4699 
3971 
87 

4815 

4065 
4326 
4424 
4552 
4067 
4291 
4981 
4824 
4118 
3844 
3522 
3438 
74 

4076 

5371 
4850 
5300 
4815 
6794 
9205 
8617 
197 
6141 

6345 
6364 
7025 
6422 

6384 
5024 
5629 
6267 
5645 
6832 

119*' 
6005 
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the MSBL/s) are given in Table 9. The estimations and predictions of the Fm-mean 

are listed in Table 10. The yield level of the pseudo-F3 experiment is much 

higher than that of the monoculture experiment. This is caused by the difference 

in effective plot area, i.e. the 3-row plots of the pseudo-F3 have a relatively 

large amount of adjacent path area. Front and rear neighboring plots were 

separated by a path of 0.5 m. In order to be able to compare the experiments 

the yield data of the pseudo-F3 experiment, and also of the competition 

experiment, were multiplied by 4816/6033 at APM and by 4118/4958 at IVP (cf. 

Table 10). All subsequent analyses are based on these transformed yield data. 

There will probably be a genotype x environment interaction regarding these 

different plot types. In the analysis this interaction will be confounded with 

the interaction caused by intergenotypic competition. This plot type interaction 

is expected to be of minor importance, because Kramer et al. (1982) observed a 

correlation coefficient of 0.89 of this plot type (here 6-row plots, that are 

less biased by between plot competition than the present 3-row plots) with 

monoculture plot type with respect to grain yield (Kramer et al., Fig.6, p 556). 

Table 9. Mean squares of pseudo-F3 experiment, (kg-ha"
1)2, 0% moisture. 

Source of 
variation 

between crosses 
between replicates 
residual (superplot) 
residual (plot) 
missing plots (no.) 

APM 

F3 

5,243,323 
14,388,828 
5,248,937 
307,794 

1 

parents 

6,193,690 
697,025 

2,117,342 
329,284 

0 

IVP 

F3 

14,949,118 
533,174 

10,426,552 
192,438 

15 

parents 

4,647,823 
20 

3,201,112 
200,457 

2 

Mid-parent 

The estimation of the F^-mean by using the average yield of the parent plots 

is not satisfactory. Correlations of mPps with the other Fm-mean parameters are 

given in Table 11. The correlation between this mid-parent value, mPps, and the 

estimated F3-mean, mF3ps, is poor at APM, while at IVP it is quite high. Clearly, 

there is a large genotype x location interaction. The correlation of mPps to mFœn]0 
is not better than that of mF3ps, the mean of the whole F3, to mfmmo. The standard 

error of mPps is larger than that of mF3ps (Table 10), which is of course caused 

by the smaller number of parent plots compared to F3 plots. Increasing the 

number of parent plots would mean, that a breeding programme would contain a 
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Table 10. Fm-mean. Estimates with pseudo-F3 and predictions with monoculture 
and competition experiment, kg-ha"1, 0% moisture, s.e. - standard error per 
cross. 

Cross 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 

s.e. 
mean 

APM 

pseudo 

mP Ps 

6943 
5815 
6014 
6046 
6184 
6447 
6624 
6022 
6099 
5835 
4970 
5760 
5833 
5073 
5803 

290 
5965 

-F3 

mF3ps 

6179 
6092 
5899 
5800 
6117 
6279 
6509 
6092 
6266 
5752 
5813 
5606 
5983 
6019 
6088 

247 
6033 

monoculture 

mF3mo 

4685 
4791 
4771 
4842 
4844 
4888 
5044 
5066 
4974 
4757 
4747 
4766 
4679 
4648 
4742 

30 
4816 

"'Famo 

4654 
4758 
4809 
4914 
4831 
4897 
4985 
5044 
4859 
4741 
4717 
4778 
4696 
4628 
4819 

44 
4809 

competition 

mF3mo 

6037 
5785 
6189 
6389 
6115 
6349 
6060 
5854 
6022 
5680 
5300 
5851 
6410 
6100 
6284 

68 
6028 

"V<°mo 

6617 
5168 
6579 
7047 
5675 
6657 
5915 
5759 
6220 
5875 
4609 
6394 
6851 
5707 
6997 

99 
6138 

IVP 

pseudo-F3 

mPps 

4600 
4647 
5159 
5544 
4590 
5406 
4937 
5728 
6043 
5076 
5333 
5310 
4945 
4583 
4995 

353 
5126 

mF3ps 

4348 
4598 
4810 
5339 
4541 
5445 
5008 
5432 
5574 
5185 
5244 
4973 
4727 
4497 
4650 

319 
4958 

monoculture 

mF3mo 

3984 
4002 
4015 
4012 
4033 
4087 
4330 
4414 
4385 
4219 
4182 
4068 
3985 
4062 
3989 

25 
4118 

"'Ftorno 

4022 
3946 
4037 
3974 
4042 
4111 
4270 
4397 
4386 
4181 
4168 
4152 
3855 
4019 
4072 

37 
4109 

large amount of parent material, which is undesirable. Therefore, the use of the 

mid-parent is not to be recommended. 

F3-mean 

A more interesting comparison is that between mF3 , the most accurate estimator 

of the FM-mean in the F3, and mFmm0, the predictor of the Fœ-mean in the goal 

environment. There are three factors involved in this comparison. First and 

second, there are the confounded effects of dominance and epistasis, i.e. the 

F3-mean mF3 is m+ha/4+hb/4+l/16, while the F^-mean is m. Third, there is the 

effect of intergenotypic competition, by which cause the genotypic values in the 

F3-environment can be different from the genotypic values in monoculture. The 

effects of dominance and epistasis are not important, although present. The 

correlation between mFmrro and mF3mo is high, at APM as well as at IVP (Table 11). 

The effect of intergenotypic competition is much more important. The correlation 

between mF3ps and mF3mo is low, at both APM and IVP (Table 11). This effect is 
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Table 11. Correlation coefficients between estimates and predictions of the 
F„-mean. 

m P p s 
m F 3 p s 

m F3mo 

APM 

m F 3 p s 

0.57 

m F 3 m o 

0.41 
0.52 

mF<omo 

0.39 
0.37 
0.92 

IVP 

m F 3 p s 

0.92 

mF3n,o 

0.61 
0.68 

»Wo 

0.65 
0.66 
0.93 

competition 

mF3mo " W o 

0.43 0.48 
0.30 0.02 

0.84 

shown in Fig.l. Ideally, the points in this figure should lie on the line 

y = x , which is surely not the case here. The values at APM are larger than 

at IVP, because of the better growing conditions at APM. 

An important phenomenon is the fact that the regression lines have a 

regression coefficient much smaller than 1 (0.36 at APM; 0.32 at IVP), meaning, 

that the range of mF3 in the selection environment is larger than in the goal 

environment. This phenomenon can be explained with the proportional competition 

model of Spitters (1984): 

Y = b • Y 
11,mix "i l,mono' 

in which Yi mix is the yield of genotype i in a mixed stand, Yiimono is the yield 

of genotype i in monoculture, and b, is the proportionality factor measuring the 

competitive ability of the genotype in the mixture. Now, if in a certain 

pseudo-F3 there happens to be a negative correlation between the yield and the 

proportionality factor of the constituent genotypes, then the average of this 

pseudo-F3 will be lower than its average predicted from monoculture yields 

without taking account of the b/s. Similarly, if the correlation between the 

yield and the competitive ability of the genotypes happens to be positive in a 

certain pseudo-F3, then the average of this pseudo-F3 will be higher than its 

average predicted from monoculture yields. If both types of pseudo-F3's, as well 

as intermediate types, are present, then it will result in a larger range of mF3 

in the selection environment. 

In Fig.l the standard errors of each point in both the x- and the y-direction 

are represented in the top and at the right hand side by error bars. Taking into 

account these standard errors, it is clear from Fig.la, that mF3ps sometimes 

significantly underestimates mF3 (e.g. at APM cross L, and at IVP cross A), and 

that mF3ps sometimes significantly overestimates mF3 (e.g. at APM cross G, and at 
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Figure la,b. Scatterdiagram of the prediction of the F3-mean, nipj,,,, against the estimation of the F3-mean in 

the selection environment. mF3ps, for the pseudo-crosses A to 0. a The prediction is done for the monoculture 

environment at APM and IVP. b The prediction is done for the competition environment at APM. Standard errors 

(s.e.) as well in the x- as in the y-direction are represented by error bars at the top resp. the right hand 

side of the diagrams. Regression 1 ines are obtained by 1 inear regression of m̂ ,,, on m,^. kg»ha"', 0% moisture. 
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IVP cross F). Generally speaking, the larger values of mF3ps are overestimated, 

and the smaller values are underestimated. 

In contrast to what was expected, the correlations of the pseudo-F3 estimates 

with the predictions using competition data were low, even lower than the 

correlations to the predictions based on monoculture data (Table 11). Fig.lb 

demonstrates significant differences between estimates and predictions. The 

cause of this becomes clear with Fig.2. This figure gives a representation of 

the genotype x environment interaction effects caused by intergenotypic 

competition. The coefficient of correlation of monoculture yield to 3-row plot 

yield is 0.77, whereas to 1-row plot yield of the competition experiment -0.19. 

The coefficient of correlation of 3-row to 1-row plot yield was found to be 

0.64. The degree to which genotypes influence one another is of course relative 

to their distance in the field. In the pseudo-F3 experiment the pseudo-lines 

derived from homozygous F2-genotypes consist of only one variety, and therefore 

experience a relatively minor degree of intergenotypic competition, i.e. only 

1 - r o w plots 
variety sequence: 4 2 12 22 20 21 19 10 9 1 8 5 23J5 11 7 25__24 

variety~sequence: 25 1 4 6 20 24 11 ID 3 12 15 

4000 5000 ~r 
6000 

7000 
— I ' I ' 
8000 , 9000 

kq/ha, 0« moisture 

Figure 2. Variety yields at different plot types at APM. The 1-row plot yields are obtained with the 

competition experiment (24 replicates of 0.4 m2 per variety), the 3-row plot yields are obtained by tracing 

the varieties in the pseudo-F3 experiment (6 up to 72 replicates of 1.25 m2 per variety), and the monoculture 

yields are obtained with the monoculture experiment (12 replicates of 12 m2 per variety). The standard errors 

(s.e.) are represented by an error bar per plot type. Variety 25 could not be traced back in the 3-row plot 

type: therefore it is only represented by a square in the 1-row plots and monoculture bars. 
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between plots. But other pseudo-lines consist of more than one variety and 

therefore also endure within row intergenotypic competition. Therefore, the 

cause of the poor correlation between the predictions based on competition data 

and the pseudo-F3 estimates is the difference in the degree of intergenotypic 

competition in both experiments. 

Another important phenomenon is the 

Table 12. Correlation difference of the parameter values at the 
coefficients of estimates and ,,„ , ,-. , r j. „J^Air+T^l k^.,„T„ tC. different locations. The values of the predictions between the 
experimental locations APM and correlation coefficient between APM and IVP 
IVP 

• for the F«rparameters are given in Table 12. 
mpPs mF3ps mF3mo " W r o T n i s i s another demonstration of the large 

-0 02 -0 02 0 78 0 59 effect of genotype x location interaction. 

Real F3's and related Fg-lines 

The results of the experiment with real F3's and related F9-lines are presented 

in Table 13. The yield level of the F3's is higher than that of the F9's. This 

is similar to yields of the pseudo-F3 experiment compared with the monoculture 

experiment. It is caused by the difference in plot type. If the yield level of 

the F3's is transformed by multiplication with 4453/5163 to the yield level of 

the F9 monoculture plots, then a comparison is possible. The same picture 

emerges as with the pseudo-F3's: the larger mean is overestimated and the 

smaller mean is underestimated, the regression of F9-mean on F3-mean has a 

coefficient smaller than 1. 

Table 13. F„-mean estimation with real F3's and related F9's. *) - this 
F3-mean is the F3-mean multiplied with 4453/5163. kg-ha"

1, 0% moisture, s.e. 
- standard error. 

Cross F3-mean F3-mean*' Cross F9-mean (s.e.) 

V 

w 
X 
Y 

Z 
mean 
s.e. 

6059 
5847 

4641 
4905 

4364 

5163 
229 

5226 
5043 

4003 
4231 

3764 

4453 
198 

V&W 4580 (87) 

X&Y 

Z 

4431 

4348 

4453 

(61) 

(76) 
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5 . B i a s c a u s e d b y i n t e r g e n o t y p i c 
c o m p e t i t i o n : 2 - F m - v a r i a n c e 

This chapter is in press for Euphytica. 

Summary 

Quantitative genetic theory for autogamous crops enables the estimation of the 
parameters m (FM-mean) and D (FB-variance) in the F3-generation. With these 
estimated m and D a prediction can be made of the probability of finding 
superior inbred lines in the F^-offspring of the cross. The accuracy of this 
procedure is influenced by the correctness of the genetic model, by the 
magnitude of the error variance, and by the bias caused by intergenotypic 
competition, which is present in the environment in which the F3 is grown and 
absent in the monoculture environment at which the selection is aimed, 
especially in a cereal crop like wheat. The influence of the latter was 
investigated by a special method of simulating segregating populations. In this 
method genotypes in the offspring of a cross are represented by varieties and 
segregating populations are composed by mixing the appropriate varieties 
according to the proper segregation frequencies. Growing the simulated 
population enables the estimation of m and D in the normal selection 
environment, while simultaneously growing the varieties in a large monoculture 
trial enables the calculation of "true" values of m and D in the monoculture 
environment. Hence, a comparison is possible. 

The second of this set of two papers presents the investigations on the 
influence of intergenotypic competition on the estimation of the parameter D. 
The correlation between the estimates from the selection environment and the 
calculated "true" values from the monoculture environment was low. On the 
average the true values were overestimated, however in a few cases the 
monoculture values were significantly underestimated. Using the estimated m's 
and D's to rank crosses may lead to rather erroneous results. 

INTRODUCTION 

The first paper (Van Ooijen, 1989) describes a method of cross prediction, 

which is applicable in a practical breeding programme of autogamous crops. The 

method comprises of estimating the mean and variance of the Fm-offspring of a 

cross (resp. m and D) with its F3-population, followed by the prediction of PT 
of the cross (under the assumption of normality of the FJ, which is the 

probability of finding a superior recombinant inbred line in the Fœ-offspring 

(Fig.l). Estimating m and D for a number of crosses allows for the ranking of 

those crosses based upon their respective PT's. Hence, selection of the 

potentially better crosses will then be possible, so that the breeding programme 

can concentrate on these crosses. 



Bias caused by intergenotypic competition: 2. F_-variance 69 

Figure 1. Distribution of the F,-offspring of a cross between 2 pure-breeding lines of an autogamous crop 

with concern to the genotypic value of a quantitative trait, m - genotypic mean; D - genotypic variance; 

T - threshold value; PT - probability of finding a recombinant inbred line superior to T. 

As has been stated in the first paper, the predictive value of the method is 

determined by a number of factors. First, the underlying genetic model may be 

incorrect. The model assumes absence of dominance, linkage and epistasis; when 

present these phenomena will in general result in biased estimators. Second, the 

magnitude of the error variance of the used estimators may be too large to 

obtain accurate estimates. Estimators of variance components are known to have 

relatively large error variances. Third, genotype x environment interactions may 

seriously affect the genotypic values, and hence the estimators of derived 

parameters. In an F3 selection environment (i.e. the growing conditions of the 

F3-generation) neighboring plants are genetically different, whereas in the goal 

environment (i.e. the commercial growing conditions, mostly monoculture) the 

neighboring plants are genetically identical. From Spitters (1979,1984) it is 

known, that intergenotypic competition can influence the expression of 

characters like grain yield in cereals. Since the parameters m and D are 

estimated in the selection environment, the estimates may be biased with respect 

to the goal environment. This has indeed been found by Caligari & Powell (1986). 

Further, biased estimates of m and D will lead to biased predictions of PT. 

This paper presents the investigations on the bias caused by intergenotypic 

competition (which is in fact a special type of genotype x environment 

interaction) on the estimation of the quantitative genetic parameter D, the 
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genotypic variance of the F0-offspring of a cross between two pure-breeding 

1ines of spring wheat. 

MATERIALS AND METHODS 

General 

The experiment has been extensively described in the first paper (Van Ooi jen, 

1989). Here only a brief description is given. Segregating F3-populations were 

simulated by a method called pseudo-lines method. The principle of this approach 

is, that mixtures of varieties (or pure-breeding lines) are used to simulate a 

segregating generation by letting each genotype in the offspring of a cross be 

represented by a variety. In this study the varieties were mixed according to 

the expected segregation frequencies of an F3-generation; two independently 

segregating loci were simulated. A simulated F3-generation is called a pseudo-F3. 

On the one hand growing and analyzing pseudo-F3's as if they were real F3's 

enables estimation of quantitative genetic parameters in the selection 

environment, while on the other hand growing the used varieties in the goal 

environment (monoculture) enables estimation of the same parameters in the goal 

environment. This way a possible bias caused by the selection environment on the 

parameters can be investigated. The character under investigation was grain 

yield. 

15 pseudo-F3's were composed with a set of 23 available spring wheat and two 

spring barley varieties. Each pseudo-F3 was made up of 48 pseudo-lines. Each 

pseudo-F3 was grown in a randomized block design with two blocks (=repl icates). 

Each line was grown in a 3-row plot (± 1.2 m2) per block. The blocks of the 

pseudo-F3's were arranged as superplots in a superimposed randomized block 

design in order to be able to compare the F3-means. The 25 composing varieties 

were grown in a monoculture experiment. It had a randomized block design with 

large plots (± 11 m 2). The experiment as a whole was performed at two locations, 

APM and IVP. At APM the monoculture experiment consisted of 12 replicates, at 

IVP of 9 replicates. In order to get yield data of the varieties in an 

environment with intergenotypic competition, a competition experiment was 

designed. 18 varieties were grown in a randomized block experiment of 1-row 

plots (+ 0.4 m2) with 24 replicates at APM. 

At the IVP location there was an additional experiment with real spring wheat 

F3's and their related Fg-lines. This experiment was to give an impression of the 

parameter values in real crosses. The real F3's were grown in exactly the same 
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way as the pseudo-F3's except for the number of lines, which was 172. The three 

families of related F9-lines were each grown in a randomized block design with 

10 blocks, and further similar to the monoculture experiment. 

Analysis of pseudo-F3's 

As described in the first paper (Van Ooijen, 1989) the yield level of the small 

plots (pseudo-Fj exp. .competition exp., real F3 exp.) was found to be higher than 

that of large plots (monoculture exp.). It was considered to be caused by a 

difference in effective plot area. In addition to the interaction caused by 

intergenotypic competition, there will be a confounded genotype x environment 

interaction effect due to the differential capability of genotypes to utilize 

the plot area, but this was considered to be of minor importance relative to the 

interaction due to intergenotypic competition. To enable further comparison of 

parameters the plot yields of pseudo-F3 plots were multiplied by 4816/6033 at 

APM and by 4118/4958 at IVP (c.f. Van Ooijen, 1989, Table 10), resulting in the 

same yield level for both plot types. It should be realized that this 

transformation reduces (quadratically) the variances calculated for the 

pseudo-Fj's. 

The statistical model applied to the analysis of the pseudo-F3 experiment is: 

(random effects are underlined) 

yjjk = P + %3i + Ej + i(ij) + 9k(i) + Ê(ijk). 

p 

mF31 f i xed , 2, mF3i 

r : - /V(0,or
2) 

i ( i j ) - « ( 0 , 0 
9k(D f i xed , \ gk (1 ) 

Ê(ijk) - « ( o . O 

-

= 0 -

-

-

= 0 -

-

overall mean, 

mean of pseudo-F3 i 

e f fect of repl icate j 

superplot e f fec t , 

mean of l i ne k of pseudo-F3 i 

residual (p lo t ) e f fec t . 

(1-1. .15) , 

( J -1 . .2 ) , 

(k=1..48), 

Table 1 presents the analysis of variance of the pseudo-F3 experiment. The 

'9B
2 between line genotypic variance of each pseudo-F3 ogB

2 was estimated by 

O = ((1-1)/1)-(MSBL, - MSWF)/r. 

The factor (1-1)/1 is present, because the lines exactly represent the expected 

segregation frequencies. Therefore the statistical effect of lines can be 

considered as a fixed effect. The FM-variance D of each pseudo-F3 was estimated 
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by DF3ps: 

DF3„S = 2 • ÔgBi2-

The variance of this estimator was estimated by (see appendix): 

vâr DF3ps = [ Z'\]'r
1} ] 2 - [ - r V M S B L i - M S W F " c-( l - i )^( r" -J)+2 -MSWF^-

(N.B.: i fixed) 

If the genotypic mean and variance of the F« are known (estimated in the F 3), 

and the distribution of the Fœ concerning the genotypic value is assumed to be 

normal, then the probability PT of finding a recombinant inbred line in the 

FM-offspring of an F3 superior to a threshold value T can be estimated. The 

pseudo-F3 estimators of genotypic F„-mean and F„-variance are mF3ps resp. DF3ps. 

Therefore, PT of a pseudo-F3 was estimated by PTF3ps: 

PTF3PS = P(%3Ps + VDF3ps.x > T), in which x - «(0,1), 
and P() denotes a probability. 

The threshold value T was chosen as the yield of the best yielding variety in 

Table 1. Analysis of variance of pseudo-F3 experiment. 
mF31 - mean of pseudo-F3 i (fixed effect); 
giw,) - mean of line k of pseudo-F3 i (fixed effect); 
or - between replicate variance; 
oeS

2 - between superplot residual variance; 
oeP

2 - between plot residual variance; 
c - No. of pseudo-F3's = 1 5 ; 1 - No. of lines per pseudo-F3 = 48; 
r - No. of replicates = 2. 

Source of Mean Degrees of Expected mean square 
variation square freedom 

oep
2 + 1'Oes2 + M - Z mF3i

2/(c-l) 
1=1.-C 

°eP2 + l*°eS2 + C l - O r
2 

OeP2 + 1'OeS2 

residual within F3's MSWF c-(1-1 )• (r-1 ) oj 

for each F3 i=l..c: 

between lines MSBL, 1-1 oeP
2 + r« Z gk(i)

2/(l-l) 

between F3's 

between replicates 

residual 

MSBF 

MSBR 

MSR 

c-1 

r-1 

(c-1).(r-1) 
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the monoculture experiment at each experimental location. These were the variety 

Stratos at APM and the pure-breeding line TK 2832 2 at IVP. The assumption of 

normality is of course not realistic in this particular case (a system with two 

loci is simulated), but, since in a real F3 it remains the most reasonable 

assumption, normality is also used here. 

Prediction of pseudo-Fz's using monoculture data 

The monoculture experiments were analyzed as a normal randomized block 

experiment. Applied model: 

yi: = ß + o, + bj + Ê(ij) i = 1..25; j=l..B, B=12 at APM, B=9 at IVP; 

a, fixed, £ a, = 0 - variety effect, 

bj =» W(0,oB
2) - replicate effect, 

(ij) £(ü) = /V(0,o2) - residual plot effect. 

The mean variety yields were estimated. The error variance of the mean variety 

yield was estimated by: 

var yj = o2/B + oB
2/B = o / = sv

2 

Replicates are treated as random effects, because the yields in the monoculture 

experiment have to be comparable with yields in the F3-experiment on an adjacent 

part of the experimental field. 

Since the pseudo-F3's simulate the segregation of two independent loci, the 

genotypic values can be described in terms of the parameters of a two-locus 

model of Mather & Jinks (1971, p 83; 1977, p 100). This model is given in Table 

5 of Van Ooi jen (1989). The nine parameters of the model uniquely define the 

nine genotypic values. Since the genotypic values of each of the nine 

constituent genotypes of each pseudo-F3 were estimated in the monoculture 

experiment, they can be used for estimating the nine parameters for each 

pseudo-F3. In turn, these estimated parameters can be used for predicting the 

parameters m and D under monoculture growing conditions. Because m and D are 

also estimated directly in the selection environment from the pseudo-F3's, a 

comparison is possible. 

The prediction of the between F3-line variance of the goal environment is 

(see Mather & Jinks, 1971, p 173; 1977, p 113; V 1 F 3): 
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OgB2 = (da+Jab/4)72 + (db+Jba/4)V2 + (ha+l/4)2/16 + (hb + l /4)2 /16 

+ i2/4 + jab
2/32 + jba

2/32 + l2 /256. 

ogB
2 can be expressed d i rec t l y in terms of g i ; since the pseudo-F3's were 

composed according to the Mendelian segregation frequencies: 

oj = [ 243- 2 g,2 + 108- X g,2 + 48-g 2 

gB 1=1,3.7.9 - 1 i=2,4,6,8 - 1 - 5 

- 9 0 - ( g i - g 3 + g ! -g 7 + g 3 -g 9 + g7-g9) - 154- (g 1 -g 9 + g3-g7) 

- 40-(g2-g4 + g2-g6 + g2-g8 + g4-g6 + g4-g8 + g6-g8) 

+ Sö-Cgi-gg + g!-g4 + g3-g2 + g3-g6 + g7-g4 + g7-g8 + g9«g6 + g9-g8) 

- 92-(g1-g6 + g^gg + g3-g4 + g3«g8 + g7-g2 + g7-g6 + g9-g2 + g9«g4) 

- 40« E g^gg + 16> I g^g 5 ]/4096. 
1=1.3.7.9 —n -b 1=2.4,6.8 - 1 -

Straightforward prediction of ogB
2 by using the above expression, would lead to 

an overpredicted ogB
2. Each gi is not exactly known, but is estimated with the 

monoculture experiment. Each gi in the above equation can be replaced by /Jj+ê , 

in which Jui is the expected monoculture yield of the variety and e, the residual 

error (with variance ov
2) of the mean variety yield estimated with the 

monoculture experiment. Writing the above expression for ogB
2 as a function f of 

g_! to g9, it can be shown, that the expectation of fCgj,..,^) = f (#i+êi,. . ,/ig+e9) 

is: 

£(f(,u1+e1,..,/ig+e9)) = f (/ij,..,jig) + 363-ov
2/1024. 

The unbiased predictor of the between F3-line variance of the goal environment, 

ogB
2
mo, is obtained by correcting f(g1,..,g9) with the estimated 363-ov

2/1024: 

OgB2™ = f(gi..-.g9) - 363-S//1024. 

This leads us to the unbiased predictor of twice the between F3-line variance, 

DF3mo, which is: 

DF3IÜO = 2'0gB mo-

It should be realized that this DF3mo is not the genotypic variance of the Fm; 

it contains dominance and epistatic components, that are not present in the 
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genotypic F=>-variance. It is predicting the with the F3-generation best 

available estimator of this variance (which is twice the genotypic between 

F3-line variance) in the growing conditions of the goal environment. So, 

discrepancies between DF3ps and DF3mo can be attributed solely to differences in 

growing conditions, i.e. in degree of intergenotypic competition. 

In terms of the model of Mather and Jinks, the genotypic variance of the 

' c o » ^ g F < » > ' ̂  * 

ögFco2 = d a
2 + d b

2 + i 2 . 

ogFm
2 expressed d i rec t l y in terms of g i becomes: 

°gF°>2 = 3 -
1 = 1 f 7 99i2/16 - (g!-g3 + g ^ + gj-gg + g3-g7 + g3-£9 + gz-gg)/^-

Writ ing the above expression for ogFco
2 as a function h of the g / s , then, s imi lar 

to ogB
2, h(g1,g3,g7,g9) = h(ju1+e1,/i3+e3,/i7+e7,Ju9+ê9) would overpredict ogRo

2: 

f(h(//i+e1,^3+e3,//7+e7,/z9+e9)) = h(/i1, /t i3,//7,^) + 3-ov
2/4. 

Therefore, the unbiased predictor of the genotypic variance of the Fm in the 

goal environment, DFoomo, is: 

• W = "(91.93.97.99) - 3-s//4. 

Comparing DFlmo to DF3ps is the ultimate comparison to be made. However, it 

involves differences in effects of dominance, of epistasis and of intergenotypic 

competition. The influence of dominance and epistasis (their effects are 

confounded) can be studied by comparing DF3mo to DFoorra, while the influence of 

intergenotypic competition can be studied by comparing DF3mo to DF3ps. 

The variances of the predictors DF3mo and DFMmo were approximated using the 

so-called delta technique (Bulmer, 1985, pp 82-83). In both cases the bias 

corrections (363-sv
2/1024 and 3-sv

2/4) were neglected, because they are of minor 

importance. This results in: 

A A 0 6 f 

var DF3mo * 4 • var f ( g ! , . . , g 9 ) « 4 • sv
2 • , = ï g - g g - , and 

vâr DFomo *> vâr h(g1,g3,g7,g9) = sv
2 " 6 h 

i=1.3,7,9 69i 
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The probabi l i ty PT of f inding a recombinant inbred l ine in the FK-offspring 

of a pseudo-F3 superior to a threshold value T, which should be attained by an 

F3 in the goal environment, was predicted by PTF3mo: 

PTF3mo = PKa™ + J0¥3mo-x > T) , in which x - W(0,1). 

The real PT in the goal environment was predicted by PTFnmo: 

PTF™ = P(mF^o + TDp^-x > T), ( x - #(0,1) ). 

The threshold value T was the same as with PTF3ps, the yield of the best yielding 

variety at each experimental location. 

A short description of all used estimation and prediction parameters is 

given in Table 2. The expectation was to find a poor fit of the prediction to 

the directly estimated parameters, which would be caused by intergenotypic 

competition. 

Table 2. Description of estimation and prediction parameters. Predictions 
are done with data either from the monoculture or from the competition 
experiment. 

mF3ps F3-mean, average of the 96 plots of the pseudo-F3 
mF3m0 F3-mean, prediction of m+ha/4+hb/4+l/16 
mF«°mo F^-mean, prediction of m 
DF3ps twice the between F3-line variance, estimated with the pseudo-F3 

DF3mo twice the between F3-line variance, prediction 
DFoomo F^-variance, prediction 
PT probability of finding a recombinant inbred line superior to the 

threshold value T in the Fœ-offspring of a cross 
pTF3Ps

 P T estimated with mF3ps , DF3ps and T 
PTF3n,o P T predicted with mF3mo , DF3mo and T 
P T F « ™ P T predicted with mFramo , DFMmo and T 

Prediction of pseudo-F3's using competition data 

The competition experiment was analyzed similar to the monoculture experiments. 

Yield data of varieties not included in this experiment were obtained by tracing 

3-row plots of these varieties in the pseudo-F3 experiment. Variety 18 could not 
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be traced this way. The yield of this variety was predicted from the regression 

of monoculture on 3-row plot yields. The prediction of pseudo-F3's was similar 

to prediction with monoculture data. Because the prediction was done with some 

dependent yield data of varieties not included in the competition experiment, 

the prediction should tend to show a better fit than when all data would have 

been independent. The prediction with competition data is a prediction in a 

competition environment. Because an F3 is also grown in a competition 

environment, the expectation was to find a good fit of this prediction to the 

pseudo-Fj estimation. 

Analysis of the experiment with real F3's and related F3-lines 

Similar to the pseudo-F3 experiment the yield level of the F3-plots was higher 

than that of the F9 monoculture plots. Prior to further analysis the F3-plot 

yields were multiplied by 4453/5163 (cf. Van Ooi jen, 1989 Table 13). The real 

F3's were analyzed exactly like the pseudo-F3's with the exception, that the 

between line effect was treated as a random effect: gk(1) « /V(0,ogB
2), in which 

ogB
2 is the genotypic between line variance. 

The F9-generation can be considered as an approximate Fra-generation. The 

genotypic variance between the Fg-lines can be considered as the genotypic 

variance of the FM in a monoculture environment. 

RESULTS AND DISCUSSION 

Genotypic variance of the Fa 

Table 3 presents the results concerning the genotypic variance of the F„. 

Negative estimates of DF3ps were set to zero. The coefficients of correlation 

between the parameters are given in Table 4. Similar to the Fm-mean the most 

interesting comparison is that between the best available estimator of the 

F^-variance, DF3ps, and the prediction of the F„-variance of the goal environment, 

DF(Dmo. This comparison involves three factors: dominance, epistasis (which are 

confounded), and intergenotypic competition. The two confounded factors have 

little effect. The correlation of the prediction of twice the genotypic between 

F3-line variance in the goal environment, DF3mo, with the prediction of the 

Fœ-variance in the goal environment, DFœmo, is high, both at APM and at IVP 

(Table 4). The third factor, however, does have a large effect. The correlation 

of DF3ps with DF3m0 is low, especially at APM (Table 4). This result is also 

presented in Fig.2. From this figure we can see, that in most crosses the 
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Table 3. Mean squares between lines (MSBL) and estimates and predictions of 
the genotypic standard deviation of the FM. Residual mean square within 
F3's: MSWF(APM)=196152; MSWF(IVP) = 132731. Mean squares in (kg-ha

-1)2, 0% 
moisture; standard deviations in kg-ha"1, 0% moisture. 

Cross 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 

APM 

MSBL 

396677 
263556 
296097 
147716 
262469 
178412 
252823 
628091 
309784 
715546 
532403 
180263 
213877 
608701 
309087 

VDp3ps 

443 
257 
313 
0 

255 
0 

236 
650 
334 
713 
574 
0 

132 
636 
333 

>/DF3mo 

328 
148 
114 
101 
180 
87 
230 
294 
286 
348 
165 
116 
357 
130 
165 

VDpsmo 

393 
176 
40 
94 
234 
75 
198 
342 
235 
480 
232 
138 
474 
132 
63 

compet 

V^F3mo 

692 
647 
519 
576 
631 
600 
559 
684 
509 
456 
540 
528 
971 
1311 
972 

ition 

Jfynmo 

691 
662 
404 
414 
486 
621 
449 
752 
423 
506 
247 
499 
1168 
1628 
1118 

IVP 

MSBL 

247817 
222313 
215486 
165953 
240384 
117938 
339082 
268290 
248385 
257628 
382639 
242461 
273670 
358558 
279646 

VDF3ps 

336 
296 
285 
180 
325 
0 

450 
364 
337 
350 
495 
328 
371 
470 
379 

J^F3mo 

215 
175 
132 
164 
124 
210 
407 
308 
281 
449 
484 
326 
331 
521 
382 

•/"Famo 

216 
176 
118 
207 
86 
267 
416 
358 
354 
420 
490 
391 
275 
567 
471 

FM-variance is significantly overestimated, but that there are also some 

crosses, of which the F„,-variance is significantly underestimated (e.g. M at 

APM, and F at IVP). It should be noted, that in spite of the reducing 

transformation of pseudo-F3 yield data to monoculture yield level, there still 

is an overestimation. This can be explained as follows. In underestimated 

crosses the variance is reduced, because the higher yielding genotypes happen 

to have a small competitive ability and the lower yielding genotypes happen to 

have a large competitive ability. While in overestimated crosses there happens 

Table 4. Correlation coefficients between estimates and predictions of the 
genotypic standard deviation of the Fm. 

APM IVP competition 

A F3mo VD F«mo VD F3mo jo F<nmo VD F 3 m o TD, F°*no 

•/Dp3ps 

As™ 
0 45 0 

0 
43 
92 

0 67 0 
0 
55 
95 

0 19 0 
0 
21 
97 
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Figure 2a,b,c. Scatterdiagram of the prediction of the F3-standard deviation, DF3m0, against the estimation of 

the F3-standard deviation in the selection environment, DF3ps, for the pseudo-crosses A to 0. a prediction for 

the monoculture environment at APM b prediction for the monoculture environment at IVP c prediction for 

the competition environment at APM. Error bars for each point in x- and y-direction represent the range from 

•/(D - s.e.(D)) to V(D + s.e.(O)), s.e. - standard error, kg'ha"1, 0% moisture. 
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Figure 2c. 

to be a positive, or even zero, correlation between genotype yield and 

competitive ability. 

The prediction using the competition data resulted in a very low correlation 

of the prediction to the estimation parameters (Table 4). Similar to the 

Fm-mean, this can be explained by the difference in the proportion of 

intergenotypic competition in both experiments. The effect of intergenotypic 

competition is relative to the distance between genotypes. A pseudo-F3 contains 

pseudo-lines from heterozygous F2-parents; these lines even experience within 

row intergenotypic competition. But a pseudo-F3 also contains pseudo-lines from 

homozygous F2-parents, that experience only a minor degree of intergenotypic 

competition, i.e. competition between 3-row plots. The average level of 

intergenotypic competition in a pseudo-F3 will therefore be lower than the level 

of intergenotypic competition experienced by genotypes in the competition 

experiment. The resulting overprediction is evident with Fig.2c, especially for 

the pseudo-F3's with barley (crosses M,N, and 0). 
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The phenomenon of a large genotype x location interaction is also evidently 

present in the F^-variance parameters (Table 8). The correlation between the 

same parameters at APM and IVP is low. 

Real F3's and related F3-lines 

The results of the real spring wheat crosses 

the results of the pseudo-F3's (Table 5). The 

same as in the pseudo-F3 experiment. The 

Table 5. FM-standard deviation estimation with 
real F3's and prediction with related F9's. 
W(D-s.e.(D)), u=7(D+s.e.(D)). kg-ha'1, 0% 
moisture. 

Cross 

V 
W 

X 
Y 

Z 
mean 

1 u 

427 526 
298 402 

265 373 
318 421 

316 418 

VDF3 

479 
354 

323 
373 

371 
380 

Cross 

V&W 

X&Y 

Z 

1 

174 

154 

213 

u 

240 

214 

291 

VDF9 

209 

187 

255 
217 

on the Fa-variance are similar to 

levels of the parameters are the 

Fw-variance in the monoculture 

environment is much smaller 

(significant) than the 

estimations in the F3's. The 

fact, that two F9's (V&W and 

X&Y) were actually a mixture 

of the offspring of two 

crosses, does not influence 

this result, since this fact 

should only cause the 

variance of these 

populations to be larger 

than the individual 

variances. 

Consequences to the ranking of crosses 

As mentioned before, estimating m and D for each cross in a breeding programme 

allows for the ranking of the crosses based upon their predicted probability, 

PT, of finding superior inbred lines in the F„. The results on PT are given in 

Table 6 and presented in Fig.3. We have seen, that the parameters m (Van Ooijen, 

1989) and D are not accurately estimated. First, there is a minor effect of 

dominance and epistasis on both parameters. Second, but much more important, 

there is the effect of intergenotypic competition. It influences both 

parameters. The parameter m is sometimes overestimated and sometimes 

underestimated. This fact, that the estimated F3-means have a larger range than 

the predicted F3-means, causes a bias in the prediction of PT. PT will depend 

more on the F3-mean and less on DF3ps than when the F3-mean would not have been 
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Table 6. Estimates and predictions of the probability of finding superior 
inbred lines in the FM At APM (also for competition) T=5493, at IVP T=4981 
kg'ha"1, 0% moisture. E-notation example: "2.13 E-2" means: 2.13-102 = 
0.0213. 

Cross 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 

APM 

PTF3ps 

1.03 
7.12 
6.18 
0 
8.37 
0 
1.04 
1.67 
7.08 
1.03 
6.86 
0 
2.92 
1.40 
2.87 

E-l 
E-3 
E-3 

E-3 

E-l 
E-l 
E-2 
E-l 
E-2 

E-8 
E-l 
E-2 

PTF3mo 

6.88 E-3 
1.05 E-6 
1.2 E-10 
5.8 E - l l 
1.56 E-4 
1.8 E-12 
2.55 E-2 
7.32 E-2 
3.48 E-2 
1.72 E-2' 
3.08 E-6 
1.8 E-10 
1.13 E-2 
4.0 E - l l 
2.67 E-6 

"TF-TO 

1.64 E-2 
1.48 E-5 
7.9 E-66 
3.7 E-10 
2.33 E-3 
9.7 E-16 
5.15 E-3 
9.46 E-2 
3.49 E-3 
5.86 E-2 
4.12 E-4 
1.10 E-7 
4.63 E-2 
2.8 E - l l 
5.3 E-27 

compet i t ion 

P T F 3 H O 

1.65 
8.81 
1.43 
2.48 
1.66 
2.39 
1.21 
1.15 
8.92 
1.77 
9.72 
5.98 
3.49 
3.17 
3.12 

E-l 
E-2 
E-l 
E-l 
E-l 
E-l 
E-l 
E-l 
E-2 
E-2 
E-3 
E-2 
E-l 
E-l 
E-l 

°TF-«o 

3.80 E-l 
1.94 E-2 
2.75 E-l 
6.26 E-l 
2.39 E-2 
3.87 E-l 
4.30 E-2 
1.17 E-l 
1.06 E-l 
5.63 E-2 
1.1 E-13 
2.18 E-l 
4.92 E-l 
2.82 E-l 
5.33 E-l 

IVP 

PTF3ps 

2.28 
4.33 
2.70 
1.19 
9.96 
0 
3.39 
9.83 
1.48 
2.69 
1.03 
4.74 
2.23 
4.01 
1.58 

E-5 
E-5 
E-4 
E-3 
E-5 

E-2 
E-2 
E-l 
E-2 
E-l 
E-3 
E-3 
E-3 
E-3 

°TF3mo 

1.77 E-6 
1.11 E-8 
1.3 E-13 
1.73 E-9 

1.1 E-14 
1.04 E-5 
5.49 E-2 
3.28 E-2 
1.70 E-2 
4.48 E-2 
4.94 E-2 
2.55 E-3 
1.31 E-3 
3.89 E-2 
4.70 E-3 

p 
TF«mo 

4.51 E-6 
2.05 E-9 
6.3 E-16 
5.74 E-7 
4.8 E-28 
5.60 E-4 
4.37 E-2 
5.14 E-2 
4.64 E-2 
2.84 E-2 
4.85 E-2 
1.70 E-2 
2.12 E-5 
4.49 E-2 
2.68 E-2 

Table 7. Spearman rank correlation coefficients between estimates and 
predictions of the probability PT of finding superior inbred lines in the 
F„. At APM (also for competition) T=5493, at IVP T=4981 kg«ha"\ 0% moisture. 

PïF3ps 

PTF3ITIO 

APM 

PTF3mo 

0.58 

"TF"3mo 

0.48 
0.86 

IVP 

PTF3mo 

0.78 

p 
r TF«*no 

0.82 
0.90 

compet 

PTF3HIO 

-0.26 

t ion 

p 
r TF«mo 

-0.47 
0.76 

biased. But, on the other hand, DF3ps is averagely overestimated, resulting in 

an overprediction of PT. Since the function PT is a complex kind of function, the 

effect of the inaccuracies in the estimation of the FK-mean and of the 

Fm-variance is also complex. It has resulted in the low Spearman rank 

correlation between PT of the selection environment and PT of the monoculture 

environment at the APM location, while at IVP the correlation is moderately high 

(Table 7). PT is chiefly overpredicted at APM, while at IVP there are many 

underpredictions (Fig.3). The effects of dominance and epistasis are present, 

but not as important as intergenotypic competition (Table 7). 

The prediction of PT using competition data is very poor, the rank 
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Figure 3a,b. Scatterdiagram of the cross prediction PT in the monoculture environment, PTFMn0, against the cross 

prediction in the selection environment, PTF3ps, for the pseudo-crosses A to 0. a APM results, b IVP results. 

correlation is even negative (Table 7). This is due to the difference in the 

proportion of intergenotypic competition in the competition experiment compared 

to the pseudo-F3 experiment. 

The genotype x location interaction is also evident in PT. The rank 
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Table 8. Linear (F^-standard correlation coefficients between APM 
deviation) and Spearman rank (PT) and IVP are sma11 (Table 8 ) . 
correlation coefficients of estimates 
and predictions between the 
experimental locations APM and IVP. 

Fœ-stand.dev. 

VDF3ps 0 .61 
VDF3mo 0.23 
VDFaffl0 0.04 

PT 

PTF3ps 

PîF3mo 

•TF«*!» 

0.46 
0.42 
0.33 

GENERAL DISCUSSION AND CONCLUSION 

The first article reports on the effects of intergenotypic competition on the 

estimation of the Fœ-mean with an F3 of spring wheat. This second article reports 

on the effects of intergenotypic competition on the estimation of the 

F,„-variance and the consequences for cross prediction. We were confronted with 

the problem of different yield levels of the 2 plot types used in the F3 and the 

monoculture experiments. Simple transformation (by multiplication) enabled a 

comparison of pseudo-F3-parameters to monoculture parameters. Although 

discrepancies were mostly ascribed to only intergenotypic competition, they also 

originate partially in differential reactions of the used genotypes to the plot 

type. Since the F3-plot type is the largest possible in a practical breeding 

programme of spring wheat, it is not important, whether the differences between 

F3-parameters and F«,-parameters are caused by one or the other interaction. 

However, research of Kramer et al. (1982) and also the awkward results, obtained 

when predicting with yield data from the competition experiment, lead to the 

conclusion, that the discrepancies are mainly caused by intergenotypic 

competition. 

This effect of a different yield level of the F3-plot type also concerns the 

choice of the threshold value T. It is important to know the value T at the 

yield level, at which the probability PT is calculated, since the PT-function 

depends in a complex manner on T. A different T-value may result in a different 

rank of crosses. 

In this experiment the pseudo-lines were composed exactly according to the 

segregation frequencies. This has led to less variable estimates of mF3ps and 

DF3ps, less than when we would have been dealing with real F3's. In the case of 

real F3's the between line effect will be a random instead of a fixed effect. 
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In our case it was calculated that this would lead to a variance of DF3 roughly 

1.3 times the variance of DF3ps. Increasing the number of lines per cross would 

solve this problem. 

The genotypic within F3-line variance has not been mentioned, so far, because 

of its unimportant influence. Its magnitude is of the same order as the 

genotypic between F3-line variance (± 300
2; c f . Table 3). In an F3-experiment 

like ours it would be confounded with the between plot residual variance (± 

300,000; c f . Van Ooi jen, 1989, Table 9). Since a plot consists of about 300 

plants, roughly l/300th part of the genotypic within line variance 

(3002-1/300=300) is the part of genetic origin in the between plot residual 

variance, which is just about 0.1% (300/300,000). Therefore we can conclude, 

that the influence of genotypic within F3-line variance on the between plot 

residual variance is not important. As a result the between plot residual 

variance was taken the same for all pseudo-F3's. 

Although it has not been of primary interest, genotype x location interaction 

has shown to be of considerable importance. Even if intergenotypic competition 

would not have been an important bias in the cross prediction, cross prediction 

would be valid on one location (environment) only. This conclusion agrees with 

the results and conclusion of Caligari et al. (1985), who found a very poor 

agreement between cross predictions done in two different growing seasons. 

The results show, that the F„-mean is sometimes over- and sometimes 

underestimated in the F3, that the Fm-variance is mostly over- but also sometimes 

seriously underestimated in the F3. The cause of this is intergenotypic 

competition. Dominance or epistasis have only a mild influence on the accuracy 

of the estimators. Caligari et al. (1985) compared FK-variance estimations in 

F3, similar to DF3ps, with FM-variance estimations using doubled haploids in 

barley. They found a better performance of the doubled haploid method, and 

ascribe the worse performance of the F3-method to dominance. However, they did 

not consider intergenotypic competition (undoubtedly also present in their 

barley F3's) as a possible bias, of which the present results show the greater 

importance than dominance and epistasis. 

Using the estimated F^-means and -variances to rank crosses may lead to 

erroneous results. Altogether, the method of prediction of the progeny of 

crosses, although in principle practically applicable, is, for a crop like 

spring wheat with its inevitable amount of intergenotypic competition effects, 

a very inaccurate one. 

Is it realistic to generalize the conclusions of a pseudo-lines experiment 
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to real F3's? A quantitative genetic character will seldom be determined by just 

two loci, there will probably be linkage for a number of involved loci, and 

epistasis may also be present. In our experiment the epistatic effects were 

quite large (they can be calculated from Van Ooijen, 1989, Table 8), but they 

did only mildly influence the parameters. From a numerical investigation Kearsey 

(1985) concluded, that for a wide range of linkage and dominance values DF3 (i.e. 

twice the between F3-line variance) is an adequate predictor of the FM-variance. 

Also, the results of the experiment with the real F3's and their related F9's 

show the same tendencies as the results with the pseudo-F3 and monoculture 

experiment. So it appears reasonable to generalize the conclusions. 

What are the limitations of an experiment with pseudo-lines? In principle 

more segregating loci can be simulated with this method. However, if the pseudo-

lines are composed exactly according to the Mendelian segregation ratio's (no 

genetic sampling error, in order to get more accurate results), there will soon 

be the problem that not every possible pseudo-line can be included in the 

experiment (due to the limitations of the experimental size). This problem can 

be overcome by simulating the genetic sampling in the composition of the lines, 

thereby loosing some accuracy in the experimentation. An accompanying problem 

will be the size of the monoculture experiment, although this also depends on 

the experimental error of the character under investigation. Linkage and 

epistasis can also be incorporated in a pseudo-lines experiment. However, a 

prespecified type of epistasis requires precise knowledge of the genotypic 

values of the constituent genotypes. The primary aim of the experiments 

described in these papers was to investigate the effect of genotype x 

environment interaction with respect to the extrapolation of estimates of m and 

D from the selection environment to the goal environment. Studying just the 

effects of more loci, linkage, or epistasis does not require a pseudo-lines 

experiment. 
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APPENDIX 

Variance of a mean square, that has a fixed effect 

Two-way crossed classification model: 

y,j = p + a, + bj + Ê(ij) i=l- -a; j=l..b; 

a, fixed; E, a, = 0 ; bj = tf(0,oB
2); e(1j) - /V(0,o

2); 

ANOVA 

MS df f(MS) 

iz + b- E - z' 
i = l . 

MSB b-1 o2 + à- Ou 

MSA a-1 oz + b- E a/Aa-l) 
i=l..a 

MSR r oz 

(Rem.: r=(a-l)•(b-1) ) 

The mean square MSR is distributed as a function of a central chi-square 

variable: MSR = (oz/r) • ̂ 2(r), in which xz{r) is a random variable having a 

central chi-square distribution with r degrees of freedom. The mean square MSA 

is a function of a noncentral chi-square variable (Hogg and Craig, 1978, sec 

8.5): MSA = (o2/(a-l)) • x2(n,8), in which x2(n,0) is a random variable having 

a noncentral chi-square distribution with n=a-l degrees of freedom, and 
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noncentral i ty parameter 8=b-Ea i
2/o2- The expectation and variance of a 

noncentral chi-square var iable are: E(xz(n,B)) = n + 8, resp. 

var x2(n,8) = 2-n + 4-9. The variance of MSA can be derived: 

var MSA - - ^ - - [ 2 - ( o
2

+ - ^ - ) - o
2

] . 
a-1

 v
 a-1 ' 

If this variance is to be estimated, substitution of the mean squares: 

A 9.MÇR 
var MSA = * • [2-MSA - MSR], 

leads to a biased estimate: 

f(vârMSA)= J ^ L . [ 2 . (a 2
 + ^ ^ ) - " * - . < ? ] . 

' a-1
 v

 a-1 r 

Therefore an unbiased estimator of the variance of MSA is: 

A 9.MSR r 

var MSA = 7 • [2-MSA V • MSR]. 
a-1 r+2 

Using this estimator we can derive an estimator of the variance of DF3ps 

(N.B.: here, r is the number of replicates): 

since DF3ps =
 2 ' j 1

< "
1 ) .(MSBL, - MSWF), and MSBLi and MSWF are mutually 

independent, var DF3ps = [
 2'\]'1^ ] 2 • [vâr MSBLi + var MSWF]. 

Now, since MSWF is a function of a central chi-square variable: 

MSWF = (oeP
2/(c-(l-l)-(r-l))) . x2(c-(l-l)-(r-l)), its variance can be 

• • t A k A «cur 2-MSWF2 

estimated by: var MSWF = ., ,. ,—,. . , 
c«(1-1)-(r-l)+2 

and according to the above derivation: 
A

 MCD1 2-MSWF . , u c m c-( l - l )-(r- l ) „_..„ 
v a r MsBLj = - ^ - j - - [2-MSBL, - c . ( ; . 1 ) : ( r . 1 ) | 2 • MSWF], 

which leads t o : 

var DF3ps = [ J ^ I l l L ] * . ^ - MSBLl-MSWF - J ^ ^ l ] ] ^ -MSWF2]. 

(Rem.: There should be a correction for the few missing plots, but this hardly 
A 

influenced the values of var DF3ps, just up to 0.2%.) 
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6. General d i s c u s s i o n 

In the previous chapters a number of sources of error, that possibly invalidate 

the proposed prediction procedure (described in the general introduction) have 

been evaluated. Although not all sources of error have been studied to the same 

extent, we will try to reach a general conclusion about the predictive value of 

the procedure. 

Alternative estimator 

In chapter 2 the superiority of an alternative estimator of D (D2) under most 

circumstances of heritability, dominance level and experimental size, has been 

established. This estimator has been used in the subsequent chapters assuming 

it is the best, although the assumptions made in the comparison of the two 

estimators were not always valid. In chapter 3, for example, the influence of 

non-normality of genotypic effects is investigated. Also, the estimator is 

applied in situations with fixed genotypic effects. It has been tacitly assumed 
A A 

then, that also under these circumstances the estimator Q2 is outperforming D1. 

Whether this assumption is valid cannot be answered without further research, 

but it is intuitively felt to be so. 

Heteroscedasticity 

In chapter 3 various statistical aspects of estimating D have been studied. 

Heteroscedasticity of residual variances of the magnitude used in the 

simulations, which is considered to be great, had an important variance 

increasing influence on the estimator of D, but only when the heritability was 

intermediate or low (h2(bl )<0.6). The coverage of the WT-confidence interval, 

however, was hardly affected by heteroscedasticity of residual variances. The 

general conclusion with regard to heteroscedasticity of residual variances is, 

that, if there is no correlation between genotypic effects and residual variance 

the WT-confidence interval is robust against heteroscedasticity. If there is a 

positive correlation between genotypic effects and residual variance, then one 

has to do with heterogeneity of variances of the type "constant coefficient of 

variation", that can be corrected for by a data transformation. 

Influence of heteroscedasticity of genotypic within line effects, that is 

present if the number of loci determining the trait is finite, could only be 

detected at very high heritabil ity, in a case where two loci determined the 
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trait. In this case the (variance increasing) influence of heteroscedasticity 

on the mean square between 1 ines was counteracted so much by the (variance 

decreasing) influence of non-normality of genotypic effects (which will be 

discussed further on), that the variance of the mean square was still smaller 

than its expected value based upon normality and homoscedasticity. As a result 
A A 

the variance of Q was smaller than its expected value (var(D|normality)). When 

more loci determine the quantitative trait, on the one hand the 

heteroscedasticity of genotypic within line effects will reduce, and on the 

other hand the non-normality will gradually change into normality (as will be 

discussed further on). Therefore we conclude that the magnitude of the genotypic 

heteroscedasticity is too small compared to the size of the residual effects to 

have a noticeable influence. 

Non-normality of genotypic effects 

An aspect, that might have important consequences for the prediction procedure, 

is the possible non-normality of genotypic effects, caused by a limited number 

of loci determining the quantitative trait. The conclusion of chapter 3 was that 

the influence of non-normality can only become important when the number of loci 

is less than five, combined with an intermediate to high heritability 

(h2(bl)>0.5). If there is an influence, then it can be considered positive: the 

estimated value of D is closer to the true value than may be expected by 

considering its confidence interval. 

In this chapter we did not consider the cross prediction (PT). This 

prediction assumes a normal probability distribution of the F„ (chapter 1). When 

only a limited number of genes are involved in the quantitative trait, then the 

distribution of the F«, deviates from normality. Hence, the prediction of PT may 

have a significant error. For example, if only one gene is involved, then PT is 

zero (if the threshold value T is equal to or larger than the best parent), 

since the (most) extreme genotype is already involved in the cross and hence 

there is zero probability to obtain a recombinant inbred better than this 

extreme. Therefore, this prediction will always be erroneous. Because the 

threshold value T will be somewhere in the tail of the distribution, it appears 

that the performance of the prediction of PT largely depends on the shape of the 

tails of the probability distribution of the F„, The shape of these tails depend 

importantly on the numbers of genes involved in the cross. If all crosses in a 

breeding programme differ in approximately the same number of genes, the bias 

in this prediction will apply to all crosses, presumably leading to a correct 
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rank of the crosses. However, when there are just a few (major) genes involved 

in the quantitative trait (i.e. the gene pool the breeder extracts the crosses 

from has polymorphism at just a few loci), some crosses in a breeding programme 

will differ for only one gene, others for maybe five. In that case there will 

be a difference in the deviation from normality between some of the crosses, 

presumably leading to an incorrect rank of crosses. When there are more than 10 

genes of approximately equal effect in the gene pool, the crosses will segregate 

for roughly the same number of genes. At the same time the deviation from 

normality will have nearly diminished, and hence the ranking of crosses will be 

approximately unbiased. These are just speculative remarks, that should be 

confirmed by thorough investigations. There has not been any research on the 

sensitivity of the cross prediction (PT) to deviations from normality of the FM 
Preliminary results of investigations on this subject by Van Oeveren 

(pers.comm.) show that, when four or five loci are involved, the rank of the 

crosses, calculated with m, D, and the normal distribution, may be different 

from the rank of the crosses based upon the true probability to produce superior 

segregants (there are many crosses with zero true probability). But even then, 

in most cases the best cross came out on top. When there is polymorphism at just 

two or three loci in the gene pool, the chance is there, that the best genotype 

is already in the gene pool, or will soon be produced by a cross in the breeding 

programme. In that particular case the cross prediction method will always give 

the breeder the idea that genetic progress can be made while it cannot. If the 

between line heritability is increased enough, the breeder should be able to 

detect segregation at just these few loci. The conclusion is, that, if the trait 

is really oligogenic (say less then 5 loci), there will be significant non-

normality of the probability distribution of the genotypic effects, which on the 

one hand leads to a more accurate estimate of D if the between line heritability 

is larger than 0.5, but on the other hand may lead to an erroneous ranking of 

crosses. But if the number of loci is larger than 5, the cross prediction 

procedure is correct. 

A problem, however, is that it is very difficult to determine the number of 

genes involved in a quantitative trait. This problem can possibly be overcome 

by new methods, that employ molecular genetic markers to discover linkage 

between markers and putative quantitative trait loci (e.g. Paterson et al, 

1988). The subsequent breeding methods have a totally different approach, in 

which direct selection for quantitative traits is partially replaced by indirect 

selection via qualitative marker genes. Whether this approach will be generally 
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applicable is still an open question. 

In chapter 5 the pseudo-crosses were segregating for two unlinked loci. In 

this case the use of the assumed normality of the F„ is incorrect. However, both 

sides of the made comparison, i.e. the estimation in the selection environment 

and in the goal environment, used this assumption. Therefore, the comparison 

will not be too much affected by this incorrectness. 

Fixed versus random effects 

Chapter 3 also considered the aspect of deliberately applying the Williams-

Tukey confidence interval on D, when the inference concerns the actual 

F3-population, and not the genotypic variance of the imaginary population from 

which the actual population was sampled, the latter being the parameter for 

which the WT-confidence interval is correct (random effects model), the former 

for which it is incorrect (fixed effects model). The breeder is, of course, 

mostly interested in the current F3-population. He would lose a few years of 

his breeding programme, if he would have to go back to making the original 

cross again. The conclusion of chapter 3 is clear: if the between line 

heritability is below (roughly) 0.6 the (erroneously) applied WT-procedure for 

a confidence interval is reasonably accurate. If the heritability is higher, 

the estimate will on the average be closer to the parameter of interest, with 

a mean square error of up to 3 times smaller than the mean square error with 

respect to the alternative parameter, at a between line heritability of 0.98. 

This is of course a positive outcome. 

Intergenotypic competition 

In chapters 4 and 5 the research on the influence of intergenotypic competition 

in spring wheat on the estimation of the parameters m and D is presented. 

Through the "pseudo-lines" method we were able to make a comparison between the 

parameters under conditions of intergenotypic competition and the parameters 

under monoculture conditions. The experiments had been performed at two 

locations (APM and IVP). At APM the intergenotypic competition bias was larger 

than at IVP. The linear correlation coefficients between the parameters (m and 

D) under the alternative conditions were poor. These results were strengthened 

by comparable results obtained with a few real F3's of spring wheat and their 

related F9's. The general conclusion of these chapters was, that the prediction 

procedure is very inaccurate if the studied quantitative trait is influenced by 
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intergenotypic competition up to the level found in the spring wheat experiment. 

As an example we may look at Figure 3 of chapter 5. If we decide to take the 

5 best crosses out of the 15 using the F3-prediction procedure, then at APM 

(Fig. 3a) we fail to include the very good cross M, and at IVP (Fig. 3b) we fail 

to include the very good cross N. If we increase selection intensity and take 

only the two best crosses, then at APM we obtain one good (even the best) and 

one poor cross, and at IVP we obtain two good crosses, although the best is not 

included. 

Conclusion 

There is no doubt that the proposed cross prediction procedure will perform 

fairly well in many situations, but there are a two restrictions. One of the 

restrictions has to do with the number of genes: if there are very few loci, 

less than five, then the ranking of the crosses may be biased. If the best 

genotype is already in the gene pool from which the breeder extracts his 

crosses, and he has not raised the between line heritability to a high level 

to detect this, then he will erroneously be informed by the procedure of 

possible genetic progress. The second restriction is that, if the trait is 

influenced by intergenotypic competition of the level encountered in the pseudo-

lines experiment, the procedure will lead to erroneous results. 

Heteroscedasticity of residual effects and genotypic within line effects is 

not likely to invalidate the procedure. Although one should of course be aware 

of it. Linkage, as mentioned in the general introduction, is according to a 

number of studies not likely to lead to important deviations. Fairly large 

epistatic effects were encountered in the pseudo-lines experiment, but they 

did only mildly influence the parameters. 

There are some open questions, though. What precision need the estimates of 

m and D have, to come to a reasonably accurate ranking of crosses ? Once a 

pilot experiment has produced rough estimates of the variance components, and 

given the necessary precision one can easily calculate the required experimental 

size with the help of equations like those employed in chapter 2. If the between 

line heritability is high, this calculated experimental size can be regarded as 

a little bit oversized, because the parameter D of the fixed effects model is 

closer to its true value than that of the random effects model, on which the 

equations of chapter 2 are based. Similarly, if the quantitative trait is based 

on a small number of loci, and the between line heritability is high, the 

parameter 0 will on the average be closer to its true value. 
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Then there is the question of how many crosses must be evaluated and how many 

must be selected for further breeding. Probably there will be an optimum given 

the total experimental capacity. 

There are also some disadvantages to the method. Many crosses will produce 

a number of inferior lines. These cannot be discarded, because each line of each 

F3 must be evaluated in order to obtain unbiased estimates. This makes the 

method expensive. Current line breeding methods tend to discard many lines in 

F3 or F4 based on empiric judgement by the "breeder's eye", rather than by 

statistical procedures. A comparison is needed between the genetic progress 

and the costs of the proposed breeding method and current line breeding schemes, 

single seed descent methods, or methods employing doubled haploids. 

Reference 
Paterson, A.H., E.S. Lander, J.D. Hewitt, S. Peterson, S.E. Lincoln and S.D. Tanksley, 1988. Resolution of 

quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length 

polymorphisms. Nature 335: 721-726. 
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7. A b s t r a c t 

Quantitative genetic theory provides models to predict the probability to obtain 

superior recombinant inbreds in the offspring of a cross between two pure 

breeding lines. The prediction procedure is prone to various types of error, 

which possibly invalidate the prediction procedure: 1) stochastic variation, 

2) incorrectness of the genetic assumptions, on which the theory is founded, and 

3) genotype-environment interaction, in particular intergenotypic competition. 

The predictive value of the procedure is evaluated by studying the effects of 

the individual sources of error. 

Chapter 2 deals with stochastic variation; it establishes the superiority 

of an alternative estimator of the additive genotypic variance under most 

practical circumstances. Chapter 2 also presents a method to optimize the 

population design (number of lines, size of the lines) with respect to the 

accuracy of the estimator. 

Chapter 3 investigates various violations of the assumptions, on which the 

theory is founded, such as non-normality of genotypic effects, 

heteroscedasticity, and fixed versus random effects. 

Chapters 4 and 5 investigate the bias on the estimates of the F^-mean and 

-variance, respectively, caused by intergenotypic competition. 
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8. S a m e n v a t t i n g 

De voorspellende waarde van schattingen van kwantitatief-genetische parameters 

voor de veredeling van zei fbevruchtende gewassen 

De kwantitatieve genetica is een wetenschap die zich bezig houdt met het 

bestuderen van de genetica van kwantitatieve eigenschappen van planten en 

dieren. Dit zijn eigenschappen die zich laten beschrijven met schaal-grootheden, 

d.w.z. (kilo)grammen, (centi)meters, enzovoort. Ze staan in tegenstelling tot 

kwalitatieve eigenschappen, zoals bloemkleur en kleurenblindheid. Kwantitatieve 

eigenschappen hebben de nare bijkomstigheid dat ze nogal variabel zijn; de ene 

keer meet je dat een ras bijv. 5000 kg/ha opbrengt, en de andere keer, onder 

nagenoeg identieke omstandigheden, 5500 kg/ha. 

De laatste tientallen jaren is de kwantitatieve genetica onder meer bezig 

geweest met het ontwikkelen van modellen, die een wetenschappelijke basis kunnen 

geven voor de veredeling van zei fbevruchtende gewassen. De modellen bieden de 

mogelijkheid om reeds in een vroeg stadium van een veredelingsprogramma (waarin 

verschillende kruisingen worden gemaakt) een voorspelling te geven van de kans 

op het vinden van een beter (beter ten opzichte van de huidige rassen) individu 

in de nakomelingschap van een kruising. Met deze informatie kan de veredelaar 

zich voor het vervolg van het veredelingsprogramma koncentreren op de 

nakomelingschappen van de goed voorspellende kruisingen, en kan hij de slechte 

kruisingen uit het veredelingsprogramma verwijderen. Indien deze procedure 

korrekt is, dan komt dit de efficiëntie van een veredelingsprogramma ten goede. 

Er zijn echter een aantal foutenbronnen, die de voorspel procedure nadelig kunnen 

beïnvloeden, te weten: 

1) Toevalsvariatie. De voorspelling is gebaseerd op geschatte parameters. We 

weten dus nooit de exakte waarde van deze parameters, de ene keer schatten 

we ze wat groter, de andere keer wat kleiner. 

2) Onjuistheid van de veronderstellingen die aan een model ten grondslag liggen. 

Het meest gangbare model veronderstelt dat de verschillende genen, die bij 

een eigenschap betrokken zijn, onafhankelijk van elkaar werken. In 

werkelijkheid is dit vaak niet het geval. 

Verder veronderstelt het model dat een kwantitatieve eigenschap wordt 

bepaald door een groot aantal genen, ieder met een klein effekt. Het kan 
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echter ook zijn dat een bepaalde eigenschap door maar een gering aantal 

genen wordt bepaald. 

Bij het doen van een betrouwbaarheidsuitspraak van een geschatte parameter 

wordt verondersteld dat de zogenaamde restvarianties homogeen zijn, hoewel 

dit lang niet altijd het geval zal zijn. 

Een ander probleem is dat de betrouwbaarheidsuitspraak in feite een 

uitspraak is over de oorspronkelijke kruising en alle mogelijke daaruit 

voortkomende nakomelingschappen, terwijl de veredelaar een uitspraak wil 

doen over die ene nakomelingschap van de kruising, die hij op dit moment in 

handen heeft. 

3) Intergenotypische konkurrentie. De schattingen worden verricht aan 

kruisingsmateriaal. Dit materiaal is genetisch niet homogeen, in tegendeel: 

het splitst uit. Het uiteindelijke produkt van de veredeling, een ras, zal 

genetisch wel homogeen zijn. Nu kan het probleem zich voordoen, dat een 

eigenschap die aan planten in een genetisch heterogeen milieu gemeten wordt 

(dus ook aan kruisingsmateriaal), niet overeenkomt met diezelfde eigenschap 

gemeten in een genetisch homogeen milieu (een zogenaamde monokultuur). 

Bijvoorbeeld, de planten van een ras brengen in mengteelt met andere rassen 

ongeveer 50 gram (korrels) op, echter in monokultuur misschien wel 75 gram,, 

of misschien slechts 25 gram. Dit verschijnsel wordt veroorzaakt door 

verschillen in konkurrentievermogen van de verschillende rassen, en wordt 

intergenotypische konkurrentie genoemd. Intergenotypische konkurrentie kan 

van invloed zijn op de schattingen van de verschillende parameters, zodat de 

parameters eigenlijk alleen betrekking hebben op het genetisch heterogeen 

milieu, en helaas niet op het milieu van het toekomstige ras. 

Dit proefschrift beschrijft onderzoek naar de voorspellende waarde van de 

schattingen van de kwantitatief-genetische parameters. Zoals gezegd, is deze 

voorspellende waarde van belang voor de opzet van een efficiënt veredelings-

programma. Het onderzoek is gericht op de effekten van de individuele 

foutenbronnen. Het is uitgevoerd met veldexperimenten van zomertarwe, 

kasexperimenten met het modelgewas Arabidopsis thaliana (zandraket), en met 

computersimulatie. 

In hoofdstuk 2 is de toevalsvariatie onder de loep genomen. Het hoofdstuk 

toont aan, dat een andere dan de gangbare schatter onder de meeste praktische 

omstandigheden een veel nauwkeuriger resultaat geeft. Tevens geeft het hoofdstuk 

een methode om een optimale populatie-indeling (het aantal lijnen, het aantal 
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planten per lijn) te bepalen, zodat de nauwkeurigheid van de schatter zo groot 

mogelijk is. 

Hoofdstuk 3 onderzoekt de effekten van eventueel onjuiste veronderstellingen, 

hierboven genoemd onder punt 2. Hierin blijkt dat de voorspelling ernstig 

verstoord kan worden, wanneer, in tegenstelling tot de gangbare 

veronderstelling, slechts weinig genen betrokken zijn bij het onderhavige 

kenmerk. Heterogeniteit van de restvarianties blijkt slechts een geringe invloed 

te hebben op de kwaliteit van de betrouwbaarheidsuitspraak over de geschatte 

parameters. Verder blijkt dat de betrouwbaarheidsuitspraak over de geschatte 

parameters aan kwaliteit wint, wanneer deze geen betrekking heeft op de 

oorspronkelijke kruising, maar op het materiaal dat de veredelaar op dat moment 

in handen heeft. Deze winst is overigens alleen noemenswaardig bij een relatief 

hoge erfelijkheidsgraad. 

De hoofdstukken 4 en 5, tenslotte, behandelen de invloed van 

intergenotypische konkurrentie op de schatters. Hierin komt duidelijk naar 

voren dat intergenotypische konkurrentie een belangrijke verstoring in de 

schattingen kan geven. 

De konklusie van het onderzoek is, dat er geen twijfel is over de werkzaamheid 

van de voorspel procedure. Er zijn echter twee uitzonderingen. 1) Als het aantal 

genen, dat bij de kwantitatieve eigenschap betrokken is, gering is, kan de 

voorspelling tot een onjuiste rangorde van de kruisingen in een 

veredel ingsprogramma leiden. 2) Als de betreffende eigenschap onderhevig is aan 

een behoorlijk nivo van intergenotypische konkurrentie, zal de procedure tot 

foutieve resultaten leiden, zodat mogelijk de in werkelijkheid beste kruising 

niet als meest belovende uit de voorspelling naar voren komt. 
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