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MOSS SWEEDLERi1)

9ABSTRACT.  Suppose R-*S is a map of rings.  S need not be an R
algebra since R may not be commutative.   Even if R is commutative it may not
have central image in S.   Nevertheless the ring structure on S can be expressed
in terms of two maps

(sx « s2 —- sxs2)
S 8RS-» S.     R-Z-tS,

which satisfy certain commutative diagrams.   Reversing all the arrows leads to
the notion of an R-coring.

Suppose R is an overing of B.   Let CB= R ®B R.   There are maps

(r, ® r2 —<• rx « 1 ® r2)
CB=R<8BR-► R VB R ®B R = (CB) <8R (CB),

(rj <Sr2 — rxr2)
CB = R®BR ->R.

These maps give CB an Ä-coring structure.   The dual *CB is naturally isomor-
phic to the ring End„._R of ¿-linear endomorphisms of R considered as a left
B-module.   In case B happens to be the subring of R generated by 1, we write
Cz.   Then *CZ is EndzÄ, the endomorphism ring of R considered as an additive
group.   This gives a clue how certain Ä-corings correspond to subrings of R
and subrings of EndzR, both major ingredients of the Jacobson-Bourbaki
theorem.

1 ¡8 1 is a "grouplike" element in the R-coring C^ (and should be thought
of as a generic automorphism of R).   Suppose R is a division ring and B a sub-
ring which is a division ring.   The natural map C^ —* CB is a surjective coring
map.  Conversely if C^ —*D is a (surjective) coring map then jt(1 CS 1) is a
grouplike in D and {r e R \rn(\ 8 1) = tt(i 8 l)r} is a subring of R which is a
division ring.   This gives a bijective correspondence between the quotient corings
of C ®z C and the subrings of R which are division rings.

We show how the Jacobson-Bourbaki correspondence is dual to the above
correspondence.
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392 MOSS SWEEDLER

Another viewpoint. B ®z B is a fi-bimodule. For a subring A C B, K =
ker(5 ®z B—* B ®A B)is a. sub-5-bimodule of B ®z B.

K is generated by {a ® 1 - 1 ® a}a¡=4 as a 5-bimodule. There are sub-fi-
bimodules not of this form.

K, as above, lies in

(*) kernel ( B ®z B mu *Plca ̂  A

and if ex: B ®z 5 —* B ®z 5 ®z B, Xb¡ ®j3f —> So,- ® 1 ® j3f, then

(**) ex{K)EB®zK + K®zB.

{*) and (**) amount to the same thing as saying that K isa coideal. Thus
the language of corings merely gives us a convenient way of describing the sub-
j9-bimodules of B ®z B generated by {a ® 1 - 1 ® a}a&A.

Infinite duality. The theory as we have developed it with B ®z B as a
coring can be dualized in general. The dual to B ®z B is End B.  However when
there are not finiteness assumptions—in the dual theorems-closedness assumptions
and considerations of linear compactness appear. This duality has been worked
out by Dieudonné [2].

1. Corings over general rings. If A is a commutative ring, an /1-coalgebra
is an /1-module C together with maps A: C —* C®A C, e: C —► A having certain
properties [7, p. 4]. Since A is commutative there is no real difference between
left and right ^-modules and "C ®A C" is well defined. If A were not commuta-
tive , then C ®4 C is only well defined if C has both a left and right .4-module
structure and the tensor product is with respect to the right ^-module structure
of the left C and the left ^-module structure of the right C.

Following Cartan-Eilenberg, we use AM to indicate that M is a left A-
module and MA indicates that M is a right .¿-module. If B is another ring, we
use AMB to indicate that AM, MB and the following condition is satisfied:

{am)b = a{mb),      aEA, m EM, bEB.

M is an A-bimodule means "AMA " and not simply "AM and MA ". If M is an
i4-bimodule, and we write M ®A M, this is always the tensor product {MA) ®A
iAM). The natural yl-bimodule structure on M ®A M is determined by

a • (Zm¡ ® «.;) • b = ZXamt) ® {m\b),     a,bEA, Zm¡ ®m'¡EM®AM

The natural .4-bimodule structure on A itself is the one induced by left and right
multiplication.

1.1. Definition.   For a not necessarily commutative ring A, an X-coring
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is an .4-bimodule M together with /1-bimodule maps A: M —> M ®A M, e: M ■
A satisfying the following three commutative diagrams:

AM-

M®A M-

-*■ M®AM

coassociativity (Z® A)

(A®I)   »   M®aM®aM

► M®A M

1.2. Example.   This is the main example. Suppose A and B are not neces-
sarily commutative rings and <p: A —*■ B a ring map. The natural 5-bimodule
structure on B gives rise to an ^4-bimodule structure on B via <p.  Form B ®A B
and call this M.  The natural 5-bimodule structure on M is determined by

b ■ (c ® d) • e = (be) ® (de),     b, c,d,eE B.

Then M <8>B M = (B ®A B) ®B (B ®A B) which is naturally isomorphic to
B ®A B ®A B.  The (Amitsur complex) map

ex :B®AB—* B ®A B ®AB,      b®ß-+b®l®ß,

determines A via the commutative diagram

B®A B ■+B®AB®A B

M- ■+M®BM.

The multiplication map

B ®A B -+ B, b®ß^bß
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394 MOSS SWEEDLER

determines e via the commutative diagram

M->B

/ multiplication.

B®AB

It is left to the reader to verify that (M, A, e) is a 5-coring in the sense of

(1.1).
1.3. Definition.   If (M, A, e) and (M', A',e) are .4-corings, then a coring

map g: M —► M' is an AZ-bimodule map where eg = e and A'g = (g ®g)A.  A
coideal (of M) is a subv4-bimodule JEM where / C ker e and

(*) A(J) C ker(M ®A M l®ü-> (M/J) ®A (M/J)).

Here tt is the canonical /1-bimodule map M —► M/J. Of course ker rr ® it is

Im(7 ®A M -*-^> M®AM) + lm(M ®A J -^» M ®A M),

where t is the natural inclusion / —► M.
As in classical coalgebra theory, if / is a coideal of M, then M/J has a unique

.¿-coring structure whereby it: M —► M/J is a coring map. Moreover, the kernel
of a coring map is a coideal and the expected isomorphism theorem holds. (A
source for elementary coalgebra theory is [7, pp. 3—48].)

1.4. Definition.   If R and S are rings and RMS ,RNS, then HomÄ _S(M,N)
is used to denote the maps from M to N which are simultaneously left Z?-module
maps and right S-module maps. Let HomR_(M, N) denote the left Z?-module
maps from M to N. Let Hom_s(M, N) denote the right S-module maps from M
to N. If L is an .4-bimodule let *L* denote Hom^ _A{L, A).

1.5. Proposition. Suppose (M, A, e) is an A-coring.   Then *M* has a ring
structure where, for f, gE *M*, the product fg is the composite

A                  f®gMJ±+M®AM1-^A®AA =A

and the unit of *M* is e.

Proof.  Similar to the construction of the dual algebra in classical coalge-
bra theory [7, pp. 6-10], and left to the reader.   Q.E.D.

It is easily verified that if M and M' are .4-corings and F: M —*■ M' a coring
map, then the induced map *F*: *M'* —*■ *M* is a ring map.

1.6. Example.   Let M be the Z?-coring of Example 1.2 so M = B ®A B.
Any fE *M* is determined by jT.1 ® 1). If fil ®l)=xEB, then a E A,

\
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ax=af{l ®l)=flß®l)=f{l ®a)=/U ® l)a = xa.
Conversely if x lies in the centralizer of ¡p{A), then B ®A B —*■ B, b ® ß

—* bxß gives a 5-bimodule map g with £(1 ® 1) = x.   Hence *M* is naturally
isomorphic to the centralizer of ${A) in B.

1.7. Definition.   If {M, A, e) is an ^-coring, then g EM is called grouplike
if e{g) = 1 and A{g) =g®g.

A grouplike cannot be zero since e{g) = 1.
1.8. Definition.   The trivial A-coring structure on A is the ,4-coring

{A, A, e) where A and e are determined by the commutative diagrams:

A-—* A®AA      A-► A

V   VA A

If A has the trivial ̂ 4-coring structure, then 1 is a grouplike.

1.9. Proposition. Suppose A and B are rings and <p: A —+ B a ring map.
Let M = B ®A B have the B-coring structure of 1.2.

(a) Let gBjA denote I ® I E B ®A B; gB¡A is a grouplike element of M.
(b) Let C be a B-coring and let G^(C) denote {gEC\gis grouplike and

<p{a)g = gp{a),aEA}.
For each gEG^C) there is a unique coring map f: M —► C with Ç(gB,A)

= g-

For each coring map %: M—> C, the element %{gB¡A) E GJÇ).

Proof.  Left to the reader.   Q.E.D.

2.  Correspondence theorem.

2.1. Fundamental Theorem. Suppose A E B are division rings. Let M
be the B-coring formed by Ac—*■ B as in 1.2 and let C denote the set of coideals
of M.  Let V denote the set of {intermediate) division rings D with A ED C B.

(a) For DEV the kernel of the natural surjective map M = B ®A B —>->
B ®D B is a coideal. Denote it by JD.

(b) For a coideal J E C, let n: M —► M/J be the natural surjective map.
Then {b E B \ bit{gBiA ) = ti{gB¡A )b} is a division ring intermediate between A
and B.  Denote it by Dj.

(c) The maps
C —fi-* V, C *-^— V,
J->Dj, JD <-D

are inverse to each other, thus establishing a bijective correspondence.
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Proof,  (a) Let N be the Z?-coring formed by D c—* B as in 1.2. Then the
natural map M = B ®A B —► B ®D B = N is a coring map and so has a kernel
which is a coideal.

(b) Let L be any 5-bimodule and I EL. If A/ = lb, then

b~ll = b-lll =b-llbb~l =b~lblb-1 = lib'1 =lb~1.

Hence {b EB\bl = lb} is a subring of B which is a division ring.
For gB/A = 1 ® 1 E B ®A B, agB/A = gB/Aa for all a E A. Since it: M —►

M/J is a 5-bimodule map, it follows that air(gB/A) = Tr{gB/A)a for all a G A
Hence {b EB\brr{gBjA) = n{gBiA)b} is a subring of B which is a division ring
and contains A

(c) (pX = Z) Suppose DEf).   Then JD is the kernel of the natural map
tt: B ®a B —> B ®D B and Tt{gB/A) = 1 ® 1 E B ®D B.   Hence

Dj   = {b EB\b(l ®1) = (1 ® l)bEB®D B}

= {bEB\(b®l) = (l®b)EB®DB}.

For e EB with e ED, the set {1, e} is ZMinearly independent when B is consid-
ered as a left Z>module. Hence for x, y E B, if 0 = x ® 1 + y ®e EB ®D B,
then both x and y must equal zero. In particular, 0 ¥= (-e) ® 1 + 1 ® e, which
proves that Dj   C D. The opposite inclusion is obvious and hence Dj   = D.

(Kp = I) Let / be a coideal of M, and n: M —► M/J the natural coring map.
By 1.9 there is a unique coring map f : B ®D  B —► M/J with Ç(gB/Dj) — k^b/a)-
We have the commutative diagram

B®A B

B®DjB t

where ri is the natural surjection. (Note, the diagram must commute since
W(Sbia) " S(Sb/Dj) = *(Sb/a) and B®AB is generated by gB/A as a 5-bimod-
ule and all the maps are 5-bimodule maps.)

The coring B ®A B is generated by gBlA as a 5-bimodule; hence, the quo-
tient M/J is generated by the grouplike n{gBjA) as a 5-bimodule. By definition,

Dj= [bEB \bn(gB/A) = ir(gB/A)b}.

Hence by the following lemma (2.2), the map ? is a coring isomorphism. From
the commutative diagram we deduce ker rt = ker n. Hence JD   = ker it =
ker it = J.    Q.E.D.
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2.2. Fundamental Lemma.   Let B be a division ring and C a B-coring.
Suppose g is a grouplike element of C and D = {b E B \ bg = gb}.   Then D is a
subring of B which is a division ring, and the unique coring map from 1.11, with
f(l ® 1) = C, f : B ®D B —*■ C, is injective.  f is an isomorphism if C is generated
by g as a B-bimodule.

Proof.   That D is a division ring follows from the first few lines in the
proof of 2.1(b).

Explicitly the map f : B ®D B -*■ C is given by Xb¡ ®/3,. ■** 2Z>$3,., {b¡} U
{ß/} C B. Suppose ker f =É 0. Choose a nonzero element x = Ztbi ® 0f E ker f
with t minimal.

t * 1 : if x = bx ® ßx E ker f, then ô j^ ■ 0.   Since g ¥= 0 by the
remark following 1.9, and since B is a division ring, it follows that bx or ßx must
equal zero. This contradicts the fact that x =£ 0.

t > 1 :  Since t is minimal it follows that ßt ¥= 0. The element 0 =£ x' =
S'è,- ® ft/?"1 still lies in ker f and has the same rank t. Let ß[ = /J,/?"1, so that
$t= I. Since x' = J.tb¡ ® ß\, and this is a minimal length expression for x', it
follows that

(a) {b{} is a ZMinearly independent set in BD,
(b) {ß'f} is a ZMinearly independent set in DB.

Hence since ß't = 1 G D, it follows from (b) that 0j £ Z).
Thus gß'x ± ß\g, and there is «: C —»• 5 a fe/f 5-module map (i.e. «(6z) =

¿«(z), ie^zGQ with higß\ - ß\g) * 0. Such « exists because as a left B-
module C is free; B is a division ring after all.

Let x" = 2f&,. ® higß'i - ß\g). Then,
(c) since ftt = 1, gß't = fy and x" = S'"1*, ® h(gß] - ß\g), i.e. x" has an

expression of length less than t.
(d) 0 ±x", since 0 ¥= Ä(gß'1 - ß'^) and {b¡} is a 5D, ZMinearly independent

■ Z */«*CsflJ - fa) = Z b¡gh igß't) - Z biSh{ß'ig).

Z biiWii) - Z *i«ííA(P) = Jgf>C?) - 0.
0

The term l^b^higß'^) is the image of x' under the composite
B ®A B —1—+ C —^ C®BC    1®h  ' C®BB = C,

but
(Z ® «)Af(/) = 0.

0
Hence x" E ker f.

(e)    fCc")
The term
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But (c), (d) and (e) contradict the minimality of t. Hence ker f = 0.
Since Im f is the sub-Z?-bimodule of C generated by g, it follows that f is an

isomorphism when C = BgB.   Q.E.D.

23. Corollary.   Suppose B is a division ring and P is the prime field
contained in B.  So that P = Z/pZ if B has characteristic p and P = QifB has
characteristic zero. Then the correspondence in 2.1 gives a bijective correspondence
between the set of all coideals in B ®p B on the one hand and the set of all sub-
division rings of B on the other hand.

3. Semiduality. This section consists of technical, boring, but important
results on duality. The reader is advised to skip to §4 and refer to this section
as needed.

3.1. Definition. If M is a 5-bimodule let M* denote Hom_B(AÍ, B), the
set of right 5-module maps from M to B, and let *M denote HomB_(AZ, B), the
set of left Zi-module maps from M to B.

The picture is:
Homz(M, B)
U        O

*M M*

O        u
*MDM* = *M*

3.2. Proposition. Suppose (C, A, e) is a B-coring.
(a) *C has a ring structure where, for f, g E *C, the product gf is the com-

posite

A I®f eC—£-+C®B C J   > C®BB = C—S—*B,
and the unit of *C is e.

(b) C* has a ring structure where, for f, g EC*, the product gf is the com-
posite

C—A-^C®BC    S®r >B®BC = C-f-^B,

and the unit of C* is e.
(c) 77ie map X: B —► *C, determined by \{b)(c) = e{cb), bEB.cEC,

is a ring antimap,i.e. reverses multiplication
(d) The map p: 5 —> C*, determined by p{b){c) = e(bc), bEB.cEC,

is a ring antimap.
If C' is another B-coring and S: C —► C' a B-coring map then:
(e) The natural map *(C') —:L* *C is a ring map making the diagram

commute:
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*(C')-——► *C

X
B

(f) The natural map (C)*-5-*- C* is a ring map making the diagram com-
mute:

(C)*-► C*

B

Proof,  (a) For /, g, h E *C the product h(gf) or {hg)f both are the com-
posite

^2 I ®I®fC->C®B C®B C } i C®B C®B B

= C®BC    /<8>g ■C®BB = C-^B,

where A2 is either of the composites
A I ® AC-Jè-+C®BC >C®BC®BC

c—^-+c®Bc   Ag>/ » C®BC®BC

which are the same by coassociativity.
The rest of the ring axioms are easily verified.
(b) Similar to (a).
The other verifications are left to the reader.   Q.E.D.
33. Example.   Suppose B is a ring with subring A. We have the inclusion

A c—> B and form M = B ®A B as in 1.2. The natural correspondence

(***) *M = HomB_(fi ®A B, B) = EomA_{B, B) = End¿_B

is given as follows: fE*M corresponds to B —*■ B, b —* figBiAb) where gB ,A =
1 ® 1 E B ®A B the grouplike element of 1.9.

It is left to the reader to show that the above correspondence *M =
End^ _B is a ring isomorphism.

Similarly the natural correspondence

{%%) M* = Hom_B{B ®A B, B) = Hom_¿(5, B) = End_¿5

is given as follows: fEM* corresponds to B —*■ B, b —* f{bgB/A)■ It is left to
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the reader to verify that the correspondence M* = End.^Zi is a ring anti-isomor-
phism.

3.4. Linear Lemma.   Suppose X and Y are rings and there are modules

YR, XSY, Tx, UY, XV.
(a) The right X-module structure on Hom_ Y{S, U) arises from XS and the

left X-module structure on Hom_x{T, X) arises from XX.
There is a natural map

tj: Hom_y(S, U) ®x Hom.^r, X) —*• Hom_Y(T®x S, U);

for f E Hom_ Y(S, U),gE Hom_X(T, X),tET,sES,

riif®g){t®s)=fig{t)s).

r¡ is bijective if T is a finitely generated projective right X-module.
(b) 77ie left Y-module structure on Homx_(S, V) arises from SY and the

right X-module structure on Homy_(Z?, Y) arises from YY.
There is a natural map

p.: Homy_(Z?, Y) ®Y HomA-_(S, V) -* Homx_(S ®Y R, V);

forfE Homy_(Z?, Y), g E Yk>mx_(S, V),sES,rER,

p{f®g%s®r)=g(sf(r)).

p is bijective ifR is a finitely generated projective left Y-module.
Suppose W and Z are also rings and we have the additional hypothesis:

Y^W> Z^X' W^Y' x^z-
(c) If the domain and range of rj have the left W-module structure arising

from WU and the right Z-module structure arising from ZT, then r\is a left W-
module map and right Z-module map.

(d) If the domain and range of p have the left W-module structure arising
from Rw and the right Z-module structure arising from Vz, then p is a left W-
module map and right Z-module map.

Proof. We leave it to the reader to verify that tj and m are well defined,
and that (c) and (d) are true.

(a) Suppose T is the direct sum of right .4-modules Tx © T2. Then

Hom__y(7; X) = Hom.^i^, X) © Hom.^Tj, X)

and so

Hom_y(5, t/) ®x Hom_^(r, X) = [Hom_y(S, U) ®x Hom_^(ri( X)]

© [Hom_y(S, I/) ®x Uom_x{T2, X)].
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for

Similarly the range of 17 decomposes

[Eom_Y{T®x S, U)] = [Hom_ Y{TX ®x S, U)] 9 [Hom_y(T2 ®x S, U)]

Letting r? denote the "17-map" for T and letting t)¡ denote the "77-map" fc
T¡, the following diagram commutes (verification left to the reader).

Horn. Y(S, U) 9X Hom_^(r, X) = [Hom_r(5, U) 9X Hon._jr(7,1, X)] 0 [Hom_y(S, U) 9X Hom.x(r2, X)]

Hom_y{T9x S,U) = [Hom.y(7-, 9X S, U)] ® [Hom_y(r2 9X S, {/)]

(*) Thus 77 is bijective if and only if both r)x and t?2 are bijective.

Now suppose T = X as a right AT-module. Then Hom_x{T, X) = X as a
left AT-module, and the domain of 77 is Hom_y(5, U) ®x X = Hom_y(S, U).
The range of 7? reduces to Hom_y(AT ®x S, U) = Hom_y(5, U), and it is left to
the reader to verify that 77 reduces to the identity map. Hence tj is bijective when
T = X.

When T is a free right Z-module with finite basis, it follows from (*) and
the result for T = X that 77 is bijective. Again using (*), it follows that if T is a
direct summand of a free .Jf-module with finite basis, then 77 is bijective.

In other words, 7? is bijective when T is a finitely generated projective X-
module. This concludes the proof of (a).

(b) is proved similarly.   Q.E.D.

3.5. Duality Lemma.   Suppose X is a ring with modules XR and Tx.
(a) T* — llom_x{T, X) has the left X-module structure induced by XX

and *R = rlomx_{R, X) has the right X-module structure induced by Xx. If T
is a finitely generated projective right X-module, then T* is a finitely generated
projective left X-module. If R is a finitely generated projective left X-module,
then *R is a finitely generated projective right X-module.

(b) T* has the left X-module structure of (a) which permits us to form
*{T*). There is a natural mapß:T-+ *{T*) where for t ET, f ET*, ß{tYJ) =
fit). If *{T*) has the right X-module structure of (a), then ß is a right X-module
map.

(c) ß is bijective if T is a finitely generated projective right X-module.
(d) If T is a free right X-module with a basis of finite cardinality n, then

T* is a free left X-module with a basis of cardinality n.
(e) *R has the right X-module structure of (a) which permits us to form

(**)*•
There is a natural map a: R —> (*/?)* where, for rER, gE R*, a(r)(¡r) =
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g{r). If (*R)* has the left X-module structure of (a), then a is a left X-module
map.

(f) a is bijective if R is a finitely generated projective left X-module.
(g) If R is a free left X-module with a basis of finite cardinality n, then

*R is a free right X-module with a basis of cardinality n.

Proof,  (b) and (d) are left to the reader. We sketch a proof of (c).
As in the proof of 3.4(a), if T = Tx © T2, a direct sum of right X-modules,

then ß breaks up accordingly into ßx © ß2, and ß is an isomorphism if and only if
both ßx and ß2 are isomorphisms.

In case T = Xx, then T* = XX, and *(T*) = Xx, and ß corresponds to the
identity map which is bijective.  This, together with the behavior of ß for direct
sums, shows that if T is isomorphic to a finite direct sum of copies of Xx, then
ß is an isomorphism. And so if T is a direct summand of a finite direct sum of
copies of Xx, then ß is an isomorphism.  And all finitely generated projective
right X-modules arise as direct summands of a finite direct sum of copies of Xx.
This proves (c).

(e) is proved similarly.
(a), (d) and (g) have a similar direct sum argument type proof with no maps

involved. Simply T* 3 7f © T^. Then if T = BB, it follows T* = BB etc.  Q.ED.
3.6. Example.   Suppose (C, A, e) is a 5-coring. Let the modules R, S, T

of 3.4 all be C.   Let the modules U, F of 3.4 both be B.   Let the rings W, X, Y, Z
of 3.4 all be B.  The diagonalization A: C —*■ C ®B C is then a map 5 : C —*■
T®x S and A is a left Z and right F-module map if ZCY = BCB. This" 5 induces
Hom(5, U): Hom_ Y(T ®x S, U) —► Hom_ Y(C, U) which is a left W and right
Z-module map.  Forming the composite Hom(5, Uyn gives a map Hom_y(S, U)
®x Hom^r, X) —► Hom_y(C, U), which is a map C* ®B C* —> C*. The
reader can check that this map is precisely the opposite multiplication map of
3.2(b). That is f®g —*■ product ¿fas described in 3.2(b). Thus the dual algebra
structure on C* given in 3.2(b) is opposite to the structure induced by 3.4(a).
Similarly the dual algebra structure on *C given in 3.2(a) is opposite to the struc-
ture induced by 3.4(b).

With suitable "finitely-generated-projective-module" type assumptions, the
situation <p: B —> E, where B and E are rings and <¿> a ring antimap, can be dual-
ized to obtain a 5-coring.  Of course there is left duality and right duality.

Suppose B and E are rings and ip: B —► E a ring antimap. We wish to apply
3.3 and 3.4 with

all the rings W, X, Y, Z equal to B,
the modules R, S, T equal to E,
the modules U, V equal to B.

B has the usual Z?-bimodule structure.
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The right and left 5-module structures on E are induced by >p as follows:
For b E B, e E E,

b ■ e = e<p{b),     e ■ b = ip{b)e,   product in E.

This gives E left and right 5-module structures since ¡p is a ring antihomomorphism.
And F is a Zf-bimodule.

Note that if C is a 5-coring and E = *C (respectively C*), and <¿> = X
(respectively p) as in 3.2, then the Zf-bimodule structure on E induced by </j agrees
with the Z?-bimodule structure where jjjC is induced by CB and *CB is induced by
BB (respectively, BC* is induced by BB and C% is induced by BC.) Hence E has
the appropriate 5-module structure to apply 3.5.

3.7.  Dual Coring Theorem,   (a)  In the above setting, if E* =
Hom_B(F, B) has the left B-module structure as in 3.5(a), and the right B-module
structure induced by BE, and E is finitely generated and projective as a right B-
module, then there is a unique B-coring structure on E* whereby the bijection
ß: E —► *{E*) 3.5(b) is a ring isomorphism.  Here *{E*) has the ring structure of
3.2(a).

Moreover the diagram

E---► *(£"*)

/
B

commutes, where X is defined in 3.2(c).
(b) In the above setting, if *E = Homß_(£, B) has the right B-module

structure as in 3.5(a), and the left B-module structure induced by EB, and E is
finitely generated and projective as a left B-module, then there is a unique B-
coring structure on *E whereby the bijection a: E —*■ (*£)* 3.5(b) is a ring
isomorphism.  Here (*£)* has the ring structure of 3.2(b).

Moreover the diagram

E-► (*£)*

commutes, where p is defined in 3.2(d).

Proof,  (a) Define e: E* —* B by e(f) = j\l),fEE*, 1 E E. Then it is
easily checked that e is a fi-bimodule map.

\
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With the choices of W, X, Y, Z, S, T, U indicated just before this theorem,
the map rj of 3.4(a) is an isomorphism.  Thus tj-1 is an isomorphism

(*)        r¡~1 : Hom_ Y(T ®XS,U)^ Hom_ Y(S, U) ®x Hom.^fT, X),

and by 3.4(c), tj-1 is a left W and right Z-module map. Since T = E = 5, the
map tlum: E ®B E —► E, e ®f—>fe, induces

(**) T ®x S -*• E

which is a left Z-module map and right y-module map.  Hence BEB becomes ZEY.
Thus (**) induces

(***) Hom_ Y(E, U) —► Hom_ Y(T ®x S, U)

which is a left W-module map and right Z-module map.
Composing the maps at (*) and (***) gives the map

(%%) Hom_y(Zi, U) —*■ Hom_y(5, U) ®x Hom_x(T, X).

With the choices of W, X, Y, Z, S, T, U, (%%) is a bimodule map, E* —*■ E* ®B
E*, denoted A.

That (E*, A, e) satisfies the necessary commutative diagrams to be a 5-coring
follows from commutative diagrams that E satisfies and the duality established.

That ß:E—* *(E*) 3.5(b) is a ring isomorphism, and frp = Xis left to the
reader to verify.  The uniqueness of the coring structure is also left to the reader
to verify.

(b) goes similarly.   Q.E.D.

4. Jacobson-Bourbaki-Hochschild. Throughout this section B is a division
ring and End B denotes Endz B, the ring of additive group endomorphisms of B.
I and r denote the maps

5-»End5,   b^b1,   ß^ßr

where b.ßEB, bl(ß) = bß = ßr(b).
Since B has a unit, / and r are injective. Im / is denoted B1, and Im r is

denoted BT. Since / is a ring map, B as Bl as rings. Since r is a ring antihomo-
morphism, Br is isomorphic to the opposite ring of B.

It is amusing to verify that ff is the centralizer of B1 in End B and Bl the
centralizer of Zf. This is left to the reader.

Let F be a subring of End B with End B D F D Br. Since F D Br, the
centralizer of F lies in Bl. Let A denote {a EB\fiab) = afib), bEB.fEF}.

It is easily verified (and left to the reader) that
(i) A is a subring of B and A is a division ring,

(ii) A1 = {al}aBA is the centralizer of F in End B
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(iii) Br CFE End^ _B C End B,
(iv) A = {b E B | fib) = bfl\),fEF}.
4.1. Theorem.  If F has finite dimension as a right B-module or B has finite

dimension as a left A-module, i.e. either dimß FB<°°or°°> dirn^ AB, then
both are finite and equal and F = End^ _B.

Proof.  The idea behind the proof is to show that F* equals or is naturally
isomorphic to the Zf-coring B ®A B of 1.2. Then it will follow from 3.3 and 3.7
thatF=*(F*) = End/4_5.

Now the proof actually begins.
Let X he an .4-basis for AB and let {8x}xSX E End^Z? be determined by

Then {8X} is a ZMinearly independent set for (End^_ B)B and {5^} is a 5-basis
for (End^ _ B)B if dim^ AB < °°. Thus

(4.2) dimß(End,  B)B = {*""*   ^ ^B^      a-  >b      y^ jf dim^ ab _ oo

Since F C End¿_ B, it follows that dimB FB < » if dim^ AB<°°.
Thus assume for the rest of the proof that dimß FB < °°.
For / S F, 2 b¡ ® ßt EB®AB, define

^/,Z^®0,)=Z Voyez?.

For fixed 2Z>,. ®ßtEB ®A B, the function (,2o,.® ß/> lies in F*, and for fixed
fEF, the function </, > lies in *{B ®A B).

For 0¥= fEFletbEB with flb)*0. Then

K:B®AB~^F*,     Zbi®^-* (,Zbi®ß^

has dense image in F* since </, 1 ® b) = fip) ¥= 0.
Using 3.5 and dimB FB < °°, it follows, just like in commutative linear

algebra, that K is surjective.
Dualizing once again yields *{B ®A B) *-*{F*).

Identifying *{F*) with F as a ring by 3.7(a) and
(4.3) identifying *{B ®A E) with End¿ _B as a ring by 3.3,

then *K reduces to the inclusion.

Thus *K is a ring map which implies that K is a Z?-coring map. (This type of
duality result we are using without including a proof.)
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Let g = 1 ® 1 E B ®A B, the distinguished grouplike element of 1.9(a).
Let c = K(g), a grouplike in F*, since K is a coring map. Since B ®A B =

BgB, it follows that F* = BcB since K is a surjective 5-bimodule map.
If A = [a E B\ ac = ca}, then, by 2.2, K is injective and, hence, an iso-

morphism. This implies that *K is an isomorphism. By (4.3) it follows that
F = End¿ _ B.  Then by (4.2) and the assumption dimB FB < °°, it follows that

00 > «""14 AB = dim^End^ _B)B = dimB FB,

which would conclude the proof.
c = K{g) = <, 1 ® 1). For b E B, cb = <, 1 ® b) and be = <, b ® 1).

Thus for fE F, (bc)(f) = bfil), (cb)(f) = fib).
Hence by (iv)-immediately above 4.1-A = {b EB\bc = cb}.   Q.E.D.
In [3] Hochschild studies an object other than End^ _ B.   Suppose Z is a

division ring intermediate between A and B, AEZEB.   Then one can consider
Hom^ _(B, Z), which of course is a right ideal in EndA_(B) if we take

Hom(5, inclusion): Hom^_(Zi, Z) —► HomA_(B, B)

as an inclusion. As a right ideal, HomA_(B, Z) has a product structure but
not a multiplicative identity (in general).  Although HomA_(B, Z) is a right ideal,
it is a left Z-submodule via r of (End^ _ B) .  HomA_(B, Z) is the Z-dual,
Homz_( , Z), of Z ®A B.   Such a Z ®A B is a left Z-module and right 5-module.
There is a natural diagonal map

Z®AB-+Z®AB®AB = (Z®AB)®Z(Z®AB),        z®b-^z®l®b,

but there is no natural counit making Z ®A B into a Z-coring. The theory of
such coassociative corings without counit could be developed and would yield the
Galois theorem to which [3, Theorem 2.1, p. 447] is dual in the finite case.
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