
RESEARCH Open Access

The prenatal challenge with
lipopolysaccharide and
polyinosinic:polycytidylic acid disrupts
CX3CL1-CX3CR1 and CD200-CD200R
signalling in the brains of male rat
offspring: a link to schizophrenia-like
behaviours
Katarzyna Chamera1, Katarzyna Kotarska1, Magdalena Szuster-Głuszczak1, Ewa Trojan1, Alicja Skórkowska2,
Bartosz Pomierny2, Weronika Krzyżanowska2, Natalia Bryniarska1 and Agnieszka Basta-Kaim1*

Abstract

Background: The bidirectional communication between neurons and microglia is fundamental for the homeostasis
and biological function of the central nervous system. Maternal immune activation (MIA) is considered to be one of
the factors affecting these interactions. Accordingly, MIA has been suggested to be involved in several
neuropsychiatric diseases, including schizophrenia. The crucial regulatory systems for neuron-microglia crosstalk are
the CX3CL1-CX3CR1 and CD200-CD200R axes.

Methods: We aimed to clarify the impact of MIA on CX3CL1-CX3CR1 and CD200-CD200R signalling pathways in
the brains of male Wistar rats in early and adult life by employing two neurodevelopmental models of
schizophrenia based on the prenatal challenge with lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid
(Poly I:C). We also examined the effect of MIA on the expression of microglial markers and the profile of cytokines
released in the brains of young offspring, as well as the behaviour of adult animals. Moreover, we visualized the
localization of ligand-receptor systems in the hippocampal regions (CA1, CA3 and DG) and the frontal cortex of
young rats exposed to MIA. The differences between groups were analysed using Student’s t test.
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Results: We observed that MIA altered developmental trajectories in neuron-microglia communication in the brains
of young offspring, as evidenced by the disruption of CX3CL1-CX3CR1 and/or CD200-CD200R axes. Our data
demonstrated the presence of abnormalities after LPS-induced MIA in levels of Cd40, Il-1β, Tnf-α, Arg1, Tgf-β and Il-

10, as well as IBA1, IL-1β and IL-4, while after Poly I:C-generated MIA in levels of Cd40, iNos, Il-6, Tgf-β, Il-10, and IBA1,
IL-1β, TNF-α, IL-6, TGF-β and IL-4 early in the life of male animals. In adult male rats that experienced prenatal
exposure to MIA, we observed behavioural changes resembling a schizophrenia-like phenotype.

Conclusions: Our study provides evidence that altered CX3CL1-CX3CR1 and/or CD200-CD200R pathways, emerging
after prenatal immune challenge with LPS and Poly I:C, might be involved in the aetiology of schizophrenia.

Keywords: Maternal immune activation, Lipopolysaccharide, Polyinosinic:polycytidylic acid, CX3CL1-CX3CR1, CD200-
CD200R, Microglia, Schizophrenia

Background
Bidirectional communication between neurons and

microglia is fundamental for the homeostasis and bio-

logical function of the central nervous system (CNS).

This crosstalk orchestrates the balance for proper neuro-

developmental processes, including neurogenesis, synap-

togenesis, synaptic pruning, axonal growth, astrocyte

maturation, mitochondrial biogenesis, myelination and

blood-brain barrier integrity [1, 2]. This communication

is also crucial for the control of the immune response

[3–5]. In the brain, microglia are the major immuno-

competent cells involved in the induction and resolution

of inflammatory processes [6, 7]. However, to maintain

microglia in a resting phenotype, the exchange of signals

linking microglia with neurons by various endogenous

systems is required [8, 9]. The dysfunction of this dy-

namic crosstalk leads to microglial activation, which is

manifested by increased phagocytic activity, mobility and

the production of pro-inflammatory factors [10].

In this context, CX3CL1-CX3CR1 and CD200-CD200R

interactions are crucial and represent unique ligand-

receptor axes. CX3CL1 (fractalkine) is the only member of

the CX3C chemokine family [11], and it exhibits remark-

ably higher expression in the brain than in the periphery,

indicating a unique role of this ligand in the CNS [12].

CX3CL1 originates mostly from neurons, while its only

known corresponding receptor, CX3CR1, is present on

microglial cells [13–15]. In addition to the induction of

chemotaxis, the CX3CL1-CX3CR1 axis regulates neurode-

velopmental processes, including neuronal survival [16, 17]

and synaptic pruning [18] as well as the reactivity of micro-

glia and inflammatory cytokine release [19, 20]. Another

important inhibitory signalling dyad in the brain is the

CD200-CD200R axis. CD200 (known also as OX-2) is a

membrane glycoprotein expressed ubiquitously on neurons,

endothelial cells and oligodendrocytes, and it plays a critical

role in regulating and maintaining the resting state of

microglial cells [21]. The cognate receptor of CD200

(CD200R) is present almost exclusively in myeloid cells,

including microglia [21–23]. Data have shown that

disturbances in CD200-CD200R signalling potentiate

the pro-inflammatory response of microglia to im-

mune stimuli [24] and lead to a prolonged inflamma-

tory response as well as to neurodegeneration [3, 25].

Moreover, the malfunction of the CD200-CD200R

axis has been observed in ageing [26].

Numerous studies in different experimental settings

demonstrate a direct association between neurodevelop-

mental malfunctions in the brain immune system and

the occurrence of schizophrenia in adulthood [27]. A

significant link between maternal immune activation

(MIA) and increased risk of this disease in the offspring

has been demonstrated in a variety of retrospective epi-

demiological studies [28, 29]. Notably, exposure to MIA

is capable of enhancing the pro-inflammatory response

in the three maternal-foetal compartments, namely, the

placenta, the amniotic fluid and the foetus, including the

foetal brain [30, 31]. The sensitivity of microglia to MIA

and their engagement in many developmental processes

make them an attractive candidate for orchestrating neu-

rodevelopment mediated by the CX3CL1-CX3CR1 and/

or CD200-CD200R systems.

Therefore, in the present study, we sought to verify

the hypothesis that MIA affects CX3CL1-CX3CR1 and/

or CD200-CD200R signalling in early life, which is the

period when crucial neurodevelopmental processes

occur. For this purpose, we performed studies in two

commonly accepted neurodevelopmental models of

schizophrenia that are based on prenatal challenge with

lipopolysaccharide (LPS) [32, 33] and polyinosinic:poly-

cytidylic acid (Poly I:C) [31, 34]. MIA induced by LPS

treatment mimics infection with Gram-negative bacteria

[35], while that elicited by Poly I:C is similar to the acute

phase response to viral infection [36]. In the offspring at

postnatal day 7 (PND7), we examined the impact of

MIA on the mRNA and protein expression of CX3CL1,

CD200 and their receptors in the hippocampus and

frontal cortex, which are areas of the brain distinctly af-

fected in schizophrenia [37, 38]. Moreover, we visualized

the localization of ligand-receptor systems in hippocampal
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regions (CA1, CA3 and DG) and the frontal cortex

after MIA. Considering that CX3CL1-CX3CR1 and

CD200-CD200R interactions are crucial for the modu-

lation of microglial reactivity, we explored the expres-

sion of microglial markers and the profile of

cytokines released in the brains of offspring at PND7.

Next, for further characterization of the prenatal LPS

and Poly I:C immune challenge, we assessed not only

the CX3CL1-CX3CR1 and CD200-CD200R systems at

PND93 but also the behavioural status of adult male

rat offspring (at PND30 and PND88-92).

Materials and methods
Animals

Adult Wistar rats (females 226–250 g and males 251–

275 g upon arrival) were purchased from Charles River

(Sulzfeld, Germany). The animals were maintained

under standard conditions: room temperature of 23 °C,

12/12-h light/dark cycle, lights on at 6:00 am, and ad

libitum access to water and food. The phase of the

oestrous cycle was determined based on vaginal smears

that were obtained daily from the females. On the day of

pro-oestrus, the females were placed with males for 12 h,

and the presence of sperm in vaginal smears was

checked the next morning [defined as gestational day 1

(GD1)]. Pregnant females (n = 28) were randomly di-

vided into four equal groups: (1) control for LPS (kLPS),

(2) control for Poly I:C (kPoly), (3) LPS and (4) Poly I:C.

All procedures were approved by the Animal Care

Committee of Maj Institute of Pharmacology, Polish

Academy of Sciences, Cracow, and met the criteria of

the International Council for Laboratory Animals and

Guide for the Care and Use of Laboratory Animals (con-

sent number: 236/2016). All possible efforts were made

to minimize the number of animals used and their

suffering.

Prenatal treatment with LPS and Poly I:C

LPS (from Escherichia coli 026:B6, Sigma-Aldrich, St.

Louis, MO, USA) was dissolved in saline to produce a 2-

mg/kg solution in 1 ml, and it was administrated sub-

cutaneously to pregnant rats beginning on GD7 and

then again every second day until delivery [32]. The

kLPS group received an appropriate amount of vehicle

(saline). Poly I:C was purchased from Sigma-Aldrich (St.

Louis, MO, USA) as a sodium salt and was dissolved in

saline to obtain 1 ml of a 4-mg/kg solution. Poly I:C was

administered via the tail vein of pregnant rats of the Poly

I:C group on GD15 [39], while the kPoly group received

an appropriate injection of vehicle (saline). No differ-

ences in litter size and weight were observed between

groups. Only male offspring were used in the present

study due to the consent (number: 236/2016) of the Ani-

mal Care Committee. The females were included in

another research not presented within this article. At

PND7, some of the male offspring were sacrificed and

used for biochemical and immunohistochemical ana-

lyses. At PND21, the rest of the offspring were separated

from dams and housed in groups of five per cage under

standard conditions. Those rats were left for behavioural

(at PND30 and PND88-92) and biochemical examina-

tions (PND93) (please refer to Fig. 1). The behavioural

experiments were performed between 9:00 am and 12:00

am. The investigators were not blinded to the experi-

mental conditions. The numbers of animals included in

each analysis are presented in the description of the

method and the caption to the corresponding figure or

table.

Biochemical study

Tissue collection and fixation

At PND7, the male offspring from the experimental

groups (LPS and Poly I:C) and the control groups (kLPS

and kPoly) were sacrificed under non-stress conditions.

For the immunohistofluorescent analyses, whole brains

were isolated, immediately immersed in a solution of 4%

paraformaldehyde in PBS (Santa Cruz Biotechnology,

Dallas, TX, USA) and were incubated overnight at 4 °C.

Next, tissues were cut into coronal 20-μm sections using

an automatic cryostat Leica CM1860 (Leica, Wetzlar,

Germany) and placed on microscopic slides. Until stain-

ing, the slides were stored at − 20 °C. For biochemical

analyses, the hippocampi and the frontal cortices of male

offspring at PND7 and PND93 were dissected on an ice-

cold glass plate, and then they were stored at − 80 °C be-

fore being used for further treatment.

Quantitative real-time polymerase chain reaction (qRT-PCR)

Total RNA was extracted from the hippocampi and

frontal cortices of PND7 offspring using a GeneMA-

TRIX Universal RNA Purification Kit (EURx, Gdańsk,

Poland) according to the manufacturer’s instructions.

Immediately after extraction, the concentration of RNA

was determined by a NanoDrop Spectrophotometer

(ND/1000 UV/Vis, Thermo Fisher NanoDrop, Waltham,

MA, USA). The synthesis of complementary DNA

(cDNA) was performed via reverse transcription from

equal amounts of RNA (1 μg) using an NG dART RT kit

(EURx, Gdańsk, Poland). The cDNA was amplified with

a FastStart Universal Probe Master (Rox) kit (Roche,

Basel, Switzerland) and TaqMan probes (Thermo Fisher

Scientific, Waltham, MA, USA) for the following genes:

Cx3cl1, Cx3cr1, Cd200, Cd200r, MhcII, Cd68, Cd40,

iNos, Il-1β, Tnf-α, Il-6, Arg1, Igf-1, Tgf-β, Il-4 and Il-10

(corresponding catalogue numbers of TaqMan probes

are presented in Supplementary Table 1). B2m or Hprt

served as an internal control for sample normalization.

The PCR products were generated in mixtures
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consisting of cDNA, which was used as the PCR tem-

plate (1 μl), TaqMan forward and reverse primers (1 μl),

1× FastStart Universal Probe Master (Rox) mix, contain-

ing 250-nM hydrolysis probe labelled with the fluores-

cent reporter dye [fluorescein (FAM)] at the 5′-end and

a quenching dye at the 3′-end (10 μl), and finally the re-

mainder of PCR-grade distilled water to reach a total

volume of 20 μl. Thermocycling conditions contained an

initial denaturation at 95 °C for 10 min, followed by 40

cycles of denaturation at 95 °C for 15 s, annealing at

60 °C for 1 min and extension at 50 °C for 2 min. The

threshold value (Ct) for each sample was set in the expo-

nential phase of PCR, and the ∆∆Ct method was used

for data analysis with n = 4–8 in each group.

Tissue preparation and determination of protein

concentration

The collected tissues were homogenized by a Tissue

Lyser II (Qiagen Inc, Valencia, CA, USA) in RIPA lysis

buffer containing protease inhibitor cocktail, phosphat-

ase inhibitor cocktail, 1 mM sodium orthovanadate and

1mM phenylmethanesulfonyl fluoride (all reagents from

Sigma-Aldrich, St. Louis, MO, USA). The protein con-

centrations in the analysed samples were determined

using a BCA Protein Assay Kit (Sigma-Aldrich, St. Louis,

MO, USA) with bovine serum albumin as a standard,

and measurements were collected at a wavelength of

562 nm using a Tecan Infinite 200 Pro spectrophotom-

eter (Tecan, Mannedorf, Germany). The prepared sam-

ples were stored at − 20 °C before being used to examine

the required biochemical parameters.

Enzyme-linked immunosorbent assay (ELISA)

The protein levels of CX3CL1 (Cloud-Clone Corp., Katy,

TX, USA); CX3CR1, CD200, CD200R, IL-1β, IL-4, IL-

10, IBA1 (all from Cusabio, Houston, TX, USA); IL-6,

TGF-β (Fine Test, Wuhan, Hubei, China); and TNF-α

(Thermo Fisher Scientific, Waltham, MA, USA) in the

Fig. 1 Experimental design. Pregnant dams were exposed to MIA with either LPS (2 mg/kg in 1 ml) beginning at GD7 and continuing every
second day until delivery (a) or a single injection of Poly I:C (4 mg/kg in 1 ml) at GD15 (b). Control groups were subjected to vehicle (saline)
injections in a corresponding manner. At PND7, some male offspring were sacrificed and used for biochemical and immunohistofluorescent
analyses. The rest of the animals underwent the behavioural examination, including the PPI test at PND30 and PND90, the light-dark box test at
PND88 and the social interaction test at PN92. Twenty-four hours after the last behavioural test (PND93), the rats were sacrificed by decapitation
and the tissues were collected for biochemical examination
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hippocampi and frontal cortices (n = 6–8 in each group)

of male rats at PND7 were measured using commercially

available ELISA kits. The procedures were performed in

accordance with the manufacturer’s instructions, and the

minimum detectable doses were CX3CL1 0.055 ng/ml,

CX3CR1 7.8 pg/ml, CD200 11.75 pg/ml, CD200R 4.67

pg/ml, IL-1β 15.6 pg/ml, TNF-α 16 pg/ml, IL-6 37.5 pg/

ml, TGF-β 18.75 pg/ml, IL-4 3.9 pg/ml, IL-10 0.78 pg/ml

and IBA1 6.25 pg/ml. Intra- and inter-assay precision

values were CX3CL1 < 10%, <12%, and CX3CR1,

CD200, CD200R, IL-1β, TNF-α, IL-6, TGF-β, IL-4, IL-10

and IBA1 < 8%, < 10%, respectively. The protein levels of

CX3CL1, CX3CR1, CD200, CD200R and IBA1 were also

assessed in the hippocampi and frontal cortices (n = 6–9

in each group) of adult male offspring (PND93).

Immunohistofluorescent staining

Antigen retrieval was carried out using trisodium citrate

buffer solution (pH ≈ 9) (Sigma-Aldrich, St. Louis, MO,

USA) in glass containers, which were placed in a water

bath for 30 min at 80 °C. The containers were removed

from the water bath and allowed to return to room

temperature. Sections were washed twice in 0.2% Tween

in PBS solution (PBST). For nonspecific antibody bind-

ing inhibition, sections were blocked using 10% donkey

normal serum (DNS) (Abcam, Cambridge, UK) or 10%

donkey and goat serum (1:1) (DNS+GNS) (Abcam,

Cambridge, UK) solution in PBST for 1 h at room

temperature. The type of serum solution was determined

by the combination of secondary antibodies used for

staining. After blocking, the medium was removed, and

sections were immersed in appropriate primary antibody

solutions (anti-CX3CL1: ab25088, 1:100; anti-CX3CR1:

ab8021, 1:100; anti-OX2: ab203887, 1:100, all from

Abcam, Cambridge, UK, and anti-OX2R: AOR-002, 1:50,

Alomone labs, Jerusalem, Israel). Proteins were co-

stained with neuronal (anti-MAP2: 5392, 1:1000, Abcam,

Cambridge, UK), astroglial (anti-GFAP: ab4674, 1:1000,

Abcam, Cambridge, UK) or microglial (anti-IBA1:

ab5076, 1:200, Abcam, Cambridge, UK) markers. Each

mixture of two specific antibodies was dissolved in an

appropriate 2% DNS or DNS+GNS serum in PBST. Tis-

sues were incubated with a mixture of two specific pri-

mary antibodies solutions at 4 °C overnight. Next, slides

were washed twice in 2% DNS or DNS+GNS in PBST.

Sections were incubated in an appropriate mixture of

two secondary antibodies (goat anti-chicken Alexa Fluor

488: A11039, 1:300, Thermo Fisher Scientific, Waltham,

MA, USA; donkey anti-mouse TR: sc2785, 1:300, donkey

anti-goat FITC: sc2024, 1:300, Santa Cruz Biotechnology,

Dallas, TX, USA; and donkey anti-rabbit TR: ab6800, 1:

1000, Abcam, Cambridge, UK), which were in a PBST

solution, and then they were incubated for 1 h in the

dark at room temperature. Tissues were washed three

times in PBST, dried, mounted in Fluoroshield mounting

medium (Sigma-Aldrich, St. Louis, MO, USA) and

cover-slipped. Visualization of staining was performed

using a Leica DMI8 fluorescence inverted microscope

with the objective HCX FLUOTAR semi-plan apochro-

matic (a total magnification × 400) (both from Leica,

Wetzlar, Germany), with magnification applied for all

images × 40. Images of the DG (precisely, the polymorph

layer dentate gyrus), CA1 (the images covered the oriens

layer hippocampus, pyramidal cell layer hippocampus

and radiatum layer hippocampus) and CA3 fields of the

hippocampus and frontal cortex (precisely, dorsolateral

entorhinal cortex) were captured using a Leica DFC450

digital CCD camera (Leica, Wetzlar, Germany). At least

two fields of the structures per section were visualized,

and two sections per animal (n = 2 in each group) per

staining were used to generate representative images.

Immunohistofluorescent staining was performed only to

visualize the localization of the receptors and ligands on

appropriate cell types.

Behavioural study

Prepulse inhibition test (PPI)

At PND30 and PND90, the male offspring from the ex-

perimental groups (LPS and Poly I:C) and the control

groups (kLPS and kPoly) underwent the PPI. The PPI

procedure was adopted with some modifications from

our previously published studies [32, 40, 41]. PPI was

tested in eight ventilated startle chambers (SR-LAB, San

Diego Instruments, California, USA) with a single Plexi-

glas cylinder (inner diameter of 9 cm) mounted in each

of them. A high-frequency loudspeaker inside each

chamber produced both continuous background noise of

65 dB and various acoustic stimuli. The average startle

amplitudes (AVGs) were detected for each animal by a

piezoelectric accelerometer, and then the data were digi-

tized and used for subsequent analyses. Before the ex-

periments, each chamber was individually calibrated by

the external sensor to display a similar readout of the

reference stimulus. The AVGs were measured during

the 200-ms recording window. After 5 min of habitu-

ation with the background noise, four types of acoustic

stimuli were used in random order. Each trial consisted

of either a single pulse alone [intensity 120 dB, duration

40 ms, (P)] or a pulse preceded by a prepulse at one out

of three intensities [70, 75 and 80 dB; duration 20 ms;

(PP)] applied 80 ms before a pulse. During each experi-

mental session, 20 trials of each type were presented

with an interstimulus interval of 20 s. The AVGs were

recorded, and the percentage of PPI (%PPI) induced by

each prepulse intensity was calculated as %PPI = [(P −

PP)/P] × 100%. The number of animals used in the PPI

test was as follows: n = 23 in the kLPS and LPS groups,
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n = 21 in the kPoly group and n = 14 in the Poly I:C

group.

Light-dark box test

The light-dark box test was performed using an appar-

atus consisting of four cages with a computer-controlled

system (TSE Systems, Bad Homburg, Germany) based

on the procedure reported by Chocyk et al. [42]. Each

experimental box had two compartments: light (covering

¾ of the cage, brightly lit – 100 lx) and dark (covered

with a lid), which were made of clear and black acrylic,

respectively. Both sections were permeable to infrared

light and were connected by a central gate (10.6 cm ×

10.4 cm). Therefore, the two parts of the cage were freely

accessible for the animals to explore. The experimental

boxes were located in soundproof, ventilated cabinets on

base constructions that contained integrated infrared

sensors along the horizontal and vertical axes. One hour

before the test, male rats (PND88) were kept in total

darkness. The entire experiment was also conducted in a

dark room. At the beginning of each testing session,

which lasted 10 min, an animal was placed in one corner

of the light compartment, facing away from the gate.

The behavioural response during the trials was recorded

by Fear Conditioning Software (TSE, Bad Homburg,

Germany). Specifically, the time spent in each compart-

ment, the distance travelled and the average speed were

calculated for each animal (n = 8–9 in the kLPS and LPS

groups, n = 19–21 in the kPoly and Poly I:C groups).

Social interaction test

The experiments investigating social interactions of the

animals (n = 6 in each group) were conducted based on

a protocol described by Bator et al. [43] in an open field

space (60 × 60 × 30 cm) made of black Plexiglas and

dimly illuminated (18 lx) with indirect light. The day be-

fore the test, male offspring (PND91) were transferred to

the experimental room and were allowed to individually

adapt to the open field arena for 7 min. Afterwards, half

of the rats were marked with potassium permanganate

on the rear part of their bodies. On the test day

(PND92), two unfamiliar animals (one unmarked and

one marked) that received identical prenatal treatment

were placed in the open field arena. The behaviour of

the rats was observed for 10 min by two independent ex-

perimenters. The following social behaviours were

scored: (1) non-aggressive consisting of following (rat’s

movement towards and following the other rat), sniffing

(sniffing parts of the other rat’s body, including an ano-

genital region) and social grooming (licking and chewing

a fur of the other animal), and (2) aggressive consisting

of attacking, fighting and aggressive grooming (aggres-

sive licking and chewing a fur of another rat). During

the test, the time and number of all types of events were

measured for each separate animal. Social interactions

were expressed as summed scores of the time and the

number of aggressive and non-aggressive activities.

Statistical data analysis

Statistical analysis of the data was performed using Sta-

tistica 13.0 Software (StatSoft, Palo Alto, CA, USA). The

results from qRT-PCR studies are displayed as average

fold change ± standard errors of the mean (SEMs). The

results of ELISA experiments are presented as the means

± SEMs. The data from behavioural examinations are

demonstrated as the means ± SEMs. The normal distri-

bution and the homogeneity of the variance were exam-

ined using the Shapiro-Wilk test and Levene’s test,

respectively. Comparisons of variables between groups

(kLPS vs. LPS or kPoly vs. Poly I:C) were analysed using

Student’s t test. The results were considered statistically

significant when the p value was lower than 0.05. All

graphs were prepared with GraphPad Prism 7 software

(San Diego, CA, USA).

Results
The impact of MIA generated by LPS and Poly I:C

treatment on Cx3cl1, Cx3cr1, Cd200 and Cd200r

expression in the hippocampi and the frontal cortices of

offspring at PND7

In the first set of experiments, to analyse the influence

of MIA induced by LPS and Poly I:C treatment on the

mRNA expression of neuronal ligands and their corre-

sponding microglial receptors, we determined Cx3cl1,

Cx3cr1, Cd200 and Cd200r levels by qRT-PCR in the

hippocampi and the frontal cortices of male offspring at

PND7 (Table 1). Student’s t test analysis showed a sig-

nificant increase in Cx3cl1 (p = 0.0316) and Cd200 (p =

0.0344) expression in the hippocampus of the prenatally

LPS-treated offspring compared to that of the control

group. The hippocampal levels of Cx3cr1 and Cd200r

were not affected by MIA with LPS, and there were no

changes observed in the frontal cortex of the animals

from the LPS group in comparison to the kLPS group.

In contrast, the prenatally Poly I:C-exposed young rats

displayed only a decrease in Cd200 (p = 0.0145) mRNA

expression in the frontal cortex when compared with

that of the kPoly group. The examination of Cx3cl1,

Cx3cr1 and Cd200r expression in both brain areas, but

also Cd200 in the hippocampus of the Poly I:C group re-

vealed no significant differences in mRNA levels.

The impact of MIA generated by LPS and Poly I:C

treatment on the protein levels of CX3CL1, CX3CR1,

CD200 and CD200R in the hippocampi and the frontal

cortices of offspring at PND7

Since the qRT-PCR analysis demonstrated that there

were alterations caused by MIA induced by LPS and
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Poly I:C treatment in the neuron-microglia controlling

systems in offspring at PND7, we next investigated the

protein levels of CX3CL1, CX3CR1, CD200 and

CD200R in the hippocampi and the frontal cortices of

these animals (Fig. 2). A significant increase in CX3CR1

(p = 0.0413) and CD200 (p = 0.0030) was detected in

the hippocampus of the LPS rats at PND7, while the

CD200R level (p = 0.0307) was reduced in this structure.

At the same time, we observed higher levels of both li-

gands: CX3CL1 (p = 0.0464) and CD200 (p < 0.0001), as

well as decreased CD200R (p = 0.0025) in the frontal

cortex of the prenatally LPS-exposed animals compared

to what was observed in the kLPS group (Fig. 2a). The

MIA with Poly I:C diminished CX3CR1 (p = 0.0003) and

CD200 (p = 0.0129) levels in the hippocampus. Along

with these results, we observed an increase in CX3CL1

(p = 0.0132) in the hippocampus in the Poly I:C off-

spring (Fig. 2b).

Immunohistofluorescent staining of CX3CL1-CX3CR1 and

CD200-CD200R localization on neurons and microglial

cells in the hippocampi and the frontal cortices of

offspring at PND7 after MIA generated by LPS and Poly

I:C treatment

CX3CL1 and CD200 expression in the CNS has been

mostly reported in neurons, while their receptors,

CX3CR1 and CD200R, respectively, have been shown in

microglia [44]. To confirm this phenomenon and to

visualize whether treatment with LPS or Poly I:C during

pregnancy affected these specific colocalizations in the

brains of male rats at PND7, we performed immunohis-

tofluorescent staining. In the DG, CA1 and CA3 fields of

the hippocampus and the frontal cortex of the animals

from the LPS and Poly I:C groups, we showed that expos-

ure to neither immunostimulant influenced the colocaliza-

tion of ligands or receptors with their specific cell types.

For all studied regions of the male rat brains at PND7, we

observed CX3CL1- and CD200-immunoreactive neurons

and the expression of CX3CR1 and CD200R in microglia.

Representative images of the staining are presented for the

frontal cortex of LPS- (Fig. 3) and Poly I:C-treated animals

(Fig. 4). Analogical images for the DG, CA1 and CA3

fields of the hippocampus are provided in Supplementary

Figs. 1, 2, 3, 4, 5 and 6.

The impact of MIA generated by LPS and Poly I:C

treatment on IBA1 levels in the hippocampi and the

frontal cortices of offspring at PND7

Since we confirmed the localization of CX3CR1 and

CD200R in microglial cells, while biochemical analyses

revealed changes in the levels of both receptors after

MIA, next we assessed IBA1 levels in the hippocampi

and the frontal cortices of the animals at PND7 (Fig. 5).

The ELISA results showed an elevation in IBA1 (p =

0.0429) level in the frontal cortex of rats that were pre-

natally treated with LPS (Fig. 5a). In contrast, a dimin-

ished level of IBA1 (p = 0.0015) was found in the

hippocampus of the offspring following Poly I:C treat-

ment (Fig. 5b).

The impact of MIA generated by LPS and Poly I:C

treatment on the mRNA expression of microglial markers,

pro- and anti-inflammatory factors in the hippocampi and

the frontal cortices of offspring at PND7

CX3CL1-CX3CR1 and/or CD200-CD200R crosstalk

plays a role in brain homeostasis due to the regulation

of the “on-off” signal for microglial cell activation [45, 46].

Consequently, we explored the potential impact of these

axes malfunctions on the microglia phenotype and im-

mune response in the hippocampi and the frontal cortices

of male offspring at PND7 after prenatal exposure to MIA

with LPS and Poly I:C. As shown in Table 2, the levels of

Il-1β (p = 0.0126) and Tnf-α (p = 0.0381) in the hippocam-

pus but also Cd40 (p = 0.0335) in the frontal cortex were

significantly elevated in young offspring in the LPS group

compared to those in the kLPS group. We did not observe

changes in the other investigated markers of the pro-

inflammatory phenotype of microglia (MhcII, Cd68, Cd40,

iNos, Il-6) in this brain structure or in other M1-like fac-

tors in the frontal cortex of male offspring prenatally

Table 1 The effect of MIA induced by LPS and Poly I:C treatment on the gene expression of Cx3cl1, Cx3cr1, Cd200 and Cd200r in the
hippocampi (Hp) and the frontal cortices (Cx) of offspring at PND7. The mRNA levels were measured using qRT-PCR with n = 6–8 in
each group. The results are presented as the average fold change ± SEMs

Factor Gene expression

Hp Cx Hp Cx

kLPS LPS kLPS LPS kPoly Poly kPoly Poly

Cx3cl1 1.01 ± 0.06 1.41 ± 0.17* 1.01 ± 0.07 1.09 ± 0.12 1.03 ± 0.12 0.92 ± 0.06 1.01 ± 0.06 0.90 ± 0.04

Cx3cr1 1.03 ± 0.09 1.31 ± 0.18 1.04 ± 0.10 0.98 ± 0.14 1.02 ± 0.09 1.06 ± 0.07 1.01 ± 0.06 0.88 ± 0.05

Cd200 1.00 ± 0.03 1.43 ± 0.19* 1.03 ± 0.11 1.21 ± 0.17 1.10 ± 0.23 0.89 ± 0.09 1.02 ± 0.10 0.73 ± 0.05*

Cd200r 1.07 ± 0.14 1.31 ± 0.18 1.09 ± 0.21 0.88 ± 0.26 1.09 ± 0.22 0.98 ± 0.15 1.06 ± 0.16 0.92 ± 0.06

*p < 0.05 vs. appropriate control (kLPS or kPoly)
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treated with LPS. Statistical analysis revealed that the anti-

inflammatory phenotype of microglia in the hippocampus

of the LPS group differed from that in the kLPS group

(Table 2). There was a significant increase in the mRNA

expression of Arg1 (p = 0.0380), Tgf-β (p = 0.0354) and Il-

10 (p = 0.0466). The mRNA levels of Igf-1 and Il-4 in the

hippocampus of male offspring at PND7 were not influ-

enced by MIA induced with LPS. Additionally, we did not

find any significant changes in the expression of any M2-

like marker in the frontal cortex of the prenatally LPS-

treated male animals. Among the tested markers of the

M1-like microglial phenotype, qRT-PCR analysis showed

elevated expression of iNos (p = 0.0498) in the hippocam-

pus of the Poly I:C group (Table 2). The other examined

M1-related factors (MhcII, Cd68, Cd40, Il-1β, Tnf-α, Il-6)

were not affected by prenatal treatment with Poly I:C in

this region of the brain in the male rats at PND7. In the

frontal cortex of the Poly I:C group, MIA during preg-

nancy influenced the pro-inflammatory phenotype of

microglia. We detected a reduction in Cd40 (p = 0.0139)

and a significant increase in Il-6 (p = 0.0196) expression,

whereas MhcII, Cd68, iNos, Il-1β and Tnf-α mRNA levels

were not altered. The male offspring at PND7 in the Poly

I:C group displayed no changes in M2-like factors in the

hippocampus (Table 2). Regarding the results for the

frontal cortex, analysis with Student’s t test demonstrated

that Tgf-β (p = 0.0090) and Il-10 (p = 0.0027) levels were

significantly lower in the Poly I:C group than they were in

Fig. 2 The effect of MIA induced by LPS (a) and Poly I:C (b) treatment on the protein levels of CX3CL1, CX3CR1, CD200 and CD200R in the
hippocampi (Hp) and the frontal cortices (Cx) of PND7 offspring. n = 6–8 in each group. The results are presented as the means ± SEMs. *p <
0.05 vs. appropriate control (kLPS or kPoly)
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Fig. 3 (See legend on next page.)
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the kPoly animals. Simultaneously, the mRNA expression

of Arg1 and Igf-1 was not influenced in these groups.

The impact of MIA generated by LPS and Poly I:C

treatment on the cytokine levels in the hippocampi and

the frontal cortices of offspring at PND7

The analysis of marker expression seems to be insuffi-

cient for capturing all changes in microglial reactivity,

especially in MIA models, where subtle changes in

microglial activity have been previously reported [47].

Accordingly, we also assessed the influence of MIA on

the levels of pro- (IL-1β, TNF-α, IL-6) and anti-

inflammatory (TGF-β, IL-4, IL-10) cytokines in both

areas of the brain in male offspring at PND7 (Figs. 6 and 7).

In the hippocampus of the LPS offspring, the levels of anti-

inflammatory factors were not affected, while at the same

time, IL-1β (p = 0.0168) level was raised (Figs. 6a and 7a).

The ELISA results showed a decrease in IL-4 (p < 0.0001)

level in the frontal cortex of the rats in the LPS group (Fig.

7a). Among the tested factors, an increase in IL-4 (p =

0.0251) and a reduction of TNF-α (p = 0.0275) were ob-

served in the hippocampus of the Poly I:C offspring. Ana-

lysis with Student’s t test revealed that the protein levels of

TGF-β (p = 0.0127), but also IL-1β (p = 0.0007) and IL-6 (p

= 0.0109) were enhanced when TNF-α (p = 0.0019) de-

clined in the frontal cortex of male animals at PND7 fol-

lowing prenatal exposure to Poly I:C compared to what we

observed in the kPoly group (Figs. 6b and 7b).

The impact of MIA generated by LPS and Poly I:C

treatment on the behavioural parameters of adult male

offspring

Prepulse inhibition of the acoustic startle response

Disturbed sensorimotor gating is one of the core behav-

ioural features observed in schizophrenia, both for pa-

tients [48–50] and animal models of the disease [33, 51].

In Fig. 8, we show the impact of MIA induced by LPS

and Poly I:C on the PPI response of adolescent (PND30)

and adult (PND90) male rat offspring. The prenatal ad-

ministration of LPS to pregnant dams did not disrupt

PPI in adolescent male offspring (Fig. 8a), which corre-

sponds with our previous data [32, 41]. Contrary, the

adult animals in the LPS group displayed significant in-

hibition of sensorimotor gating compared to what we

observed in the kLPS offspring for all tested prepulse in-

tensities [70 (p < 0.0001), 75 (p = 0.0047) and 80 (p =

0.0115) dB] (Fig. 8b). Out of 39 adult rats in the LPS

group, 23 (58%) showed a robust deficit in PPI. The

same age-dependent effect was observed for the animals

from the Poly I:C group, thus offspring at PND30 did

not demonstrate any changes in PPI (Fig. 8a), whereas

adult male rats (PND90) were characterized by a de-

crease in PPI compared to the kPoly offspring for all the

prepulse groups [70 (p = 0.0092), 75 (p = 0.0054) and 80

(p = 0.0131) dB] (Fig. 8b). Out of 21 adult Poly I:C ani-

mals, 14 (67%) displayed an impairment of sensorimotor

gating. These results confirm that MIA can lead to sig-

nificant behavioural effects that shift over time.

Light-dark box test

Anxiety is one of the symptoms that sorely influences

the quality of life in patients with schizophrenia [52].

We performed light-dark box test to assess whether the

MIA induced by LPS and Poly I:C caused anxiety-like

behaviour in adult rat offspring (PND88) (Fig. 9). Statis-

tical analysis showed that male offspring from the LPS

group did not differ from the kLPS animals in terms of

time spent and distance travelled in the light part of the

apparatus, but they did display a decrease in average

speed (p = 0.0164). For the dark compartment, we ob-

served only a decreasing tendency in distance travelled

and average speed for the LPS rats, as well as no changes

in time spent in this part of the experimental cage (Fig.

9a). The results of the light-dark box test carried out for

the male Poly I:C offspring revealed that these rats spent

more time (p = 0.0302) and covered a greater distance

(p = 0.0120) than the kPoly group in the light compart-

ment. The average speed of these animals was not chan-

ged by the prenatal treatment with Poly I:C. All three

parameters measured in the dark compartment were sig-

nificantly influenced by MIA for the Poly I:C group: time

spent (p = 0.0120), distance travelled (p = 0.0247) and

average speed (p = 0.0045) (Fig. 9b).

Social interaction test

Social withdrawal, or asociality, is one of the primary

negative symptoms of schizophrenia that has a signifi-

cant impact on the functioning of the patients [53]. Un-

expectedly, we showed that the treatment of pregnant

rat females with LPS did not induce alterations either in

the time or the number of non-aggressive and aggressive

behaviours for male offspring at PND92 (Fig. 10a). In

contrast to this finding, the social interactions of the ani-

mals in the Poly I:C group were significantly impaired.

The rat offspring that were prenatally treated with Poly

I:C were more aggressive, as evidenced by an increase in

(See figure on previous page.)
Fig. 3 Immunohistofluorescent staining of CX3CL1-CX3CR1 (a, b) and CD200-CD200R (c, d) localization on neurons and microglial cells in the
frontal cortex (Cx) of PND7 offspring after MIA induced by LPS treatment. Representative confocal images showing colocalization of CX3CL1/
CD200 (red) immunoreactivity with MAP2 (green)-positive neurons and CX3CR1/CD200R (red) immunoreactivity with IBA1 (green)-positive
microglial cells. n = 2 in each group. Magnification × 40 for all images. Scale bar (10 μm) is located in the bottom right corner of each image
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the time (p = 0.0248) and the number (p = 0.0433) of ag-

gressive activities compared to the same measures in

kPoly offspring (Fig. 10b).

The impact of MIA generated by LPS and Poly I:C

treatment on the protein levels of CX3CL1, CX3CR1,

CD200 and CD200R in the hippocampi and the frontal

cortices of adult offspring

In the next set of biochemical experiments, we investi-

gated the protein levels of the systems controlling

neuron-microglia interactions in the adulthood (PND93)

(Fig. 11), since that was when the behavioural distur-

bances were present. The ELISA results showed a sig-

nificant decrease in the protein levels of CX3CL1 (p =

0.0167) and CD200R (p = 0.0350) in the hippocampus of

the LPS adult male rats when compared to that of the

kLPS group. We did not observe any alterations in the

frontal cortex of the LPS offspring (Fig. 11a). Analysis of

the homogenates from the hippocampi of the Poly I:C

group revealed that MIA diminished the levels of CD200

(p = 0.0165) and CD200R (p = 0.0361). Contrary, in the

frontal cortex of adult male rats after prenatal treatment

with Poly I:C, only CX3CL1 (p = 0.0135) level was ele-

vated comparing to the kPoly group (Fig. 11b).

The impact of MIA generated by LPS and Poly I:C

treatment on IBA1 levels in the hippocampi and the

frontal cortices of adult offspring

Having found that the homeostasis of neuron-microglia

communication was somewhat impaired in the brains of

offspring at PND93, we wanted to determine whether

the observed changes were related to IBA1 levels. We

did not find any changes in IBA1 levels in the hippo-

campi or frontal cortices of the animals from the LPS

group at PND93 (Fig. 12a). Regarding the Poly I:C off-

spring, the ELISA analysis revealed an elevation in IBA1

(p = 0.0257) level in the frontal cortex of these animals

(Fig. 12b).

Discussion
There is a growing body of evidence that in the CNS,

preservation of proper neuron-microglia interactions is

crucial for brain development and homeostasis [1, 2, 54].

This dynamic crosstalk is under the control of endogen-

ous factors, including the CX3CL1-CX3CR1 and CD200-

CD200R axes. However, despite the pivotal role of

these signalling pathways in brain homeostasis, very

little is known about the effect of MIA on both sys-

tems in the context of schizophrenia pathogenesis.

Therefore, the most important finding presented in

our study is that MIA with both LPS and Poly I:C af-

fected CX3CL1-CX3CR1 and/or CD200-CD200R signal-

ling in early life, which is the period when crucial

neurodevelopmental processes occur. Moreover, we pro-

vided evidence that MIA disturbed the expression of

microglial markers and the profile of cytokines released

in the brains of young offspring. The observed effect was

long-termed as it was present also in adulthood, in the

period when behavioural schizophrenia-like disturbances

arose.

(See figure on previous page.)
Fig. 4 Immunohistofluorescent staining of CX3CL1-CX3CR1 (a, b) and CD200-CD200R (c, d) localization on neurons and microglial cells in the
frontal cortex (Cx) of PND7 offspring after MIA induced by Poly I:C treatment. Representative confocal images showing colocalization of CX3CL1/
CD200 (red) immunoreactivity with MAP2 (green)-positive neurons and CX3CR1/CD200R (red) immunoreactivity with IBA1 (green)-positive
microglial cells. n = 2 in each group. Magnification × 40 for all images. Scale bar (10 μm) is located in the bottom right corner of each image

Fig. 5 The effect of MIA induced by LPS (a) and Poly I:C (b) treatment on the protein level of IBA1 in the hippocampi (Hp) and the frontal
cortices (Cx) of PND7 offspring. n = 6–7 in each group. The results are presented as the means ± SEMs. *p < 0.05 vs. appropriate control (kLPS
or kPoly)
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Maternal immune activation with LPS and Poly I:C leads

to neuron-microglia communication changes in young

male rat offspring

Here, we report that in the frontal cortex of young off-

spring, the protein level of CX3CL1 was elevated after

prenatal exposure to both LPS and Poly I:C. In the

hippocampus, MIA evoked by LPS administration in-

duced the upregulation of Cx3cl1 expression. At the

same time, in the hippocampus, we noted changes in the

level of CX3CR1 (namely, an increase after MIA induced

by LPS and a decrease after Poly I:C treatment), which

indicates that the immunogen type determines the

changes in this receptor level. In early brain develop-

ment, efficient CX3CL1-CX3CR1 crosstalk participates

in the regulation of neuronal cell number by phagocyt-

osis (e.g., hippocampal neurons) or via impact on the

emergence of connectivity by promoting outgrowth of

axonal tracts (e.g., dopaminergic) [55]. Although

CX3CL1 is constitutively expressed in neurons [19, 56],

some data demonstrated that astrocytes could also be a

source of this ligand [11, 57]. However, the excessive in-

crease in CX3CL1 in MIA models observed in our study

should not be explained by this phenomenon because

immunohistofluorescent staining demonstrated that

after MIA, CX3CL1 in the frontal cortex is expressed by

neurons (Figs. 3 and 4). Interestingly, in endothelial cells,

excessive release of CX3CL1 may be induced by pro-

inflammatory cytokines, particularly IL-1β and TNF-α

[58]. Therefore, the increase in IL-1β level after prenatal

exposure to Poly I:C may, to some extent, result in ex-

cessive secretion of CX3CL1 at PND7. Moreover, mal-

function in the CX3CL1 shedding from the membrane,

induced by MIA, should also be considered. ADAM 10

metalloprotease, which cleaves CX3CL1 into a secreted

form, is the main involved in CX3CL1 release under

pro-inflammatory conditions in the brain [59, 60]. This

dynamic proteolytic cleavage of CX3CL1 from neuronal

membranes and subsequent chemoattraction of reactive

immune cells may represent an early event in the in-

flammatory response to neuronal injury [61]. The

CX3CL1-CX3CR1 axis is also crucial for controlling the

microglial phenotype and its proper functioning during

early development. For example, the highest level of

CX3CL1 in the brain is observed during embryonic and

postnatal maturation periods, and the expression de-

clines with age [62]. It has been found that CX3CL1 reg-

ulates the distinctive colonization pattern of microglia

populations [63], while dysfunction in CX3CL1 signal-

ling impairs this process in the cortex and in the hippo-

campus [64].

In our study, a modulating effect of MIA on CX3CR1

level was found only in the hippocampus of young off-

spring. In this structure, the elimination of synapses is

highly dependent on CX3CR1, since mice lacking this

receptor displayed increased hippocampal dendritic

spine density [65]. This phenomenon was accompanied

by synaptic characteristics reminiscent of immature con-

nectivity and weak synaptic transmission [65]. In line

Table 2 The effect of MIA induced by LPS and Poly I:C treatment on the gene expression of M1-like microglial markers and pro-
inflammatory factors: MhcII, Cd68, Cd40, iNos, Il-1β, Tnf-α and Il-6, and M2-like microglial markers and anti-inflammatory factors: Arg1,
Igf-1, Tgf-β, Il-4 and Il-10, in the hippocampi (Hp) and the frontal cortices (Cx) of offspring at PND7. The mRNA levels were measured
using qRT-PCR with n = 4–8 in each group. The results are presented as the average fold change ± SEMs

Factor Gene expression

Hp Cx Hp Cx

kLPS LPS kLPS LPS kPoly Poly kPoly Poly

M1-like phenotype

MhcII 1.03 ± 0.09 0.83 ± 0.06 0.98 ± 0.18 0.91 ± 0.11 1.02 ± 0.08 0.84 ± 0.12 1.17 ± 0.24 0.90 ± 0.11

Cd68 1.09 ± 0.07 1.44 ± 0.29 1.05 ± 0.13 1.02 ± 0.13 1.08 ± 0.18 0.76 ± 0.09 0.93 ± 0.03 0.81 ± 0.07

Cd40 1.01 ± 0.04 1.16 ± 0.14 0.97 ± 0.07 1.36 ± 0.14* 1.02 ± 0.09 0.92 ± 0.10 1.00 ± 0.04 0.80 ± 0.05*

iNos 0.96 ± 0.34 1.44 ± 0.21 0.92 ± 0.20 1.03 ± 0.21 0.81 ± 0.11 1.49 ± 0.26* 1.14 ± 0.21 1.21 ± 0.29

Il-1β 1.02 ± 0.08 1.79 ± 0.27* 1.02 ± 0.09 1.16 ± 0.12 1.04 ± 0.11 1.09 ± 0.07 1.03 ± 0.10 0.81 ± 0.05

Tnf-α 1.00 ± 0.03 1.63 ± 0.29* 1.02 ± 0.08 1.22 ± 0.14 1.08 ± 0.17 0.82 ± 0.06 1.04 ± 0.12 0.83 ± 0.07

Il-6 1.02 ± 0.08 1.24 ± 0.11 1.03 ± 0.10 1.20 ± 0.13 1.05 ± 0.11 0.92 ± 0.08 0.94 ± 0.12 1.37 ± 0.11*

M2-like phenotype

Arg1 1.01 ± 0.05 1.59 ± 0.25* 1.02 ± 0.08 1.19 ± 0.12 1.05 ± 0.13 0.94 ± 0.08 1.04 ± 0.13 0.95 ± 0.09

Igf-1 1.01 ± 0.06 0.94 ± 0.02 1.00 ± 0.03 0.98 ± 0.06 1.03 ± 0.10 1.28 ± 0.09 1.02 ± 0.06 1.10 ± 0.05

Tgf-β 1.01 ± 0.05 1.64 ± 0.26* 1.08 ± 0.12 1.21 ± 0.09 1.03 ± 0.09 0.96 ± 0.06 1.02 ± 0.09 0.74 ± 0.04*

Il-4 1.05 ± 0.12 0.95 ± 0.11 1.21 ± 0.29 1.10 ± 0.25 1.03 ± 0.09 0.91 ± 0.10 Not detected Not detected

Il-10 1.09 ± 0.18 1.77 ± 0.26* 0.86 ± 0.27 1.11 ± 0.19 1.04 ± 0.12 1.57 ± 0.21 1.06 ± 0.15 0.40 ± 0.07*

*p < 0.05 vs. appropriate control (kLPS or kPoly)
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with the above results, CX3CR1 expression on microglial

cells, visualized by us using CX3CR1/IBA1 double stain-

ing, was decreased in the hippocampus of prenatally Poly

I:C-treated offspring. Therefore, changes generated by

MIA can be responsible for similar deficits in synapses,

although such conclusions require further studies, espe-

cially in the context of the observed reduction of IBA1.

Since the microglial population is believed to be com-

posed of long-lived cells, some disturbances evoked by

MIA in CX3CL1-CX3CR1 signalling shown in our study

may alter the microglial trajectory and neuronal function

in adulthood [66].

To further characterize the involvement of MIA in

neuron-microglia communication in young offspring, we

evaluated the impact of prenatal stimulation with LPS

and Poly I:C on CD200-CD200R signalling. We clearly

demonstrated that MIA induced by LPS caused signifi-

cant alterations in the CD200-CD200R interaction both

in the hippocampus and in the frontal cortex of young

offspring, mostly at the protein level. In fact, the expres-

sion of CD200 was boosted, whilst the CD200R, which is

located on microglia (Figs. 3 and 4), level declined in

both brain structures. During homeostasis, CD200-

CD200R signalling has a recognized effect on the micro-

glia population because it modulates the proliferation

and apoptosis of the cells [67, 68]. CD200-CD200R axis

controls microglial migration [69] and phagocytosis [70],

while dysfunction of this pathway leads to microglial dis-

inhibition. Cd200-deficient animals showed an increased

production of iNOS [67], higher expression of TNF-α as

well as IFN-γ in the hippocampus [24], which in turn

had a negative effect on neuronal function [71]. The lack

of CD200R produced an exaggerated response of

microglia, i.e., microglia priming, which is linked to

proliferation, altered morphology and production of

pro-inflammatory factors [72].

Fig. 6 The effect of MIA induced by LPS (a) and Poly I:C (b) treatment on the protein levels of IL-1β, TNF-α and IL-6 in the hippocampi (Hp) and
the frontal cortices (Cx) of PND7 offspring. n = 6–8 in each group. The results are presented as the means ± SEMs. *p < 0.05 vs. appropriate
control (kLPS or kPoly)
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Considering the above data highlighting that the

CD200-CD200R axis is an inhibitory system [23], we

next explored the impact of prenatal LPS administration

on the microglia phenotypes and cytokine levels in the

hippocampus and the frontal cortex of young offspring.

Thus, after prenatal LPS treatment, our studies revealed

a dual increase in gene expression in the hippocampus,

including genes related not only to anti- (Arg-1, Tgf-β,

Il-10) but also to the pro-inflammatory phenotype (Il-1β,

Tnf-α) with a concomitant increase in the protein level

of IL-1β. On the other hand, in the frontal cortex of

young offspring, the CD200-CD200R axis deficits were

accompanied by Cd40 upregulation and significantly di-

minished IL-4 release. Although there are still no data

on the effect of MIA on these parameters at PND7, it

has already been shown that anti-inflammatory cytokines

play a crucial role in CD200-CD200R axis regulation.

Among other factors, CD200R expression is strongly up-

regulated by IL-4 and IL-13 [73], which share common

receptor [74, 75], while in Il-4-/- knockout mice, the

level of CD200R in the brain is decreased [76]. Overall,

these data suggest that MIA produced by LPS, through

CD200-CD200R axis dysfunction, could change the im-

mune status of the brain in young offspring.

Continuing our study, we showed that the conse-

quence of MIA evoked by prenatal Poly I:C treatment

on CD200-CD200R crosstalk was less pronounced and

expressed as ligand changes, specifically the downregula-

tion of Cd200 in the frontal cortex and CD200 in the

hippocampus of young animals. The unfavourable influ-

ence of Poly I:C on the CD200-CD200R system during

pregnancy has been reported by Lin et al. [77]. Based on

these data, the deficit of CD200 in Poly I:C-treated off-

spring can have harmful consequences on neuronal

function because, as demonstrated, CD200 binding to

CD200R produces an indirect protective effect on neu-

rons and other cells in the brain [78]. As the expression

of CD200 also affects CD200R activation, indirect effects

Fig. 7 The effect of MIA induced by LPS (a) and Poly I:C (b) treatment on the protein levels of TGF-β, IL-4 and IL-10 in the hippocampi (Hp) and
the frontal cortices (Cx) of PND7 offspring. n = 6–8 in each group. The results are presented as the means ± SEMs. *p < 0.05 vs. appropriate
control (kLPS or kPoly)
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derived from deficits in CD200 levels may influence the

microglia phenotype [79]. Therefore, we next explored

the impact of Poly I:C on the expression of various genes

related to classical and alternative microglial activation

and cytokines release in both brain areas of young off-

spring. Although IBA1 level was reduced in the hippo-

campus, we showed a rise in iNos expression. Recently,

Liu et al. [80] demonstrated the functional role of N-gly-

cosylation of CD200R in classical microglia activation. A

mutation at asparagine 44 (N44) disrupted CD200-

CD200R crosstalk and facilitated classical microglia acti-

vation characterized by the expression of M1-like

phenotype markers, including iNos. On the other hand,

considering the decreased TNF-α, while IL-4 raised pro-

tein levels in the hippocampus at PND7, only the modu-

latory properties of prenatal Poly I:C treatment on the

immune response in the neonatal brain can be sug-

gested. Assessing the changes in the frontal cortex, we

observed that exposure to Poly I:C leads to upregulation

of IL-1β and IL-6 and downregulation of anti-

inflammatory gene expression (Tgf-β and Il-10). It may

be suggested that the changes caused by MIA in

CX3CL1-CX3CR1 and/or CD200-CD200R interactions

and in the developmental trajectory of microglia from

early stages to adulthood depend, at least in part, on the

production of cytokines that act later in time. Indeed,

specific cytokines have been found to play a critical role

both in Poly I:C- and LPS-based MIA. In our study, a ro-

bust increase in IL-6 levels was observed only in off-

spring after prenatal Poly I:C treatment. In line with the

abovementioned fundings, systemic IL-6 injection during

pregnancy was able to generate similar behavioural

Fig. 8 The effect of MIA induced by LPS and Poly I:C treatment on prepulse inhibition of the acoustic startle response (PPI) in male offspring at
PND30 (a) and PND90 (b). n = 23 in the kLPS and LPS groups, n = 21 in the kPoly group and n = 14 in the Poly I:C group. The results are
presented as the means of the percentage of PPI (%PPI) induced by each prepulse intensity ± SEMs. Data were calculated based on the average
startle amplitudes (AVGs). *p < 0.05 vs. appropriate control (kLPS or kPoly)
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deficits as Poly I:C, while the injection with an IL-6-

blocking antibody could prevent MIA-induced behav-

ioural changes [81]. Complementary deletion of the IL-6

receptor from the placenta could prevent MIA-induced

behavioural deficits in offspring [82], while the presence

of IL-6 in maternal blood was sufficient to induce social

impairment in the offspring [83]. When IL-1β and IL-6

levels were simultaneously increased, a reduction of the

elevated IL-1β, which was also observed in our study in

the frontal cortex of offspring prenatally exposed to Poly

I:C, did not alleviate deficits in this model [83]. Since the

administration of an IL-1R antagonist prevents changes

in the placenta and protects prenatally LPS-exposed off-

spring against motor dysfunction, it can suggest that IL-

1β upregulation, shown by us in offspring, is important

for the induction of deficits in the MIA model based on

LPS treatment [84].

Maternal immune activation with LPS and Poly I:C leads

to schizophrenia-like behaviour and neuron-microglia

communication changes in adult male rat offspring

Disturbed sensorimotor gating is one of the behavioural

features observed in patients with schizophrenia [48–50]

and in animal models [33, 51, 85–87]. The PPI deficit

has been proposed as an experimental model of inform-

ative overflow resulting from an inability to properly

perceive and filter information as it appears [88]. Our

previously published data demonstrated age-dependent

alterations in the amplitude of the startle reflex and defi-

cits in PPI evoked by LPS in rats [32, 40, 41]. We con-

firmed these observations and what is more, also those

showing that MIA induced by Poly I:C led to deficits in

PPI in adult offspring [89, 90]. However, these alter-

ations were absent at PND30, which indicated that PPI

changes caused by Poly I:C were also age-dependent.

Fig. 9 The effect of MIA induced by LPS (a) and Poly I:C (b) treatment on anxiety-like behaviour measured in the light-dark box test. n = 8–9 in
the kLPS and LPS groups, n = 19–21 in the kPoly and Poly I:C groups. The results are presented as the means ± SEMs. *p < 0.05 vs. appropriate
control (kLPS or kPoly)
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The functional basis of PPI is regulated by the brain-

stem, but it is highly modulated by cerebral (including

frontocortical) inputs [91, 92] as well as dopamine [93, 94]

and serotonin transmission [95, 96]. Since CX3CL1 signal-

ling participates in the regulation of these neurotransmit-

ters [97, 98], the question arises whether and how the

increase in CX3CL1 level in the frontal cortex of offspring

during the neurodevelopmental period could affect PPI

deficits. Considering that the lack of CX3CL1 signalling

and weakened crosstalk between neurons and microglia

affects transmission efficiency in synapses in an adult

brain [99], a significance of changes in the level of this lig-

and in adult animals can be considered. In prenatally LPS-

treated offspring, we also demonstrated dysfunction of the

CD200-CD200R interaction and IL-1β upregulation,

which, in turn, both potentiate dopaminergic-induced

neurodegeneration [100] and contribute to cognitive im-

pairment [101]. In line with the above results, the most in-

triguing observation indicates that MIA evoked by LPS

treatment dysregulated these parameters in both studied

brain structures in young offspring, but CD200R deficit

was also observed in the hippocampus of adult offspring

in both MIA models. Hence, the changes in the CD200-

CD200R axis seem to be long term and therefore should

be included while analysing the mechanism of behavioural

deficit development.

Anxiety and social withdrawal are symptoms com-

monly observed in patients with schizophrenia [52, 102].

Concerning these behavioural characteristics, the repeated

administration of LPS during pregnancy resulted only in a

tendency towards anxious behaviour in adult offspring,

which was indicated by the reduced light-dark box explor-

ation. Similar observations have been reported for the pro-

geny of mouse dams injected with LPS at GD9 when

challenged in adulthood [103]. Also, the offspring pre-

natally exposed to intrauterine inflammation [104] and

vaginitis [105], which are both induced by LPS treatment,

manifested anxiety-related behaviours. Additionally, in

Fig. 10 The effect of MIA induced by LPS (a) and Poly I:C (b) treatment on social (aggressive and non-aggressive) behaviour measured in the
social interaction test. n = 6 in each group. The results are presented as the means ± SEMs. *p < 0.05 vs. appropriate control (kLPS or kPoly)
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our study, the LPS-treated adult male rats did not display

any changes in social interactions. This finding contrasts

with the data described previously by our group [85],

which could result from differences in protocols applied

[43], with previously based on the assessment of social be-

haviour using the resident-intruder paradigm. At the same

time, for adult male animals from the Poly I:C group, we

revealed an anxiolytic phenotype, which may indicate that

prenatal contact with Poly I:C resulted in an elevation of

psychomotor activity and apparently reduced the animal’s

innate fear of open spaces, which facilitated exploration. A

similar tendency was observed by Vorhees et al. [106]. A

potential explanation for these changes is difficult to pro-

vide; nonetheless, to some extent, the reduced level of

CX3CR1 observed in the hippocampus of these young rats

should be considered. The results of Bachstetter et al.

[107] have suggested that CX3CL1-CX3CR1 signalling has

a regulatory role in modulating hippocampal neurogen-

esis. In addition, hippocampal neurogenesis has been im-

plicated, for example, in stress resiliency in relation to

anxiety disorder [108]. Research on 4-month-old female

Cx3cr1-/- mice has revealed that these knockout animals

have a hyperactive, anxiolytic-like phenotype [109]. In our

study, in the adult males exposed to Poly I:C, the social in-

teractions were shifted towards enhanced aggressive be-

haviour. Similarly, experimental data from animal models

wherein Poly I:C was administrated to pregnant mice have

highlighted the presence of an aggressive phenotype in

adult offspring [110, 111]. Therefore, the diminished hip-

pocampal CX3CR1 level, which we observed in prenatally

Fig. 11 The effect of MIA induced by LPS (a) and Poly I:C (b) treatment on the protein levels of CX3CL1, CX3CR1, CD200 and CD200R in the
hippocampi (Hp) and the frontal cortices (Cx) of PND93 offspring. n = 6–8 in each group. The results are presented as the means ± SEMs. *p <
0.05 vs. appropriate control (kLPS or kPoly)
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Poly I:C-treated young offspring, opens the possibility that

disruptions of microglia-mediated activity could contrib-

ute to neurodevelopmental deficits manifested as behav-

ioural schizophrenia-like changes in adulthood.

Limitations of our study

One of the limitations in the present study is the fact

that our research was concentrated only on male off-

spring of Wistar rats. The main reason came from the

evidence that the incidence of schizophrenia is signifi-

cantly higher in men than it is in women [112–114].

Additionally, in terms of disease onset, symptom sever-

ity, neuropathology and response to treatment, there are

notable differences between men and women suffering

from this psychiatric disease [115, 116]. The experimen-

tal data have indicated sex as a moderating factor in

schizophrenia for a wide range of biochemical character-

istics, including glutamatergic transmission [117], the

GABA-ergic system [85] and, what is crucial in the con-

text of this article, the microglial phenotype [118–121].

Among other mechanisms, increased microglial reactiv-

ity to prenatal immune challenges, determining disease

outcome in adulthood, shows a robust sex bias [118].

Therefore, it cannot be excluded that the picture of

MIA-induced effects on the CX3CL1-CX3CR1 and

CD200-CD200R axes and microglial phenotype may be

different in females and thus should be a focus of further

studies.

As the second limitation may be considered the fact

that we performed the immunohistofluorescent stainings

only to visualize the localization of the ligands (CX3CL1,

CD200) and the receptors (CX3CR1, CD200R) on differ-

ent cell types in brain areas of the young offspring from

the control groups and the animals prenatally exposed

to MIA. In our study, the effect of MIA on the ligand-

receptor signalling pathways was assessed by applying

the biochemical techniques (qRT-PCR, ELISA) in the

homogenates of whole structures (hippocampus, frontal

cortex). Nevertheless, we are fully aware that the quanti-

tive analysis of the images could give additional import-

ant information about the cell- and area-dependent

impact of MIA and should be considered in future

studies.

Conclusions
Our data demonstrated that MIA with LPS and Poly I:C

alters developmental trajectories in neuron-microglia

communication, especially the CX3CL1-CX3CR1 and

CD200-CD200R systems, in the brains of young off-

spring. In addition, our data suggest that MIA-induced

abnormalities may represent an important mechanism

for the emergence of functional microglial changes asso-

ciated with imbalances in the offspring immune system.

Our data do not provide a direct link between the al-

tered CX3CL1-CX3CR1 and/or CD200-CD200R axes in

young offspring and the occurrence of behavioural dis-

turbances in adulthood. However, our results highlight

for the first time that neuron-microglia abnormalities

emerging after prenatal immune challenge may affect

early neurodevelopment of the brain of young male off-

spring. Whether neuron-microglia changes generated by

MIA are a potential mechanism of brain pathology, lead-

ing to schizophrenia, requires further research.
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Additional file 1: Table S1. A list of genes (with corresponding
catalogue numbers of TaqMan probes) examined in the hippocampi and
the frontal cortices of male offspring at PND7 using qRT-PCR. B2m or Hprt
were used as the reference genes.

Fig. 12 The effect of MIA induced by LPS (a) and Poly I:C (b) treatment on the protein level of IBA1 in the hippocampi (Hp) and the frontal
cortices (Cx) of PND93 offspring. n = 6–9 in each group. The results are presented as the means ± SEMs. *p < 0.05 vs. appropriate control (kLPS
or kPoly)
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Additional file 2: Figure S1. Immunohistofluorescent staining of
CX3CL1-CX3CR1 (A, B) and CD200-CD200R (C, D) localization on neurons
and microglial cells in the DG of the hippocampus of PND7 offspring
after MIA induced by LPS treatment. Representative confocal images
showing colocalization of CX3CL1/CD200 (red) immunoreactivity with
MAP2 (green)-positive neurons and CX3CR1/CD200R (red) immunoreac-
tivity with IBA1 (green)-positive microglial cells. n = 2 in each group.
Magnification: 40x for all images. Scale bar (10 μm) is located in the bot-
tom right corner of each image.

Additional file 3: Figure S2. Immunohistofluorescent staining of
CX3CL1-CX3CR1 (A, B) and CD200-CD200R (C, D) localization on neurons
and microglial cells in the DG of the hippocampus of PND7 offspring
after MIA induced by Poly I:C treatment. Representative confocal images
showing colocalization of CX3CL1/CD200 (red) immunoreactivity with
MAP2 (green)-positive neurons and CX3CR1/CD200R (red) immunoreac-
tivity with IBA1 (green)-positive microglial cells. n = 2 in each group.
Magnification: 40x for all images. Scale bar (10 μm) is located in the bot-
tom right corner of each image.

Additional file 4: Figure S3. Immunohistofluorescent staining of
CX3CL1-CX3CR1 (A, B) and CD200-CD200R (C, D) localization on neurons
and microglial cells in the CA1 field of the hippocampus of PND7 off-
spring after MIA induced by LPS treatment. Representative confocal im-
ages showing colocalization of CX3CL1/CD200 (red) immunoreactivity
with MAP2 (green)-positive neurons and CX3CR1/CD200R (red) immuno-
reactivity with IBA1 (green)-positive microglial cells. n = 2 in each group.
Magnification: 40x for all images. Scale bar (10 μm) is located in the bot-
tom right corner of each image.

Additional file 5: Figure S4. Immunohistofluorescent staining of
CX3CL1-CX3CR1 (A, B) and CD200-CD200R (C, D) localization on neurons
and microglial cells in the CA1 field of the hippocampus of PND7 off-
spring after MIA induced by Poly I:C treatment. Representative confocal
images showing colocalization of CX3CL1/CD200 (red) immunoreactivity
with MAP2 (green)-positive neurons and CX3CR1/CD200R (red) immuno-
reactivity with IBA1 (green)-positive microglial cells. n = 2 in each group.
Magnification: 40x for all images. Scale bar (10 μm) is located in the bot-
tom right corner of each image.

Additional file 6: Figure S5. Immunohistofluorescent staining of
CX3CL1-CX3CR1 (A, B) and CD200-CD200R (C, D) localization on neurons
and microglial cells in the CA3 field of the hippocampus of PND7 off-
spring after MIA induced by LPS treatment. Representative confocal im-
ages showing colocalization of CX3CL1/CD200 (red) immunoreactivity
with MAP2 (green)-positive neurons and CX3CR1/CD200R (red) immuno-
reactivity with IBA1 (green)-positive microglial cells. n = 2 in each group.
Magnification: 40x for all images. Scale bar (10 μm) is located in the bot-
tom right corner of each image.

Additional file 7: Figure S6. Immunohistofluorescent staining of
CX3CL1-CX3CR1 (A, B) and CD200-CD200R (C, D) localization on neurons
and microglial cells in the CA3 field of the hippocampus of PND7 off-
spring after MIA induced by Poly I:C treatment. Representative confocal
images showing colocalization of CX3CL1/CD200 (red) immunoreactivity
with MAP2 (green)-positive neurons and CX3CR1/CD200R (red) immuno-
reactivity with IBA1 (green)-positive microglial cells. n = 2 in each group.
Magnification: 40x for all images. Scale bar (10 μm) is located in the bot-
tom right corner of each image.
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