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The technology to collect brain imaging and physiological measures has become

portable and ubiquitous, opening the possibility of large-scale analysis of real-world

human imaging. By its nature, such data is large and complex, making automated

processing essential. This paper shows how lack of attention to the very early stages

of an EEG preprocessing pipeline can reduce the signal-to-noise ratio and introduce

unwanted artifacts into the data, particularly for computations done in single precision.

We demonstrate that ordinary average referencing improves the signal-to-noise ratio,

but that noisy channels can contaminate the results. We also show that identification

of noisy channels depends on the reference and examine the complex interaction of

filtering, noisy channel identification, and referencing. We introduce a multi-stage robust

referencing scheme to deal with the noisy channel-reference interaction. We propose a

standardized early-stage EEG processing pipeline (PREP) and discuss the application

of the pipeline to more than 600 EEG datasets. The pipeline includes an automatically

generated report for each dataset processed. Users can download the PREP pipeline as

a freely available MATLAB library from http://eegstudy.org/prepcode.
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Introduction

Traditional EEG experiments typically collect data from a limited number of subjects in a controlled
environment with the purpose of discovering similarities and differences in subject response as
a few experimental parameters are varied. Recent improvements in technology and recognition
of the potential applications of real-world brain imaging using EEG supported by physiological
monitoring are shifting experimental paradigms toward large-scale data collection under more
loosely controlled conditions (Liao et al., 2012; Ortiz-Rosario and Adeli, 2013).

In addition to technology advances, the recognition of the significant inter- and intra-subject
variability in EEG, as well as the variety of possible environmental interactions that might
significantly affect brain behavior, have given impetus to large-scale testing of generalizability
across subjects and paradigms. On the analysis side, new methods in machine learning rely on the
transfer of knowledge from data acquired under one set of conditions to learn patterns or to classify
data acquired in another situation. Large-scale use of transfer learning requires “interoperability”
of data collections. The machine learning community has also recognized that most algorithms
require large amounts of data in order to achieve the prediction accuracies needed for real-world
applications.
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Efforts to pool data acquired under a variety of experimental
conditions face several roadblocks due to lack of standards for
data preparation. Researchers must worry about the accuracy of
the time synchronization, particularly for experiments recording
additional data streams in conjunction with EEG. Real-world
imaging, and longer recording sessions in general, are prone to
many more “technical errors” as well as to subject-generated
artifacts. Finally, the original experimenter is likely to have
retained multiple versions of the data preprocessed in an
undocumented manner.

The importance of standardization and automatization is
starting to be recognized (Keil et al., 2014). Gross et al.
(2013) lay out extensive guidelines for handling MEG data,
including recommendations for processing approaches, caveats,
and reporting requirements for a variety of applications.
Although some of these standards are also applicable to EEG,
artifact removal and validation of processing approaches remain
a long-standing open problem for EEG. While most researchers
perform filtering, referencing, and artifact removal prior to
further analysis, the process is by no means standardized or
automated.

The lack of standardization of data preparation presents a
dilemma for researchers who wish to share data or to combine
data from multiple collections for analysis. Machine-learning
algorithms are notoriously sensitive to preprocessing and feature
normalization. Common transformation techniques such as
independent component analysis (ICA) are also quite sensitive
to data preparation. Although features such as correlation or
spectral features can be somewhat self-normalizing, amplitude-
based features often vary dramatically in scale from headset to
headset and from session to session. While normalization can
reduce cross session/subject/headset variations, normalization of
data contaminated by large experimentally generated artifacts
does not generally improve the signal-to-noise ratio and
frequently results in mis-training and poor performance from
machine learning algorithms.

This paper reports on our efforts to develop a standardized,
completely automated and hopefully non-controversial early-
stage preprocessing pipeline (the PREP pipeline) that detects
and removes certain experimentally generated artifacts. We
distinguish externally generated experimental artifacts such as
electrical interference from subject-generated artifacts such as
eye blinks or muscle activations, which may contain information
about subject state. Researchers could remove these subject-
generated artifacts by applying additional processing pipelines to
the preprocessed data.

A primary goal of this work is to produce EEG data in
a standardized, “depositable” format suitable for large-scale
downstream analysis acrossmultiple collections. By “depositable”
we mean a format that analysts would find acceptable as
input for most applications in lieu of raw data. Many of the
decisions made are open to debate. However, adoption of some
standardized format is necessary for progress in large-scale
machine learning applications of EEG. Raw data provides too
rough and undocumented an interface for effective automated
downstream processing. Two key decisions support this effort:
the pipeline should be completely automated and the repository

should maintain the original data in a format suitable for input
into this pipeline. Thus, if the pipeline is later modified, the
owners of the repository can rerun the processing and produce
a new fully documented release of the repository.

The depositable preprocessing pipeline consists of three steps:
perform an initial clean-up, determine and remove a robust
reference signal, and interpolate the bad channels (channels with
a low recording SNR). The output consists of the EEG data
saved in an EEGLAB EEG structure along with auxiliary files to
make the events, channels and metadata easily available for input
in systems other than MATLAB. We provide source functions,
built on standard HDF5 libraries to read both the data and the
metadata in MATLAB, R, Python, Java, and C. In this way, users
can import data into other systems for computing. Users can run
the preprocessing through EEGLAB as a plugin, as a standalone
function, or as part of the containerized pipeline.

The PREP pipeline has an additional reporting capability
that produces a pdf document for each data set. The report
summarizes the dataset characteristics and identifies potentially
bad sections of the signal for further analysis. The pipeline
uses some simple heuristics that allow researchers to assess
quickly whether a particular dataset might have issues. When
dealing with hundreds or potentially thousands of datasets,
such a capability is important. When a particular dataset shows
anomalous downstream results, the researcher can examine the
reports for unusual features or behavior that would indicate
experimental artifacts. Additional utility functions provide
summaries of an entire data collection and identify potential
issues. The following subsections discuss each step (initial clean-
up, referencing, and interpolation) in more detail. We found a
complicated interaction between high-pass filtering, line noise
removal, and referencing, which we describe below in more
detail.

The remainder of this paper describes the proposed PREP
preprocessing pipeline, explains the reasoning behind the
decisions made at each point, and demonstrates the effectiveness
of the approach in a variety of situations. Section Early
Stage Preprocessing (PREP) describes the pipeline components.
Section Reporting and Some Example Results shows examples
of the types of anomalies that can occur in individual datasets,
and Section Summary Measures presents examples of collection
summaries. Section Other Tests reports the results of applying
the pipeline to EEG with synthetically generated bad channels
and examines the downstream effects of the pipeline on
classification. Section Discussion summarizes the results and
offers some concluding remarks. It should be emphasized that
this pipeline only performs very early-stage preprocessing and
does not preclude additional automated preprocessing. We
return to this issue in Section Discussion.

Early Stage Preprocessing (PREP)

The philosophy of the PREP pipeline is to perform preprocessing
needed to standardize the data into a form that is useful for a
variety of applications, while preserving as much of the signal as
possible. Unfortunately, specialization and standardization may
conflict with respect to collection development, and there can be
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a complex interaction between exact choice of preprocessing such
as filtering and downstream behavior (Widmann and Schröger,
2012). On the other hand, providing collections that only have
raw data and no standardized preprocessed data is problematic
for exactly the same reason.

A major goal of large-scale collection development is to
test the robustness of approaches and to compare neurological
phenomena across subjects and experiments. Such comparisons
need to start from well-documented analysis-ready base data
sets. A critical step for automated large-scale processing is
the identification and removal of bad channels, since many
algorithms will fail in the face of egregiously bad signals. As
described below, there is a complicated interaction between
bad channels and referencing. PREP performs automated noise
removal, bad channel detection, and referencing in a way that
allows users to specialize the data to particular applications
without having to work with the raw data.

A summary of the PREP pipeline is:

1. Remove line-noise without committing to a filtering strategy.
2. Robustly reference the signal relative to an estimate of the

“true” average reference.
3. Detect and interpolate bad channels relative to this reference.
4. Retain sufficient information to allow users to re-reference

using another method or to undo interpolation of a particular
channel.

While the steps seem simple, we demonstrate the variety of
issues that arise when these steps are not performed uniformly
across datasets. The PREP pipeline also provides very detailed
summary information and visualizations that allow researchers
to identify unusual features at a glance. The remainder of this
section discusses the components of the PREP pipeline and their
interactions.

Line Noise Removal
Many analysts automatically perform a notch filter at 60Hz to
remove line noise. Such notch filters often use a notch width
of 10Hz or larger, resulting in significant signal distortion in
frequencies between 50 and 70Hz. This distortion should not be
an issue for analyses that immediately apply a low-pass filter to
the signal, say at 40Hz, but may preclude certain high-frequency
studies. Some studies have also shown that non-causal low-
pass filtering can significantly change ERP onsets (Vanrullen,
2011; Rousselet, 2012). In addition, Barnett and Seth (2011) have
shown that filtering, particularly low pass filtering, can have a
damaging impact on Granger causality and other connectivity
computations.

Mitra and Pesaran (1999) suggest a multi-taper
decomposition approach for identifying and removing line
noise components while minimizing background signal
distortion. We leverage routines from the cleanline EEGLAB
plugin developed by Mullen (2012), which extends functionality
from the open source Chronux toolbox (Mitra and Bokil,
2007). This method traverses the data using a short sliding
window (4 s with a 1-s slide by default). The method transforms
the data in each window into the frequency domain using a
set of Slepian or multi-tapers with a predetermined spectral

resolution. Such tapers are ideal for isolating spectral energy
within frequency bands, even for short time windows. By
default, we use a taper bandwidth (TBW) of 2Hz in each
4-s sliding window (W), which contains N sample points.
The Slepian tapers are created by calling dpss(N, TBW*W/2,
TBW*W–1) where dpss is the discrete prolate spherical
sequence function from the MATLAB Signal Processing
Toolbox.

The cleanline method fits a frequency-domain regression
model to estimate the amplitude and phase of a deterministic
sinusoid of a specified frequency, embedded in locally white
noise. This is an idealized model of sinusoidal line noise
of unknown phase and amplitude. A Thompson F-test
assesses whether the complex amplitude is significantly non-
zero. If the amplitude is significant (p < 0.01), the
method reconstructs the time-domain sinusoid for the line
noise frequencies. The method stitches together results from
successive overlapping windows by using a sigmoidal weighted
average specified by a smoothing parameter tau (100 by
default). Finally, the method subtracts this fitted signal
from the data. We repeat this process (a maximum of 10
iterations by default) until the sinusoid amplitude for the
specified frequencies is not significantly different from the
background.

In practice, the exact line frequency is unknown and variable.
Following Mitra and Pesaran, we apply the regression model
across a range of frequencies centered on each candidate
line-noise frequency and select the frequency that maximizes
the Thompson F-statistic. The range is +/− fScanBandwidth,
which is 2Hz by default. The user must provide a rough
estimation of the line frequencies or use the defaults of 60Hz
with harmonics that are multiples of 60 up to the Nyquist
frequency. The advantage of this approach over notch filtering
is that it removes only deterministic line components, while
preserving “background” spectral energy. The sliding window
estimation further allows for non-stationarities in the phase
and amplitude of the line component. The PREP pipeline
function encapsulates this denoising functionality in the function
cleanLineNoise.

Figure 1 shows examples of channel spectra before and after
application of cleanLineNoise for two EEG datasets from the same
collection using a Biosemi 64-channel EEG headset. The channel
in Figure 1A had narrow noise peaks, and cleanLineNoise was
able to remove spectral peaks at 60 and 180Hz below the
significance level with little distortion in the overall spectrum.

The cleanLineNoise function reduced the 60 and 180Hz
peaks of the channel in Figure 1B, but the algorithm could
not deal with the underlying spectral distortions at these
frequencies. This channel had narrow spectral peaks at 120
and 240Hz, which the algorithm did successfully remove.
The cleanLineNoise function also reduced a designated 212Hz
spectral peak. Although cleanLineNoise was not able to clean
this spectrum, the corresponding channel failed all of the noisy
channel detection criteria at the next stage. Robust referencing
subsequently replaced the channel with its interpolated value.
The ringing behavior of Figure 1B is typical of channels with
large, non-stationary spectral artifacts.
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FIGURE 1 | Selected channel spectra from 64-channel Biosemi EEG

before and after line noise removal. Spectral power is in units of

10log10

(

µV2
)

. Data was high-pass filtered at 1Hz prior to line noise

removal. (A) A channel with sharp peaks at 60 and 180Hz. (B) A channel

contaminated by non-stationary transformer noise. This channel is

interpolated at a later stage in the pipeline.

High-pass Filtering-line Noise Removal
Interaction
In the original version of the pipeline, we high-pass filtered at
1Hz before removing line noise. The signals of Figure 1 have
been high-pass filtered prior to line-noise removal. However, our
users were concerned about the effect of high-pass filtering on
ERP and connectivity analyses. These concerns and a series of
articles about the perils of filtering for ERP processing (Vanrullen,
2011; Acunzo et al., 2012; Rousselet, 2012; Widmann and
Schröger, 2012; Widmann et al., 2014; Tanner et al., 2015) caused
us to re-evaluate the approach.We decided that it would be better
to perform line noise removal as well as referencing and bad
channel interpolation without committing to a particular high-
pass filtering strategy. This section discusses the consequences of
that strategy.

Extensive tests showed that the line-noise removal algorithms
do not perform well if done without prior high-pass filtering
or trend removal. As with other Fourier transform approaches,
multi-taper spectral estimation assumes signal stationarity,

and therefore removal of long-term trend prior to spectral
estimation can improve estimation and interpretation of the
signal spectrum. EEG signals often exhibit large temporal non-
stationarities due to drift, which affect subsequent analyses.
Figures 2A–C show three examples (channels 1, 18, and 7) from
the same session using a 64-channel Biosemi headset recorded
over 10min. Channel 1, which follows a linear trajectory over
the entire period, has a correlation of 0.997 with a best-fit line
whose slope is approximately 8. In contrast, channel 18 has a
correlation of−0.039 with a best-fit line of slope−0.028 over this
period. Channel 18 exhibits large-scale non-stationarities over a
shorter time scale than does channel 1. Channel 7, another typical
channel, has a correlation of−0.838 and a slope of−0.855.

While the presence of drift in EEG is well known, the lack
of consistency of the drift across time and channels and its
effect on order of computations and round-off may not be fully-
appreciated. Figure 2F shows a plot of the correlation of channel
signal with its best-fit line vs. the slope of that line for the 64 EEG
channels of this session. The sigmoidal shape is typical across
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FIGURE 2 | Raw data from three channels taken from a single

session recorded using a 64-channel Biosemi headset. Voltages

are in units of microvolts. Spectral power is calculated in units of

10log10

(

µV2
)

. (A) A channel that is highly correlated (0.997) with its

linear trend line (shown in red). (B) A channel that is weakly

anti-correlated (−0.039) with its linear trend line (shown in red). (C) A

channel that is anti-correlated (−0.838) with its linear trend line (shown

in red). (D) Power spectrum of the channel shown in (A). Medium gray

line corresponds to the spectrum of original data. Thick gray line

corresponds to data high-pass filtered at 0.3Hz followed by line noise

removal. Blue line corresponds to data cleaned of line noise then

high-pass filtered at 0.3Hz. Red line corresponds to data where line

noise removal and subsequent filtering are applied after removal of the

global best-fit linear trend. (E) Power spectrum of channel shown in (B)

shown as in part (D). (F) Correlation of all of the channels in this

dataset with their best-fit line vs. the slope of that best-fit line.

headsets and sessions, however there is no consistency in the
details with respect to channel and headset. Some sessions have
all channels on one side or the other of the curve, while others
are mixed. High-pass filtering removes this non-stationarity, but
pipelines that perform any operations prior to high-pass filtering
should take this drift into account. In particular, referencing done
in single precision prior to high pass filtering is dominated by this
effect and does not achieve the desired removal of common noise
sources.

These long-term signal non-stationarities also affect themulti-
taper line noise removal algorithm. Figures 2D,E show the

power spectra corresponding to the signals of Figures 2A,B,
respectively. The medium gray line (“Original”) is the power
spectrum of the original signal without any processing, while the
thick gray line (“Filter Line”) shows the signal after high-pass
filtering at 0.3Hz followed by line noise removal. The blue line
shows the result of removing line noise and then performing
the high-pass filter. The multi-taper removal algorithm relies on
significance testing and cannot detect line noise with sufficient
precision when there are large spectral effects due to non-
stationarity. When the signal is subsequently high-pass filtered,
a large spectral peak remains (“Line Filter”).
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The red lines in Figures 2D,E are the result of subtracting the
linear trend line from the signal, followed by line noise removal,
followed by high-pass filtering (“Model - LF”). After removing
the trend, the multi-taper procedure is able to detect and remove
line noise adequately.

We obtain essentially the same results if we high-pass the
original signal, remove line noise from the high-passed signal,
and capture the signal that was removed. We subtract the
captured noise signal from the original signal to obtain a
“cleaned” unfiltered signal. If we subsequently high-pass filter
the cleaned unfiltered signal, we find the line noise has been
removed as though the signal had been filtered prior to line
noise removal. The result is similar for a 1Hz high-pass filter.
The PREP pipeline uses this strategy for its line noise removal
to avoid committing to a filtering strategy for the final pipeline
output.

The PREP pipeline uses the EEGLAB pop_eegfiltnew function
contributed to the EEGLAB distribution by Andreas Widmann
for this stage. We use the default filter settings and a 1Hz high-
pass cutoff. We also note that double precision computation is
essential because round off in single precision quickly destroys
any natural commutativity of the linear operations. Many
EEGLAB functions routinely call the EEGLAB eeg_checkset
function, which converts EEG data to single precision by default.
A user can override these defaults by setting option_single
to false using the pop_editoptions function. The top-level
functions in the PREP library automatically set option_single to
false and consistently maintain double precision computations
throughout.

Referencing
Some EEG headsets (such as Neuroscan) use amplifiers that apply
common mode rejection directly, while other headsets (such as
Biosemi) require that researchers subtract a reference in post
processing to achieve optimal signals. Common choices for a
reference signal include the signal at a particular channel, a
mastoid channel, the average of two mastoid channels, or the
overall signal average. We have found all of these choices to be
problematic. For either mastoid or ordinary average referencing,
poor contact of an EEG sensor can increase the respective
signal variance by several orders of magnitude relative to other
channels and thereby contaminate the entire dataset. Removing
the average of all of the channels somewhat mitigates this effect,
but does not eliminate the problem. The average can be highly
skewed by a single outlier.

Using mastoid referencing is problematic for large-scale
analysis for several reasons. Many researchers do not record
mastoids at all and the actual recording locations may vary
across experiments that do record mastoids. In addition, using
a mastoid reference introduces a single point of failure—a loose
mastoid at any point during the session can introduce enormous
artifacts. We also found that average referencing produces data
with different statistics than mastoid referencing does. These
differences influence the consistency of downstream operations.
Several authors (Essl and Rappelsberger, 1998; Hu et al., 2010)
have demonstrated the impact that referencing has on bivariate
measures such as correlation, phase synchrony, and coherence.

To mitigate the interaction between referencing and bad
channels, we introduce a robust referencing algorithm. The
premise of robust referencing is that noisy channels can
irrecoverably contaminate the signal when preprocessing applies
average referencing prior to bad channel detection. In order to
get a consistent reference and to detect bad channels uniformly,
one has to estimate the true average reference when there are no
bad channels. Figure 3 shows some examples of the difference
between average reference and robust average reference from
a collection of 80 EEG datasets acquired from a 32-channel
Neuroscan headset. The ordinary average reference is the average
of the EEG channels after line noise removal. The robust average
reference procedure, described in more detail below, tries to
estimate the true average of the EEG channels after removing
contamination by bad channels. The left column plots the robust
average reference vs. the ordinary average reference. The right
column displays the difference between the average reference and
the robust average reference as a function of time. If PREP does
not detect any bad channels, these two reference signals will be
identical. The graph in the left column will be a 45◦, and the
graph on the right will be a horizontal line. All of the datasets
displayed in Figure 3 have been filtered at 1Hz for display
purposes.

Figure 3A shows the results for a dataset whose average and
robust average references have a 0.996 correlation. Although the
correlation between the two references is high, the reference
variability can still be as large as 20% of the signal at
different times during the experiment. Ultimately, the PREP
pipeline interpolated two channels of this dataset during robust
referencing.

Figure 3B shows a dataset whose average and robust reference
have a correlation of 0.248. The variability is due to a single,
very noisy channel that had intermittent behavior of dropouts
and large amplitude variations. Here, robust referencing makes
a significant difference throughout the entire dataset.

Figure 3C shows a dataset whose average and robust reference
have a correlation of 0.171. Again, the very noisy reference
pattern is due to a single intermittent channel. The preprocessing
pipeline interpolated a single channel of this dataset after robust
referencing.

Figure 4 compares the actual signal after average reference
(top panel) and robust average reference (bottom panel) for
a typical time segment for the dataset shown in Figure 3B.
Ultimately, the preprocessing pipeline interpolated four channels
of this dataset during robust referencing. The proposed robust
referencing approach produces the same results as average
referencing if there are no bad channels.

Overview of the Referencing Procedure
The premise of robust referencing is that bad channels should
be computed after data has been referenced to a reference signal
that is maximally similar to the true average of the signal, i.e.,
if none of the channels were bad. This approach allows the
algorithms to consistently apply thresholds (which are mostly
z-score based) without contamination by low recording SNR
signals. The algorithm proceeds in two phases: estimate the
true signal mean and use the signal referenced by this mean to
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FIGURE 3 | A comparison of ordinary average reference and

robust average referencing in three 32-channel Neuroscan

datasets. Datasets have been high-pass filtered at 1Hz. Each row

corresponds to a different dataset from the same collection. Points on

the graph correspond to individual time points in their respective

datasets. The left graph in each row shows the ordinary average

reference (with no bad channel interpolation) on the vertical axis and the

robust average reference on the horizontal axis. The right graph shows

the difference between the ordinary and robust average references as a

function of time. (A) Example where correlation between the two is

0.996. (B) Example where correlation is 0.248. (C) Example where

correlation is 0.171.

find the “real” bad channels and interpolate. To summarize the
referencing procedure:

Phase 1: Estimate the true signal mean
EEGTemp = EEG – initial robust estimate of mean (median by
default)
badChannels= [];
iterations= 0;
repeat

Detect bad channels for EEGTemp using findNoisyChannels
Add any newly detected bad channels to badChannels
break from loop if badChannels didn’t change or iteration
criteria has been met

newMean = mean of EEG with all current badChannels
interpolated
EEGTemp= EEG− newMean
iterations= iterations+ 1;

end repeat
referenceSignal=mean of EEG with current list of bad channels
interpolated

Phase 2: Find the bad channels relative to true mean

and interpolate
EEG= EEG – referenceSignal
Detect bad channels for EEG using findNoisyChannels
EEG= EEG with bad channels interpolated in EEG
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FIGURE 4 | Comparison of the ordinary and robust average references for the dataset of Figure 3B. (A) Example signal after ordinary average referencing.

(B) Same signal using robust average referencing. The data has been high-pass filtered at 1Hz.

referenceCorrection=mean EEG
EEG= EEG – referenceCorrection
referenceSignal= referenceSignal+ referenceCorrection

For most EEG datasets, the iteration of phase 1 is unnecessary
as the algorithm interpolates all bad channels on the first step.
However, extremely noisy channels may skew even the initial
robust statistics used in the algorithm, and the z scores adjust
once the algorithm interpolates extreme channels. The second
phase of the algorithm allows “channel forgetting,” since exactly
which channels the algorithm accumulates as bad can depend
on what the initial estimate of the reference is. Detecting bad
channels relative to the “true mean” allows a much more
uniform approach to setting thresholds needed for automated
processing.

Detecting Noisy or Outlier Channels
Several stages of the pipeline require the detection of bad
or outlier channels. The current version of the noisy channel
detector uses four primary measures: extreme amplitudes
(deviation criterion), lack of correlation with any other channel
(correlation criterion), lack of predictability by other channels
(predictability criterion), and unusual high frequency noise
(noisiness criterion). Several of the criteria use a robust z score,
replacing the mean by the median and the standard deviation
by the robust standard deviation (0.7413 times the interquartile
range). The algorithm also detects channels that contain any
NaN (not-a-number) data or that have significant periods with
constant values or very small values.

The deviation criterion calculates the robust z score of the
robust standard deviation for each channel. Channels designated
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as bad-by-deviation have a robust z score greater than 5. This
strategy accounts for differences in amplitude across datasets
and does not identify channels that capture eye-blinks and most
muscle activity as noisy. We also calculate a robust amplitude
adjusted z score for each channel in small, non-overlapping time
windows (1 s by default), using the overall robust median and the
overall robust standard deviation in the z-score calculation. We
retain the windowed values for downstream use in the reporting
functions.

The correlation criterion is based on the observation that the
low frequency portion of EEG signals is somewhat correlated
(but not too correlated) among channels. Using signals low-
pass filtered at 50Hz, we calculate the correlation of each
channel with the other channels in small, non-overlapping time
windows (1 s by default). We calculate the maximum absolute
correlation as the 98th percentile of the absolute values of
the correlations with the other channels in each window. The
algorithm designates a channel as bad-by-correlation if this
maximum correlation is less than a threshold (0.4 by default)
for a certain percentage of the windows (1% by default). We also
retain the individual maximum correlations in each window for
downstream reporting.

The predictability criterion also relies on the channel
correlations of the low frequency portion of EEG signals.
Although the bad-by-correlationmeasure effectively detects most
bad channels, there are some situations in which channels “go
bad together.” We use the RANSAC (random sample consensus)
method (Fischler and Bolles, 1981) to select a random subset of
(so far) good channels to predict the behavior of each (excluded
from subset) channel in small non-overlapping time windows
(5 s by default). The implementation is based on functions in
BCILAB (Kothe and Makeig, 2013).

The bad-by-RANSAC channels behave in a manner poorly
predicted by the other channels. Before applying RANSAC,
we remove channels designated as noisy by other methods.
We then select a random subset of predictor channels for
each channel (25% by default). If not enough channels remain
to form the required subsets, the algorithm terminates. The
RANSAC algorithm uses a method of spherical splines for
estimating scalp potential based on algorithms proposed by
Perrin et al. (1989). Bad-by-RANSAC channels have a correlation
less than a threshold (0.75 by default) with their RANSAC-
predicted time courses on more than a certain fraction of
the windows (0.4 by default). The RANSAC default window
size is 4 s.

The noisiness criterion of signal quality uses a robust estimate
of the ratio of the power of the high frequency components
to the power in the low frequency components. We apply a
50Hz low pass FIR filter to separate the low and high frequency
components. We define the noisiness as the ratio of the median
absolute deviation of the high frequency component over the low
frequency component for each channel and compute a robust
z score relative to all of the channels. Channels designated as
bad-by-HF-noise have a robust z score greater than 5. As with
amplitude, we calculate a robust noise adjusted z score for each
channel in small, non-overlapping time windows (1 s by default)
and save the windowed z scores for downstream reporting.

The deviation criteria works well for detection of unusually
high amplitudes, but does not work well for extremely low, non-
zero amplitudes. Furthermore, once PREP subtracts a reference
signal, these low-SNR channels will essentially contain the
channel mean and may no longer have a low amplitude or
poor correlation. To handle this case, we designate channels
that fail both the bad-by-correlation and bad-by-HF-noise as bad-
by-lowSNR channels. Once it detects such a channel, the PREP
pipeline puts the channel in the class of unusable channels,
such as those containing invalid data values (bad-by-NaN) and
sections with a constant value (bad-by-NoData). PREP removes
these channels from consideration and interpolates throughout
without having to redetect these channels as bad.

The selection of default parameters in the various detection
methods was determined empirically and tested on a variety of
different datasets using temporary high pass filtering at 1Hz. All
of the calculations reported here use the default settings.

Interpolation of Bad Channels
The PREP pipeline uses the spherical option of EEGLAB
eeg_interp function for channel interpolation. This function uses
Legendre polynomials up through degree 7. To test this choice,
we compared this interpolation method with the v4 option and
two other spherical interpolation functions, including the one
used in RANSAC. We applied a rank sum test on the correlation
of the interpolated channel with the actual channel and found no
significant difference between the three spherical interpolation
methods. The v4 option performed significantly worse. The
results were not sensitive to whether a block of channels was
removed in the immediate vicinity of the bad channel or whether
the interpolation was done in ICA space and projected back. As
expected correlations for interpolated channels on the cap edges
were not as good as those for channels in the interior.

Computational Considerations
Table 1 summarizes the computational costs of various stages
in the preprocessing pipeline for a typical dataset. The second
and third columns indicate complexity of the algorithm as the
number of channels and frames becomes large. As indicated by
the table, our implementation is able to take advantage of the
significant parallelism present in various stages of the algorithm.
The line-noise removal time is essentially linear in the number
of channels and windows, but also depends on the number and
size of significant frequency peaks. The correlation calculations
dominate the robust reference time, but this time also depends

TABLE 1 | Parallelism and performance for preprocessing pipeline.

Step Channels Frames Parallelism Time (s) Time (s)

(c) (n) no parfor with parfor

High-pass

filter

O(c) O(n) EP by channel 10 10

Line noise O(c) O(n) EP by channel 492 50

Reference O(c2) O(n) EP by time window 121 32

Times are for processing a 64-channel Biosemi dataset with 313,856 frames. EP stands

for embarrassingly parallel.
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on whether the dataset requires multiple iterations of the average
reference procedure to remove all noisy channels. We ran the
algorithms using MATLAB version 2014a and EEGLAB version
13.4.4b on a Dell Precision T7610 Windows 7 machine with
two Xeon 2.6 GHz processors and a total of 12 cores. We
obtained a speedup of almost 10 for the line noise portion of
the calculation. The speedup for the referencing portion was
about 3.5.

Reporting and Some Example Results

The specific examples in this paper come from application of
the PREP pipeline to a number of collections. One collection
(B64) uses a 64-channel Biosemi EEG headset and consists of
18 subjects performing a visual oddball task. This collection was
a part of a larger, multi-headset comparison study performed
at the Army Research Laboratory in Aberdeen MD (Hairston
et al., 2014; Ries et al., 2014). Another collection (N32) uses a
33-channel Neuroscan and consists of 40 subjects in 80 sessions
performing a lane-keeping task with and without a motion
platform. This collection was contributed from an extensive
archive of driving studies performed at the National Chiao Tung
University by C-T Lin and his collaborators (Chuang et al., 2012,
2014a,b). Statistics in the summary figures are also included for
a task load study (N40) during shooting performed by Kerick
and collaborators at the Army Research Laboratory using a 40-
channel Neuroscan headset (Kerick et al., 2007). The collection
consisted of 9 sessions for each of 14 subjects for 126 datasets. We
also analyzed the publicly available 109-subject motor imagery
dataset (C64) contributed by Shalk and colleagues to Physionet
(Goldberger et al., 2000; Schalk et al., 2004). This collection of
1526 datasets contains 14 sessions for each of 109 subjects using
a 64-channel BCI2000 headset.

The PREP pipeline uses bad channel interpolation in a central
way. We tried the pipeline on some low-density headset data
such as acquired from a 9-channel ABM headset with detectors
only on the top of the head, as well as a 14-channel Emotiv
headset with detectors only on the forehead. While the statistics
looked very reasonable after application of the PREP pipeline,
we feel that researchers should proceed with caution when there
are not enough channels to cover the head for accurate channel
interpolation.

We also applied the pipeline to the public data released for the
KaggleBCI competition (“Description—BCI Challenge @ NER
2015 |Kaggle,”1). This data consisted of 5 sessions for each of
26 subjects (130 datasets) using 56 passive Ag/AgCl EEG sensors
(Margaux et al., 2012). The data was referenced to the nose prior
to being released. The PREP pipeline did well on this collection,
although some of the overall summarymeasures (described in the
next section) were shifted slightly relative to other collections.

The optional prepPipelineReport, which is designed to be
run after prepPipeline, produces a summary of statistics and
visualizations at each step. The reporting functions create
an HTML summary file that has a brief synopsis of the

1Description—BCI Challenge @ NER 2015 |Kaggle., (n.d.). Retrieved January 11,

2015, from https://www.kaggle.com/c/inria-bci-challenge

results for each dataset and a link to the more detailed
report. Figures 3, 5–7 are from this report. At the end of a
preprocessing run, the pipeline stores the status information
in the EEG.etc.noiseDetection structure of the EEGLAB EEG
structure. The noiseDetection structure includes the reference
signal, a list of the channels identified as bad as well as the window
statistics for the bad channel measures. These window statistics
allow users to detect anomalous behavior in small time windows,
which can be useful in identifying bad epochs. The structure also
retains the original signals for interpolated channels, so that users
can choose not to interpolate in particular epochs downstream.

The preprocessing suite also has functions for extracting
the statistics from an entire collection as well as visualization
functions and issue reports listing datasets that are likely to be
problematic after referencing. In this way, a user can quickly scan
for issues in very large collections.We extracted the figures in this
section from the individual data reports.

Functions are also provided in a separate toolbox
(“VisLab/EEG-HDF5-Tools,”2) to store the results in an
HDF5 file (“The HDF Group—Information, Support, and
Software,”3) that is readable by any tool that supports HDF5.
EEG-HDF5-Tools package includes source functions to read
these files in MATLAB, R, Python, and C. A researcher can
include the appropriate source library in their own applications
to read the data and metadata in these formats. The referencing
procedure depends critically on the detection of bad or noisy
channels. As explained in Section Detecting Noisy or Outlier
Channels, we use four main criteria: deviation, correlation,
predictability, and noisiness.

As mentioned above, PREP produces a PDF report detailing
the results of referencing and bad channel detection. These
reports allow users to see at a glance where the issues
are in the dataset. Figure 5 shows the different scalp maps
produced during the automatic reporting. The columns represent
the three collection points for statistics retained in the
EEG.etc.noiseDetection.reference structure: the original data, the
data after referencing but before bad channel interpolation, and
the final version of the data after interpolation and referencing.
The rows of the figure correspond to different quantities that
PREP reports. Each scalp map labels the relevant bad channels
for that point annotated by the cause of the issue (NaN = “n,” No
data = “z,” Dropout = “d,” Correlation = “c,” Deviation = “+,”
Predictability = “?,” Noisiness = “x,” low SNR = “s”). PREP uses
the same color scaling for all maps in a row, so that users can
compare them.

All of the graphs from Figures 5, 6 come from the same
64-channel Biosemi dataset. The first row shows the median
over 1-s windows of the z-scores of the robust channel
deviation. Because the deviation is always positive, it is usually
not possible to obtain large negative z scores. However,
this dataset shows a patch of four posterior channels with
very low deviation. The signals from these channels appear
flat relative to the other channels when viewed on a scroll

2VisLab/EEG-HDF5-Tools., (n.d.). Retrieved February 5, 2015, from https://

github.com/VisLab/EEG-HDF5-Tools
3The HDF Group—Information, Support, and Software., (n.d.). Retrieved

December 29, 2014, from http://www.hdfgroup.org.
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FIGURE 5 | Scalp map visualizations of noisy channel

characteristics for a 64-channel Biosemi dataset produced by

the PREP reporting facility. Each graph indicates channel

positions by dots and labels only those channels found to be bad.

In each case the channel label is followed by an indicator of

cause (c, correlation, x, noise, ?, RANSAC, s, low SNR). The three

columns correspond to the three stages in the robust reference

procedure (original signal, after reference but before interpolation,

and final). Each row corresponds to a different measure (see text).

Color scales are consistent across the rows.

plot. While these channels do not fail the deviation criterion
(|z-score|> 5), they fail both the correlation (c) and noisiness
criteria (x). PREP identifies these channels as having low
SNR (s) and designates them as unusable. In downstream
iterations, PREP sets their deviation z score to zero, so
they appear in green, but designates these channels as low
SNR (s).

The second row of Figure 5 shows the average of the
largest (98-th percentile) absolute correlation of each channel
with any other channel in 1-s windows. When channel signals
contain a large common additive noise component, this value
will be very close to 1.0. However, the four noisy channels
have a much lower maximum correlation with any other
channel.
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FIGURE 6 | Examples of time measures available in the PREP

reporting facility. Graphs correspond to the data set of Figure 5. (A)

Number of channels that failed the channel correlation criterion as a function

of time. Each point corresponds to a value computed in a 1-s window. (B)

Number of channels that failed the RANSAC criterion. Each point

corresponds to a value computed in a 4-s window. (C) Number of channels

that failed the HF noise criterion. Each point corresponds to a value

computed in a 1-s window. (D) Voltage difference in microvolts between

average and robust reference as a function of time. Each point corresponds

to a data point in the dataset.

The bad-by-correlation criterion requires that the channel
have a low correlation in a certain percentage of the windows
(1% for PREP defaults). The third row of Figure 5 shows
the percentage of windows in which the channel was bad-by-
correlation. The color scale goes from dark blue for 0% and
saturates at deep red at 2% bad. The first map in row shows that
the four channels are bad for at least 2% of the windows. The two
red areas on the rim of themap are an artifact of the extrapolation
used for the color map and do not contain any channels.

The fourth row of Figure 5 shows the fraction of time that
RANSAC projections poorly predict channel signals. Once PREP
removes the reference along with common additive noise, such
unpredictability often comes more distinguishable. RANSAC
fails to predict channel F8 about 70% of the time. PREP adds
this channel to its interpolation list for the final interpolation.
Note that interpolation tends to represent channels on the edge
of the cap less accurately than interior channels, and so PREP
tends to detect borderline edge channels as bad more frequently
than other channels. However, 70% is a very large percentage and
unlikely to represent a borderline event.

The final row represents the z score of the ratio of high
frequency power (>50Hz) and low frequency power (1-50Hz).

The four channels with low SNR have a noisiness z score of
around 15. In the final stage, PREP classifies the T7 edge channel
as noisy. However, as the map color shows, this channel has a
noisiness z score very close to the borderline cutoff of 5.0.

In most cases, no bad channels remain after the PREP
pipeline has processed the data. However, occasionally an edge
channel will be on the borderline, usually through the correlation
or noisiness criterion. PREP provides additional visualizations
of the specific windows in which channels are bad to help
researchers understand the nature of these issues. Figures 6A–C
present examples of these visualizations. Each visualization
shows each window using a point. A + represents the original
signals (column 1 of Figure 5), a × represents the signals before
interpolation but after referencing (column 2 of Figure 5), and an
o represents the final signal (column 3 of Figure 5). The vertical
axis displays the number of channels that fail the particular
criterion. Each point on these graphs represents a window.

Figure 6A shows the bad-by-correlation criterion. Most
windows have one or more channels failing the correlation
criterion. Figure 6B shows the bad-by-ransac criteria.We see that
T7 fails RANSAC in almost all windows before interpolation (the
green ×s). Figure 6C shows the bad-by-HF-noise criterion. At
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FIGURE 7 | Cumulative probability distribution of the maximum

absolute correlation (i.e., 98th percentile) for each channel with other

channels in 1-s time windows. (A) 32-channel Neuroscan dataset plotted

in Figure 3A. This dataset has mean max abs window correlations of

[original = 0.93; before interp = 0.85; final = 0.86]. (B) 32-channel

Neuroscan dataset of Figure 3B. This dataset has mean max abs window

correlations of [original = 0.92; before interp = 0.86; final = 0.88]. (C)

64-channel Biosemi dataset of Figures 1B, 4. This dataset has mean max

abs window correlations of [original = 0.89; before interp = 0.85; final =

0.86] (D) A 64-channel Biosemi dataset with a large number of bad channels

due to low correlation. This dataset has mean max abs window correlations

of [original = 0.79; before interp = 0.78; final = 0.87].

least four channels fail in nearly every window in the original
signal. However, four channels (P1, P3, POz, PO3) fail both
noisiness and correlation in the original signal, PREP designates
them as unusable and removes them from further consideration.
Hence, they don’t appear in the plots as bad. The correlation
and noisiness criteria use 1-s windows, while RANSAC uses 4-
s windows. Hence, Figure 6B appears to have fewer points than
Figures 6A,C.

Figure 6D shows the time course of the difference between the
ordinary average reference with no channel interpolation and the
robust reference with channel interpolation. This shows a very
small difference between the two, indicating that the dataset is
relatively clean and does not have major issues. This result is in
clear contrast to the examples of the right column of Figure 3.

Referencing generally removes common additive noise, which
usually reduces the overall maximum channel correlations.
Figure 7 presents a more detailed look at the cumulative
distributions of channel correlations before referencing, after
referencing but before interpolation, and after final interpolation
for four example datasets. The distribution consists of the values
of the 98th percentile of the maximum absolute correlation for
each channel in each window. Figure 7A corresponds to the

32-channel Neuroscan dataset whose references were plotted
in Figure 3A. This dataset is relatively clean. Although PREP
interpolated two channels, the correlation between the ordinary
average reference and the robust average reference was 0.995.
Average referencing reduces the mean of the distribution from
0.93 to 0.86. After interpolation the mean increases slightly to
0.88. This dataset had already been mastoid referenced prior to
submission to our repository.

Figures 7B,C correspond to the 32-channel Neuroscan
dataset of Figure 3B and the 64-channel Biosemi dataset
of Figure 1B, respectively. Both datasets exhibit some low-
correlation channel windows before referencing, but referencing
brings the cumulative distributions in line with the cleaner data
of Figure 7A. Both of these datasets had a single very bad channel
whose low correlations with other channels is reflected by the left
tail in the data before referencing. Figure 7D corresponds to a
64-channel Biosemi dataset that had 19 bad channels distributed
over the headset. The mean of the distribution before any
referencing is 0.79. After referencing but before interpolation, the
mean is 0.78. After bad channel interpolation, the mean becomes
0.87 and the cumulative correlation of this dataset was virtually
indistinguishable from the others.
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It should also be emphasized that the robust referencing
does not deal with any of the subject-generated artifacts such as
muscle and eye movements. Bad epoch removal is not part of the
referencing procedure. However, the reporting mechanism keeps
statistics over 1-s windows and researchers can easily use these
statistics to flag potentially bad segments.

Summary Measures

One goal of the PREP pipeline is to produce quick summary
measures that allow analysts to determine quickly whether
a particular dataset might have issues. We have developed
several useful heuristics for detecting issues in the data. We
provide individual dataset and collection summaries that allow
researchers to pinpoint issues in large datasets and dataset
collections. The runStatistics reads a collection of processed
datasets and creates a statistics structure and an issues report.
The criteria we currently use to flag datasets with serious issues
include:

• Robust referencing does not move the mean of the median
max channel correlation closer to [0.80, 0.91] if not initially
in the interval.

• The mean of the max channel correlation is above 0.91 and
the median of the max channel correlation is greater than 0.95
after robust referencing.

• Robust referencing interpolated more than 25% of the
reference channels.

The createCollectionStatistics function takes a list of files as
input and produces a statistical collection summary. The
showNoisyStatitics function produces summary visualizations
for the collection from the statistical summary. The
runCollectionComparison script compares collection summary
statistics across collections and produces summary graphics
similar to those of Figures 8, 9.

PREP provides several other functions to show additional
visualizations of the collection as a whole and in the context
of other collections. Two measures used throughout are the
maximum absolute correlation and the robust window deviation.
Both are window measures. If a dataset consists of c channels
and w windows (1-s by default), both measures are c × w arrays.
The maximum absolute correlation holds the maximum absolute
value of the correlation of each channel with other channels in the
window, while the robust window deviation is 0.7413 times the
interquartile range of the channel in the window. Two summary
measures of the dataset are the overall mean of the maximum
absolute correlation and the overall median of the robust window
deviation.

Figure 8 compares these two summary measures for different
referencing schemes for four of the data collections described at
the beginning of Section Reporting and Some Example Results.
Figure 8A shows B64, which included mastoid channels and was
initially unreferenced (B64-org). We referenced this collection
by averaging the mastoids (B64-mas) and by calculating the
average of the EEG channels (B64-ave). We compared this to the
result of the robust referencing procedure (B64-rob). Each point
on the graph represents a dataset with a different referencing

technique applied. The mastoid channels for this data collection
were relatively clean and gave robust deviations that were similar
to those of robust referencing. However, both the original and the
average reference had some significant outliers. The maximum
absolute correlation for mastoid referencing was higher than for
robust referencing.

Figure 8B shows N32, which was referenced to the mastoids
during acquisition. The mastoid references show a distinctly
higher maximum correlation and the robust deviations are more
widely spread. Figure 8C shows N40, the shooter collection
that was referenced to one of the mastoids during acquisition.
This data collection was more noisy than those datasets
acquired under more controlled laboratory conditions. The
robust reference values are nicely clustered, while the deviations
for mastoid referenced datasets are widely spread. Both N32 and
N40 were referenced during acquisition, so unreferenced original
data wasn’t available for comparison.

Figure 8D shows the C64 motor imagery collection available
on Physionet. The documentation for this dataset did not specify
the referencing status of the raw data, so we label the data
as C64-org. However, the statistics are consistent with mastoid
referencing. There is a considerable spread in both average
referencing (C64-ave) and the original referencing (C64-org)
when compared with robust referencing (C64-rob). Compare the
scales on the four plots.

Figure 9 shows similar information in a scaled format for
comparison across the collections. The shapes correspond to
specific data collections, while the colors correspond to the type
of reference. The horizontal axes show the mean maximum
channel correlation as in Figure 8. The vertical axis shows the
robust channel deviation ratio. If D is a c × w array containing
the 0.7413 times the interquartile ranges of data in w windows
for c channels, the robust deviation ratio is the robust standard
deviation of D divided by the median of D. Figure 9 represents
each data set by the overall median of this ratio.

Figure 9A shows a composite of all of the datasets from the
four collections using the same color and plotting scheme as in
Figure 8. The inset in Figure 9A shows the overall collection
medians. Figures 9B–E show the individual plots for B64, N32,
N40, and C64, respectively. The robust referencing (shown in
black) is better clustered with fewer outliers and overlaps well
among the four collections.

To summarize:

• Mastoid referencing has very different statistics than either
average referencing or robust referencing. The mean max
window correlation is generally higher and the SDR/MED
ratios of deviation are generally lower in mastoid referencing.

• Robust referencing and averaging referencing have similar
statistics, provided that there are no extremely bad channels.

• Comparisons of robust referencing across collections show no
statistical differences in the correlation or ratio measure and
some difference in channel deviation measure.

• Performing a mastoid reference initially and then later re-
referencing using either average or robust reference produces
essentially the same results as if no mastoid referencing had
been done.
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FIGURE 8 | Mean max absolute window correlation vs. median robust

window channel deviation for different referencing schemes. Each

unfilled point represents a data set. Blue points correspond to data that was

originally unreferenced or whose original reference status is unknown. Green

points correspond to mastoid referenced datasets, and gray points

correspond to average referenced datasets. Black points correspond to

datasets after robust referencing with channel interpolation. The large solid

shapes outlined in red represent overall medians for the corresponding data

collections. (A) B64 is an 18 subject 64-channel dataset (circles). (B) N32 is

an 80 session 40 subject driving simulation using a 32-channel Neuroscan

headset (squares). (C) N40 is a 14-subject 126 session data collection

acquired using a 40-channel Neuroscan headset (up triangles). (D) C64 is a

109-subject 1526 session data collection acquired using a 64-channel

BCI2000 headset (down triangles).

• The order of performing mastoid referencing relative to
filtering and line noise removal makes essentially no
difference.

Again, we emphasize that these statements only hold true when
all arithmetic is done in double precision with no intervening
conversions.

Other Tests

Tests of Bad Channel Detection with Synthetic
Data
In order to evaluate the accuracy of the noisy channel detection
procedure that underpins the robust reference, we applied
findNoisyChannels to datasets with synthetically generated noisy
channels. To generate noisy channels, we selected raw data from
five sessions of the 32-channel Neuroscan collection, high-pass
filtered at 1Hz and removed line noise. These datasets had no
visibly noisy channels, and the noisy channel detection algorithm
did not flag any bad channels. We then introduced a number of
noisy channels into each dataset using the following methods:

(a.) Adding Gaussian noise with an amplitude 8 times channel
standard deviation.

(b.) Lowering (to one-tenth) amplitude, simulating a weak
electrical connection.

(c.) Temporally shuffling the data and making the channel
maximally uncorrelated with other channels while having
the same amplitude.

(d.) Replacing the data in two channels of the session by
amplitude-normalized copies of a single, highest amplitude
(often eye or muscle-dominated), channel selected from
another dataset repeated or trimmed to the length of the
current session. This made the two channels fully correlated,
simulating the worst-case scenario where an external noise
source produces highly correlated noisy channels with no
change in signal amplitude.

Table 2 shows the number of channels containing different types
of synthetic noise.

We then applied our noisy channel detection to the modified
data from these five sessions after the data had been high-
passed filtered at 1Hz and line noise removed. Table 3 shows
a comparison of the channels detected by the pipeline as noisy
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FIGURE 9 | Mean max absolute window correlation vs. the median

of the robust window deviation ratio for four collections. Each

unfilled symbol represents a data set in a collection. The collections are

distinguished by shape: circle (B64) square (N32), up triangle (N40), and

down triangle (C64). The corresponding filled symbols, also outlined in

red, give the median of the statistic for that collection. Blue points

represent data that was originally unreferenced or whose reference is

unknown. Green points represent mastoid referenced datasets, and gray

points represent average referenced datasets. Black points represent

robust referenced datasets with channel interpolation. (A) An overplotting

of all datasets. The inset displays the collection medians. (B) B64 is an

18 subject 64-channel dataset. (C) N32 is an 80 session 40 subject

driving simulation using a 32-channel Neuroscan headset. (D) N40 is a

14-subject 126 session data collection acquired using a 40-channel

Neuroscan headset. (E) C64 is a 109-subject 1526 session data

collection acquired using a 64-channel BCI2000 headset.

to the simulated ground truth. The findNoisyChannels detection
function had a high (81%) sensitivity [true positive rate =

TP/(TP+NP)] and a high (97%) specificity [true negative rate=
TN/(TN+ FP)].

We also compared the detection performance of PREP
with pop_rejchan function available in EEGLAB package. We
individually tried all three measures for noisy channel detection
available for this function (Kurtosis, Probability, and Spectrum)
as shown in Table 4. In all cases this function did not detect
most of simulated ground truth noisy channels and had a
poor (7% or less) sensitivity (compared to 81% or higher for
PREP).

Effect of Pipeline on Downstream Calculations
To test the effect of filtering and referencing on downstream
applications, we looked two simple classification problems:
single-subject (SS) classification and leave-one-subject-out
(LOSO) classification for the 18-subject 64-channel Biosemi
data collection described above. The experiment uses a visual
oddball paradigm. The datasets consist of 30–35 target events
and roughly seven times the number of non-target events. The
datasets were epoched into 1-s epochs.

For these tests, we used two well-known classifiers: linear
discriminant analysis (LDA) and hierarchical discriminant
analysis (HDCA) (Marathe et al., 2014). For LDA, the features
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TABLE 2 | Number of channels containing different types of

synthetically-generated noise for noisy channel detection tests.

Session Noisy Gaussian Low Temporally Fully correlated

channels noise amplitude shuffled noise

5 7 3 1 1 2

14 7 3 1 1 2

30 8 4 1 1 2

31 10 5 1 2 2

68 10 5 1 2 2

All datasets had 32 channels and were taken from the N32 collection.

TABLE 3 | Comparison between detected and simulated ground-truth

noisy channels out of 160 channels total.

Session Noisy True False True False

channels positive positive negative negative

(TP) (FP) (TN) (FN)

5 7 5 0 25 2

14 7 5 0 25 2

30 8 8 0 24 0

31 10 8 2 20 2

68 10 8 1 21 2

Total 42 34 3 115 8

TABLE 4 | Comparison between noisy channel detection performance of

EEGLAB pop_rejchan with different options and the detection

performance of PREP pipeline.

Detection True False True False Sensitivity Specificity

method positive positive negative negative

(TP) (FP) (TN) (FN)

PREP 34 3 115 8 81% 97%

pop_rejchan

(kurtosis)

0 5 113 42 0% 96%

pop_rejchan

(probability)

3 0 118 39 7% 100%

pop_rejchan

(spectrum)

0 0 0 42 0% 100%

consisted of vectors of length 64 × 512 = 32, 768. LDA + PCA
uses PCA on each subject to reduce the feature vector dimension
to 50. HDCA divides an epoch into sub windows of 1/8 s,
resulting in feature vectors of size 64 × 64. HDCA-PCA reduces
the channel numbers to 45 from 64 in order to remove linear
dependencies between channels due to interpolated channels.
Thus, the feature vectors are 45× 64 = 2880.

The SS classification tests randomly select 30 non-target and
30 target events and run the classification test with 54 training
samples and six test samples. The results were the average of
repeating the process 50 times.

The LOSO voting classification test uses each of the 18 subjects
as the test subject. For each test subject, we built classifiers from
the other 17 subjects using balanced training sets of 60 randomly

drawn samples (30 samples from each class). The test set from
each subject also consisted of 60 samples (30 samples from each
class) at random. Each test sample was classified by majority vote
of the classifiers built from the other subjects. The tests are the
average of 10 repeats.

Table 5 shows the results of the tests. The table indicates
the complicated relationships between filtering, referencing, and
dimension reduction. Referencing generally improves the results.
For example, the AUC for SS LDA goes from 56.3 to 66.0 for
robust referencing with a 1Hz high pass filter. The AUC goes
from 69.6 to 71.3 for LOSO. The results for 0.3Hz high-pass
filtering are similar, but the AUCs are generally lower.

HDCA also shows some improvement with robust
referencing, particularly for LOSO. However, HDCA appears to
be very sensitive to the selection of high-pass filter cutoff, doing
much better for a high-pass cutoff of 1Hz than a high-pass cutoff
of 0.3Hz. HDCA fails for robust referencing without PCA to
remove linearly dependent channels. Users should be aware of
this when applying algorithms that require matrices to be of
full rank.

The results illustrate the importance of testing algorithms with
different filtering strategies and of not committing to a filtering
cutoff during preprocessing.

A concern about average/robust referencing for P300 analysis
is that it removes a portion of the signal common to all channels
that is not noise, but neural signal. To test this, we applied LDA
with PCA reduction to dimension 20 to the robust reference
signal and to the average of the mastoids in the unreferenced
signal. We found that SS LDA classification on the above data
collection using only the robust reference signal as a feature
gives an AUC of 77.9 when the signal is filtered at 0.3 or at
1Hz. This result indicates that although it may be noisy, the
reference signal contains information about the task and may be
useful as an additional feature in downstream machine learning
tasks.

There is also a commonly held belief that, because their
placement, mastoids do not contain as much neural signal and
therefore better capture additive common noise. To test this idea,
we applied LDA after PCA (dimension 20) to the single time
series that is the average of the two mastoids. The mastoid signals
high-pass filtered gave a single subject AUC of 82.6 when filtered
at 0.3Hz and 82.4 when filtered at 1Hz. The results from Table 5

did not include mastoid channels.
As the results of Table 5 show, filtering and referencing

can affect downstream analysis in unpredictable ways. HDCA
is particularly sensitive to the filtering frequency both in SS
and across-subject classification. The results also show that the
mastoid electrodes carry important information, as does the
reference signal. This particular data collection had very clean
mastoid recordings. However, for large-scale cross-collection
analysis, mastoid references may not be available or may
be unreliable. The PREP pipeline stores the robust average
reference of the raw signal in the EEG structure in the field
EEG.etc.noiseDetection.referenceSignal as part of its reporting.
Users can add the signal back in and reference to the mastoids
or use the information for feature augmentation if desired.
However, as shown by Figures 8, 9, it is important to use
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TABLE 5 | Effect of referencing, filtering, and dimension reduction on classification accuracy for the 18-subject 64-channel Biosemi visual oddball

experiment.

Signal type Classifier

LDA LDA + PCA(50 dim.) HDCA HDCA + PCA(45 ch.)

SS LOSO SS LOSO SS LOSO SS LOSO

HP 0.3Hz 56.8 68.5 86.8 74.6 75.5 71.6 75.8 77.9

HP 1.0Hz 56.3 69.6 87.3 75.7 90.7 82.2 91.1 84.6

HP 0.3Hz + RR 63.5 69.5 89.3 78.1 fail fail 78.5 79.3

HP 1.0Hz + RR 66.0 71.3 90.5 79.1 fail fail 91.7 86.5

Values are reported as AUC. SS, single subject classification; LOSO, leave-one-subject-out classification; RR, robust referencing with channel interpolation.

a consistent referencing method when doing multi-collection
analysis.

Discussion

Raw data often requires extensive curation and identification
in order to be usable for analysis. In addition, preprocessing
steps can be quite computationally intensive. A key step for
mining EEG across large collections is to develop a standardized
preprocessing pipeline that allows researchers to perform a
variety of analyses without reference to the raw data. Such a
pipeline can provide the basis for sharing data across laboratories
and could be the starting point for EEG repository andAPI efforts
such as HeadIT (headit.org), COINS (Scott et al., 2011), GNode
(Sobolev et al., 2014), and EEGBase (Moučekk et al., 2014).

EEG preprocessing has generally focused on bad
channel/epoch identification and removal. Methods/pipelines
for EEG preprocessing often assume referencing and high pass
filtering as a starting point for processing and seldom document
these early steps in any detail. This work has demonstrated
that systematic early-stage identification and interpolation of
channels with “non-EEG” behavior is important for normalizing
EEG statistics across data collections. Processing methods that
interpolate channels should keep a record of these channels
with the data, since many downstream analysis algorithms
assume that the channel data is linearly independent. The
PREP pipeline keeps a complete record of the interpolation,
algorithm parameters, and signal statistical characteristics in
the EEG.etc.noiseDetection structure and stores this structure
as a separate HDF5 file for use by other tools. One key design
decision for PREP was to defer the selection of high-pass filter
to downstream users in order to maximize the usefulness of
PREP’ed data across applications.

A number of pipeline-type toolboxes for artifact detection
and removal are available as EEGLAB plugins, each addressing
a particular preprocessing aspect. ADJUST (Mognon et al.,
2011) uses ICA to remove features associated with various
stereotypical artifacts, particularly eye blinks, eye movements,
and discontinuities. The FASTER pipeline (Nolan et al., 2010)
uses a combination of statistical thresholding and ICA to identify
and remove contaminated channels and bad epochs, particularly
those associated with eye movements, muscle artifacts, trends,

and white noise. FASTER is optimized for ERP analyses. TAPEEG
(Hatz et al., 2015) combines several automated procedures
from Fieldtrip and FASTER with additional special-purpose
functions in order to detect bad channels, bad epochs, and
bad ICA activations. DETECT (Lawhern et al., 2013) uses
machine-learning techniques based on auto-regressive features
to identify artifacts of various types, including eye movements,
jaw clenching and other muscle artifacts. Safieddine et al. (2012)
have proposed muscle artifact removal techniques based on ICA
and on EMD (empirical mode decomposition). Kothe et al. have
proposed Artifact Subspace Reconstruction (ASR), a method that
removes high-variance artifacts from a dataset by comparison to
a relatively artifact-free data segment (Mullen et al., 2013). ASR
is capable of running online in real time.

The difficulty with adopting any of the artifact removal
pipelines as a preprocessing standard is that each makes
processing decisions that may preclude use of the data across the
full spectrum of applications. The goal of PREP is to perform
just enough preprocessing to make the data usable for automated
processing by normalizing data statistics across collections. PREP
accomplishes this task by a careful application of line noise
removal, bad channel detection, and referencing. PREP defers
high-pass filtering to downstream processes because filtering is
a low-cost operation, and many analyses are sensitive to the exact
choice of filters. The data resulting from the PREP pipeline shows
more uniform statistical behavior across a variety of headsets
and experimental paradigms. Thus, PREP data provides a solid
foundation for building large-scale EEG repositories. Users can
download the PREP pipeline as freely-available MATLAB library
from http://eegstudy.org/prepcode. Users should also have the
MATLAB Signal Processing Toolbox.
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