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The Preparation Theorem on Banach Spaces (*). 

FERRANTE BALBONI 

A mia madre, Tirana Zeppon~ 10-10-40, 8-4-96 

Abstract. - We give a generalizatio~ for smooth Fredholm maps between Banach spaces, of the 
Preparation Theorem known in finite dimension. As an application we obtain the Prepared 
Form Theorem which is a basic tool in singularity theory. 

Introduction. 

In this paper we generalize, for smooth Fredholm maps between Banach spaces, the 

well-known Preparation Theorem (see e.g. [G-G], Chap. 4, Thm. 3.6) and a related im- 
portant result, i.e. the Prepared Form Theorem. It  is maybe worthwhile to emphasize 

the significance of the finite-dimensional Preparation Theorem (FPT in short) in order 
to understand the motivations behind our study of the Banach Space version (BPT in 
short). In fact the FPT has been successfully used in differential topology: just to give 
two examples we recall the Mather stability theory for smooth maps and the Morin sin- 
gnlarities classification in singularity theory. In the last case the FPT is the basic tool 
for the proof of the Normal Form Theorems which show the equivalence of a suitable 
class of smooth maps, near a singular point, to a more simple canonical form up to local 
changes of coordinates (see e.g. [G-G]). In analogy with the finite-dimensional case the 
BPT or better the Prepared Form Theorem, as we call one of its remarkable conse- 
quences, is essential for the proof of the Normal Form Theorem for k-singularities. 

These are direct generalizations of the Morin singularities, for smooth maps between 
Banach spaces, which occur in a natural way in the study of some non-linear boundary 
value problems. The theory of k-singularities and some concrete and significant exam- 
ples will be presented in the forthcoming paper [Ba-D]. 

We recall that an infinite-dimensional statement of the Preparation Theorem has 
already been formulated, with only a sketch of proof, in [B-C-T]. As we point out below 

(*) Entrata in Redazione il 20 maggio 1996 e, in versione riveduta, il 27 agosto 1997. 
Indirizzo dell'A= Dipartimento di Matematica, Universit~ di Roma ,,Tor Vergata,, Via della 

Ricerca Scientifica, 00133 Roma, Italy. 
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in Remark 2.5, that version is less general than ours which closely follows the finite-di- 

mensional statement (see again [G-G], loc. cit.). Moreover to the author's knowledge no 

complete proof of the BPT has been given up to now and so we believe useful to fill the 
gap. We refer to Section 2 for a brief historical outline of the preparation mathematics 

(see also [W]). As an application of the BPT and since we are mostly interested in the 

singularities classification we also chose to prove the Prepared Form Theorem. Our 

proof of this important result was in part suggested by that given in [B-C-T] and it 

seems to be simpler. In a Remark at the end of Section 4 we point out the 

differences. 

This paper, which improves the Appendix in the author thesis [Ba], is organized as 

follows. In Section 1 we describe the algebraic machinery which is needed for the state- 

ment and the proof of the Preparation Theorem. This section being very technical, at a 

first reading one can just  retain the definitions and statements, omitting the proofs. 

Some of these follow in part similar ones presented in [G-G]. In Section 2 we recall the 
Division Theorem due to P. MICHOR [Mi] which is the direct infinite-dimensional ver- 

sion of the well-known result of B. MALGRANGE [Ma]; this theorem is fundamental in 

the proof of  the BPT. Since in the sequel we also need the Local Representation Theo- 

rem we state it in a suitable form after a brief recall about double-splitting operators. 

Then we introduce some algebraic-geometric notions and finally we can state the BPT. 

The whole Section 3 is devoted to the proof of the BPT. In Section 4 we state and prove 

the Prepared Form Theorem which, as we already said, gives the concrete way to use 

the BPT for the singularities classification considered in [Ba-D]. 

I wish to thank my adviser Prof. F. DONATI for his valuable help and constant en- 

couragement in writing this paper. 

1 - Algebraic  and analyt ica l  prel iminaries .  

We shall suppose as known the notions of ring (always commutative and with unit 

1), ideal of a ring, quotient ring (of the initial ring by one of its ideals) and homomor- 
phism, or morphism, of rings. 

If R is a ring we recall that r ~ R is invertible if there exists r '  e R such that r '  r = 1 

(so r r '  = 1 too); when r '  does exist it is unique and it will be denoted by r -1 ,  the in- 
verse of r. Afield is a ring where each element different from zero has an inverse (as a 

particular case the null ring { 0} is a field). 

For every ring R there exist the ideals { 0 } and R: it may happen that { 0 } and R 
are the only ideals of R.  In fact we note that when R is a ring and 3 ~ R is an ideal, 
then 3 c {not invertible elements of R }. This is because if q e ~ is invertible, then 1 = 
= q - 1 q ~ ~ and so r = r l  ~ 3 ,  Vr ~ R,  that is 3 = R,  a contradiction. As an immediate con- 

sequence a ring R which is a field has only ideals { 0 } and R (the reverse statement is 
also true). 

An ideal ~ of a ring R is called maximal if ~ ~ R and for every ideal 3 '  of R such 
that ~ c 3 ' c R  then 3 = 3 '  or 3 '  = R .  

If ~ is an ideal of R,  ~ ;~ R,  then there exists a maximal ideal of R containing 3 .  
This can be proved by a standard application of Zorn's lemma to the family { 3 ' :  ~'  ide- 
al of R,  3 c ~ '  ~ R }, partially ordered by inclusion. The required ideal is a maximal ele- 
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ment  of such a family. In particular we have that  every ring R,  R ;~ { 0 }, has at least a 

maximal ideal. 

A ring R is a local r ing when it only contains one maximal ideal ~o(R) - ~o. There- 

fore, by definition, a local ring is always not trivial, that  is R ~ {0}; moreover for any 

proper ideal 2 ,  i.e. ~ ~ R,  we have ~ c ~0. In fact this is the unique maximal ideal con- 

taining ~ by Zorn's Lemma. A field R different from zero is an obvious example of local 

ring, and in this case 2o = { 0 }, as we saw before. In the sequel we shall show a more 
significant example of local ring. 

I f  R is a ring and ~ is a maximal ideal of R ,  it is easy to verify that  the quotient ring 

R / ~  is a field. In particular, when R is a local ring with (unique) maximal ideal ~o(R) -= 

--- ~o, we shall call R/~o the residual  f ie ld  of R.  

Finally, when R and R '  are local rings with maximal ideals 2o and ~ respectively, a 

morphism of: R ' - - ) R  is called local if  qJ (~ )  C_~o. 

1.1. REMARK. - If  R is a local ring then 

20 = {not invertible elements of R} .  

In fact, since 2o ~ R ,  the inclusion _c follows as seen before. Vice versa if q e R is not in- 

vertible, we consider the set of R defined by (q) :=  {rq: r e R } ,  which is an ideal. Then 

(q) ~ R,  otherwise i c (q) = R ,  and this implies that  it should exist r ~ R such that  1 = 

= rq or equivalently r = q - 1. Hence (q) is a Proper ideal and so (q) c_ 20; since q = lq  c (q) 
it follows q ~ ~o. 

A module  A over a ring R,  or in short an R-module ,  is an abelian group A with a 
product,  or (left) action of R on A,  defined as a map 

R x A - - - > A ,  

(r,  a) ~ r . a  =- ra  , 

which is compatible with the operations of R and A: that  is, Vr, r '  e R  and Va, a '  c A  
we have 

( rr ' )  a = r ( r '  a) ,  (r + r ' )  a = ra + r '  a ,  r (a  + a ') = ra + ra ' . 

Moreover we will require the module has to be uni ta l  i.e. l a =  a, V a c A .  

Given a subset B of A,  we say that  B is a submodule  of A if it is a subgroup and it is 
closed under  the product on A,  that  is rb ~ B ,  Vr  c R and Vb e B. 

In a similar way we can define the quotient module  A / B .  It  has a natural structure 

as a group and the action o f R  onA/B is defined by r[-][a] := [r.a] - [ra], r c R ,  a e A .  

Here [a] denotes the equivalence class of a e A  with respect to the quotient relation 

and [.] denotes the new product. This product is well-posed and it makes A/B an R-mod- 

ule: for the sake of simplicity, since there is not fear of confusion, we shall denote it by 
the notation r[a] --rE.~[a] = [ra]. 

Finally, we say that  an R-module is f in i t e l y  generated (f.g. in short) over R if there 
p 

exist el, . . . ,  ep c A  such that  a c A  may be written in the form a = ~ rj ej, rj c R .  
j = l  

Let  cp: R '  --~R be a morphism between the rings R '  and R and let A be an R-mod- 
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ule with product r .a  = ra,  r c R ,  a c A .  An  action of R '  on A is defined in the following 

way: 

R ' x A - - > A ,  

(r ' ,  a ) ~ c o ( r ' )  a .  

This action is compatible with the operations of R '  and A. Since in this paper we shall 

suppose that every ring homomorphism is uni tary ,  that is CO(I') = 1 where 1, 1' are the 

units of R,  R ' ,  the above defined action is actually a product on A. Thus A becomes an 

R '-module according to the definition. 

We shall denote this new product on A with the notation ~ in order to remember 

that it follows from the old product,  by means of the morphism CO. Hence, by definition, 

r '  ~ a := CO(r '). a - CO(r ') a, Vr'  c R ' ,  Va c A. As a matter of notations we shall write A~ 

if we consider A with the new module structure induced by CO, i.e. if A is considered as 
an R '-module. Instead we shall continue to write A when we consider A as a set without 

additional structure (for example in the notation a cA),  or when it has the primitive 

structure as R-module. 

1.2. REMARK. - Let R,  R ' ,  R" be rings, CO: R ' - - > R ,  CO': R " - - ~ R '  ring morphisms 
and let A be an R-module with product r. a -- ra, r c R ,  a c A .  Then ~ o'~, = (~) holds. For 

the meaning of this identity let us consider the product ~ o" ~, on A related to the initial 

product �9 on A by CO o CO': R"--->R and then the product (~) on A~ derived, by means of 
@' 

the morphism Co', from the product e (in its turn related, by means of CO, to the product- 

on A). Then these products on A are equal: indeed, V r " c R "  and V a c A ,  we have 

r" �9 a = (COoco')(r").a = CO(CO' (r") ) .a  = Co' (r") @a = r~'~)a. qooq)' 
~v' 

This can be summarized by writing Ar o ~, = (Ar In fact A~ o e, is the set A with the 
R"-module structure deriving from the primitive structure of A as an R-module by the 

morphism CO o CO'. Analogously, A~ is the set A with the R '-module structure induced by 

CO from the R-module structure of A. Finally consider (A~)~,, i.e. the R"-module struc- 

ture of A~ derived by CO' from the structure of A~ as an R '-module. Then these struc- 
tures on A, as an R"-module, are equal. 

We recall that i rA is an R-module and B is a subset of A, (B} denotes the R-module  

generated by B that is (B} := F1 B ' ,  where 53 = {submodules B '  of A: B c B '  }. (B} is 
B ' e ~  

a non-empty submodule of A (note that A e 0~) and it is the smallest submodule of A 
containing B. It is easy to see that ( B ) =  {finite sums ~ rjbj: r j e R ,  b j c B } .  

In particular we note that a ring R is a module over itself and a submodule of R is 
just an ideal and vice versa. Then if S is a subset of R and {S} is defined as above we 
have that ( S ) =  fl ~ =  {finite sums Y / r j s j : r j e R ,  s j c S } ,  where S= {ideals ~ of 

~ e 8  3 
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R: S c ~}. Therefore (S) is the smallest ideal of R which contains S and it is named the 

ideal generated by S. 

Now we state Nakayama's Lemma in one of the several known versions for this fa- 

mous algebraic result. 

1.3. PROPOSITION (Nakayama's Lemma). - Let R be a local ring and 3o its maximal 

idea~ let A be a f.g. R-module and let us suppose A = ~0A, where 3oA denotes the sub- 

module of A generated by { qa : q �9 30, a �9 A }. Then A = { 0 }. 

PROOF. - According to the above characterization of a submodule generated by a 

set, it is easy to see that 3oA = {finite sums ~. qjaj: qj~3o, aj~A}. Let el, ..., ep be 

3 k 

~=l qjaj, qje3o,  a j~A.  On the generators for A: by hypothesis A = 3oA and so ep = J = 

p 

other hand there exist r~j ~ R,  i = 1, ..., p, j = 1, ..., k, such that aj = ~=~1 r~j e~ and so 

k P P k k P 

ep= ~=lqj(~=lrijei)= ~ ( ~  qjrij) e i. Setting q~' := ~, qjrij w e  obtain ep= Y. qi' ei 
j =  "= i = 1  j = l  j = l  i=1  

p - 1  

and thus (1 - q~ ) ep = ~ qi' ei holds. We claim that (1 - q~ ) is invertible. Were it not 
i = 1  

so then we should have (1 - q~) ~ 0 ,  by Remark 1.1. Note that q~' e3o ,  i = 1, ..., p, 

and thus (1 - q~ ) + q~ = I e 30; therefore, always by 1.1, it would follow that i is not in- 

ve~ible, a contradiction. 
p - 1  

Hence % = (1 - q~ )- 1 ~ qi' ei so that el, ..., ep_ 1 generate A. By arguing in the 
i = 1  

same way for el, ..., %-1 we obtain that (1 - q) el = 0, qe3o ,  el generator of A. Like 

above (1 - q) is invertible and so el = (1 - q)-1(1 - q) el = (1 - q)-i  0 = 0, that is 

A =  {0}. �9 

We already observed that when A is an R-module and B is a submodule then A/B is 

an R-module equipped with the product r[a] = [ra], where [a] denotes the equivalence 

class of a in A with respect to the quotient relation by B. As seen before, when 3 is an 

ideal of R then it is defined the submodule of A,  ~A = ({qa: q e 3 ,  a e A }). In such a 
way A/~A becomes an R-module. Really we have also that A/3A is a module over R/M, 
where R/3  has the natural quotient ring structure. The new product is defined by 
(r}(cq}[a] := [r.a] --- [ra], with {.}, [.] corresponding to the equivalence classes in R 

and A respectively. It is easily seen that this action of R/3  on A/~A is well defined and 

it is a product. Since the contest will make our meaning clear, this rigorous but cumber- 

some product notation will be replaced by {r)[a] =- {r}(~.J}[a] = [ra]. 
In particular, we obtain that ff ~ is a maximal ideal of R then A/~A is a vector space 

over the field R/~.  

1.4. COROLLARY. -- Let R be a local ring, Do the maximal ideal and A a f.g. R-mod- 

ule. Let el, ..., ep e A :  then el, ..., ep generate A over R i f  and only if[el], ..., [ep] gen- 
erate A/3oA over R/3o. 
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PROOF. - The ,(only if ,  par t  is immediate: indeed if a e A one has 

P 

a= ~ ~ ,  ~ � 9  
j = l  

= [rjefl = =  thus [a] rjej =j= 

We will now prove the ~,if, part. Let  B be the submodule of A generated by el, .. . ,  ep, 

that  is B:= (el, . . . ,  %}: then we have to prove that A =B.  Let  us denote by [.]' the 

equivalence classes in A with respect  to the quotient by  B,  so that  A/B is an R-module 
with the product  r[a]'= [ra] ' ,  r � 9  a e A .  

First ly  we note that  A = B + ~oA.  In fact, since [el], . . . ,  [ep] generate  A/~oA over 
P P 

RiCo, Y a e A  we have [a] = ~ {rj}[ej], r j � 9  Hence [a] = [ ~  rjej] and from this it 
p j = l  p j = l  

follows that  a= ~ rjej+c where ~ rjejeB and c � 9  
j = l  j = l  

We claim that A/B = ~o(A/B). Since the inclusion ~o(A/B) cA/B  is obvious we only 

need to verify that  A/B c ~o (A/B). I f  a �9 A we can write a = b + c with b �9 B,  c �9 ~oA,  as 
k 

seen above. Since c = ~, q~ai, qi�9 ~o, a ieA  and inA/B one has [a] '  = [c]' ,  we can con- 
i = l  
k k k 

clude that  [ a ] ' = [ ~  qia~]'= ~[q~ai]'= ~ q~[ai]'�9 and hence A/B= 
i = 1  i = 1  i = 1  

= ~o(A/B). Since A/B is f.g., we can use Nakayama's  Lemma and conclude that A/B = 0, 

that  is A = B.  " 

1.5. PROPOSITION. - Let R, R ' be local rings with maximal ideals ~o and ~ respect- 
ively and let cf : R ' --> R be a local morphism. Let A be a f.g. R-module and let us sup- 
pose there exist el, ..., ep � 9  such that [el] ' ,  . . . ,  [ep]' generate A~ /~a~A~ over R ' / ~ ,  

[-] denoting the equivalence classes of the R '-module A~ with respect to the quotient by 
P 

the submodule ~ A ~ .  Then each element a of A has the form a = ~, (cf(rj') + qj)ej, 
j = l  

where rj' �9 R '  and qj �9 (cf(~)},  the ideal of R generated by cf(~a), j = 1, ..., p. In other 
k 

words, for a suitable integer k, qj= ~=la~Jcf(qi'), a i j e R ,  q i ' � 9  j = l  . . . .  , p ,  
i = l ,  . . . , k .  i= 

PROOF. - Since [ e l i ' ,  . . . ,  [ep]' generate  A ~ / ~ A ~  over R ' / ~ ,  then Ya e A [a]'= 
p 

= ~ {r j  }' [ej]', rj ' �9 R ', {.}' denoting the equivalence classes in R '  with respect  to the 
j = l  p p 

quotient relation by  ~ .  Hence, by  definition, [a]'= ~, [rj~ej]'= [ ~  rj'~ej]' and 
p j = l  k j = l  

so a= ~, rj'~ej+ b with b � 9  Again by definition b= ~ qi'~ai, qi' � 9  ai~A,  
j = l  k i = 1  

that  is b = ~'. cf(qi' ) ai. But  cp(q( ) �9 cf(;3o) c ~o and so b �9 ~oA.  Now, denoting by [.] and 
i=1 

{.} the equivalence classes in A/~oA and R/~o respectively, it will follow that [a] = 
P P P P 

= [~, rj'~ ej] = [ ~  cf(rj') ej] = ~ [cf(rj') ej] =j~=~ j = 1 j = 1 j = 1 { cfl(rj')}[ej ] .  Hence [el], . . . ,  [ep ] gen- 
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erate A/~oA over R/~o and, by the previous corollary, we have that el, ..., ep are gener- 

ators of A over R.  We are now able to conclude. Indeed, as already seen, if a �9 A then 
p p k 

a= ~ r j '~e j+b= ~ cf(rj ')ej+b with r j ' � 9  and b= ~ ~(q()a i ,  q i ' � 9  But 
j = l  j = l  p i=1  k P 

for every i = 1, ..., k, we have ai = F, a iN ej, a ij �9 R,  and so b = ~ cf(qi' )( ~-, a iN ej) = 
p k j = l  k i=1  j = l  

= ~, ( ~  aijcf(qi'))ej. If we set qj := ~ aijcf(qi') then, by construction, we have 
j = l  i= l  i=1 

that qj �9 ( q ~ ( ~ ) ) .  �9 

We give the following: 

1.6. DEFINITION. - Let c;: R'---)R an homomorphism between the rings R ' ,  R.  We 

shall say that ~ is a Malgrange-Mather or M-M morphism, in short cf is M-M, if the 

following properties hold: 

- R, R '  are local rings and cf is a local morphism, 

- let ~ be the maximal ideal of R ' .  Then, for every f.g. R-module A, we have 

that 

if A ~ / ~ A ~  is a f.g. vector space over the residual field R '  ~' / ~ 0  

~ A r  is a f.g. module over R ' .  

The vice versa of the above implication is trivially true. We introduced this defini- 

tion for pure convenience, in order to simplify the next sections. In this way we may 

easily state the following two results, which are the basic algebraic tools for the proof of 

the Preparation and Prepared Form Theorems. 

1.7. PROPOSITION. - Let cf: R '  --> R be an M-M morphism, A a f.g. R-module and let 
us suppose that the Vector space A ~ / ~  ~ Av is f.g. over the residual field R ' / ~ :  then 

Ar is a f.g. R '-module. Moreover i f  el, ..., ep �9 A and [el ], ..., [ep ] generate Ar / ~  ~Ar 
over R '  / ~  then el, ..., ep generate Ar over R '  

PROOF. - I f A ~ / ~ A v  is f.g. it follows, by the very definition of M-M morphism, that 

A~ is a f.g. R '-module. Thus, ff [el ], ..., [ep ] generate A ~ / ~  ~A~, we can apply Corollary 
1.4 and conclude that el, ..., ep generate Ar over R '  

1.8. PROPOSITION. - Suppose there exists a commutative diagram 

R "  

(p,$x,,~g 
R '  ---)  R 

of local morphisms cp, cf,'~f between the local rings R,  R ' ,  R"  and let q~ 
morphism. Finally suppose either 

' b e  a n  M - M  
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o r  

(1) q~ is surjective 

(2) ~0 is an M-M morphism. 

Then ~ is also an M-M morphism. 

PROOF. - Let A be a f.g. R-module, ~ the maximal ideal of R" and suppose that 
A v / ~ ; ~ A ~  is f.g. over R"/~g .  We have to verify that Av is f.g. over R". 

Note that this is true when Ar is f.g. over R ' .  In fact by Remark 1.2, and since 
~p = cf oCp', we have 

~ "  - -  1 ~ "  A Av  /;So i~Av - Ar o ~, /~.'o 9 ~ 9 ' ~  ~ 9' = (Ar ~" 
cp ' 

By hypothesis ~v' is an M-M morphism and since (A~)r 9, is f.g. over R"/~'~, if 

A~ is f.g. over R '  then, by definition of M-M morphism, we shall have that (A~)9, = A~ 
is f.g. over R". 

Hence it suffices to show that Ar is f.g. over R '. We prove this by considering sepa- 
rately the hypotheses (1) and (2): 

(1) Let el, ..., e p e A  be generators of A over R: thus, Y a e A ,  we have a= 

= ~ rye j, r j e R .  Since cf is surjective we get rj = cp(rj'), rj' e R ' ,  and thus a = 
j ~ l  

P P 

2 . j r  t . . . ,  , "~ E q~(rj' ) ej = j cej. Therefore el, ep generate A~ as an R '-module i.e. Ar is 
j = l  j = 1  

f.g. over R '. 

(2) Let now cf be an M-M morphism. Denoting by ~ the maximal ideal of R ', 
it will be enough to check that A r 1 6 2 1 6 2  is f.g. over R ' / ~ .  Indeed if this is true, 

and since A is fig. over R, we may invoke Proposition 1.7 to conclude that Ar is f.g. 
over R ' 

Hence it remains to verify that A ~ / ~ A ~  is f.g.. For this it is convenient to denote 

by [.]', {-}', [-]", {.}" the elements o f A ~ / ~ A g ,  R ' / ~ ,  A r  R"/~s~, respect- 
ively. 

Since, by hypothesis, A ~ / ~ A ~  is f.g. over R"/~g there exist el, ..., % c A  such 

that [el]", ...,[ep]" generate A~ ~" R" /~] .  /~o~Av  over Then, V a e A ,  one has [a]"= 
P P k 

{r~'} [ ej ] , r~' e R ", so that a = ~, rj ~ ej + b , ~ . . . .  = ' . . . . .  b e ;so~Av. Hence b = ~ qi ~a~, q/" 
j = l  j = l  i = 1  

k k k 

e Z o , a i e A , t h a t i s b  Y~ " �9 a. = = qi ~o~, ~= ~ q"(~)a~ ~ rp'(q~")~a~.Moreovercp'(~)c_~; 
i = 1  i = 1  9 '  i = 1  

since of' is a local morphism. 
Therefore cp'(q{')~ i =  1, . . . ,  k,  and thus b e ~ A ~ .  Since a =  J=~ ~".j ~ej+b it 

follows that [a]'= [ ~  rj"vei]'. �9 �9 . Finally, as seen above for b, we may write [a]'= 
j = 1 
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P P P 

= [ Z  ~p'(rf')~ej]'= Z [q)'(rT)~ej]'= ~=l{q)'(rf')}'[ej]' and thus [el]' , ...,[ep]' are 
j = l  j = l  j =  

generators for Aq,/~;.A~, over R ' / ~ ; .  Hence A~/~;~A~ is f.g. over R ' / ~ ; ,  as it was to 
be shown. �9 

We conclude the algebraic part  of the section with another notion which will be use- 

ful in the next section. 

Le t  R be a commutative ring (with unit 1): we denote the set of all n x m matrices, 
whose entries are elements of R ,  by M(n, m, R). We also indicate the matrix A e 

e M ( n , m,  R) by the set of its values, i.e. A = ( Ai j ) i=1 ..... n, Ai j e R . I f A  e M ( n , m, R) 
j =  l ,  . . . ,  m 

and B e M ( m ,  p, R) we can associate with them the product matrix AB  eM(n ,  p, R): 

it is given by the usual rows by columns multiplication. In particular when A,  B �9 

eM(n ,  R):= M(n,  n,  R) then A B e M ( n ,  R). I t  is easily seen that  M(n, R) is a ring 

(which is non-commutative in general) with unit equal to the matrix 1, defined as (1)ij = 

= 5~j, i ,  j = 1, . . . ,  n .  Note that, V r e R ,  VA = (A~j)i,j=l ..... ~ e M ( n ,  R) it is defined the 

matrix rA ~ M(n,  R) by (rA)ij = rAij, i, j = 1, ..., n. Hence M(n, R) becomes an alge- 
bra over R,  i.e. a ring which is also an R-module and such that  the ring and R-module 

operations are compatible, that  is r ( A B ) =  (rA) B =A(rB), `CreR, VA, B e M ( n ,  R). 

Let  us denote by R ~ the set of all ordered n-tuples of elements of R:  it is an abelian 

group in a obvious way. Moreover, it is an M(n, R)-module with the action of M(n, R) 
on R ~ defined as follows. Consider R ~ - M(n,  1, R), the set of ~column, vectors with n 

components: then, as seen above, 'CA e M(n,  R), "Cr ~ R  n the rows by columns product 

A r e  R ~ is defined. 

For  A e M ( n ,  R) we define the determinant of A,  det A e R ,  to be the element 

de tA  = ~ e(o) Ala(1)'... "Ano(n ). Here S~ is the group of permutations on n elements, 
(~ E S n 

say { 1, . . . ,  n}. Moreover, "Co e Sn, e(a) is the sign of permutation o which is either + 1 

or - 1 according to it is even or odd (i.e. if it is obtained by product of an even or odd 

number of transpositions, which are permutations that  interchange two only elements 

and leave fixed the remaining). 

I f  A e M ( n ,  R) and i , j e  {1, . . . ,  n} we define the matr;~ A ( i , j ) e M ( n - l , R )  
as the (n - 1) • (n - 1) matrix which is obtained from A by omitting, the i-th row 

and the j - th  column of A.  We introduce the (i,j)-cofactor of A,  A ( i , j ) e R ,  by 

- 4 ( i , j ) : =  ( - 1 )  i+j d e t A ( i , j ) .  Lastly, we define the adjoint of A,  a d j A e M ( n , R ) ,  
by (adjA)ij : = A ( j ,  i), i ,  j = 1, . . . ,  n .  We have: 

1.9. PROPOSITION (Cramer's Rule). - For  every A e M ( n ,  R) it results 

A(adjA)  = ( a d j A ) A  = ( d e t A ) 1 .  

We do not give here the proof of this known result. For  a thorough t rea tment  of the 
whole subject we refer  to [S], Chap. 7, w 7. 

We close this section by introducing an elementary but useful analytical tool. For  

this we recall that  a multi-index a with n components is an ordered n-tuple of 

integers aj, i.e. a = (a 1, . . . ,  a~), such that  aj >i O, j = 1, ..., n. We shall indicate by 

I a I the length of a defined as ] a I := a 1 -~- " - "  "4- a n and denote the factorial of a by 

a ! : = a l l ' . . . ' a n ! .  
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I f  R ~ = {x = (xl, . . . ,  Xn) :  x j e R ,  j = 1, . . . ,  n} and a is a multi-index we call a-th 
power of x �9 R ~ the number  x ~ := x ~ . . . . . x ~  '~. Le t  Y be a B-space, s an open subset of 

P,~ x Y and f :  ~9--~R a smooth function: we set, V(x, y) �9 ~ ,  

a l - l f  
D ~ f ( x ,  y) := (x, y ) .  

axe1.... �9 ax# 

1.10. PROPOSITION (Remainder Formula).  - L e t  U be an open convex subset of R ~, V 

an open subset in the B-space Y and f:  U x V c R ~ z Y---> R a smooth function. Then, 

for any integer k >I 0 and Xo �9 U, V(x, y) �9 U f V we have the formula 

f ( x ,  y) = ~, qa(y)(x - Xo) ~ + ~. Q,(x ,  y)(x - Xo) ~ 
o~< lal ~<k la I =k+l 

where q a e C ~ ( V ,  R) Va: 0<~ lal  <~k, Q ~ � 9  x V, R), Va: lal  = k + l .  

Moreover q~(y) = ( l / a ! )  D~f(xo,  y), Vy �9 V. 

PROOF. - I t  suffices to consider x0 = 0 �9 U and proceed by induction on k. F o r  every  

x �9 U the set {sx: s �9 [0, 1]} is contained in U for convexity. Hence, Yy �9 V, we can de- 

fine h y e C ~ ( [ 0 ,  1], R) as hv ( s ) := f ( s x  , y), s � 9  1]. 

Therefore  

1 1 

I dh, f f ( x ,  y) - f ( 0 ,  y) = hv(1) - hy(0) = - ~ s  (s) ds = Vxf(sx,  y ) . xds  = 

0 0 

0 0 

Given the multi-indices~-ith n components a o = (0 . . . .  , 0 ) ,  a ~ = (0, . . . ,  0, 1, 0, . . . ,  0), 

with 1 at the i-th place, i = 1, . . . ,  n ,  we define the functions q~o(Y):=f(0,  y), y �9 V, 
1 

and Q,i(x, y) := f 3f/axi (sx, y) ds, (x, y) �9 U x V. I t  can be readily verified they are 

o 
smooth functions (see, for example, [A-M-R], 2.4.16). I t  follows that,  for k = 0, the re- 

sult is true. Le t  us suppose it holds for k I> 0 and prove it for k + 1. 

Since it is t rue  for k, then 

(*) f ( x ,  y) = E qa(Y) xa + E Q~(x, y) x a , 
0 ~ l a l ~ < k  lal = k  + l 

where  (x, y) �9 U x V, qa and Q, being suitable smooth functions. Again by the formula 

for k = O  we obtain, Va such that  l a l = k + l ,  that  Q ~ ( x , y ) = Q a ,  o(y)+ 
n 

+ ~ Q~, i ( x, y) xi, ( x, y) �9 U x V, with Q~, 0 (y), Qa, i ( x, y ) smooth functions which we do 
i = l  

not need to specify. Le t  q,(y)  := Qa, 0(Y), Y �9 V, l a l  = k + 1: by construction qa, l al  = 
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= k + 1, is smooth and we may write 

f ( x , y ) =  ~ q,(y) x " +  ~, ( ~  Q , , i ( x , y )  x i )x~,  ( x , y ) ~ U x V .  
0~<]al ~<k+l  lal=k+l i=l 

For every multi-index fl = (ill ,  ..., fl~), Ifll = k + 2, and for every i = 1, ..., n, we de- 

fine, for fl ~ t> 1, the smooth functions Q~ := Qa, i, where a = (fl 1, .-., fl i - 1, ..., fl ~). 
Notice that l al = k + 1 and we have 

(~ Qa, i(x,y)xi)x a= ~, Q~(x,y)J, 
lal=k+l i = 1  Ifll = k + 2  

thus the Remainder Formula for k + 1 holds. 

Finally, remark that 

D~x~(O) = I 0 if a r  , 

[ a l ! ' . . . ' a ~ !  if a = f l ,  

Va, fi multi-indices. Apply now D~, I a I ~< k, to both sides of the Remainder Formula 
( . )  for the integer k and evaluate in 0. We obtain D~f(O, y ) =  a l ! ' . . . ' a n ! q , ( y ) =  
= a!q,(y), as it was to be proved. 

2. - The divis ion and preparat ion theorems  on B a n a c h  spaces.  

There are deep mathematical results which are called division theorems. This is be- 

cause they remember us the division algorithm with remainder for polynomials. These 

results and some of their corollaries are also named preparation theorems since they 

are often formulated in an algebraic version which is more suitable for the study of 

other fundamental problems. We followed this usage and called our Theorem 2.4 the 
Preparation Theorem. 

For  an interesting critical and historical review on preparation mathematics we 

refer to [W]. Here we only recall that the first result in this direction was the Weier- 
strass Preparation Theorem for holomorphic maps which in fact <,prepared, the study 

of the zeroes' set of holomorphic functions. It was then extended by H .  SPATH to the 
more general Division Theorem for holomorphic maps. The question arised whether a 

similar statement held for smooth maps (on euclidean spaces). Such a (local) theorem 

was proved by B. MALGRANGE in 1962, [Ma]. A global version of the Division Theorem 

for smooth maps was then given by J. MATHER in 1968, [M1]. Finally in 1980 P. MICHOR, 

[Mi], generalized the Malgrange Theorem to smooth maps on Banach spaces. 
Now we state, without proof, the Malgrange-Michor Division Theorem. 

2.1. THEOREM (Division Theorem). - Let X,  Y be real Banach spaces and let d: R x 
x X - o R  be a smooth function, defined near 0 = (0, 0) such that d(t, 0_) = d(t) t k for  
some k >I 0, where d: R ~ R is smooth, defined near 0 and such that d( O ) ~ O . Then 
given any smooth function f: R x X--> Y defined near O, there are smooth functions, 
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defined near 0, q: R x X - - ) Y ,  ri: X--> Y, i = 0 ,  1, . . . , k - l ,  such that f ( t ,  x) = 
k - 1  

= q(t, x) d(t, x) + ~, ri(x) t ~. 
i = 0  

The complete and detailed proof of this deep theorem can be found in [Mi]. 
In the sequel we also need the Local Representation Theorem. For this purpose we 

recall that when X, Y are Banach spaces and A ~ L(X, Y), then A is a double-splitting 
operator if N(A) splits in X and R(A) splits in Y, i.e. they are closed subspaces and have 

closed complements in X and Y respectively. In such a case we shall write A 

eDS(X,  Y). For A e L ( X ,  Y) we set nul(A) := dimN(A), def(A) := codimR(A) = 

= dim Y/R(A) and we say A is a DSF operator (or A is DSF) i fA e DS(X, Y) and either 

nul (A) < + ~ or def(A) < + ~ .  In this case we write A e DSF(X, Y) and define the 

index of A by ind (A):= nul (A) - def(A). This is a generalization of Fredholm opera- 

tors and so when A e DSF(X, Y) and ind (A) = i ~ Z U { _+ ~ } we will say that 

A ~ DSFi(X, Y). 
For a local commutative diagram (1.c.d. in short) 

we mean that: 

F 
Xo ~ U c X  > Vc  Y 

xd e U ' c X '  > V ' c Y ' ,  
ca 

- open subsets U, U ' ,  V, V' are assigned in the B-spaces X, X ' ,  Y, Y' respect- 

ively; 

- smooth mappings F ,  O are defined on some neighbourhood of Xo, Xo' in U, U'  
respectively. Moreover F ,  O map these neighbourhoods into V, V' respectively; 

- there exist (smooth) diffeomorphisms a,  fi defined on some neighbourhoods of 

Xo, F(xo) respectively such that a(xo) = xg and the above diagram locally commutes, i. e. 

near Xo one has flF = r  

2.2. THEOREM (Local Representation Theorem)i - Let F: UcX---> Vc  Y be a smooth 
map between open subsets U, V of the B-spaces X, Y and let F be double-splitting in 

xoeU,  that is F ' ( x o ) e D S ( X ,  Y). Let Xo, Yo be closed complements of N(F'(xo)),  
R(F '  (Xo) ) in X,  Y respectively and let p, z be the projections of X = N(F '(Xo) ) �9 Xo on 
N(F '(x0)) and Y =  Yo (~ R(F'(xo) ) on R(F'(xo) ) respectively. Then there exists a local 

commutative diagram 

F 
Xo ~ U c X  > Vc  Y 

(pxo, ~F(xo)) e N(F 'Xo)) x R(F'(xo)) > Yox R(F '(Xo)), r 

with a, fl, 4) depending on Xo, Yo and such that q) has the form r  r) = ( f ( n ,  r), r), 
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for (n, r) near (pxo, zF(xo) ) = a(xo), where f: N(F'(xo) ) • R(F'(xo) )--~ Yo is a suit- 
able smooth map defined near a(xo) and such that f'(a(xo) )= O. 

For a proof of this standard result we refer to [B-Z-S], Thm. 1.1. 

Let X be a Banach space (or more generally a smooth Banach manifold) and let x �9 

X. Let us consider the set I of all smooth functions defined on some neighbourhood of x 

in X, that is I:= { f e C ~(U, R): x �9 U open subset of X}. The functions f ,  g �9 I are 
equivalent if they coincide on a suitable neighbourhood of x. Indeed this is an equiva- 

lence relation and the corresponding quotient set will be indicated with C~ (X). It  can 

be made a ring in the following way. Let  us denote by [.] the equivalence classes in 

C~ (X) and let f ,  g �9 I be defined on open subsets U, V respectively. Then on U N V we 

define the functions f +  g, fg by ( f +  g)(y) :=f(y) + g(y), (fg)(y) :=f(y) g(y), y �9 U N 
n V: it is not hard to see they are smooth, i . e . f+  g,fg ~ I. In CZ (X) we set [ f ]  + [g] := 

:= [ f +  g], [ f ] [g]  := [fg]. These operations are well defined, because they do not de- 

pend on the choice of the representatives in [ f ] ,  [g]. The above operations make CZ (X) 
a commutative ring with unit [1], where 1 is the function on X which is identically equal 

to 1 e R. Since the ring structure does not depend on the representatives in I ,  in the se- 

quel we simply indicate the elements of C~ (X) by f ,  g, ... where f ,  g, ... �9 I .  

We consider now the set ~o - ~o (C~ (X)) := { f e  C~ (X): f (x)  = 0 }. As it is easily 

seen this is an ideal of C~ (X) and, obviously, ~o ;~ C~ (X). Let ~ be another ideal, ~ ;~ 

C~ (X), and let us show that ~ c ~o. Suppose on the contrary that ~ \~o  ;~ ~ and let g �9 
~ \~o.  Then g(x) ;~ 0 and near x the smooth function g -:  is defined, i.e. there exists 

g - 1 � 9  C~ (X). Let h �9 C~ (X): by definition of ideal, it follows that h = (hg-1) g �9 ~ and 

hence ~ = C~ (X), a contradiction. Therefore ~ \~o  = ~, that is ~ _c ~o. This shows two 

facts: 

- ~0 is a maximal ideal; 

- there are not other maximal ideals. 

Thus ~0 is the only maximal ideal and we have shown that C~ (X) is a local ring 

(see w Consider the residual field C~(X)/~o:  we have a natural isomorphism 

C~ (X)/~o ~ R. In fact note that the ring homomorphism 

C~ (X) --* R ,  

f ~ f ( p ) ,  

is surjective and its kernel is ~o. Hence it remains defined the isomorphism 

R, 

{ f }  ~ f ( P ) ,  

w h e r e f e  C~ (X) and {-} denotes the equivalence classes in C~ (X)/~o. The inverse one 
is given by r �9 R ~ {r} �9 C~ (X)/~0, r being the function on X which is identically eqfial 
to r �9 R. From now on, we shall write r instead of r for such a constant function, without 
fear of confusion. 
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2.3. REMARK. - Let F:  U c X - - * V c  Ybe a smooth map between open subsets U, Vof  

the Banach spaces X, Y. Let x �9 U, y �9 V such that F(x) = y: then the map 

F*: C~ (Y)-~C? (X) , 

g ~ F * ( g ) : = g o F  , 

is a ring homomorphism and it is called the induced morphism by F (or pull-back mor- 

phism via F). It is evident that �9 is <<functorial- (in a controvariant way), that is if 
H: Vc_Y-->WcZ is a smooth map between open subsets V, W of the Banach spaces 

Y, Z and H(y)  = z �9 W then 

(HF)* = F* H *: C~ (Z) --> C~ (X).  

Moreover F * ( ~ o ( C ~ ( Y ) ) ) c ~ o ( C ~ ( X ) ) :  in fact if g � 9  i.e. g ( y ) = 0 ,  then 

F*(g) (x )  = (goF)(x )  = g(F(x) ) = g(y) = O, that is F * ( g )  �9 ~o(CT (X) ). Thus we have 

shown that F* is a local morphism (see w 1). 

When F:  UcX-->Vc_ Y is a smooth map such that F(x)  = y  then, as seen above, 

F* :  C~ (Y) -~ C7 (X) is a local morphism between local rings. These features of the 
pull-back morphism lead in a natural way to the following formulation of the Prepara- 

tion Theorem. 

2.4. THEOREM (Preparation Theorem). - Let X,  Y be B-spaces, U and V open subsets 

of X and Y respectively, xo �9 U and F: UcX---~ V c  Y a smooth map such that F '  (xo) �9 

�9 DSFi(X,  Y), i �9 Z U { - :r }, i.e. F ' ( x )  is double-splitting and d imN(F ' ( xo ) )  < + ~ .  

Then F* :  C~o)(Y)--->C~o (X) is an M-M morphism. 

As we said in the introduction this theorem extends the finite-dimensional Prepara- 

tion Theorem which holds for smooth maps between euclidean finite-dimensional 
spaces X, Y. Indeed any linear map T: X-->Y is a Fredholm operator since T � 9  

�9 DSFi(X,  Y), i = dimX - dim Y. We refer to [G-G], Chap. IV, Thm. 3.6, for the finite-di- 
mensional case. Note that there the thesis is differently, but equivalently, for- 

mulated. 
We recall that, in the finite-dimensional case, the Preparation Theorem was stated 

by MALGRANGE [Ma] for a particular class of C~ (X)-modules, that is quotients of 
C~ (X). Later it was generalized by MATHER [M2] for every C~ (X)-module, see also 

[W]. For this reason we introduced the Malgrange-Mather morphisms (some authors 
say these morphisms have the Weierstrass property, see [P]). 

2.5. REMARK. - The Preparation Theorem amounts to say that, by taking R:= 

:= C~o (X), R '  := CF~o)(Y) and cp:= F* ,  then for every f.g. R-module A we have that 

A ~ / ~ A ~  f.g. over R ' / ~  ~ R implies that A~ is f.g. over R ', where ~ is the maximal 

ideal of R ' .  One can state an apparently more general version of the Preparation Theo- 
rem 2.4 in the following way: 

(GPT) in the same hypotheses of 2.4, i f  there exists an ideal ~'  c_ R ', ~'  ;~ R ' ,  such 
that A~/~'~A~ is f.g. over R ' /~ '  then A~ is f.g. over R '. 
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This can be proved as in the classical case, where ~ '  = ~ ,  adapting some of our re- 

sults in a simple and direct way. However, we explicitly note that such a version can 

also be deduced from the classical one. In fact suppose A~/~'~A~ f.g. over R'/~'  and 

let el, ..., ep e A  such that [el ], ..., [ep] generate A~/~'  ~A~. Hence, for all a eA ,  we 
P P P 

have [a] = Y~ {rj'}[ej] = ~ [rj'~ej], r j 'eR' ,  i.e. a =  ~ rj'~ej+b, where be~'r 
j = l  j = l  j = l  

k 

Thus b has the form b = Y~ qi'~ai, q( e~' ,  aieA, and since R ' =  C~o)(Y) is a local 
i=1 

ring, that is ~ '  c ~ ,  we obtain that b e ~ A r  Hence, denoting by [[.]] the equivalence 
P 

classes in A ~ / ~ A ~ ,  we have shown that [[a]] = Y. {r/}[[ej]], that is [[e~]], ..., [[%]] 
j = l  

generate Ar  ~A~. Since A ~ / ~  ~A~ is f.g. then, from the Preparation Theorem 2.4, we 
can conclude that A~ is f.g. over R ' .  

It is maybe worthwhile to point out that (GPT) allows us to prove the statement of 

Preparation Theorem given in Lemma 2.6 of [B-C-T] where a suitable ideal ~ '  is con- 

sidered. Such a statement is given in a form which is comparable to ours by means of 

the Local Representation Theorem (as it is shown by the diagram (D) considered in 

PART 2 of the next section). However in [B-C-T] it is assumed, as an extra-hypothesis, 

that f ( 0 ,  z) = 0 for each z near 0, w h e r e f i s  given in (D) below. It would be interesting 

to know whether the result in [B-C-T] could be used to prove (GPT) or Theorem 2.4, 

with or without the mentioned additional hypothesis. 

3. - P roof  of the preparation theorem. 

The proof of the Preparation Theorem on Banach spaces is divided in two parts: in 
the first one We show the theorem in a particular and very simple case by using the Di- 

vision Theorem 2.1. Here our method of proof is inspired by that one of the finite-di- 

mensional case, (e.g. see [G-G], Chap. IV, Thm. 3.6). In the second part we achieve the 

proof thanks to the Local Representation Theorem 2.2. In fact the more important dif- 

ference with respect to the finite-dimensional case, but natural in the context of Fred- 

holm maps, is the use of the diagram (D) there introduced. This will. allows us to deal 

with the involved maps like finite-dimensional maps. 

PART 1. - We shall prove the following weak form of the theorem: let Z be a B-space, 
let the map 

~: R •  

(t, z) ~-->z , 

be the natural projection where we denote by 0 the origin of R, by 0 the origin of Z and 
with 0 = ( 0 , 0 )  the origin of R x Z .  Then z* :  C~(Z)-->C~(RxZ) is an M-M 
morphism. 

By definition we have to prove the following assertion: 

let A be a f.g. Co ~ (R x Z)-module, ~o = ~0 (Co ~ (Z)) the maximal ideal of C f  (Z) and 
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suppose A~./~oz.A~. is f.g. over the field C~ r (Z)/~o ~-R, where 

Jr*: C~ (Z)---~C~ (R • z )  , 

g ~ z * ( g )  = g o z ,  

is the ring morphism induced by Jr and A~, denotes A as a module over Co ~ (Z) via z*.  

Then it is true that At ,  is f.g., that is A is f.g. as a module over Co ~ (Z). 

To this end let el, ..., epeA be such that [el], ...,[ep], the equivalence classes of 

el, ..., ep in A~,/~o~i,A~,,~ generate A~,/~o~i,A~, over C~ (Z)/~o ~ R. 

From Remark 2.3 the map ~* is a local morphism. Therefore, by Proposition 1.5, it 
p 

follows that every a e A  has the form a= ~, (z*(gj)+fj )e j  where, V j = I ,  . . . ,p ,  
j = l  k k 

gjeC~(Z)  and f j e C ~ ( R •  has the form ~ =  ~=lhiiz*(qi)= ~_,h~j(qio~), hii~ 
i =  i = 1  

~Co~(RxZ) ,  q i ~ o , j = l , . . . , p , i = l , . . . , k .  

On the other hand z* (gj) = z* (gj(O) ) + z*  (gj - gj(O) ), where gj(O) is the function 

which is identically equal to gj(0) near 0 e Z, that is gj(O)~ C~ r (Z). By abuse of lan- 

guage, let us denote again by gi(O) the constant function gi(O) near (0, 0) E R x Z, i.e. 

gj(O) ~ Coff (R • Z). It is evident that z *  (gj(O)) = gj(O) ~ C~ (R x Z): in fact, by defini- 

tion, ~* (gj(O))(t, z) = (gj(O) oz)(t, z) = gj(O)(z(t, z)) = gj(O)(z) = gj(O). Hence 

z*(gj) = gi(O) + z*(gj  - gj(O)) holds. 

From this we obtain that every a ~A can be written as 

P 

a = E [gj(0) + (z*(gj -gj(O)) +fj)]  ej. 
j = l  

Since qi e ~o we have qi(O) = 0 and thus 

( z*(g j -g j (O))  + fj)(t, 0)= ~*(gj-gj(O))  + ~ hij~*(q~) (t, O)= 
i=1 

k 

= ((gj-gj(O))oz)(t ,  O)+ E h~j(t, O)(qi oz)(t, O) = 
i = 1  

k 

= (gj-gj(O))(~(t, 0)) + E hij(t, O) qi(z(t, 0)) = 
i = 1  

k 

= (gj - gj(0))(0) + • h~j(t, 0) q~(0) = g / ( 0 )  -gi(O) = O. 
i = 1  

P 

Therefore we have proved that each a in A has the form a = ~ (yj + ~)j) ej, where 7j e 
j = l  

e Co ~ (R x Z) are suitable constant functions and ~j e C_0 ~ (R x Z) are such that, near 0, 

q~j(t, 0) =0 ,  j = 1, ..., p. 
In particular, denoting by p s C_0 ~ (R x Z) the projection 

p: R x Z - ~ R ,  

(t, z) ~ t .  
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we have that  the products  pe~ �9 A ,  j = 1, . . . ,  p ,  can be wri t ten as 

P 

( * ) pej = ~ ( r i j  +f i i )  e i ,  
i = l  

where ~ ij �9 Co ~ ( R  • Z )  are  constant funct ions  and  j~j �9 Co :~ ( R  • Z )  a r e  such t h a t  

f~j(t,  O) = 0 for i ,  j = 1, . . . ,  p.  

This suggest  to consider the commutative r ing t~:= M(p,  Co ~ (R • Z) )  of the p • p 

square matrices with elements in Co ~ (R • Z). As we have seen in Section 1, for all H = 

= (hij)i,  j = 1 .... .  p e ~ ,  hij �9 Coff ( R  • Z), i , j  = 1, . . . ,  p,  it is defined det H �9 Co ~ (R • Z), the 

determinant  of H .  Fo r  any (t,  z) near  0 we introduce the p • p real matr ix H ( t ,  z) de- 

fined by (H(t ,  z)) i j  := h~j(t, z), i ,  j =  1, . . . ,  p.  Hence there  exists d e t H ( t ,  z ) e R :  by 

defmition of determinant,  it is evident that  (de tH) ( t ,  z) = d e t H ( t ,  z) for all (t, z). 

Le t  now G be the constant matr ix with elements Gij :-- }' ij and F the matr ix  with 

elements F i j  : = f i j .  Let  us consider the -column,  vectors over A with p compo- 

nents 

e : = ( e ~ ) ~ = l  ..... ~ ,  0 : = ( 0 ) i = 1  ... . .  p .  

As we saw in Section 1, e,  _0 �9 M ( n ,  1, ~ )  ---A n which is an t~-module with the action of 

5t on A n given by the usual rows by columns product. Thus we may write ( �9 ) in the ma- 

tricial form ( p l a -  G -  F ) e  = 0, where  1~ is the identity matrix. Taking into account 

that  the action of ~ on A n is-associative and Cramer 's  Rule we have 

0 = (adj (p l~  - G - F ) )  0 = (adj (p l~  - G - F ) ) [ ( p l ~  - G - F )  e] = 

= [(adj ( p l a  - G - F ) ) ( p l ~  - G - F)]  e = [(det (pl~ - G - F ) )  l a ]  e = 

= (det (p l~  - G - F ) ) [  1~ e] = (det ( p l a  - G - F ) ) e ,  

that  is the identi ty (det (pl~ - G - F ) )  ej = 0, j = 1, . . . ,  p,  holds in A.  

Fo r  the sake of brevi ty  let d:= det  ( p l a  - G - F )  e Co ~ (R • Z) so that  in A we have 

the identi ty dej = 0, j = 1 . . . .  , p.  

As seen above)~j(t ,  0) = 0, i , j  = 1, . . . ,  p ,  hence the p • p real matr ix F ( t ,  0) is the 

null matrix. Thus, indicating by lp the p z p real  identity matrix, we get  

d(t ,  O) = (det (p l a  - G - F ) ) ( t ,  O) = det  ( (p la  - G - F ) ( t ,  0))  = 

= det  ( ( p l a ( t ,  0) - G) = det  (tlp - G) 

where  we have used the definition of p and that  the matr ix G is constant. Therefore ,  by 
construction, 

d ( t , O ) = d e t ( t l p - G ) = t P + a p _ l t p - l + . . . + a l t + a o ,  a / e R ,  j = 0 ,  . . . , p - l ,  



356 FERRANTE BALBONI: The preparation theorem, etc. 

is the characteristic polynomial of G. Then there exists an integer k, p I> k I> 0, such that  

aJ d ak d 
- -  (0, 0) = 0 ,  j =  1,  . . . ,  k -  1 ,  a n d  - -  ( 0 ,  0)  ~ 0 .  
9t j 3t k 

By the r emainder  formula, Proposi t ion1.10,  it follows tha t  in some neighbourhood of 0 

we can wri te  d(t,  O) = d(t) t k, where  d is a smooth function such tha t  d-(0) ~ 0. 

We m a y  now conclude the proof. I f  a � 9  then, as seen, it has the form 

P 

a =  E (~*(g j )+f j . ) e j ,  g N � 9  and f j � 9 2 1 5  j = l , . . . , p .  
j = l  k - 1  

The Division Theorem 2.1, for Y =  R, yields fj  = qjd + ~ ri j t  i, qj �9 C~ (R • Z), rij e 
i=O 

�9 Co ~ (Z), i = 0, 1, . . . ,  k - 1, j = 1, . . . ,  p ,  where,  with abuse of notation, we denote by  

t i � 9 1 7 6  • Z) the functions (t, z) �9 R • Z ~ t i � 9  i = 0, 1, . . . ,  k - 1. By  definition 

z * ( r i j ) ( t , z ) = r i j ( z ( t , z ) ) = r i j ( z )  and we m a y  deduce the identi ty ~ = q j d +  
k - 1  

+ ~ z*(r{j)  t ~. Since dej = O, j = 1, . . . ,  p ,  it follows tha t  
i = 0  

f j e j = ( q j d ) e j +  z*(r i j )  t i e j=q j (de j )+  ~ (z*(r i j )  t i )e j  = 
\ i = O  i = 0  

Hence 

k - 1  k - 1  

z*(r i j ) ( t ie j )  = E i r~j;.(t ej). 
i = 0  i = 0  

a = E ( z*(g j )  ej +fj.ej) = ~=1 gjz*eJ + riJz*(tiej " 
j = l  j =  i =  

Since t o ej = lej  = ej we can write 

P P k - 1  

a = ~, (gj + roj) i ,  ej + E E ri j / . ( t iej) , ,  
j = l  j = l  i = 1  

tha t  is el, . . . ,  ep, tel, . . . ,  tep, . . . ,  t k-  i el, . . . ,  t k-  ~ ep are genera tors  of A over  C~ (Z) so 

tha t  A~, is f.g., as we had to show. �9 

PART 2. - Le t  us now suppose tha t  the hyphoteses  in 2.4 are  verified: for X,  Y B- 
spaces and U, V open subsets  of X,  Y, let Xo �9 U and F :  UcX---~ Vc_ Y be a smooth m a p  

such tha t  F '  (Xo) �9 DSFi  (X, Y), i �9 Z U { - ~ }. We have to prove tha t  F * : C~xo) (Y) --> 
-~  Cxo (X) is an M-M morphism.  Since ind ( F '  (x0) ) = i < + oo, i.e. n := nul (F'  (xo)) < + ~ ,  
the Local Representa t ion  Theorem 2.2 allows us to say there  exists a 1.c.d. 

F 
Xo�9 Uc_X > Vc_Y 

O � 9  > Y o x Z ,  - 

where  Z ,  Yo are B-spaces,  F is a smooth map  defined near  the origin 0 = (0, O) of R n • 
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I 

x Z  having the form F(t, z) = ( f ( t ,  z), z ) f o r  (t, z) eR~ x Z ,  with f :  Rnx_Z--+Yo a 
smooth map defined near 0 and such that f ( 0 ,  0) = 0 the origin of Yo, i.e. F(0, 0) = 
= (0, 0). This diagram is easily obtained from that given in the statement of Theorem 2.2: 
it suffices to put Z = R(F'(xo)), to translate a(xo), fl(Xo) in the respective origins, to fix 
an isomorphism R(F'(xo) = R n and hence to consider ~,  ~f, F which are trivially deter- 
minated by a,  fl, O. For a reason which will soon be evident it is also convenient to de- 
fine the isomorphism 

o: Yo x Z--+ Z x Yo , 

(Yo, z)+-+(z, Yo), 

and to consider the 1.c.d. 

E 

(D) 

where P has now the 
= (o ,  o) .  

Xoe U c X  ~ Vc Y 

O e R ~ x Z  > Z x Y o ,  
- =~ 

form F(t,  z) =(z , f ( t ,  z)) for (t, z) e R n x Z  and F(O, O) = 

By functoriality o f . ,  Remark 2.3, it is an easy matter to show that the local rings 
and the indueed morphisms are invariant, up to isomorphisms, under ehanges of eoor- 
dinates, i.e. local diffeomorphisms. Thus, by the above diagram, it is sufficient to prove 
the Preparation Theorem for F i.e. it will be enough to show that 

F* :  C# (Z x Yo)---)C# (R ~ x Z) is an M-M morphism. 

In the sequel, for the sake of simplicity, we shall denote by 0 the origin of all prod- 
uct spaces whieh will be considered. Moreover we shall always write R~-J= 
= {(tj+l, ..., t~): t i eR ,  i = j +  1, ..., n}, for j =  1, ..., n. 

We define the (smooth) projections 

x~: R~xZx Yo---> R '~-~ xZx Yo, 

(tl, ..., t~, z, Yo) ~(t2, . . . ,  tn ,  z ,  Yo), 

~ _ ~ :  R ~-~ x Z x Yo->R n-2 x Z x Yo, 

(&, ..., t~, z, Y0) ~ ( t a ,  ..., tn, z, Yo), 

;Ygl: txZx Yo----->Zx Yo, 

(t~, z, Y0) ~ ( z ,  Yo), 
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and the smooth maps 

in: Rn X Z-'->Rn x Z X Yo, 

(tl, . . . ,  tn, z)  ~-->(tl, . . . ,  tn, z , f ( t l ,  . . . ,  t n, z ) )  , 

in_l: R'~ x Z---~R '~-1 x Z x  Yo, 

( t l ,  . . . ,  tn, z)  ~ ( t 2 ,  . . . ,  tn, z , f ( t l ,  . . . ,  t~, z ) )  , 

i1: Rn X Z ' - > R  x Z x Yo, 

( t l ,  . . . ,  t~, z)  ~ ( t n ,  z , f ( t l ,  . . . ,  t~, z ) ) .  

I t  is obvious that  for all k = 1, . . . ,  n we have z~k(0) = 0 and ik(0) = 0. Moreover, as 

we said in Remark 2.3, the induced homomorphisms z$  and ik* are local morphism. Now 

we show that, by the controvariant functoriality of � 9  the injectivity of the map in ira- 

plies that  the morphism i*:  C0~(R n x Z • Y0) -oCo~ (R ~ • Z) is surjective. Indeed let 

g ~ Co ~ (R ~ • Z) and define h ~ Co ~ (R n x Z x Yo) via h(tl, . . . ,  tn, z, Yo) := 

= g ( t l ,  . . . ,  tn, z).  Then i * ( h )  = g  because i * ( h ) ( t l ,  . . . ,  tn, z)  = ( h o i n ) ( t l ,  . . . ,  tn, z)  = 

= h( t l ,  . . . ,  tn, z , f ( t l ,  . . . ,  t~, z ) ) = g ( t l ,  . . . ,  tn, z).  

I t  is also easy to verify that  the following diagram is commutative: 

Z x Y  o 

. X Z 

: i 1 

lRn-2 x Z 

a'zx o . xz 
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By functoriality, or as a direct verification, the following diagram is also commuta- 

tive: 

C~(Z x Yo) 

Co(IR x Z x Yo) 

Co(]R "-2 x Z x Yo) 

n-l 

C~(1R n-I x Z XYo)  

7r ,I, 

Co(JR n x Z x Yo) 1. ~ x z )  

We are now able to show that P * : Co ~ (Z x Yo) --~ Co ~ (R ~ x Z) is an M-M morphism, 
and thus to prove the Preparation Theorem. Firstly remark that from PART 1 of the 

proof it follows that z* :  C ~ ( R  ~-1 x Z • Yo)--->C~(R n x Z x Yo) is an M-M morphism. 

Next, since in* is surjective then, by Proposition 1.8,  hypothesis 1), also 

i*-1: Co~(R~-lx  Z x Yo)-~Co~(R ~ x Z) is M-M. Lastly, always by PART 1, we know 

that Y/:t-l: C~(  Rn-2 x Z x Y0)-->Co~ (R ~-1 • Z • Yo) is M-M. Then, since i*-1, z * - i  

are M-M, by Proposition 1.8, hypothesis 2), one obtains that in*-2: Co ~ (Rn-2 x Z x 

x Yo) -->Co ~ (R " x Z) is an M-M morphism. By continuing as in this last step we can con- 

clude that F* :  Co ~ (Z x Yo) --~ Co ~ (R ~ x Z) is an M-M morphism. �9 

4. - The prepared form theorem. 

We are now able to state and prove the Prepared Form Theorem. This means the 

possibility to formulate a characteristic polynomial identity for a particular class of 

smooth maps on B-spaces. Such an identity is called the prepared form of the 
considered map. As usual this name indicates that the map is ,,prepared,) for future 
developments, for instance connected to the study of the singularities of maps (see 
e.g. [B-C-T], [Ba-D]). 

4.1. THEOREM (Prepared form). - Let Z be a B-space, R ~= { x =  (xl, ..., x~): 
x i e R ,  i =  l ,  ..., n}  and let f :  R~xZ--->R be a smooth function defined near 
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0 = (0, . . . ,  0, 0), the origin of R ~ x Z .  Let  k >I 0 be an integer such that 

~ f  (0, 0, z) = 0 �9 o . o ,  

ax~ 
for z near 0 ~ Z and i = 0, . . . ,  k ,  

9k + I f  
axe+ ~ (0, . . . ,  O, 0 ) ~ 0 ,  

I f  we consider the smooth map 

F:  Rn x Z--~R~ x Z ,  

(x I . . . .  , x~, z) ~ ( f ( x l ,  . . . ,  x~, z), x2, . . . ,  x~, z) , 

defined near the origin 0 of R ~ x Z and such that F( O ) = 0 (since f ( O ) = 0),  then there 

exist smooth maps ai: R ~ x Z---~R, i = O, . . . ,  k, defined near 0 and such that the pre- 

pared form for  F holds, i.e. the identity 

(FP)  x~ +1 = a k ( F ( x ,  z ) )x~  + ... + a l (F(x ,  z ) ) x l  + ao(F(x, z))  , 

is valid for  (x,  z) = (xl,  . . . ,  x~, z) near O. 

PROOF. - F or  the sake of more clarity it is convenient to indicate the local r ing 

Co ~ (R ~ x Z) with the index ' or ". This indexes are used when we consider 0 ei ther  in 

the domain or in the range of F respectively, which is R ~ x Z in both cases. We empha- 

size that  it is not an algebraic distinction, but  it is only done for the reader ' s  

convenience. 

Thus we may define the rings homomorphism (see the previous section) 

F * :  C~ (R~ x Z ) " - ~ C ~  (R~ x Z)  ' , 

g ~  F * ( g )  : = g o F  ; 

moreover  it is easy to show that  F is a Fredholm map of index zero. We sketch the 

proof: write F '  (xl, . . . ,  x~, z): R ~ x Z--* R n x Z in a matricial form. By definition of F it 

is readily seen that  F '  (xl, . . . ,  x~, z) is an isomorphism for every  (xl, . . . ,  Xn, Z) e R ~ X 

x Z ,  unless (af/axl)(Xl,  . . . ,  x~, z) =o.  In the last case N ( F ' ( X l ,  . . . ,  x~, z ) ) =  

= {(tl, 0, . . . ,  0, 0): tl e R}, which has dimension 1, and 

R ( F '  (xl,  . . . ,  xn, z) ) = t~ ~ X  2 (Xl, . . . ,  Xn, Z) + . . .  -~ 

Sf  ( Xl ' " " x~ ' z ) + af  ) } + t n  ~ , ~Z ( x l '  " " '  xn '  Z) V,  t2, . . . ,  tn,  V : t2, . . . ,  t n E ~  , v E Z  , 

which has codimension 1, since {(tl, 0 . . . . .  0, 0): t i e R }  is a complementary sub- 
space. 

Since F is Fredholm it follows, by  the Preparat ion Theorem, that  F *  is an M-M 

morphism. 
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Note that  the set, or be t te r  the abelian group, A := Co ~ (R n • Z) has a natural  struc- 

ture  of f.g. C~ ( R  n • Z)'-module: for g ~ Co ~ (R n • Z ) ' ,  h c A ,  the product  is defined by 

g. h := gh the pointwise product  function, and moreover  the function 1 is the generator.  

Thus it is defined in the usual way the Co ~ (R n • Z)"-module AF.,  i.e. the set A consid- 

ered as a module over C ~ ( R  n •  v ia -F* :  here  the product  is defined by  g f . h : =  

: = F * ( g )  h, g e C ~ ( R n •  ", h e A F . .  

We shall indicate by  [-], {-} the elements in the quotient module (real vector  space) 

AF*/~of .AF,  and in the residual field Co ~ (R n • Z)"/~o = R respectively. As usual ~o -- 

= ~o (C~ ( R  ~ • Z)" ) c C~ (R  n • Z)" is tl~e maximal ideal. 

Now suppose we have already shown the following statement:  

denote, with abuse of notations, by x~, i = 0, . . . ,  k + 1, the functions 

( X l , . . . , x n ,  z) e R n •  so that  x~eAF. :  then 

a) [1], [Xl] , . . . , [Xl k] generate  AF*/~of .  AF* over Co~(R n • Z ) " / ~ o = R .  

I f  this happens the Theorem is proved because by Proposition 1.7 it will follow that  1, 

xl, . . . ,  Xl k generate  AF. over Co ~ (R n • Z)". In particular, since Xl k + ~ ~ AF.  , there  exist 

a i e C ~ ( R  n • Z)", i = 0 ,  . . . ,  k,-such that  

k k k 

Xl k + l :  E ai f .X~= E F * ( a i ) x ~ =  ~, ( a i o r ) x ~ .  
i=O i=O i = 0  

In pointwise notation this means, for (x, z) near  0, 

k k 

Xl k+l=  E (ai oF)(x ,  z )x~  = E ai (F(x ,  z))x~l 
i=O i=O 

that  is the prepared  form for F .  

Hence we have only to prove s ta tement  a). Le t  g e Co ~ (R n • Z): by  the remainder  

formula 1.10 the identity 

g ( x ,  z )  = ~-, ga(Z) x a  "~- E a a ( X  , Z) X a 
o.< lal ~<k+l ]al=k+2 

holds near  0 with g~, G a suitable smooth functions. Since a = ( a l ,  . . . ,  an) ,  we can 
write 

g(x,  z) = ~, g~(z) x ~ + ~ g~(z) x ~ + 
o< lal <~k+l 0< I~i <~k+l 

+ ~, G~(x, z) x ~ + ~, G~(x, z) x a . 
]al=k+2 I~] =k+2 

By defining, for i = 0, . . . ,  k + 1, gi := g(i,o ..... o) and Go := G(k+2, o ..... o) we obtain 

k + l  

ga(Z) X a = ~ gi(z) Xil , 
0<~]a I~<k+l  i=O 

E Ga(x, z) x ~ = Go(x, z) x~ § 
lal =k+2 
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and thus we get 

k 
g(x, z) = E gi(z) x~ + x~ + l(gk § l(z) + Go(x, z) xl)  + 

i=0 

+ ~, ga(z) xa+  
0< lal ~<k+l 

F~ G.(x,  z) x " .  
I~l = k + 2  
al<l~l 

For  the given function f a similar expression is also true: 

k 
f ( x ,  z) = E ~ (z) x~ + Xl k § 1 (fk + 1 (z) + Fo (x, z) xl ) + 

i=O 

+ E fa(z) x ~ + E F . (x ,  z) x ~ , 
0< lal ~<k+l lal =k+2 

with fi, i = 0, . . . ,  k + 1, F0, f , ,  F ,  smooth functions. Moreover, by the remainder formu- 

la and the hypotheses on f ,  we have 

~(z)  =J~i,o ..... o)(Z) = (i!) -1 3 i f  a x ~ ( O , . . . , O , z )  0, f o r z n e a r 0 ~ Z ,  i = O , . . . , k ,  

~k + i f  
f k + l ( 0 )  =J~k+ l ,0  ..... 0)(0) = ( ( k + l ) ! )  -1 a x k +  1 (0 ,  . . . ,  0 ,  0 ) ; ~ 0 .  

Note that  the function fk + ~ (z) + F0(x, z) x~ at the point 0 = (0, . . . ,  0, 0) takes on the 

value ((k + 1)!)-1fi+1(0) ~ 0. Then, by continuity, we can write 

x~ + l = ( f i  + l(z) + Fo(x, z) Xl ) - l [  f (x, z ) -  o< talZ~<k+lfa(Z) xa + 

a l < l a  [ 

~, F~(x, z) x~], 
lal =k+2 

for (x, z) near 0. 

Le t  us now define, in some neighbourhood of 0, the smooth function hi as 

hi(x,  z):= (fk+l(z) + Fo(x, z) x l ) - l (gk+l(z)  + G0(x, z) Xl). Replacing the above 
expression of Xl k § 1 in the remainder formula for g we deduce 

k 
g(x, z) = ~ gi(z) X~l + hi(x,  z) f ( x ,  z) + 

i=O 
[g,(z) - hi(x,  z) f , (z)] x"  + 

0< ]a I ~<k+l 

+ F~ [Ga(x, z) - hi(x,  z) F~(x, z)] x ~ . 
I~l = k + 2  

For  each multi-index a = ( a l  . . . .  , aj, . . . ,  an) such that  0 < lal  ~< k + 2 and a l  < l a l ,  
there exists aj,  j > 1, such that  aj > 0 and thus in the monomial x a we can isolate the 
variable xj for some j > 1. Hence it is clear that  we may define smooth functions 
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hi(x, z), j = 2, . . . ,  n ,  such that  

k n 

g(x, z) = E gi(z) Xil + hi(x,  z ) f ( x ,  z) + ~, hi(x, z) xj. 
i=O j=2 

Let  Hi be the trivial extensions of the functions gi to R ~ • Z,  i.e. gi(x, z) := gi(z), for 

(x, z) = (xl, . . . ,  x~, z) near 0, i=O, . . . ,  k, and let z j ,  j =  1, . . . ,  n ,  be the projec- 

tions 

3~j: ~ n  X Z--">R n 

(xl, ..., Xn, z)~-->xj. 

By construction 

~i(F(x, z)) = g i ( f ( x ,  z), x2, ..., x~, z)=gi(z) ,  i = 0 ,  . . . ,  k ,  

Z l ( F ( x ,  Z) )=  z l ( f ( x ,  Z), X2, ..., Xn, Z)=f (x ,  Z), 

z j (F(x ,  z)) = z j ( f ( x ,  z), x2, ..., x~, z) =xj ,  j = 2 ,  . . . ,  n .  

Thus we can write 

k 

g(x, z) = ~, gi(F(x, z))xil + ~ hj(x, z) z j (F(x ,  z)) , 
i=o  j = l  

that  is, in functional notation, 

k n k n 

g = ~ (gi o f )  Xil + ~, (~j oF) hj = ~ r*(o i )  x~ + ~, F * ( ~ j )  hj = 
i=O j = l  i=O j = l  

k n 

F. ~ i g i ~ , X l  + E z j ~ , h j .  
i=o j = l  

We note that, for j = 1, . . . ,  n ,  hjeAF, and ~ j e  ~ 0 c C 0 ~ ( R  n x Z ) " ,  being Z j ( 0 ) =  0. 

k AF./;3Ot~,AF. , i.e. [g] = T h e n  z j l~, h j e ~ gi[.Xl ] in k J= 1 ~0t~.AF* and therefore [g] = [~i=0 ~ i 

~ i 
E [g i~ ,X l ]  E ~ i = = {g~ }[xi ], gi e Co ~ ( R~ • Z)". Since this is true for every g e AF. we 

i=O "' i=O 

have thus showed that [1], [xl], . . . ,[x~] generate AF./~oi.AF. over C_0~(R~• 

/ 2 o - - ~ .  �9 

4.2. REMARK. - The statement  of Theorem 4.1 was in part  suggested by Lemma 2.7 

in [B-C-T]. Par t  (2) of this lemma states, under the same hypotheses for the function f ,  
that  1, Xl, . . . ,  Xl k generate AF,  o v e r  Co ~ (R n • Z)". We proved this by means of the 
assertion 

a) [ 1 ], [xl], . . . ,  [Xl k] generate AF*/~of.Ar* over Co ~ (R n • Z)"/~o ~ R 

and then by using Proposition 1.7. 
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The idea at the beginning of the proof of a), that is the development of g and f ac- 

cording to the remainder formula, is in the proof of Part  (1) of Lemma 2.7 in [B-C-T], 
whose statement is analogous to a). In [B-C-T] Nakayama's Lemma and a result 

similar to Proposition 1.7 are then used to prove that 1, xl, ..., x~ generate AF. 

over Co ~ (R n • Z)" while, by a further direct computation, we can easily proceed to 

show a-). 

The use of Nakayama's Lemma, as in [B-C-T], is inspired by what happens in finite 

dimension. We recall that the finite dimensional prepared form theorem is true under 

weaker assumptions on f .  It is in fact sufficient to require that the function f satisfies 

3if/ax~ (0, . . . ,  O, O) = O, i = O, . . . ,  k,  with Z ~ R ~, m i> 0, to obtain the same conclu- 

sions as in 4.1 (see e.g. [G-G], Cap. V, Corol. 3.11, and Cap. VI w 2). This is precisely 

what we obtain from Theorem 4.1 by considering R n+m and Z = {0}; hence our ap- 

proach can also be used to prove the finite dimensional case. 

We do not know whether these weaker conditions could be used for any B-space Z, 
too. This would be an advantage in the proof of the normal form theorem for higher or- 

der singularities (see e.g. [Ba-D]) though this procedure seems intimately related to 

the existence of a finite number of variables. 
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