Vlastimil Dlab and Claus Michael Ringel

The present paper generalizes a recent result of I.M. Gelfand and V.A. Ponomarev [4] reported at the Conference by V.A. Rojter.

A modulated graph $\mathbb{M}=\left(F_{i},{ }_{i} M_{j}, \varepsilon_{i}^{j}\right)_{i, j \in I}$ is given by division rings F_{i} for all $i \in I$, by bimodules $F_{i}\left({ }_{i} M_{j}\right) F_{j}$ for all i $\neq j$ in I finitely generated on both sides and by non-degenerate bilinear forms $\varepsilon_{i}^{j}: M_{j} \otimes M_{i} \rightarrow F_{i}$; here, I is a finite index set. Note that the forms ε_{i}^{j} give rise to canonical elements $c_{j}^{i} \varepsilon{ }_{j} M_{i} \otimes$ ${ }_{i} M_{j}$. Namely, if x_{1}, \ldots, x_{d} is a basis of $\left({ }_{j} M_{i}\right)_{F_{i}}$ and y_{1}, \ldots, y_{d} the corresponding dual basis of $F_{i}\left({ }_{i} M_{j}\right)$ with respect to ε_{i}^{j}, then $c_{j}^{i}=\sum_{p} x_{p} \otimes y_{p} ;$ see section 1.

Define the ring $\Pi 0$ as follows. Let $T W$ be the tensor
 $T_{t+1}=T_{1}{\underset{T}{0}}_{\otimes}^{T_{t}}{ }_{t}$ with the multiplication given by the tensor product. Then, by definition, $\Pi O M=T(O) /<c\rangle$, where $<c>$ is the principal ideal of $T(N O)$ generated by the element $c=\sum_{i, j} c_{i}^{j}$.

Let Ω be an (admissible) orientation of \mathbb{M}; thus, for every pair $i_{i} j$ with $i_{j} \neq 0$, we prescribe an order indicated by an arrow $i \longrightarrow j$, or $i<-j$ in such a way that no oriented cycles occur. Let $\mathrm{R}(\boldsymbol{M}, \Omega)$ be the corresponding tensor ring of $(\mathcal{M}, \Omega): R(\mathbb{X}, \Omega)=$ $\underset{t \in \mathbb{N}}{\oplus} R_{t}$ with $R_{o}=\underset{i}{\Pi} F_{i}, R_{1}=\underset{i \rightarrow j}{\oplus} i_{j}^{M} \quad$ and $R_{t+1}=R_{1} \otimes R_{t}$. For the representation theory of $R(\Omega \Omega)$ we refer to [3].

THEOREM. For each orientation Ω of $\mathcal{M}, R(\boldsymbol{M}, \Omega)$ is a subring of $\Pi \mathscr{O}$ and, as a (right) $\mathrm{R}(\mathbb{M} \Omega)$-module, $\Pi \mathbb{N}$ is the direct sum of all indecomposable preprojective $\mathrm{R}(\mathbb{M}, \Omega)$-modules (each occurring with multiplicity one).

This theorem suggests to call Π the preprojective algebra of \mathcal{K}. Recall that an indecomposable $R(\Omega, \Omega)$-module P is preprojective if and only if there is only a finite number of indecomposable modules X with Hom (X, P) $\neq 0$.

COROLLARY. The ring πN is artinian if and only if the modulated graph is a disjoint union of Dynkin graphs.

Observe that if \mathscr{M} is a K-modulation (where K is a commutative field), then $\Pi \not \subset \infty$ is a K-algebra. In this case, the corollary may be reformulated as follows: The algebra Π (w is finitedimensional if and only if \boldsymbol{M} is a disjoint union of Dynkin graphs.

Consider, in particular, the case when (\mathbb{N}, Ω) is given by a quiver; thus, $F_{i}=K$ for all i and i_{j} is a direct sum of a finite number of copies of $K_{K} K_{k}$. For every arrow x of the quiver, define an "inverse" arrow x^{*} whose end is the origin of x and whose origin is the end of x. Then T is the path algebra generated by all arrows x and x^{*}, and Π is the quotient of $\left.T()^{*}\right)$ by the ideal generated by the element $\sum_{\text {all }} \mathrm{x}\left(\mathrm{x} \mathrm{x}^{*}+\mathrm{x}^{*} \mathrm{x}\right)$.
 finite-dimensional if and only if the quiver is of finite type.

For a quiver which is a tree, the last result has been announced by A.V. Rojter [6] in his report on the paper [4]. In contrast to the proofs in [4], our approach avoids use of reflection functors and is based on the explicite description of the category
$P(N, \Omega)$ of all preprojective $R(\Omega), \Omega)$-modules. The authors are indebted to P. Gabriel for pointing out that the theorem is, in the case when (γ, Ω) is given by a quiver, also due to ©h. Riedtmann [7].

1. Preliminaries on dualization

Given a finite-dimensional vector space F^{M}, denote by ${ }^{*} M$ its (left) dual space $\operatorname{Hom}\left({ }_{F} M, F_{F} F_{F}\right)$. If ${ }_{F} M_{G}$ is a bimodule and
 $f: M \otimes X \rightarrow Y$ is given by $\bar{f}(x)=\sum_{p=1}^{d} \phi_{p} \otimes f\left(m_{p} \otimes x\right)$, where $x E X$, $\left\{m_{1}, m_{2}, \ldots, m_{d}\right\} \quad$ is a basis of F^{M} and $\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{d}\right\}$ is the respective dual basis of $\left({ }^{*}{ }_{M}\right)_{F}$. In particular, if M is an End Y - End X submodule of the bimodule $\operatorname{Hom}(\mathrm{X}, \mathrm{Y})$ and $X_{M}: M \otimes X \rightarrow Y$ the evaluation map $X_{M}(m \otimes x)=m(x)$, then $\bar{X}_{M}(x)=\sum_{p} \phi_{p} \otimes m_{p}(x)$. Note that \bar{X}_{M} is a (left) G-homomorphism.

Now, given bimodules $F_{G}^{M}, G_{F}{ }^{M}$ such that F^{M} and N_{F} are finite dimensional, let $\varepsilon: M \otimes N \rightarrow F$ be a non-degenerate bilinear form. Thus, the adjoint $\bar{\varepsilon}$ is an isomorphism $\bar{\varepsilon}: N \rightarrow{ }^{*} M$; Let $\left\{n_{1}, n_{2}, \ldots, n_{d}\right\}$ be a basis of N_{F} and $\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{d}\right\}$ the basis of $\left.{ }^{*}{ }^{*}\right)_{F}$ such that $\phi_{p}=\bar{\varepsilon}\left(n_{p}\right)$ for all $1 \leq p \leq d$. Furthermore, let $\left\{m_{1}, m_{2}, \ldots, m_{d}\right\}$ be the dual basis of F^{M}. Thus,

$$
\varepsilon\left(m_{p} \otimes n_{q}\right)=\left(m_{p}\right)\left[\bar{\varepsilon}\left(n_{q}\right)\right]=\left(m_{p}\right) \phi_{q}=\delta_{p q} .
$$

Define the canonical element C_{ε} of $N \underset{F}{N} M$ (with respect to ε) by

$$
c_{E}=\sum_{p=1}^{d} n_{p} \otimes m_{p}
$$

Lemma 1.1. The element c_{ε} does not depend on the choice of a basis.

Proof. Let $\left\{n_{1}^{\prime}, n_{2}^{\prime}, \ldots, n_{d}^{\prime}\right\}$ and $\left\{m_{1}^{\prime}, m_{2}^{\prime}, \ldots, m_{d}^{\prime}\right\}$ be another bases of N_{F} and F^{M}, respectively, so that

$$
\varepsilon\left(m_{p}^{\prime} \otimes n_{q}^{\prime}\right)=\delta_{p q} .
$$

Then $n_{q}^{\prime}=\sum_{j} n_{j} b_{j q}$ and $m_{p}^{\prime}=\sum_{i} a_{p i} m_{i}$ with $b_{j q}$ and $a_{p i}$ from F.
Since $\delta_{p q}=\varepsilon\left(m_{p}^{\prime} \otimes n_{q}^{\prime}\right)=\sum_{i, j} a_{p i} \varepsilon\left(m_{i} \otimes n_{j}\right) b_{j q}=\sum_{i} a_{p i} b_{i q}$,
we have also $\sum_{p} b_{j p} a_{p i}=\delta_{j i}$.
Thus,

$$
\begin{aligned}
\sum_{p} n_{p}^{\prime} \otimes m_{p}^{\prime} & =\sum_{i, j, p} n_{j} b_{j p} \otimes a_{p i} m_{i} \\
& =\sum_{i, j} n_{j}\left(\sum_{p} b_{j p} a_{p i}\right) \otimes m_{i}=\sum_{i} n_{i} \otimes m_{i} .
\end{aligned}
$$

If we take, in particular, $G^{N}{ }_{F}={ }^{*}\left({ }_{F} M_{G}\right)$ and the evaluation map $X: M \underset{G}{\otimes} N \rightarrow F$ defined by

$$
X(m \otimes \phi)=(m) \phi,
$$

we obtain, for every bimodule M, the canonical element $c(M)=c_{X}$.
Given a bimodule $F^{M}{ }_{G}$, define the higher dual spaces ${ }^{(t)}{ }_{F} M_{G}$ inductively by

Thus, ${ }^{(t)}{ }_{M}$ is an $F-G-b i m o d u l e$ for t even and a G-F-bimodule for t odd.

Lemma 1.2. Let $F_{G}{ }_{G}$ and ${ }_{G} N_{F}$ be bimodules and $\varepsilon:_{F}{ }_{G}^{M}{ }_{G}^{N} N_{F} \vec{F}_{F}$
 ${ }^{t} \eta$ inductively as follows:

$$
\begin{aligned}
& 0_{n}=1_{M}:{ }_{F}{ }_{G}+{ }^{(0)} M=M ; \\
& { }^{1} \eta=\bar{\varepsilon}:{ }_{G}{ }^{N}{ }_{F} \rightarrow{ }^{(I)}{ }_{M}={ }^{*}{ }_{M} \text {; } \\
& 2 r_{\eta}=\overline{\delta\left[\left(^{2 r-1} n\right)^{-1} \otimes 1_{M}\right]}: F_{G}^{M_{G}} \rightarrow{ }^{(2 x)_{M}} \text { and } \\
& 2 r+1 \eta=\overline{\varepsilon\left[\left(^{2 r} \eta\right)^{-1} \otimes 1_{N}\right]}:{ }_{G} N_{F}+(2 r+1)_{M} .
\end{aligned}
$$

Then

$$
\left[{ }^{2 r+1} \eta \otimes 2^{2 r+2} \eta\right]\left(c_{\varepsilon}\right)=c\left(^{(2 r)}{ }_{M}\right) \text { and }\left[{ }^{2 r} \eta \otimes{ }^{2 r+1} \eta\right]\left(c_{\delta}\right)=c\left(^{(2 r+1)} M\right) .
$$

Proof. Recall that $c_{\varepsilon}=\sum_{p} n_{p} \otimes m_{p}$, where $\left\{m_{1}, m_{2}, \ldots, m_{d}\right\}$ is a basis of F^{M} and $\left\{n_{1}, n_{2}, \ldots, n_{d}\right\}$ the dual basis of N_{F} with respect to ε. Hence, in order to prove the first equality, it is sufficient to show that, for $m \in M$ and $n \varepsilon N$,

$$
\delta(n \otimes m)=\left({ }^{2 r+1} n(n)\right)\left[{ }^{2 r+2} n(m)\right]
$$

$$
\begin{aligned}
& \text { But, } \left.\left.\quad \quad^{2 r+1} n(n)\right)\left[{ }^{2 r+2} n(m)\right]=\left(^{2 r+1} \eta(n)\right\rangle\left[\delta\left[2^{2 r+1} n\right)^{-1} \otimes I_{M}\right](m)\right]= \\
& =\delta\left[\left({ }^{2 r+1} n\right)^{-1} \otimes l_{M}\right]\left(^{2 r+1} n(n)\right)=\delta\left[\left({ }^{2 r+1} n\right)^{-1} 2 r+1{ }_{n(n)} \otimes m\right]= \\
& =\delta(n \otimes m) . \\
& \text { Similarly, since } \\
& \left(^{\left.2 r_{\eta(m)}\right)}\left[{ }^{2 r+1} \eta_{\eta(n)}\right]=i^{\left.2 r_{\eta(m)}\right)} \overline{\left[\varepsilon\left[\left[^{2 r_{\eta}}\right)^{-1} \otimes 1_{N}\right]\right.}(n)\right]= \\
& \left.=\varepsilon\left[\left({ }^{2 r_{n}}\right)^{-1} \otimes I_{N}\right]\right]^{\left.2 r_{n(m)}\right)}=\varepsilon\left[\left({ }^{2 r_{n}}\right)^{-1} 2 r_{n(m)} \otimes n\right]= \\
& =\varepsilon(m \otimes n),
\end{aligned}
$$

we can derive the second equality for $c\left(\left(^{(2 r+1)} M\right)\right.$.

2. Irreducible maps

Recall the definition of an irreducible map [2]: a map
$\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is called irreducible if f is neither a split monomorphism nor a split epimorphism and if, for every factorization $f=f^{\prime} f^{\prime \prime}$, either $f^{\prime \prime}$ is a split monomorphism or f^{*} is a split epimorphism. Also, recall the definition of the radical of a module category. If X and Y are indecomposable modules, let rad (X, Y) be the set of all non-invertible homomorphisms. If $X=\underset{p}{\oplus} X_{p}$ and $Y=\underset{q}{\oplus} Y_{q}$ with indecomposable modules X_{p} and Y_{q}, define $\operatorname{rad}(X, Y)=\underset{p, q}{\oplus}$ $\operatorname{rad}\left(X_{P}, Y_{q}\right)$, using the identification $\operatorname{Hom}(X, Y)=\underset{p, q}{\oplus} \operatorname{Hom}\left(X_{P}, Y_{q}\right)$. The square $\operatorname{rad}^{2}(\mathrm{X}, \mathrm{y})$ of the radical is thus the set of all homomorphisms $f: X \rightarrow Y$ such that $£=f^{\prime} f^{\prime \prime}$, where $f^{\prime \prime} \varepsilon \operatorname{rad}(X, Z)$ and $f^{\prime} \varepsilon \operatorname{rad}(Z, Y)$ for some module Z. Note that both rad and rad ${ }^{2}$ are ideals in our module category; in particular, rad (X, Y) and $\operatorname{rad}^{2}(X, Y)$ are End Y - End X - submodules of the bimodule End $Y^{\operatorname{Hom}(X, Y)}$ End X. For indecomposable X and Y, the elements in $\operatorname{rad}(X, Y) \backslash \operatorname{rad}^{2}(X, Y)$ are just the irreducible maps. In this case, we write $\operatorname{Irr}(X, Y)=\operatorname{rad}(X, Y) / \operatorname{rad}^{2}(X, Y)$, and $\operatorname{call} \operatorname{Irr}(X, Y)$ the bimodule of irreducible maps (see [5]). In what follows, our main objective is to select a direct complement of $\operatorname{rad}^{2}(X, Y)$ in rad(X,Y) which is an EndY-EndX-submodule, and realize in this way
$\operatorname{Irr}(\mathrm{X}, \mathrm{Y})$ as a subset of $\operatorname{Hom}(\mathrm{X}, \mathrm{Y})$ rather than just as a factor group. We shall select such complements inductively, using Auslander-Reiten sequences.

Recall that an exact sequence $0 \rightarrow X \xrightarrow{f} Y \xrightarrow{q} Z \rightarrow 0$ is called an Auslander-Reiten sequence if both maps f and g are irreducible. This implies that both modules X and Z are indecomposable, X is not injective and Z is not projective. Conversely, given an indecomposable non-injective module X , there exists an AuslanderReiten sequence starting with X, and also dually, given an indecomposable non-projective Z, there is an Auslander-Reiten sequence ending with Z. Moreover, if $0 \rightarrow X \xrightarrow{f} Y \rightarrow Z \rightarrow 0$ is an AuslanderReiten sequence and $h: X \rightarrow X^{\prime}$ is a map which is not a split monomorphism, then there exists $\alpha: y \rightarrow X^{\prime}$ such that $h=\alpha f$. (For all these properties, we refer to [2]).

In the sequel, we will consider direct sums of the form $\oplus U(Y)$, where $U(Y)$ is an abelian group depending on Y, with Y Y ranging over "all" indecomposable modules. Here, of course, we choose first fixed representatives Y of all isomorphism classes of indecomposable modules and then index the direct sum by these representatives. In fact, all direct sum which will occur in this way will have even only a finite number of non-zero summands.

PROPOSITION 2.1. Let X be an indecomposable non-injective module and G be a division ring with

$$
\text { End } \mathrm{X}=\mathrm{G} \oplus \mathrm{rad} \text { End } \mathrm{x}
$$

Assume that, for every indecomposable module Y , there is given a direct complement $\mathrm{M}(\mathrm{X}, \mathrm{Y})$ of $\operatorname{rad}^{2}(\mathrm{X}, \mathrm{Y})$ in End $\mathrm{Y} \operatorname{rad}(\mathrm{X}, \mathrm{Y})_{\mathrm{G}}$. Let

$$
0 \rightarrow X \xrightarrow{\left(\bar{X}_{M(X, Y)}\right)^{Y}} \underset{Y}{\oplus}{ }^{*} \mathrm{M}(\mathrm{X}, \mathrm{Y}) \underset{\text { End } \mathrm{Y}}{\otimes} \mathrm{Y} \xrightarrow{\pi} \mathrm{Z} \longrightarrow 0
$$

be exact. Then, this is an Auslander-Reiten sequence. Moreover, G embeds into the endomorphism ring End Z of Z as a radical complement, and for every Y , there is an embedding σ of ${ }^{*} \mathrm{M}(\mathrm{X}, \mathrm{Y})$ onto a complement of $\operatorname{rad}^{2}(Y, Z)$ in $G_{G} \operatorname{rad}(Y, Z)$ End Y such that

$$
X_{O^{*} M(X, Y)}=\left.\pi\right|^{*} M(X, Y) \otimes Y .
$$

Proof. Let

$$
0 \longrightarrow X \xrightarrow{\left(E^{\prime}{ }_{Y, p^{\prime}}\right)_{Y, p}} \underset{Y}{\oplus} \underset{p=1}{d_{Y}} Y \longrightarrow Z^{\prime} \longrightarrow 0
$$

be an Auslander-Reiten sequence starting with X, where $f_{Y, P}^{\prime}: X \rightarrow Y$ for $1 \leq \mathrm{p} \leq \mathrm{d}_{\mathrm{Y}}$. Then the residue classes of the elements $\mathrm{f}_{\mathrm{Y}, 1}^{\prime}$, $f_{Y, 2}^{\prime}, \ldots, F_{Y, d_{Y}}^{\prime}$ form a basis of the G-vector space $\operatorname{rad}(X, Y){ }_{G} / \operatorname{rad}^{2}(X, Y){ }_{G}$ (see Lemma 2.5 of [5]). Let $f_{Y, 1}, f_{Y, 2}, \ldots, f_{Y, d_{Y}}$ be a G-basis of $M(X, Y)$. By the factorization property of Auslander-Reiten sequences, there is a map

$$
\alpha: \underset{\mathrm{Y}=1}{\oplus} \stackrel{\mathrm{~d}_{\mathrm{Y}}}{\oplus} \mathrm{Y} \longrightarrow \underset{\mathrm{p}=1}{\oplus} \underset{\mathrm{M}}{\oplus} \mathrm{M}
$$

such that $\alpha o\left(f_{Y, p}^{\prime}\right) Y_{, P}=\left(f_{Y, P}\right)_{Y, P}$. It follows that α is an automorphism. For, let $E=$ End $\left(\underset{Y}{\oplus} \underset{\sim}{\oplus} \underset{Y}{d^{\prime}} Y\right)$ and consider the residue class $\bar{\alpha}$ of α in E/rad E. Also, consider the factor group

$$
M=\operatorname{rad}(X, \underset{Y}{\oplus} \underset{\mathrm{P}=1}{\oplus} \mathrm{Y}) / \operatorname{rad}^{2}(\mathrm{X}, \underset{\mathrm{Y}}{\oplus} \underset{\mathrm{P}=1}{\oplus} \mathrm{Y}),
$$

and let $\overline{\mathrm{E}}$ and $\overline{\mathrm{F}}$, be the residue classes of $\mathrm{f}=\left(\mathrm{f}_{Y, \mathrm{P}}\right) \mathrm{Y}, \mathrm{P}$ and $F^{\prime}=\left(f_{Y, P}^{\prime}\right)_{Y, P}$, respectively. Then $\operatorname{rad} E$ annihilates M, and the equality $\bar{\alpha} \overline{\mathcal{F}}^{\prime}=\overline{\mathrm{F}}$ shows that $\bar{\alpha}$ induces base changes between the bases $\left(\bar{f}_{Y, P}\right)$ and $\left(f_{Y, P}^{\prime}\right)$ of $\operatorname{Irr}(X, Y)$. This implies that $\bar{\alpha}$ is invertible. Since rad E is nilpotent, α is invertible, as well. Thus, we can form the following commutative diagram

$$
\begin{aligned}
& 0 \longrightarrow X \xrightarrow{f^{\prime}} \oplus \stackrel{d}{Y}^{Y} Y \longrightarrow Z^{\prime} \longrightarrow 0
\end{aligned}
$$

where both α and β are isomorphisms. As a consequence, also the lower sequence is an Auslander-Reiten sequence.

$$
\text { Note that we can rewrite }{\underset{p=1}{\oplus} Y \text { as } \quad{ }^{*} M(X, Y) ~}_{\substack{\mathrm{Y}}}^{\otimes} \mathrm{Y} \text {, and }
$$

then $\left(_{f_{Y, p}}\right)$ becomes $\bar{X}_{M(X, Y)}$. For, if $\phi_{Y, 1}, \phi_{Y, 2}, \ldots, \phi_{Y,} d_{Y}$
is the dual basis of ${ }^{*} M(X, Y)$ End $Y / r a d$ End Y with respect to the basis $f_{Y, 1}, f_{Y, 2}, \ldots, f_{Y, d_{Y}}$ of End $Y /$ rad End $Y(X, Y)$, then we identify

$$
{ }^{*} M(X, Y) \underset{E \cap d Y}{\otimes} Y=\underset{p=1}{\oplus_{Y}^{Y}} \phi_{Y, P} \otimes Y \underset{p=1}{\oplus^{Y}} Y,
$$

and

$$
\bar{X}_{M(X, Y)}(x)=\sum_{p=1}^{\sum_{Y}} \phi_{Y, p} \otimes f_{Y, p}(x)
$$

is identified with $\quad\left(f_{Y, p}{ }^{(x)}\right)_{p}$. Now, ${ }^{*} \mathrm{M}(\mathrm{X}, \mathrm{Y})$ is a left G-module, and

$$
\bar{X}_{M(X, Y)}: X \longrightarrow{ }^{*} M(X, Y) \underset{\text { End } Y}{\otimes} Y
$$

is a G-module homomorphism. Hence, under $\left(\bar{X}_{M(X, Y)}\right)$, the module X becomes a G-submodule of $\underset{Y}{\oplus}{ }^{*} \mathrm{M}(\mathrm{X}, \mathrm{Y}) \underset{\text { End } Y}{\otimes} \mathrm{Y}$, and therefore also the factor module Z has a left G-module structure. Thus, G embeds canonically into End Z and in this way, G becomes a radical complement. This follows from the canonical isomorphism

End $X / r a d$ End $X \approx$ End $Z / r a d$ End Z,

which is always valid for the outer terms of an Auslander-Reiten sequence.

$$
\text { The restriction of } \pi \text { to }{ }^{*} M(X, Y) \otimes Y \text { defines a map } \sigma \text { of }
$$ ${ }^{*} M(X, Y)$ into $\operatorname{Hom}(Y, Z)$ which is a G-End Y-homomorphism. If we denote again by $\phi_{Y, 1}, \phi_{Y, 2}, \cdots, \phi_{Y, d_{Y}}$ an End $Y /$ rad End Y-basis of ${ }^{*} \mathrm{M}(\mathrm{X}, \mathrm{Y})$, then $\left.\pi\right|^{*} \mathrm{M}(\mathrm{X}, \mathrm{Y}) \underset{\text { End } \mathrm{Y}}{\otimes} \mathrm{Y} \longrightarrow \mathrm{Z}$ can be identified with

$$
\left(\phi_{Y, p}\right)_{p}: \underset{p=1}{\oplus_{Y}} \underset{p=1}{\oplus_{Y}} \phi_{Y, p} \otimes Y \longrightarrow Z
$$

Again, using Lemma 2.5 of [5], we see that the residue classes of $\phi_{Y, 1}, \phi_{Y, 2}, \ldots, \phi_{Y, d_{Y}}$ in $\operatorname{Irr}(Y, Z)$ form an End $Y / r a d$ End Y-basis and that ${ }^{*} M(X, Y)$ is therefore mapped injectively onto a complement of $\operatorname{rad}^{2}(Y, Z)$ in $G^{\operatorname{rad}(Y, Z)}$ End Y. This completes the proof.

Now, assume that X is an indecomposable, non-injective module and that G is a radical complement in End X. If there are given direct complements $M(X, Y)$ of $\operatorname{rad}^{2}(X, Y)$ in End $Y^{r a d}(X, Y){ }_{G}$, then the $\sigma^{*} M(X, Y)$ are direct complements of $\operatorname{rad}^{2}(Y, Z)$ in ${ }_{G}{ }^{r a d}(Y, Z)$ End Y, and the Auslander-Reiten sequence starting with X is of the form

$$
0 \rightarrow X \xrightarrow{\left(\bar{X}_{M(X, Y)}\right)^{\prime}}{ }^{*}{ }_{M(X, Y)} \otimes Y \xrightarrow{\left(X_{\sigma}^{*} M(X, Y){ }^{\prime} Y\right.} Z^{(X)} 0 .
$$

Denote by $C(M(X, Y))$ the canonical element in ${ }^{*} M(X, Y) \otimes M(X, Y)$. Now $1: M(X, Y) \longleftrightarrow \operatorname{Hom}(X, Y)$ and $\sigma:{ }^{*} M(X, Y) \longleftrightarrow \operatorname{Hom}(Y, Z)$, and thus we have a canonical map

$$
{ }^{*} M(X, Y) \otimes M(X, Y) \longrightarrow \operatorname{Hom}(X, Z),
$$

namely $\sigma \otimes 2$ followed by the composition map μ.
PROPOSITION 2.2. Under the map

$$
\underset{Y}{\oplus} \mathrm{M}(\mathrm{X}, \mathrm{Y}) \otimes \mathrm{M}(\mathrm{X}, \mathrm{X}) \stackrel{\oplus(\sigma \otimes 1)}{\oplus} \underset{\mathrm{Y}}{\oplus} \operatorname{Hom}(\mathrm{Y}, \mathrm{Z}) \otimes \operatorname{Hom}(\mathrm{X}, \mathrm{Y}) \xrightarrow{(\mu)} \operatorname{Hom}(\mathrm{X}, \mathrm{Z}),
$$

the element $\sum_{Y} c(M(X, Y))$ goes to zero.
Observe that, for a fixed module X, there is only a finite number of modules Y such that $M(X, Y) \approx \operatorname{Irr}(X, Y) \neq 0$; therefore, we may form the sum $\sum_{Y} c(M(X, Y))$.

Proof of Proposition 2.2. First, we are going to show that $C(M(X, Y))$ maps onto $X_{\sigma^{*} M(X, Y)} \circ \bar{X}_{M(X, Y)}$. Let $f_{1}, f_{2}, \ldots, f_{d}$ be an End $Y / r a d$ End Y-basis of End $Y / r a d$ End $Y^{M}=M(X, Y)$, and $\phi_{1}, \phi_{2}, \ldots, \phi_{d}$ the corresponding dual basis in ${ }^{*} M_{\text {End }} Y / r a d$ End Y. Then, for $\mathrm{x} \varepsilon \mathrm{X}$, we have

$$
\bar{X}_{M}(x)=\sum_{p} \phi_{p} \otimes f_{p}(x),
$$

and for $\phi \varepsilon{ }^{*} M, Y \varepsilon Y$,

$$
X_{\sigma^{*}}(\phi \otimes y)=\sigma(\phi)(y)
$$

Thus,

$$
X_{\sigma}{ }^{*} \bar{X}_{M}(x)=X_{\sigma} *_{M}\left(\sum_{p} \phi_{p} \otimes f_{p}(x)\right)=\sum_{p} \sigma\left(\phi_{p}\right)\left(f_{p}(x)\right)
$$

This shows that $\chi_{\sigma}{ }^{*}{ }_{M} \bar{X}_{M}$ is equal to $\sum_{\mathrm{p}} \sigma\left(\phi_{p}\right) f_{p}$, and this is the image of $\sum_{p} \phi_{p} \otimes f_{p}=c(M(X, Y))$ under $\mu(\sigma \otimes i)$. As a consequence, we conclude that under the map $\underset{Y}{\oplus}{ }^{*} M(X, Y) \otimes M(X, Y) \xrightarrow{\oplus(\sigma \otimes l)} \xrightarrow{(\sigma)}$
$\underset{Y}{\oplus} \operatorname{Hom}(Y, Z) \otimes \operatorname{Hom}(X, Y) \xrightarrow{(\mu)} \operatorname{Hom}(X, Z)$, the element $\sum_{Y} c(M(X, Y))$ goes to $\sum_{Y} X_{\sigma^{*}}{ }_{M(X, Y)} \bar{X}_{M(X, Y)}$, which is the composite of the two maps in the corresponding Auslander-Reiten sequence and thus zero. The proof is completed.

Let us point out that, in what follows, we shall not specify any longer the embedding σ of ${ }^{*} M(X, Y)$ into $\operatorname{Hom}(Y, Z)$, but shall simply consider ${ }^{*} M(X, Y)$ to be a subset of $\operatorname{Hom}(Y, Z)$.

REMARK. Let us underline the use of the two distinct tensor products $M(X, Y) \otimes{ }^{*}{ }_{M}(X, Y)$ and ${ }^{*} M(X, Y) \otimes M(X, Y)$. Whereas the first one is used for the ordinary evaluation map

$$
X: M(X, Y) \otimes{ }^{*} M(X, Y) \longrightarrow \text { End } Y / \operatorname{rad} \text { End } Y
$$

given by $X(f \otimes \phi)=f(\phi)$, it is the second one which has to be used for the composition map μ. Namely, using the above embedding ${ }^{*} \mathrm{M}(\mathrm{X}, \mathrm{Y}) \quad \longrightarrow \operatorname{Hom}(\mathrm{Y}, \mathrm{Z})$, we can consider

$$
{ }^{\star} M(X, Y) \otimes M(X, Y) \quad \longrightarrow \operatorname{Hom}(Y, Z) \otimes \operatorname{Hom}(X, Y) \xrightarrow{\mu} \operatorname{Hom}(X, Z),
$$

and $\mu(\phi \otimes \mathrm{f})=\phi \circ \mathrm{f}$.

3. The preprojective modules

Now, let us consider the particular case of the irreducible maps between indecomposable preprojective $R(\mu)$-modules. First, recall the way in which these modules can be inductively obtained from the indecomposable projective ones.

For each i ε I, there is an indecomposable projective $R(0, \Omega)$-module $P(i)$. Indeed, denoting by e_{i} the primitive idempotent of $R\left(m^{\prime}, \Omega\right)$ corresponding to the identity element of the $i^{\text {th }}$
factor F_{i} in $R_{o}=\prod_{i} F_{i}, P(i)=e_{i} R\left(R_{i}, \Omega\right)$. Note that $P(i) / \operatorname{rad} \mathrm{P}(i)$ is the simple $\mathrm{R}(\boldsymbol{\pi} \Omega)$-module corresponding to the vertex i which defines $P(i)$ uniquely up to an isomorphism. Moreover, note that End $P(i)=F_{i}$, and thus it is a division ring. The irreducible maps between projective modules are always rather easy to determine. Here, for $R(\Omega, \Omega)$, there are irreducible maps from $P(j)$ to $P(i)$ if and only if $i \rightarrow j$ in Ω. In fact, ${ }_{i}{ }_{j} j$ can be easily embedded in Hom ($P(j), P(i)$) in such a way that

$$
i^{M}{ }_{j} \oplus \operatorname{rad}^{2}(P(j), P(i))=\operatorname{rad}(P(j), P(i))
$$

as $\mathrm{F}_{\mathrm{i}} \mathrm{FF}_{\mathrm{j}}$-bimodules. This follows either from the explicit description of the modules $P(i)$ given in [3], or from the fact that $\oplus_{i} M_{j}$ is a direct complement of $\operatorname{rad}^{2} R(\Omega, \Omega)$ in rad $\left.R(\Omega) \Omega\right)$. As a result, given two indecomposable projective $R(3), \Omega)$-modules P and P^{\prime}, we can always choose a direct complement $M\left(P, P^{\prime}\right)$ of $\operatorname{rad}^{2}\left(P, P^{\prime}\right)$ in End $P^{\prime} \operatorname{rad}\left(P, P^{\prime}\right)$ End P, and we can identify these $M\left(P, P^{\prime}\right)$ with the given bimodules $i_{i}{ }_{j}$, where $i \rightarrow j$.

Now, the indecomposable preprojective modules can be derived from the projective ones by using powers of the coxeter functor C^{-} (as defined in [3]) or of the Auslander-Reiten translation $\mathrm{A}^{-}=\operatorname{Tr} \mathrm{D}$ ("transpose of dual" of [2], and also [1]). Thus, we denote by $P(i, r)$ the module obtained from $P(i)$ by applying the $r{ }^{\text {th }}$ power of one of the mentioned constructions. (It is clear from the uniqueness result in [3] that $\left.C^{-r} P(i) \approx A^{-r} P(i).\right)$

LEMMA 3.1. Assume that X and Y are indecomposable modules and that there exists an irreducible map $X \rightarrow Y$. If one of the modules x, y is preprojective, then both are. Furthermore, if $\mathrm{X}=\mathrm{P}(\mathrm{i}, \mathrm{r})$ and $\mathrm{Y}=\mathrm{P}(\mathrm{j}, \mathrm{s})$, then either $\mathrm{s}=\mathrm{r}$ and $\mathrm{i}+\mathrm{j}$, or $s=r+1$ and $i \rightarrow j$.

Proof. This lemma is well-known, so let us just outline a proof. Using shifts by powers of the Coxeter functors C^{+}and C^{-} (see [3]) or of the Auslander-Reiten translations $A=D \operatorname{Tr}$ and $A^{-}=\operatorname{Tr} D$ (see [2] and [1]), we can assume that X is projective. If Y is not projective, then we get from the Auslander-Reiten sequence ending with Y, an irreducible map from $A Y$ to X.

Since X is projective, this map cannot be an epimorphism and thus it has to be a monomorphism. Consequently, AY is projective.

Now, in view of Proposition 2.1, we obtain by induction on the "layer" r of the indecomposable preprojective $R(\lambda), \Omega)$-modules $P(i, r)$ the following result.

PROPOSITION 3.2. a) If we choose, for any two indecomposable projective modules P and P^{\prime}, a direct complement $M\left(P, P^{\prime}\right)$ of $\operatorname{rad}^{2}\left(\mathrm{P}, \mathrm{P}^{\prime}\right)$ in End $\mathrm{P}^{\prime} \operatorname{rad}\left(\mathrm{P}, \mathrm{P}^{\prime}\right)$ End P , then this determines a direct complement $M\left(P, P^{\prime}\right)$ of $\operatorname{rad}^{2}\left(P, P^{\prime}\right)$ in $\operatorname{rad}\left(P, P^{\prime}\right)$ for any indecomposable preprojective modules P, P '.
b) If we identify, for any arrow $i \rightarrow j$
the bimodule $\mathrm{M}\left(\mathrm{P}(\mathrm{j}), \mathrm{P}(\mathrm{i})\right.$) with i_{j}, then this yields an identification of any $\mathrm{M}\left(\mathrm{P}(\mathrm{j}, \mathrm{r}), \mathrm{P}(\mathrm{i}, \mathrm{r})\right.$) with $\quad \mathrm{I}_{\mathrm{i}} \mathrm{M}_{\mathrm{j}}$ and any $M\left(P(i, r), P(j, r+1)\right.$ with $\quad(2 x+1){ }_{i} M_{j}$ for $i \rightarrow j$.

PROPOSITION 3.3. Every map between two indecomposable preprojective modules is a sum of composites of maps from the various M ($\mathrm{P}, \mathrm{P}^{\prime}$) 。

Proof. Let Y be an indecomposable preprojective module, say $Y=P(i, r)$. Then the radical of the endomorphism ring E of
$\oplus P(j, s)$ is generated (by using the addition and multiplication) $j \varepsilon I$
$0 \leq s \leq r$
by an arbitrary complement of $\operatorname{Rad}^{2} E$ in Rad E. So we may choose as a complement the direct sum of $M\left(P(j, s), P\left(j^{\prime}, s^{\prime}\right)\right)$.

4. Abstract definition of the full subcategory of the preprojective modules

First, let us introduce the following notation indicating the operation of the division rings F_{i} and F_{j} : For $i \rightarrow j$, put

$$
{ }_{i}^{2 r} M_{j}=(2 r)\left({ }_{i} M_{j}\right) \quad \text { and } \quad{ }^{2 r+1}{ }_{j}^{M_{i}}=(2 r+1)\left(M_{j}\right) .
$$

Now, define the category $P(\Omega)$ as follows: The objects of
$P(\Omega)$ are pairs $(i, r), i \varepsilon I, r \geq 0$ with the endomorphism rings F_{i}. For $i \rightarrow j$,

$$
M((j, r),(i, r))={ }^{2 r} i^{M} j
$$

and

$$
M((i, r),(j, r+l))={ }^{2 r+1}{ }_{j} M_{i} .
$$

Denote by $F(\boldsymbol{\mu}, \Omega)$ the free category generated by these morphisms using the tensor products over F_{i}. Furthermore, for every (j, r), take

$$
\begin{aligned}
c(j, r)= & \sum_{i \rightarrow j}^{\sum} c\left({ }_{i}^{2 r} M_{j}\right)+\sum_{j \rightarrow k}^{\sum} c\left({ }^{2 r+1} M_{j}\right) \epsilon \\
& \underset{i \rightarrow j}{\oplus}\left({ }^{2 r+1}{ }_{j}^{M_{i}} \otimes \underset{i}{2 M_{j}}\right) \oplus \underset{j \rightarrow k}{\oplus}\left({ }_{j}^{2 r+2} M_{k} \otimes{ }^{2 r+1} M_{j}\right)
\end{aligned}
$$

and denote by J the category ideal generated by all elements $c(j, r)$. The category $P(\beta, \Omega)$ is then defined as the factor category of $F(\boldsymbol{\gamma} \boldsymbol{\gamma} \Omega)$ by the ideal J.

Observe that the definition of $P(\Omega, \Omega)$ requires only the knowledge of the bimodules ${ }_{i} M_{j}$ for $i \rightarrow j$ (and neither the corresponding bimodules j_{i}^{M}, nor the bilinear forms ε_{i}^{j} and ε_{j}^{i}).

PROPOSITION 4.1. The full subcategory of the preprojective modules of the category of all $T(\Omega)$-modules is equivalent to $P(2, \Omega)$.

Proof. Using Proposition 3.2, there is a canonical functor Γ from $F(\Omega)$ to the subcategory of preprojective $T(\Omega, \Omega)$-modules given by the choice of $M(P(i), P(j))={ }_{j} M_{i}$ for projective modules $P(i), P(j)$ where $j \rightarrow i$. Also by Proposition 3.3, Γ is surjective. Moreover, according to Proposition 2.2, the elements $c(j, r)$ are mapped to zero.

Conversely, let a morphism $f:(j, r) \rightarrow\left(j^{\prime}, r^{\prime}\right)$ from
$F(\Omega)$ be mapped under Γ to zero. We are going to show that f must lie in the ideal J. This is clear if $r=r^{\prime}$; for, then $\mathrm{E}=0$. Thus, assume that $\mathrm{f} \neq 0$ and proceed by induction on $r^{\prime}-r$. Now j and r are fixed; let $\left\{\ldots g_{p} \ldots\right\}$ be the union of bases of all vector spaces $F_{i}\left({ }^{2 r_{i}}{ }_{j}\right)$ for all $\underset{i}{p}$ with $i \rightarrow j$ and $F_{k}\binom{2 r+l_{M}}{k_{j}}$ for all k with $j \rightarrow k$, and let $\left\{\ldots g_{p}^{\prime} \ldots\right\}$ be the union of the corresponding dual bases of $\left({ }_{j}^{2 r+1} M_{i}\right) F_{i}$ and $\left({ }^{2 r+2}{ }_{j} M_{k}\right)_{F_{k}}$.

Thus, $c(j, r)=\sum_{p} g_{p}^{\prime} \otimes g_{p}$. Now, $f=\sum_{p} h_{p} \otimes g_{p}$, where h_{p} is a morphism of $F(x, \Omega)$ either from (i, r) or $(k, r+1)$ to $\left(j^{\prime}, r^{\prime}\right)$. since there is an Auslander-Reiten sequence

$$
0 \longrightarrow P(j, r) \xrightarrow{\left(\Gamma\left(g_{p}\right)\right)} p{ }^{\left(\Gamma\left(g_{p}^{\prime}\right)\right)} p \xrightarrow{ } P(j, x+1) \longrightarrow 0
$$

and since

$$
0=\Gamma(f)=\sum_{p} \Gamma\left(h_{p}\right) \Gamma\left(g_{p}\right),
$$

we can factor $\left(\Gamma\left(h_{p}\right)\right)_{p}: Q \rightarrow p\left(j^{\prime}, r^{\prime}\right)$ through $\left(\Gamma\left(g_{p}^{\prime}\right)\right)_{p}$. Hence, there is a homomorphism $\tilde{u}: p(j, r+l) \rightarrow P\left(j^{\prime}, r^{\prime}\right)$ such that

$$
\Gamma\left(h_{p}\right)=\tilde{\mathrm{u}} \Gamma\left(g_{\mathrm{p}}^{\prime}\right)
$$

And, since Γ is surjective, we can find $u:(j, r+1) \rightarrow\left(j^{\prime}, r \prime\right)$ in $F(2, \Omega)$ such that $\Gamma(u)=\tilde{u}$. Obviously, the elements $h_{p}-u \otimes g_{p}^{\prime}$ lie in the kernel of Γ, and therefore, by induction, they belong to J. Consequently,
$f=\sum_{p} h_{p} \otimes g_{p}=\sum_{p}\left(h_{p}-u \otimes g_{p}^{\prime}\right) \otimes g_{p}+\sum_{p} u \otimes g_{p}^{\prime} \otimes g_{p}$
also belongs to J; for, $\sum_{p} u \otimes g_{p}^{\prime} \otimes g_{p}=u \otimes c(j, r)$.

5. Proof of the theorem

The proof of the theorem consists in identifying the additive structure of $\Pi(\mathbb{O})$ with a factor of a subcategory of $F(\mathbb{M}, \Omega)$. Indeed, we may consider both $F(\mathcal{M}, \Omega)$ and $P(\mathcal{N}, \Omega)$ defined in section 4 as abelian groups forming the direct sum of all Hom($(i, r),(j, s))$.
 $\operatorname{Hom}((i, 0),(j, s))$. Then, both $\Phi(\eta, \Omega)$ and $\Pi(\Omega, \Omega)$ contain a subring $R=\underset{i, j}{\oplus} \operatorname{Hom}((i, 0),(j, 0))$ which is obviously isomorphic to $\mathrm{R}(\boldsymbol{\pi}, \Omega)$. Furchermore, under the composition in $\Pi(\Omega, \Omega), \Pi\left(\begin{array}{l}\boldsymbol{m} \\ \boldsymbol{m}\end{array} \Omega\right)$ is a right $R(\Omega, \Omega)$ module; for, if $f:(i, 0) \rightarrow(j, s)$ and $a:(k, 0) \rightarrow$ $(i, 0)$ from R, then fa $:(k, 0) \rightarrow(j, s)$ in $\Pi(k, \Omega)$.

PROPOSITION 5.1. $\Pi\left(\boldsymbol{\mu}^{\prime}, \Omega\right) \mathrm{R}(\boldsymbol{\gamma}, \Omega)$ is isomorphic to the direct sum of all Ypreprojective $R\left(\boldsymbol{R}_{\text {R }} \Omega\right)$-modules (each occurring with multiplicity one).
$\gamma=$ indecomposable

Proof. Using the notation of section 3, the indecomposable

 preprojective R -modules are $\mathrm{P}(\mathrm{j}, \mathrm{s})$, $j \varepsilon \mathrm{I}, \mathrm{s} \geq 0$. In particular, $P(j, 0)$ are the indecomposable projective R-modules and thus $R_{R}=\underset{i \in I}{\oplus} P(i, 0)$. For every R-module X_{R},$$
\begin{aligned}
X_{R} & \approx \operatorname{Hom}\left({\underset{R}{R}}_{R^{\prime}} X_{R}\right)=\operatorname{Hom}\left(_{R}[\oplus P(i, 0)], X_{i}\right)= \\
& =\left[\operatorname{Hom}\left(\oplus \underset{i}{\oplus} P(i, 0) R_{R}, X_{R}\right)\right]_{R}=\left[\oplus \underset{i}{[\oplus o m}\left(P(i, 0) R_{R^{\prime}} X_{R}\right)\right]_{R} .
\end{aligned}
$$

Hence,

$$
P(j, s)=\underset{i}{[\oplus} \operatorname{Hom}(P(i, 0), P(j, s))]_{R}
$$

and thus under the identification of $P(j, s)$ with (j,s) and $\operatorname{Hom}(P(i, 0), P(j, s))$ with the maps in $I I(\pi, \Omega)$, we get the statement.

Now, define the map $\Delta: T(\mathbb{O}) \rightarrow F(\boldsymbol{m}, \Omega)$ as follows. First, the morphisms in $F(\boldsymbol{m}, \Omega)$ can be described in the following way: for an (unoriented path) $w=i_{n+1}-i_{n}-\ldots-i_{2}-i_{1}$ of \mathscr{K}, call the number of arrows $i_{t+1} \leftarrow i_{t}, l \leq t \leq n$, in Ω the layer $\lambda(w)$ of w. Then, the morphisms in $F(\Omega)$ are the elements of the tensor products

$$
i_{n+1}^{r_{n}}{ }_{M_{n}} \otimes \ldots \otimes{ }_{i_{3}}^{M_{i}} i_{2} \otimes{ }_{i_{2}}^{I_{M}} i_{1},
$$

where $r_{t}=2 \lambda\left(i_{t}-i_{t-1}-\ldots-i_{2}-i_{1}\right)+\left\{\begin{array}{lll}0 & \text { if } & i_{t+1}+i_{t} \\ 1 & \text { if } & i_{t+1}+i_{t}\end{array}\right.$.
Now, the map Δ is defined by

where ${ }^{r} \eta$ are the maps of Lemma 1.2 for $M={ }_{i} M_{j}$ and $N={ }_{j} M_{i}$.
From the definition of $\Phi(\Omega, \Omega)$, it is clear that $\Phi(\Omega)$ is just the image of T under \triangle. Also, \triangle is obviously $R(\Omega)$ linear.

LEMMA 5.2. $\Delta(\langle\mathrm{c}\rangle)=\mathrm{J} \cap \Phi(\Omega)$.
Proof. By definition, $c=\sum_{j}\left(\sum_{i} c_{j}^{i}\right)=\sum_{j} c(j)$; note that $c(j)=e_{j} c e_{j}$, where e_{j} is the idempotent of T corresponding
to the identity of F_{j}; thus $\langle\mathrm{c}\rangle$ is the ideal generated by all $\mathrm{c}(\mathrm{j})$'s. Hence, the statement follows from Lemma 1.2 taking into account that, by definition,
$\Delta(1 \otimes 1 \otimes \ldots \otimes c(j) \otimes \ldots \otimes 1)=1 \otimes 1 \otimes \ldots \otimes c\left(r^{r} M\right) \otimes \ldots \otimes 1$.
Now, from Lemma 5.2, it follows that Δ defines an isomorphism
 the proof of the theorem.

The corollaries follow from the results in [2].

REFERENCES

[1] Auslander, M., Platzeck, M.I. and Reiten, I.: Coxeter functors without diagrams. Trans. Amer. Math. Soc. 250 (1979), 1-46.
[2] Auslander, M. and Reiten, I.: Representation theory of artin algebras III. Comm. Algebra 3 (1975), 239-294; V. Comm. Algebra 5 (1977), 519-554.
[3] Dlab, V. and Ringel, C.M.: Indecomposable representations of graphs and algebras. Memoirs Amer. Math. Soc. No. 173 (Providence, 1976).
[4] Gelfand, I.M. and Ponomarev, V.A.: Model algebras and representations of graphs. Funkc. anal. i prilož. 13 (1979), 1-12.
[5] Ringe1, C.M.: Report on the Brauer-Thrall conjectures: Rojter's theorem and the theorem of Nazarova and Rojter. These Lecture Notes.
[6] Rojter, A.V.: Gelfand-Ponomarev algebra of a quiver. Abstract, 2nd ICRA (Ottawa, 1979).
[7] Riedtmann, Ch.: Algebren, Darstellungsköcher, Überlagerungen und zurdck. Comment. Math. Helv., to appear.

Department of Mathematics
Carleton University
Ottawa, Ontario K1S 5B6
Canada

Fakultät fUr Mathematik
Universität
D-4800 Bielefe1d
West Germany

