THE PREPROJECTIVE ALGEBRA OF A MODULATED GRAPH

Vlastimil Dlab and Claus Michael Ringel

The present paper generalizes a recent result of I.M. Gelfand and V.A. Ponomarev [4] reported at the Conference by V.A. Rojter.

A modulated graph $\mathcal{M} = (F_i, {}_iM_j, \epsilon_i^j)_{i,j \in I}$ is given by division rings F_i for all $i \in I$, by bimodules $F_i({}_iM_j)_{F_j}$ for all $i \neq j$ in I finitely generated on both sides and by non-degenerate bilinear forms $\epsilon_i^j : {}_iM_j \otimes {}_jM_i \rightarrow F_i$; here, I is a finite index set. Note that the forms ϵ_i^j give rise to canonical elements $c_j^i \in {}_jM_i \otimes {}_iM_j \rightarrow {}_iM_j$ is a basis of $({}_jM_i)_{F_i}$ and Y_1, \dots, Y_d the corresponding dual basis of $F_i({}_iM_j)$ with respect to ϵ_i^j , then $c_j^i = {}_p\Sigma_p \otimes Y_p$; see section 1.

Define the ring $\Pi(\mathcal{M})$ as follows. Let $T(\mathcal{M})$ be the tensor ring of \mathcal{M} : $T(\mathcal{M}) = \bigoplus_{t \in \mathbb{N}} T_t$, where $T_o = \prod_i F_i$, $T_1 = \bigoplus_{i,j} M_j$ and $T_{t+1} = T_1 \bigotimes_{O} T_t$ with the multiplication given by the tensor product. Then, by definition, $\Pi(\mathcal{M}) = T(\mathcal{M}) / \langle c \rangle$, where $\langle c \rangle$ is the principal ideal of $T(\mathcal{M})$ generated by the element $c = \sum_{i,j} c_i^j$. Let Ω be an (admissible) orientation of \mathcal{M} ; thus, for every pair i,j with $\underset{i j}{\mathsf{M}} \neq 0$, we prescribe an order indicated by an arrow $i \longrightarrow j$, or i < --- j in such a way that no oriented cycles occur. Let $\mathsf{R}(\mathcal{M},\Omega)$ be the corresponding tensor ring of (\mathcal{M},Ω) : $\mathsf{R}(\mathcal{M},\Omega) = \bigoplus_{t \in \mathbb{N}} \mathsf{R}_t$ with $\mathsf{R}_0 = \prod_i \mathsf{F}_i$, $\mathsf{R}_1 = \bigoplus_{i \to j} \mathsf{i}_j^{\mathsf{M}}$ and $\mathsf{R}_{t+1} = \mathsf{R}_1 \bigotimes_{\mathsf{R}_0} \mathsf{R}_t$. For the representation theory of $\mathsf{R}(\mathcal{M},\Omega)$ we refer to [3].

<u>THEOREM</u>. For each orientation Ω of \mathcal{W} , $R(\mathcal{M}, \Omega)$ is a subring of $\Pi(\mathcal{M})$ and, as a (right) $R(\mathcal{M}, \Omega)$ -module, $\Pi(\mathcal{M})$ is the direct sum of all indecomposable preprojective $R(\mathcal{M}, \Omega)$ -modules (each occurring with multiplicity one).

This theorem suggests to call $\Pi(\mathbf{M})$ the preprojective algebra of \mathbf{M} . Recall that an indecomposable $R(\mathbf{M}, \Omega)$ -module P is preprojective if and only if there is only a finite number of indecomposable modules X with Hom $(X, P) \neq 0$.

COROLLARY. The ring I (77) is artinian if and only if the modulated graph is a disjoint union of Dynkin graphs.

Observe that if \mathcal{M} is a K-modulation (where K is a commutative field), then $\Pi(\mathcal{M})$ is a K-algebra. In this case, the corollary may be reformulated as follows: The algebra $\Pi(\mathcal{M})$ is finitedimensional if and only if \mathcal{M} is a disjoint union of Dynkin graphs.

Consider, in particular, the case when (\mathcal{U}, Ω) is given by a quiver; thus, $F_i = K$ for all i and ${}_{i}M_{j}$ is a direct sum of a finite number of copies of ${}_{K}K_{K}$. For every arrow x of the quiver, define an "inverse" arrow x^* whose end is the origin of x and whose origin is the end of x. Then $T(\mathcal{U})$ is the path algebra generated by all arrows x and x^* , and $\Pi(\mathcal{U})$ is the quotient of T(\mathcal{U}) by the ideal generated by the element $\sum_{n=1}^{L} (xx^* + x^*x)$.

<u>COROLLARY</u>. If (\mathfrak{A}, Ω) is given by a quiver, then $\Pi(\mathfrak{A})$ is finite-dimensional if and only if the quiver is of finite type.

For a quiver which is a tree, the last result has been announced by A.V. Rojter [6] in his report on the paper [4]. In contrast to the proofs in [4], our approach avoids use of reflection functors and is based on the explicite description of the category $P(\mathcal{M}, \Omega)$ of all preprojective $R(\mathcal{M}, \Omega)$ -modules. The authors are indebted to P. Gabriel for pointing out that the theorem is, in the case when (\mathcal{M}, Ω) is given by a quiver, also due to Gh. Riedtmann [7].

1. Preliminaries on dualization

Given a finite-dimensional vector space $_{F}^{M}$, denote by ^{*}M its (left) dual space $\operatorname{Hom}(_{F}^{M}, _{F}^{F}F_{F})$. If $_{F}^{M}G$ is a bimodule and $_{G}^{X}$, $_{F}^{Y}$ vector spaces, the adjoint map $\overline{f}: X \to {}^{*}M \otimes Y$ to a map $f: M \otimes X + Y$ is given by $\overline{f}(x) = \sum_{p=1}^{d} \phi_{p} \otimes f(m_{p} \otimes x)$, where $x \in X$, $\{m_{1}, m_{2}, \ldots, m_{d}\}$ is a basis of $_{F}^{M}$ and $\{\phi_{1}, \phi_{2}, \ldots, \phi_{d}\}$ is the respective dual basis of $({}^{*}M)_{F}$. In particular, if M is an End Y - End Xsubmodule of the bimodule $\operatorname{Hom}(X, Y)$ and $\chi_{M}: M \otimes X \to Y$ the evaluation map $\chi_{M}(m \otimes x) = m(x)$, then $\overline{\chi}_{M}(x) = \sum_{p} \phi_{p} \otimes m_{p}(x)$. Note that $\overline{\chi}_{M}$ is a (left) G-homomorphism.

Now, given bimodules ${}_{F}{}^{M}{}_{G}$, ${}_{G}{}^{N}{}_{F}$ such that ${}_{F}{}^{M}$ and ${}_{N}{}_{F}$ are finite dimensional, let $\varepsilon : M \otimes N \to F$ be a non-degenerate bilinear form. Thus, the adjoint $\overline{\varepsilon}$ is an isomorphism $\overline{\varepsilon} : N \to {}^{*}M$; let $\{n_{1}, n_{2}, \ldots, n_{d}\}$ be a basis of ${}_{N}{}_{F}$ and $\{\phi_{1}, \phi_{2}, \ldots, \phi_{d}\}$ the basis of $({}^{*}M)_{F}$ such that $\phi_{p} = \overline{\varepsilon}(n_{p})$ for all $1 \leq p \leq d$. Furthermore, let $\{m_{1}, m_{2}, \ldots, m_{d}\}$ be the dual basis of ${}_{F}{}^{M}$. Thus,

$$\varepsilon(\mathfrak{m} \otimes \mathfrak{n}) = (\mathfrak{m})[\overline{\varepsilon}(\mathfrak{n}_{q})] = (\mathfrak{m}) \phi_{q} = \delta_{pq}$$

Define the canonical element c_{ε} of N \bigotimes_{F} M (with respect to ε) by

$$c_{\varepsilon} = \sum_{p=1}^{d} n \otimes m_{p}.$$

Lemma 1.1. The element c_{ε} does not depend on the choice of a basis.

<u>Proof</u>. Let $\{n'_1,n'_2,\ldots,n'_d\}$ and $\{m'_1,m'_2,\ldots,m'_d\}$ be another bases of N_p and $_pM$, respectively, so that

$$\epsilon (\mathbf{m}'_{\mathbf{p}} \otimes \mathbf{n}'_{\mathbf{q}}) = \delta_{\mathbf{pq}}$$

Then $n'_{q} = \sum_{j} n_{j} b_{j} and m'_{p} = \sum_{i} a_{i} m_{i}$ with b_{jq} and a_{pi} from F. Since $\delta_{pq} = \epsilon(m'_{p} \otimes n'_{q}) = \sum_{i,j} a_{pi} \epsilon(m_{i} \otimes n_{j}) b_{jq} = \sum_{i} a_{pi} b_{iq}$, we have also $\sum_{p} b_{p} a_{pi} = \delta_{ji}$. Thus,

$$\sum_{p} n'_{p} \otimes m'_{p} = \sum_{i,j,p} n_{j} b_{jp} \otimes a_{pi} m_{i}$$
$$= \sum_{i,j} n_{j} (\sum_{p} b_{jp} a_{pi}) \otimes m_{i} = \sum_{i} n_{i} \otimes m_{i} ...$$

If we take, in particular, ${}_GN_F$ = *(${}_FM_G)$ and the evaluation map χ : M \bigotimes_G N \Rightarrow F defined by

$$\chi(m \otimes \varphi) = (m)\varphi$$
,

we obtain, for every bimodule $\,\,\text{M}$, the canonical element $\,\,\text{c}\,(\text{M})\,=\,\text{c}_{\chi}$.

Given a bimodule ${}_{F}{}^{M}{}_{G}$, define the higher dual spaces ${}^{(t)}{}_{F}{}^{M}{}_{G}$ inductively by

$$(t+1)_{F^{M_{G}}} = ((t)_{F^{M_{G}}})$$
.

Thus, ${}^{(t)}M$ is an F-G-bimodule for t even and a G-F-bimodule for t odd.

$$\begin{array}{l} {}^{0}\eta = 1_{M} : {}_{F}{}^{M}{}_{G} \rightarrow {}^{(0)}{}^{M} = M ; \\ {}^{1}\eta = \overline{\epsilon} : {}_{G}{}^{N}{}_{F} \rightarrow {}^{(1)}{}^{M} = {}^{\star}{}_{M} ; \\ {}^{2r}\eta = \overline{\delta[({}^{2r-1}\eta){}^{-1} \otimes 1_{M}]} : {}_{F}{}^{M}{}_{G} \rightarrow {}^{(2r)}{}^{M} \text{ and} \\ {}^{2r+1}\eta = \overline{\epsilon[({}^{2r}\eta){}^{-1} \otimes 1_{N}]} : {}_{G}{}^{N}{}_{F} \rightarrow {}^{(2r+1)}{}^{M} . \end{array}$$

Then

$$\begin{bmatrix} 2^{r+1}\eta \otimes {}^{2r+2}\eta \end{bmatrix} (c_{\varepsilon}) = c({}^{(2r)}M) \quad and \quad \begin{bmatrix} 2^{r}\eta \otimes {}^{2r+1}\eta \end{bmatrix} (c_{\delta}) = c({}^{(2r+1)}M).$$

<u>Proof.</u> Recall that $c_{\epsilon} = \sum_{p} n_{p} \otimes m_{p}$, where $\{m_{1}, m_{2}, \dots, m_{d}\}$ is a basis of ${}_{F}M$ and $\{n_{1}, n_{2}, \dots, n_{d}\}$ the dual basis of N_{F} with respect to ϵ . Hence, in order to prove the first equality, it is sufficient to show that, for $m \in M$ and $n \in N$,

$$\delta(\mathbf{n} \otimes \mathbf{m}) = \left(\frac{2r+1}{\eta(\mathbf{n})}\right) \left[\frac{2r+2}{\eta(\mathbf{m})}\right] .$$

But,
$$({}^{2r+1}\eta(n))[{}^{2r+2}\eta(m)] = ({}^{2r+1}\eta(n))[\delta[({}^{2r+1}\eta){}^{-1} \otimes 1_{M}](m)] =$$

 $= \delta[({}^{2r+1}\eta){}^{-1} \otimes 1_{M}]({}^{2r+1}\eta(n)) = \delta[({}^{2r+1}\eta){}^{-1} {}^{2r+1}\eta(n) \otimes m] =$
 $= \delta(n \otimes m)$.
Similarly, since
 $({}^{2r}\eta(m))[{}^{2r+1}\eta(n)] = ({}^{2r}\eta(m))[\varepsilon[({}^{2r}\eta){}^{-1} \otimes 1_{N}](n)] =$
 $= \varepsilon[({}^{2r}\eta){}^{-1} \otimes 1_{N}]({}^{2r}\eta(m)) = \varepsilon[({}^{2r}\eta){}^{-1} {}^{2r}\eta(m) \otimes n] =$
 $= \varepsilon(m \otimes n)$,

we can derive the second equality for $c({}^{(2r+1)}M)$.

2. Irreducible maps

Recall the definition of an irreducible map [2]: a map $f : X \rightarrow Y$ is called irreducible if f is neither a split monomorphism nor a split epimorphism and if, for every factorization f = f'f'', either f' is a split monomorphism or f' is a split epimorphism. Also, recall the definition of the radical of a module category. If X and Y are indecomposable modules, let rad (X,Y) be the set of all non-invertible homomorphisms. If $X = \bigoplus X$ and $Y = \bigoplus Y$ p p q qwith indecomposable modules X and Y, define rad $(X,Y) = \bigoplus$ p q, qrad (X, Y), using the identification $Hom(X, Y) = \bigoplus_{p,q} Hom(X, Y)$. The square rad (X,Y) of the radical is thus the set of all homomorphisms $f: X \rightarrow Y$ such that f = f'f'', where $f'' \in rad(X,Z)$ and f' ε rad(Z,Y) for some module Z. Note that both rad and rad² are ideals in our module category; in particular, rad (X,Y) and $rad^{2}(X,Y)$ are End Y - End X - submodules of the bimodule End $Y^{Hom}(X,Y)$ End X. For indecomposable X and Y, the elements in rad $(X,Y) \times rad^2(X,Y)$ are just the irreducible maps. In this case, we write $Irr(X,Y) = rad(X,Y)/rad^{2}(X,Y)$, and call Irr(X,Y) the bimodule of irreducible maps (see [5]). In what follows, our main objective is to select a direct complement of $rad^{2}(X,Y)$ in rad(X,Y) which is an EndY-EndX-submodule, and realize in this way

Irr(X,Y) as a subset of Hom(X,Y) rather than just as a factor group. We shall select such complements inductively, using Auslander-Reiten sequences.

Recall that an exact sequence $0 \rightarrow X \xrightarrow{f} Y \xrightarrow{g} Z \rightarrow 0$ is called an Auslander-Reiten sequence if both maps f and g are irreducible. This implies that both modules X and Z are indecomposable, X is not injective and Z is not projective. Conversely, given an indecomposable non-injective module X, there exists an Auslander-Reiten sequence starting with X, and also dually, given an indecomposable non-projective Z, there is an Auslander-Reiten sequence ending with Z. Moreover, if $0 \rightarrow X \xrightarrow{f} Y \rightarrow Z \rightarrow 0$ is an Auslander-Reiten sequence and $h: X \rightarrow X'$ is a map which is not a split monomorphism, then there exists $\alpha: Y \xrightarrow{} X'$ such that $h = \alpha f$. (For all these properties, we refer to [2]).

In the sequel, we will consider direct sums of the form $\bigoplus U(Y)$, where U(Y) is an abelian group depending on Y, with Y Y ranging over "all" indecomposable modules. Here, of course, we choose first fixed representatives Y of all isomorphism classes of indecomposable modules and then index the direct sum by these representatives. In fact, all direct sum which will occur in this way will have even only a finite number of non-zero summands.

 $\label{eq:proposition 2.1} \begin{array}{ccc} \text{Proposition 2.1.} & \text{Let } X & \text{be an indecomposable non-injective} \\ \text{module and } G & \text{be a division ring with} \end{array}$

End $X = G \oplus rad$ End X.

Assume that, for every indecomposable module Y, there is given a direct complement M(X,Y) of $rad^2(X,Y)$ in $_{End \ Y} rad(X,Y)_G$. Let

$$0 \longrightarrow X \xrightarrow{(\chi_{M}(X,Y))} \oplus \bigoplus_{Y} M(X,Y) \otimes Y \xrightarrow{\pi} Z \longrightarrow 0$$

be exact. Then, this is an Auslander-Reiten sequence. Moreover, G embeds into the endomorphism ring End Z of Z as a radical complement, and for every Y, there is an embedding σ of M(X,Y)onto a complement of rad²(Y,Z) in Grad(Y,Z) End Y such that

$$\chi_{\sigma^{*}M(X,Y)} = \pi | *_{M(X,Y)} \otimes Y$$

Proof. Let

$$0 \longrightarrow x \xrightarrow{(f'_{Y,p})_{Y,p}} \bigoplus \bigoplus_{Y p=1}^{d_{Y}} y \longrightarrow z' \longrightarrow 0$$

be an Auslander-Reiten sequence starting with X, where $f'_{Y,p} : X \to Y$ for $1 \le p \le d_Y$. Then the residue classes of the elements $f'_{Y,1}$, $f'_{Y,2}, \ldots, f'_{Y,d_Y}$ form a basis of the G-vector space $rad(X,Y)_G/rad^2(X,Y)_G$ (see Lemma 2.5 of [5]). Let $f_{Y,1}$, $f_{Y,2}, \ldots, f_{Y,d_Y}$ be a G-basis of M(X,Y). By the factorization property of Auslander-Reiten sequences, there is a map

such that $\alpha \circ (f'_{Y,p})_{Y,p} = (f_{Y,p})_{Y,p}$. It follows that α is an automorphism. For, let $E = End (\bigoplus \bigoplus \bigoplus Y)$ and consider the residue Y = 1 class $\overline{\alpha}$ of α in E/rad E. Also, consider the factor group

$$M = rad(X, \bigoplus \bigoplus^{d_{Y}} \Psi)/rad^{2}(X, \bigoplus \bigoplus^{d_{Y}} \Psi)$$
$$Y p=1 \qquad Y p=1$$

and let \overline{f} and \overline{f}' be the residue classes of $f = (f_{Y,p})_{Y,p}$ and $f' = (f_{Y,p}')_{Y,p}$, respectively. Then rad E annihilates M, and the equality $\overline{\alpha} \ \overline{f}' = \overline{f}$ shows that $\overline{\alpha}$ induces base changes between the bases $(\overline{f}_{Y,p})_p$ and $(f_{Y,p}')_p$ of Irr(X,Y). This implies that $\overline{\alpha}$ is invertible. Since rad E is nilpotent, α is invertible, as well. Thus, we can form the following commutative diagram

where both α and β are isomorphisms. As a consequence, also the lower sequence is an Auslander-Reiten sequence.

Note that we can rewrite
$$\begin{array}{c} d_{Y} \\ \Phi \\ p=1 \end{array}$$
 as $M(X,Y) \underset{End Y}{\otimes} Y$, and
then $(f_{Y,p})_{p}$ becomes $\overline{\chi}_{M(X,Y)}$. For, if $\phi_{Y,1}$, $\phi_{Y,2}$,..., $\phi_{Y,d_{Y}}$
is the dual basis of $M(X,Y)_{End Y/rad End Y}$ with respect to the
basis $f_{Y,1}$, $f_{Y,2}$,..., $f_{Y,d_{Y}}$ of End Y/rad End Y $M(X,Y)$, then we
identify
 $M(X,Y) \underset{End Y}{\otimes} Y = \begin{array}{c} d_{Y} \\ \Phi \\ p=1 \end{array}$ $\phi_{Y,p} \otimes Y \approx \begin{array}{c} d_{Y} \\ \Phi \\ p=1 \end{array}$

and

$$\overline{\chi}_{M(X,Y)}(x) = \frac{d}{\sum_{p=1}^{Y}} \phi_{Y,p} \otimes f_{Y,p}(x)$$

is identified with $(f_{Y,p}(x))_p$.

Now, ^{*}M(X,Y) is a left G-module, and

$$\overline{\chi}_{M(X,Y)} : X \longrightarrow {}^{*}M(X,Y) \otimes Y$$

End Y

is a G-module homomorphism. Hence, under $(\overline{\chi}_{M(X,Y)})_{Y}$, the module X becomes a G-submodule of $\bigoplus {}^{*}M(X,Y) \otimes Y$, and therefore also the Y End Y factor module Z has a left G-module structure. Thus, G embeds canonically into End Z and in this way, G becomes a radical complement. This follows from the canonical isomorphism

End X/rad End X $^\approx$ End Z/rad End Z ,

which is always valid for the outer terms of an Auslander-Reiten sequence.

The restriction of π to ${}^*M(X,Y) \otimes Y$ defines a map σ of ${}^*M(X,Y)$ into Hom(Y,Z) which is a G-End Y-homomorphism. If we denote again by $\phi_{Y,1}, \phi_{Y,2}, \dots, \phi_{Y,d_Y}$ an End Y/rad End Y-basis of ${}^*M(X,Y)$, then $\pi \mid {}^*M(X,Y) \otimes Y \longrightarrow Z$ can be identified with End Y

 $(\phi_{Y,p})_{p} : \begin{array}{c} \overset{d}{\oplus}^{Y} Y \approx \overset{d}{\bigoplus}^{Y} & \phi_{Y,p} \\ p=1 & p=1 \end{array} \quad \forall Y,p \in Y \xrightarrow{} Z .$

Again, using Lemma 2.5 of [5], we see that the residue classes of ${}^{\varphi}_{Y,1}, {}^{\varphi}_{Y,2}, {}^{\cdots}, {}^{\varphi}_{Y,d_{Y}}$ in Irr(Y,Z) form an End Y/rad End Y-basis and that ${}^{*}M(X,Y)$ is therefore mapped injectively onto a complement of rad²(Y,Z) in ${}_{G}$ rad(Y,Z) End Y. This completes the proof.

Now, assume that X is an indecomposable, non-injective module and that G is a radical complement in End X. If there are given direct complements M(X,Y) of $rad^2(X,Y)$ in $_{End\ Y}rad(X,Y)_{G}$, then the $\sigma^*M(X,Y)$ are direct complements of $rad^2(Y,Z)$ in $_{G}rad(Y,Z)_{End\ Y}$, and the Auslander-Reiten sequence starting with X is of the form

$$0 \longrightarrow x \xrightarrow{(\overline{\chi}_{M}(x, Y)) Y} \oplus {}^{*}_{M}(x, Y) \otimes Y \xrightarrow{(\chi_{O} *_{M}(x, Y)) Y} z \longrightarrow 0$$

Denote by c(M(X,Y)) the canonical element in $^*M(X,Y) \otimes M(X,Y)$. Now $l : M(X,Y) \longrightarrow Hom(X,Y)$ and $\sigma : ^*M(X,Y) \longleftarrow Hom(Y,Z)$, and thus we have a canonical map

$$M(X,Y) \otimes M(X,Y) \longrightarrow Hom(X,Z)$$
,

namely $\sigma \otimes \iota$ followed by the composition map $\,\mu$.

PROPOSITION 2.2. Under the map

 $\begin{array}{c} \bigoplus ^{*} M(X,Y) \otimes M(X,Y) & \frac{\bigoplus(\sigma \otimes 1)}{Y} \oplus \operatorname{Hom}(Y,Z) \otimes \operatorname{Hom}(X,Y) & \frac{(\mu)}{Y} > \operatorname{Hom}(X,Z) , \\ Y & Y \\ the element & \sum_{Y} c(M(X,Y)) & goes to zero. \end{array}$

Observe that, for a fixed module X, there is only a finite number of modules Y such that $M(X,Y) \approx Irr(X,Y) \neq 0$; therefore, we may form the sum $\sum_{Y} c(M(X,Y))$.

<u>Proof of Proposition 2.2</u>. First, we are going to show that c(M(X,Y)) maps onto $\chi_{\sigma^*M(X,Y)} \circ \overline{\chi}_{M(X,Y)}$. Let f_1, f_2, \ldots, f_d be an End Y/rad End Y-basis of End Y/rad End Y^M = M(X,Y), and $\phi_1, \phi_2, \ldots, \phi_d$ the corresponding dual basis in $M_{\text{End Y/rad End Y}}$. Then, for $x \in X$, we have

$$\overline{\zeta}_{M}(\mathbf{x}) = \sum_{p} \phi_{p} \otimes f_{p}(\mathbf{x}) ,$$

and for $\phi \in M$, $\gamma \in Y$,

$$\chi_{\sigma^{\star}M}(\phi \otimes y) = \sigma(\phi)(y)$$

Thus,

$$\chi_{\sigma^{\bigstar}_{M}} \overline{\chi}_{M}(\mathbf{x}) = \chi_{\sigma^{\bigstar}_{M}} \left(\begin{smallmatrix} \Sigma \\ p \end{smallmatrix} \right) \phi_{p} \otimes \mathbf{f}_{p}(\mathbf{x}) = \begin{smallmatrix} \Sigma \\ p \end{smallmatrix} \left(\begin{smallmatrix} \sigma \\ p \end{smallmatrix} \right) \left(\begin{smallmatrix} \mathbf{f} \\ p$$

This shows that $\chi_{\sigma^{\star}M} \quad \widetilde{\chi}_{M}$ is equal to $\sum_{p} \sigma(\phi_{p}) f_{p}$, and this is the image of $\sum_{p} \phi_{p} \otimes f_{p} = c(M(X,Y))$ under $\mu(\sigma \otimes 1)$. As a consequence, we conclude that under the map $\bigoplus_{Y} {}^{\star}M(X,Y) \otimes M(X,Y) \stackrel{\bigoplus(\sigma \otimes 1)}{\longrightarrow} \oplus \bigoplus_{Y} {}^{\star}M(X,Y) \otimes Hom(X,Y) \stackrel{\bigoplus(\sigma \otimes 1)}{\longrightarrow} \oplus \bigoplus_{Y} {}^{\star}C(M(X,Y)) = O(M(X,Y))$ goes to $\sum_{Y} \chi_{\sigma^{\star}M}(X,Y) \stackrel{\widetilde{\chi}_{M}}{\longrightarrow} M(X,Y)$, which is the composite of the two maps in the corresponding Auslander-Reiten sequence and thus zero. The proof is completed.

Let us point out that, in what follows, we shall not specify any longer the embedding σ of *M(X,Y) into Hom(Y,Z), but shall simply consider *M(X,Y) to be a subset of Hom(Y,Z).

<u>REMARK</u>. Let us underline the use of the two distinct tensor products $M(X,Y) \otimes {}^{*}M(X,Y)$ and ${}^{*}M(X,Y) \otimes M(X,Y)$. Whereas the first one is used for the ordinary evaluation map

$$\chi : M(X,Y) \otimes M(X,Y) \longrightarrow End Y/rad End Y$$

given by $\chi(f \otimes \phi) = f(\phi)$, it is the second one which has to be used for the composition map μ . Namely, using the above embedding *M(X,Y) \longrightarrow Hom(Y,Z), we can consider

* $M(X,Y) \otimes M(X,Y) \longrightarrow Hom(Y,Z) \otimes Hom(X,Y) \xrightarrow{\mu} Hom(X,Z)$, and $\mu(\phi \otimes f) = \phi \circ f$.

3. The preprojective modules

Now, let us consider the particular case of the irreducible maps between indecomposable preprojective $R(\mathcal{R},\Omega)$ -modules. First, recall the way in which these modules can be inductively obtained from the indecomposable projective ones.

For each i ε I, there is an indecomposable projective R(\mathcal{R}, Ω)-module P(i). Indeed, denoting by e. the primitive idempotent of R(\mathcal{R}, Ω) corresponding to the identity element of the ith

225

factor F_i in $R_o = \prod_i F_i$, $P(i) = e_i R(\mathbf{k}, \Omega)$. Note that P(i)/rad P(i) is the simple $R(\mathbf{k}, \Omega)$ -module corresponding to the vertex i which defines P(i) uniquely up to an isomorphism. Moreover, note that End $P(i) = F_i$, and thus it is a division ring. The irreducible maps between projective modules are always rather easy to determine. Here, for $R(\mathbf{k}, \Omega)$, there are irreducible maps from P(j) to P(i) if and only if $i \neq j$ in Ω . In fact, i^M_{jj} can be easily embedded in Hom (P(j), P(i)) in such a way that

$$\bigoplus_{i=1}^{M} \bigoplus_{j=1}^{A} \operatorname{rad}^{2}(P(j), P(i)) = \operatorname{rad}(P(j), P(i))$$

as $F_i - F_j$ -bimodules. This follows either from the explicit description of the modules P(i) given in [3], or from the fact that $\Phi_i M_j$ is a direct complement of $rad^2 R(\mathcal{U}, \Omega)$ in rad $R(\mathcal{U}, \Omega)$. As a result, given two indecomposable projective $R(\mathcal{U}, \Omega)$ -modules P and P', we can always choose a direct complement M(P,P') of $rad^2(P,P')$ in $_{End P'} rad(P,P')_{End P}$, and we can identify these M(P,P') with the given bimodules $_iM_i$, where $i \rightarrow j$.

Now, the indecomposable preprojective modules can be derived from the projective ones by using powers of the Coxeter functor C^{-1} (as defined in [3]) or of the Auslander-Reiten translation $A^{-1} = Tr D$ ("transpose of dual" of [2], and also [1]). Thus, we denote by P(i,r) the module obtained from P(i) by applying the rth power of one of the mentioned constructions. (It is clear from the uniqueness result in [3] that $C^{-r} P(i) \approx A^{-r} P(i)$.)

LEMMA 3.1. Assume that X and Y are indecomposable modules and that there exists an irreducible map $X \rightarrow Y$. If one of the modules X, Y is preprojective, then both are. Furthermore, if X = P(i,r) and Y = P(j,s), then either s = r and $i \leftarrow j$, or s = r+1 and $i \rightarrow j$.

<u>Proof.</u> This lemma is well-known, so let us just outline a proof. Using shifts by powers of the Coxeter functors C^+ and C^- (see [3]) or of the Auslander-Reiten translations A = D Tr and $A^- = Tr D$ (see [2] and [1]), we can assume that X is projective. If Y is not projective, then we get from the Auslander-Reiten sequence ending with Y, an irreducible map from AY to X. Since X is projective, this map cannot be an epimorphism and thus it has to be a monomorphism. Consequently, AY is projective.

Now, in view of Proposition 2.1, we obtain by induction on the "layer" r of the indecomposable preprojective $R(M,\Omega)$ -modules P(i,r) the following result.

PROPOSITION 3.2. a) If we choose, for any two indecomposable projective modules P and P', a direct complement M(P,P') of rad²(P,P') in ______rrad(P,P') ______rnd(P,P') ______, then this determines a direct complement M(P,P') of rad²(P,P') in rad (P,P') for any indecomposable preprojective modules P, P'.

b) If we identify, for any arrow $i \rightarrow j$ the bimodule M(P(j), P(i)) with $\underset{i j}{M}$, then this yields an identification of any M(P(j,r), P(i,r)) with $\underset{i j}{(2r)}$ and any M(P(i,r), P(j,r+1)) with $\underset{i j}{(2r+1)}$ M_j for $i \rightarrow j$.

<u>PROPOSITION 3.3</u>. Every map between two indecomposable preprojective modules is a sum of composites of maps from the various M(P,P').

<u>Proof.</u> Let Y be an indecomposable preprojective module, say Y = P(i,r). Then the radical of the endomorphism ring E of

 \oplus P(j,s) is generated (by using the addition and multiplication) j ϵ I $0^{<}s^{<}r$

by an arbitrary complement of $\operatorname{Rad}^2 E$ in $\operatorname{Rad} E$. So we may choose as a complement the direct sum of M(P(j,s), P(j',s')).

4. Abstract definition of the full subcategory of the preprojective modules

First, let us introduce the following notation indicating the operation of the division rings F and F : For i \rightarrow j , put

Now, define the category $P(\mathbf{a}, \Omega)$ as follows: The objects of $P(\mathbf{a}, \Omega)$ are pairs (i,r), i ε I, $r \ge 0$ with the endomorphism rings F_i . For $i \Rightarrow j$,

$$M((j,r),(i,r)) = {2r \atop i M_j}$$

and

$$M((i,r),(j,r+1)) = \frac{2r+1}{j}M_{i}$$

Denote by $F(\mathcal{R},\Omega)$ the free category generated by these morphisms using the tensor products over F_i . Furthermore, for every (j,r), take

$$c(j,r) = \sum_{\substack{i \neq j \\ i \neq j}} c\binom{2r}{i}M_j + \sum_{\substack{j \neq k \\ j \neq k}} c\binom{2r+1}{k}M_j \in$$

$$\underset{i \rightarrow j}{\oplus} (\overset{2r+1}{\underset{j}{\overset{M}}}_{i} \otimes \overset{2r}{\underset{i}{\overset{T}{\atop}}}_{j} M_{j}) \oplus \underset{j \rightarrow k}{\oplus} (\overset{2r+2}{\underset{j}{\overset{M}{\atop}}}_{k} \otimes \overset{2r+1}{\underset{k}{\overset{M}{\atop}}}_{k}) ,$$

and denote by J the category ideal generated by all elements c(j,r). The category $P(\mathbf{a}, \Omega)$ is then defined as the factor category of $F(\mathbf{a}, \Omega)$ by the ideal J.

Observe that the definition of $P(\mathbf{X},\Omega)$ requires only the knowledge of the bimodules $\underset{j \ j}{M}_{i}$ for $i \rightarrow j$ (and neither the corresponding bimodules $\underset{j \ i}{M}_{i}$, nor the bilinear forms ε_{i}^{j} and ε_{i}^{i}).

PROPOSITION 4.1. The full subcategory of the preprojective modules of the category of all $T(\mathcal{D}, \Omega)$ -modules is equivalent to $P(\mathcal{D}, \Omega)$.

<u>Proof</u>. Using Proposition 3.2, there is a canonical functor Γ from $F(\mathcal{M},\Omega)$ to the subcategory of preprojective $T(\mathcal{M},\Omega)$ -modules given by the choice of $M(P(i),P(j)) = \underset{j=1}{M}$ for projective modules P(i),P(j) where $j \rightarrow i$. Also by Proposition 3.3, Γ is surjective. Moreover, according to Proposition 2.2, the elements c(j,r) are mapped to zero.

Conversely, let a morphism $f: (j,r) \rightarrow (j',r')$ from $F(\mathbf{Q},\Omega)$ be mapped under Γ to zero. We are going to show that fmust lie in the ideal J. This is clear if r = r'; for, then f = 0. Thus, assume that $f \neq 0$ and proceed by induction on r' - r. Now j and r are fixed; let $\{\ldots, q_p, \ldots\}$ be the union of bases of all vector spaces $\underset{F_i}{(2rM_j)} for all i with i \neq j$ and $\underset{F_k}{(2r+1,M_j)} for all k with <math>j \neq k$, and let $\{\ldots, q_p', \ldots\}$ be the union of the corresponding dual bases of $\binom{2r+1}{j}M_i = \underset{j}{(2r+2M_j)}M_i = \binom{2r+2}{j}M_i = \binom{2r+2}{j}K_i = \binom{2r+2}{j}K_i$ Thus, $c(j,r) = \sum_{p} g'_{p} \otimes g_{p}$. Now, $f = \sum_{p} h_{p} \otimes g_{p}$, where h_{p} is a morphism of $F(\mathbf{M}, \Omega)$ either from (i,r) or (k,r+1) to (j',r'). Since there is an Auslander-Reiten sequence

$$0 \longrightarrow P(j,r) \xrightarrow{(\Gamma(g_p))} Q \xrightarrow{(\Gamma(g'))} P(j,r+1) \longrightarrow 0$$

and since

$$0 = \Gamma(f) = \sum_{p} \Gamma(h_{p}) \Gamma(q_{p}) ,$$

we can factor $(\Gamma(h_p))_p : Q \to P(j',r')$ through $(\Gamma(g_p'))_p$. Hence, there is a homomorphism $\tilde{u} : P(j,r+1) \to P(j',r')$ such that

 $\Gamma(h_p) = \tilde{u} \Gamma(g_p')$.

And, since Γ is surjective, we can find $u : (j,r+1) \rightarrow (j',r')$ in $F(\mathcal{M},\Omega)$ such that $\Gamma(u) = \tilde{u}$. Obviously, the elements $h_p - u \otimes g'_p$ lie in the kernel of Γ , and therefore, by induction, they belong to J. Consequently,

$$f = \sum_{p} h_{p} \otimes g_{p} = \sum_{p} (h_{p} - u \otimes g'_{p}) \otimes g_{p} + \sum_{p} u \otimes g'_{p} \otimes g_{p}$$
also belongs to J; for, $\sum_{p} u \otimes g'_{p} \otimes g_{p} = u \otimes c(j,r)$

5. Proof of the theorem

The proof of the theorem consists in identifying the additive structure of $\Pi(\mathcal{D})$ with a factor of a subcategory of $F(\mathcal{D}),\Omega$. Indeed, we may consider both $F(\mathcal{D}),\Omega$ and $P(\mathcal{D}),\Omega$ defined in section 4 as abelian groups forming the direct sum of all Hom((i,r),(j,s)). Denote by $\Phi(\mathcal{D}),\Omega$ and $\Pi(\mathcal{D}),\Omega$ the respective subgroups of all Hom((i,0),(j,s)). Then, both $\Phi(\mathcal{D},\Omega)$ and $\Pi(\mathcal{D}),\Omega$ contain a subring $R = \bigoplus Hom((i,0),(j,0))$ which is obviously isomorphic to i,j $R(\mathcal{D}),\Omega$. Furthermore, under the composition in $\Pi(\mathcal{D}),\Omega$, $\Pi(\mathcal{D},\Omega)$ is a right $R(\mathcal{D},\Omega)$ -module; for, if $f: (i,0) \rightarrow (j,s)$ and $a: (k,0) \rightarrow (i,0)$ from R, then fa: $(k,0) \rightarrow (j,s)$ in $\Pi(\mathcal{D},\Omega)$.

 $\frac{\text{PROPOSITION 5.1.}}{\text{sum of all}^{V}\text{preprojective } R(\boldsymbol{M},\Omega) - \text{modules (each occurring with multiplicity one).}}$

 γ = indecomposable

<u>Proof.</u> Using the notation of section 3, the indecomposable preprojective R-modules are P(j,s), j ε I, s \geq 0. In particular, P(j,0) are the indecomposable projective R-modules and thus $R_R = \bigoplus_{i \in I} P(i,0)$. For every R-module X_R , $i \varepsilon I$ $X_R \approx Hom(_R R_R, X_R) = Hom(_R [\bigoplus_i P(i,0)], X_R) =$ $= [Hom(\bigoplus_i P(i,0)_R, X_R)]_R = [\bigoplus_i Hom(P(i,0)_R, X_R)]_R$.

Hence,

$$P(j,s) = \left[\bigoplus_{i} Hom(P(i,0), P(j,s)) \right]_{R}$$

and thus under the identification of P(j,s) with (j,s) and Hom(P(i,0), P(j,s)) with the maps in $\Pi(M,\Omega)$, we get the statement.

Now, define the map $\Delta : \mathcal{T}(\mathcal{M}) \to \mathcal{F}(\mathcal{M}, \Omega)$ as follows. First, the morphisms in $\mathcal{F}(\mathcal{M}, \Omega)$ can be described in the following way: For an (unoriented path) w = $i_{n+1} - i_n - \ldots - i_2 - i_1$ of \mathcal{M} , call the number of arrows $i_{t+1} \leftarrow i_t$, $1 \leq t \leq n$, in Ω the layer $\lambda(w)$ of w. Then, the morphisms in $\mathcal{F}(\mathcal{M}, \Omega)$ are the elements of the tensor products

$$\begin{array}{c} & r_{n} \\ & i_{n+1} \\ & n \end{array} \otimes \dots \otimes \begin{array}{c} r_{2} \\ & i_{3} \\ & i_{2} \end{array} \otimes \begin{array}{c} r_{1} \\ & i_{2} \\ & i_{2} \\ & i_{2} \end{array} , \\ \\ \text{where } r_{t} = 2\lambda(i_{t} - i_{t-1} \\ & \cdots \\ & i_{2} - i_{1}) + \begin{pmatrix} 0 \\ & \text{if } i_{t+1} \\ & \text{if } i_{t+1} \\ & i_{t} \\ &$$

Now, the map Δ is defined by

$$\underset{i_{n+1}i_{n}}{\overset{M}{\underset{n}}} \otimes \ldots \otimes \underset{i_{3}}{\overset{M}{\underset{1}}} \otimes \underset{i_{2}}{\overset{M}{\underset{1}}} \underset{i_{2}}{\overset{M}{\underset{1}}} \xrightarrow{ (r_{n_{1}} \otimes \ldots \otimes \overset{r_{2}}{\underset{n}})}_{i_{n+1}} \overset{r_{1}}{\underset{n}{\overset{r_{n_{1}}}}} \underset{i_{n+1}}{\overset{r_{n_{1}}}} \overset{r_{n_{1}}}{\underset{n}{\overset{m_{1}}}} \otimes \ldots \otimes \underset{i_{3}}{\overset{r_{2}}{\underset{1}}} \overset{r_{1}}{\underset{i_{2}}{\overset{r_{1}}{\underset{1}}}},$$

where r_{η} are the maps of Lemma 1.2 for M = M, and N = M.

From the definition of $\Phi(\mathcal{M},\Omega)$, it is clear that $\Phi(\mathcal{M},\Omega)$ is just the image of $T(\mathcal{M})$ under Δ . Also, Δ is obviously $R(\mathcal{M},\Omega)$ -linear.

LEMMA 5.2. $\Delta(\langle c \rangle) = J \bigcap \Phi(\mathcal{U}, \Omega)$.

<u>Proof</u>. By definition, $c = \sum (\sum c_j^i) = \sum c(j)$; note that j = j; j = j; $j = \sum c(j)$; note that $c(j) = e_j c e_j$, where e_j is the idempotent of T (2) corresponding to the identity of F ; thus $<\!c\!>$ is the ideal generated by all c(j)'s. Hence, the statement follows from Lemma 1.2 taking into account that, by definition,

 $\Delta(1 \otimes 1 \otimes \ldots \otimes c(j) \otimes \ldots \otimes 1) = 1 \otimes 1 \otimes \ldots \otimes c({}^{r}_{M}) \otimes \ldots \otimes 1 .$

Now, from Lemma 5.2, it follows that Δ defines an isomorphism of $\Pi(\mathcal{M}) = T(\mathcal{M})/\langle c \rangle$ onto $\Pi(\mathcal{M},\Omega) = \Phi(\mathcal{M},\Omega)/J \cap \Phi(\mathcal{M},\Omega)$. This completes the proof of the theorem.

The corollaries follow from the results in [2].

REFERENCES

- Auslander, M., Platzeck, M.I. and Reiten, I.: Coxeter functors without diagrams. Trans. Amer. Math. Soc. <u>250</u> (1979), 1-46.
- [2] Auslander, M. and Reiten, I.: Representation theory of artin algebras III. Comm. Algebra <u>3</u> (1975), 239-294; V. Comm. Algebra <u>5</u> (1977), 519-554.
- [3] Dlab, V. and Ringel, C.M.: Indecomposable representations of graphs and algebras. Memoirs Amer. Math. Soc. No.173 (Providence, 1976).
- [4] Gelfand, I.M. and Ponomarev, V.A.: Model algebras and representations of graphs. Funkc. anal. i prilož. 13 (1979), 1-12.
- [5] Ringel, C.M.: Report on the Brauer-Thrall conjectures: Rojter's theorem and the theorem of Nazarova and Rojter. These Lecture Notes.
- [6] Rojter, A.V.: Gelfand-Ponomarev algebra of a quiver. Abstract, 2nd ICRA (Ottawa, 1979).
- [7] Riedtmann, Ch.: Algebren, Darstellungsköcher, Überlagerungen und zurück. Comment. Math. Helv., to appear.

Department of Mathematics Carleton University Ottawa, Ontario KlS 5B6 Canada

Fakultät för Mathematik Universität D-4800 Bielefeld West Germany