
THE PREPROJECTIVE ALGEBRA OF A MODULATED GRAPH 

Vlastimil Dlab and Claus Michael Ringel 

The present paper generalizes a recent result of I.M. Gelfand 

and V.A. Ponomarev [4] reported at the Conference by V.A. Rojter. 

A modulated graph ~= (F , M , ST). is given by 
i i 3 l l,j C I 

division rings F. for all i E I by bimodules (iM4)F•j for all 
i ' F i 

J 
i @ j in I finitely generated on both sides and by non-degenerate 

bilinear forms E? : .M. ® .M. + F. ; here, I is a finite index set. 
l ± J 3 i ± 

i 
Note that the forms f~ give rise to canonical elements c. c .M. ® 

i 3 j 1  

.M• Namely, if Xl,..,,x d is a basis of (jMi)Fi and Yl .... 'Yd 
iJ 

the corresponding dual basis of (.M.) with respect to ST , then 
F. 1 3 i 
1 

i 
c. : E x ~ yp ; see section i. 
J p P 

Define the ring H~r~ as follows. Let T~/~ be the tensor 

ring of ~: T~ = ~ T , where T : ~ F i , T 1 : ~ iM~ and 
t s~ t o i i,j J 

Tt+ 1 = T 1 ~ T t w i t h  t h e  m u l t i p l i c a t i o n  g i v e n  by t h e  t e n s o r  p r o d u c t .  

o 

Then, by definition, H~ = T~/<c> , where <c> is the principal 

ideal of T~ generated by the element c = Z c~ . 
i,j i 
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Let Q be an (admissible) orientation of ~ ; thus, for every 

pair i,j with .M. ~ 0 , we prescribe an order indicated by an arrow 
13 

i --> j , or i <-- j in such a way that no oriented cycles occur. 

Let R~,~) be the corresponding tensor ring of ~,~) : R~,~) = 

R with R = K F. , R 1 = • .M and = R 1 ~ R t • 
t ~ ~ t o i i i÷j I 3 Rt+l Ro 

For the representation theory of R~) we refer to [3]. 

THEOREM. For each orientation ~ of 2~, R(~Q) is a sub- 

ring of ~ and, as a (right) R~) -module, H~ is the direct 

sum of all indecomposable preprojective R~,~)-modules (each occurring 

with multiplicity one). 

This theorem suggests to call H~ the preprojective algebra 

of 22~. Recall that an indecomposable R~Q)-module P is prepro- 

jective if and only if there is only a finite number of indecomposable 

modules X with Hom (X,P) ~ 0 . 

COROLLARY. The ring H~ is artinian if and only if the 

modulated graph is a disjoint union of Dynkin graphs. 

Observe that if ~ is a K-modulation (where K is a commut- 

ative field), then K~ is a K-algebra. In this case, the corollary 

may be reformulated as follows: The algebra ~(~ is finite- 

dimensional if and only if ~ is a disjoint union of Dynkin graphs. 

Consider, in particular, the case when (~,~) is given by a 

quiver; thus, F. = K for all i and .M. is a direct sum of a 
1 13 

finite number of copies of K For every arrow x of the quiver, 
KK 

define an "inverse" arrow x* whose end is the origin of x and 

whose origin is the end of x . Then T~ is the path algebra 

generated by all arrows x and x* , and H~ is the quotient of 

T~ by the ideal generated by the element ~ (xx* + x'x). 
all x 

COROLLARY. If ~,~) is given by a quiver, then H~) is 

finite-dimensional if and only if the quiver is of finite type. 

For a quiver which is a tree, the last result has been 

announced by A.V. Rojter [6] in his report on the paper [4]. In 

contrast to the proofs in [4], our approach avoids use of reflection 

functors and is based on the explicite description of the category 
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P~,~) of all preprojective R~,9)-modules. The authors are indebted to 

P. Gabriel for pointing out that the theorem is, in the case when (99~,~) is 

given by a quiver, also due to Jh. Riedtmann [7]. 

i. Preliminaries on dualization 

Given a finite-dimensional vector space M , denote by *M 
F 

its (left) dual space HOm(FM , FFF ) . If FMG is a bimodule and 

X , Y vector spaces, the adjoint map f: X + *M (9 Y to a map 
G F F 

d 
f : M 0 X ÷ Y is given by f(x) = ~ ~ (9 f(m (9 x) , where x s X , 

G p:l P P 

{ml,m 2 ..... md} is a basis of F M and {~1,~2 ..... ~d ) is the respec- 

tive dual basis of (M) F In particular, if M is an End Y- End X- 

submodule of the himodule Hom(X,Y) and XM : M (9 X + Y the 

evaluation map XM(m (9 x) : m(x) , then "m~"(x) : Z _~p (9 m (x) 
p P 

Note that ~M is a (left) G-homomorphism. 

Now, given bimodules FMG , GNF s u c h  t h a t  F M a n d  N F a r e  

finite dimensional, let C : M (9 N + F be a non-degenerate bilinear 
G 

form. Thus, the adjoint c is an isomorphism c : N + *M ; let 

{nl,n 2 ..... nd) be a basis of N F and {~i,~2 ..... ~d } the basis of 

(*M) F such that _~p : ~(np) for all 1 < p < d. Furthermore, let 

{ m l , m  2 . . . .  ,m d}  b e  t h e  d u a l  b a s i s  o f  F M . T h u s ,  

6(m (9 n ) = (m) [~(n )] : (m) }q : d 
P q P q P Pq 

Define the canonical element c of N (9 M (with respect to S) by 
F 

d 

C = > n (9 m e ~ p p 
p=l 

Lemma 1.1. The element c 
C 

does not depend on the Ghoice of a 

basis. 

Proof. Let {nl,n2, . . . . . .  ,n~} and {ml,m~, ,m~} be another 

bases of N F and F M , respectively, so that 

C(m' (9 n') = 
P q Pq 

Then n' = Z n.b. and m' = Z a .m. with b. 
q j 3 3q P i pl i 3q 

Since 6 
Pq 

and a . from F . 
p± 

= E(m' (9 n') = E a . C(m. (9 n.)b. = E a .b. , 
P q i,j pl l 3 3q i pl lq 
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we have also Z b. a = 6.. 
3P pi 3 x 

P 
Thus, 

E n' O m' = Z n.b. @ a . m. 
P P • . 3 3P pl 1 

P 1,3,P 

n. (p~ b. api ] (9 m i = [ n. ~ m.. , 
i,j 3 3P i l ± 

If we take, in particular, GNF = *(FMG ) 

X : M Q N ÷ F defined by 
G 

x(m ~ ~) : (m)~ , 

and the evaluation map 

we obtain, for every bimodule M , the canonical element c(M) = c 
× 

(t) 
Given a bimodule FMG , define the higher dual spaces FMG 

inductively by 

(t+l) M = *((t) . 
F G FMG ) 

I 

Thus, (t)M is an F-G-bimodule for t even and a G-F-bimodule for 

odd. 

a n d  

t 

Then 

Lemma 1.2. Let FMG and GNF be bimodules and £ : M Q NF+[F F 
G 

:GN F O MG+~G G non-degenerate bilinear forms. Define the maps 

inductively as follows: 

0 (0) 
= 1 M ÷ M = M ; : FMG 

1 = ~ : N ÷ (1)M : *M ; 
G F 

.- (2r)M and 2r n = @[(2r-1 )-i O IM] FMG ÷ 

: (2r+l) M 2r+l n = ~[(2rn)-i 0 IN] GNF + 

[2r+l O 2r+2n] (ct) = c((2r)M) and [2r n ~ 2r+l ] (c6) = c((2r+l)M). 

: [ n 0 m , where {ml,m 2 ..... m d} Proof. Recall that c s P P P 

is a basis of F M and {nl,n2, .... .nd} the dual basis of N F with 

respect to s . Hence, in order to prove the first equality, it is 

sufficient to show that, for m s M and n c N , 

(n 0 m) = (2r+ir](n)) [2r+2 (m) ] . 
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But, (2r+iD(n))[2r+2D(m) ] : (2r+lq(n~[@[(2r+l~)-i ~ iM](m)] : 

: @E(2r+l )-i ~ IM ] (2r+l (n)) : 6[(2r+i )-i 2r+in(n) @ m] = 

= @ (n ~ m) . 

Similarly, since 

(2r~(m))[2r+lu(n) ] : (2r~(m))[s[(2r~)-i ® iN](n)] : 

: EE(2r )-i @ iN](2r (m)) = £E(2r )-i 2r (m) @ n] = 

: S (m • n) , 

we can derive the second equality for c((2r+l)M) . 

2. Irreducible maps 

Recall the definition of an irreducible map [2]: a map 

f : X ÷ Y is called irreducible if f is neither a split monomorphism 

nor a split epimorphism and if, for every factorization f = f'f" , 

either f" is a split monomorphism or f' is a split epimorphism. 

Also, recall the definition of the radical of a module category. 

If X and Y are indecomposable modules, let rad (X,Y) be the set 

of all non-invertible homomorphisms. If X : • X and Y = • Y 
pP qq 

with indecomposable modules X and Y , define rad (X,Y) : 
P q p,q 

tad (X ,Y ) , using the identification Hom(X,Y) = • Hom (X ,Y ). 
P q p,q P q 

The square rad2(x,Y) of the radical is thus the set of all homo- 

morphisms f : X ÷ Y such that f : f'f" , where f" s rad(X,Z) and 

f' s rad(Z,Y) for some module Z . Note that both rad and rad 2 are 

ideals in our module category; in particular, rad (X,Y) and 

rad2(X,Y) are End Y - End X - submodules of the bimodule 

End yH°m(X'Y)End X" For indecomposable X and Y, the elements in 

rad (X,Y)~rad2(X,Y) are just the irreducible maps. In this case, we 

write Irr(X,Y) : rad(X,Y)/rad2(X,Y) , and call Irr(X,Y) the 

bimodule of irreducible maps (see [5]). In what follows, our main 

objective is to select a direct complement of rad2(X,Y) in 

rad(X,Y) which is an EndY-EndX-submodule, and realize in this way 
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Irr(X,Y) as a subset of Hom(X,Y) rather than just as a factor group. 

We shall select such complements inductively, using Auslander-Reiten 

sequences. 

Recall that an exact sequence 0 ÷ X ~ Y ~ Z + 0 is called an 

Auslander-Reiten sequence if both maps f and g are irreducible. 

This implies that both modules X and Z are indecomposable, X is 

not injective and Z is not projective. Conversely, given an 

indecomposable non-injective module X , there exists an Auslander- 

Reiten sequence starting with X , and also dually, given an indecom- 

posable non-projective Z , there is an Auslander-Reiten sequence 
f 

ending with Z. Moreover, if 0 ~ X + Y + Z + 0 is an Auslander- 

Reiten sequence and h : X ÷ X' is a map which is not a split mono- 

morphism, then there exists ~ : Y + X' such that h : ~f . (For 

all these properties, we refer to [2]). 

In the sequel, we will consider direct sums of the form 

U(Y) , where U(Y) is an abelian group depending on Y , with Y 

Y 

ranging over "all" indecomposable modules. Here, of course, we 

choose first fixed representatives Y of all isomorphism classes of 

indecomposable modules and then index the direct sum by these 

representatives. In fact, all direct sum which will occur in this 

way will have even only a finite number of non-zero summands. 

PROPOSITION 2.1. Let X be an indecomposable non-injective 

module and G be a division ring with 

End X = G • rad End X . 

Assume that, for every indecomposable module y , there is given a 

direct complement M(X,Y) of rad2(x,y) in End Y rad(X'Y)G Let 

0 --> X (XM(X'Y))Y> • *M(X,Y) ~ Y ~--> Z --> 0 

Y End Y 

be exact. Then, this is an Auslander-Reiten sequence. Moreover, G 

embeds into the endomorphism ring End Z of Z as a radical 

complement, and for every Y , there is an embedding O of *M(X,Y) 

onto a complement of rad2(y,z) in Grad(Y,Z)En d y such that 
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X@*M(X,y) : z I *M(X,Y) 0 Y . 

Proof. Let 

(f'y,p)y,p> dy 

0 --> X • ~ Y --> Z' --> 0 
Y p=l 

be an Auslander-Reiten sequence starting with X , where f' : X ÷ Y 
Y,p 

for 1 < p < dy Then the residue classes of the elements fY,l' 

f' f' G/rad2 (X,y) Y,2''''' Y,dy form a basis of the G-vector space rad(X,Y) G 

(see Lemma 2.5 of [5]). Let fY,l' fY,2''''' fY,dy be a G-basis of 

M(X,Y). By the factorization property of Auslander-Reiten sequences, 

there is a map 

dy dy 
~ : ~ @ Y --> @ @ Y 

Y p:l Y p=l 

such that ~o(f'x,p).x,p = (fy,p)y,p It follows that ~ is an auto- 

d 
morphism. For, let E = End ( @ ~Y Y ) and consider the residue 

Y p=l 

class ~ of ~ in E/rad E. Also, consider the factor group 

dy dy 
M = rad(X, ~ ~ Y)/rad2(X, ~ 

Yp=I Yp:I 
Y) , 

and let f and f' be the residue classes of f = (fy,p)y,p and 

i t 

f = (fy,p)y,p , respectively. Then rad E annihilates M , and the 

equality <~ f' = f shows that ~ induces base changes between the 

-- f'y,p)p of Irr(X,Y). This implies that bases (fy,p)p and ( 

is invertible. Since rad E is nilpotent, ~ is invertible, as 

well. Thus, we can form the following commutative diagram 

d 
f, ~y , 

0--> X--> (~ Y --> Z --> 0 
Y p=l 

Is B 
d 

0 --> X f--> • ~Y Y --> Z --> 0 , 

Y p=l 

where both ~ and ~ are isomorphisms. As a consequence, also the 

lower sequence is an Auslander-Reiten sequence. 
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d 
Note that we can rewrite ~Y Y as *M(X,Y) O Y , and 

p=l End Y 

then (fy,p)p becomes XM(X,y ) . For, if ~Y,l' ~Y,2 ..... ~Y,dy 

is the dual basis of *M(X'Y)End Y/rad End Y with respect to the 

basis fY,l' fY,2 ..... fY,dy of End Y/Fad End Y N(X,Y] , then we 

identi£y d d 
*M(X,Y) 0 Y = ~Y Y , %y,p (9 Y z ~Y 

EndY p= l  p= l  

and 

d 

XL(X'Y) (x) = p:l~Y ~Y'p ~ fy,p(X) 

is identified with 

. 

Now, M(X,Y) 

(fy,p(X))p 

is a left G-module, and 

XM(X,y ) : X --> M(X,Y) @ Y 
End Y 

m 

is a G-module homomorphism. Hence, under (XM(X,y))y , the module X 

becomes a G-submodule of • *M(X,Y) ~ Y , and therefore also the 
Y End Y 

factor module Z has a left G-module structure. Thus, G embeds 

canonically into End Z and in this way, G becomes a radical 

complement. This follows from the canonical isomorphism 

End X/rad End X ~ End Z/rad End Z , 

which is always valid for the outer terms of an Auslander-Reiten 

sequence. 

The restriction of z to *M(X,Y) ~ Y defines a map ~ of 

*M(X,Y) into Hom(Y,Z) which is a G-End Y-homomorphism. If we 

denote again by ~ Y , I '  ~ Y , 2 ' ' ' ' '  ~Y,dy an End Y/ rad  End Y - b a s i s  

of *M(X,Y) , then w I*M(X,Y) ~ Y --> Z can be identified with 
End Y 

d d 
(~y,p)p : ~Y Y ~ ~Y ~y,p ® g --> Z . 

p=l p=l 
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Again, using Lemma 2.5 of [5], we see that the residue classes of 

~ Y , I '  ~ Y , 2 ' ' ' ' '  ~Y,dy in I r r ( Y , Z )  form an End Y/rad  End Y - b a s i s  

and that M(X,Y) is therefore mapped injectively onto a complement 

of rad-(Y,Z) in Grad(Y,Z)End y. This completes the proof. 

Now, assume that X is an indecomposable, non-injective 

module and that G is a radical complement in End X. If there are 

given direct complements M(X,Y) of rad2(X,Y) in End yrad(X 'Y)G ' 
, 

then the U M(X,Y) are direct complements of rad2(y,z) in 

Grad(Y,Z)En d y , and the Auslander-Reiten sequence starting with X 

is of the form 

(~M(X'Y))Y> *M (XU*M(X'Y))Y> 
0 --> X - • (X,Y) ~ Y - Z ----> 0 . 

Denote by c(M(X,Y)) the canonical element in *M(X,Y) ~ M(X,Y). 

Now 1 : M(X,Y) ¢--> Hom(X,Y) and ~ : *M(X,Y) ~----> Hom(Y,Z), and 

thus we have a canonical map 

*M(X,Y) ~ M(X,Y) --> Hom(X,Z) , 

namely ~ 0 I followed by the composition map H • 

PROPOSITION 2.2. Under the map 

*M(X,Y) ~ M(X,Y) ~(~ @ I~ ~ ~ Hom(Y,Z) @ Hom(X,Y) 
Y Y 

the element [ c(M(X,Y)) goes to zero. 
Y 

(H)> Hom(X,Z) , 

Observe that, for a fixed module X , there is only a finite 

number of modules Y such that M(X,Y) = Irr(X,Y) ~ 0 ; therefore, 

we may form the sum ~ c(M(X,Y)). 
Y 

Proof of Proposition 2.2. First, we are going to show that 

c(M(X,Y)) maps onto XU,M(X,y) 0 XM(X,y ) . Let fl'f2 '''''fd be 

an End Y/rad End Y-basis of End Y/rad End yM = M(X,Y) , and 

~i'~2 ' .... ~d the corresponding dual basis in *MEnd Y/tad End Y" 

Then, for x E X , we have 

= E ~p (9 fp(X) , XM(x) p 

and for ~ s M, y E Y , 
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~j*M(4 ~ y) : 0(4 ) (y) 

Thus, 

X~, M XM(X ) = XU,M (~ ~p ~ fp(X)) = PZ ~(~p) (fp(X)) 

This shows that XO, M XM is equal to ~ O(¢p)f , and this is the 
p P 

image of ~ 4 O f = c(M(X,Y)) under ~(~ (9 I) As a consequence, 
p P P 

we conclude that under the map ~ *M(X,Y) O M(X,Y) ~(O (9 I)> 
Y 

Hom(Y,Z) (9 Hom(X,Y) (~)> Hom(X,Z) , the element ~ e(M(X,Y)) goes 
Y Y 

to Y~ X(j .M(X,y)  XM(X,y) , w h i c h  i s  t h e  c o m p o s i t e  o f  t h e  two maps  i n  

t h e  c o r r e s p o n d i n g  A u s l a n d e r - R e i t e n  s e q u e n c e  a n d  t h u s  z e r o .  The  p r o o f  

is completed. 

Let us point out that, in what follows, we shall not specify 

any longer the embedding o of *M(X,Y) into Hom(Y,Z) , but shall 

simply consider *M(X,Y) to be a subset of Hom(Y,Z). 

REMARK. Let us underline the use of the two distinct tensor 

products M(X,Y) (9 *M(X,Y) and *M(X,Y) (9 M(X,Y) . Whereas the 

first one is used for the ordinary evaluation map 

k : M(X,Y) (9 *M(X,Y) ----> End Y/rad End Y 

given by X (f (9 4) = f(4) , it is the second one which has to be used 

for the composition map p . Namely, using the above embedding 

*M(X,Y) ~---> Hom(Y,Z) , we can consider 

*M(X,Y) (9 M(X,Y) ~--> Hom(Y,Z) (9 Hom(X,Y) ~ > Hom(X,Z) , 

and ~(4 (9 f) = 4 0 f . 

3. The preprojective modules 

Now, let us consider the particular case of the irreducible 

maps between indecomposable preprojeetive R~Q)-modules. First, 

recall the way in which these modules can be inductively obtained 

from the indecomposable projective ones. 

For each i s I , there is an indecomposable projective 

R~)-module P(i). Indeed, denoting by e. the primitive idem- 
1 

potent of R~,~) corresponding to the identity element of the i th 
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factor F. in R = ~ F i , P(i) = eiR~,~).__ Note that 
i o i 

P(i)/rad P(i) is the simple R(~)-module corresponding to the 

vertex i which defines P(i) uniquely up to an isomorphism. 

Moreover, ndte that End P(i) = F, , and thus it is a division ring. 
1 

The irreducible maps between projective modules are always rather 

easy to determine. Here, for R~,~) , there are irreducible maps 

from P(j) to P(i) if and only if i ÷ j in ~ . In fact, .M. 
i 3 

can be easily embedded in Hom (P(j), P(i)) in such a way that 

.M ~ rad2(p(j), P(i)) = rad (P(j), P(i)) 
i 3 

as F.-F.-bimodules. This follows either from the explicit 
1 ] 

description of the modules P(i) given in [3], or from the fact that 

• .M. is a direct complement of rad2R(~,~) in rad R~,~). As a 
i 3 

result, given two indecomposable projective R(~)-modules P and 
pW i 

, we can always choose a direct complement M(P,P ) of 

rad2(p,P ') in End P' rad(P'P')End P ' and we can identify these 

M(P,P') with the given bimodules .M., where i ÷ j . 
i 3 

Now, the indecomposable preprojective modules can be derived 

from the projective ones by using powers of the Coxeter functor C- 

(as defined in [3]) or of the Auslander-Reiten translation A- = Tr D 

("transpose of dual" of [2], and also [i]). Thus, we denote by 

th 
P(i,r) the module obtained from P(i) by applying the r power of 

one of the mentioned constructions. (It is clear from the uniqueness 

result in [3] that C -r P i) ~ A -r P(i).) 

LEMMA 3.1. Assume that x and Y are indecomposable modules 

and that there exists an irreducible map X + Y . If one of the 

modules X, Y is preprojective, then both are. Furthermore, if 

X = P(i,r) and Y = P(j,s) , then either s = r and i ÷ j , 

or s = r+l and i ÷ j . 

Proof. This lemma is well-known, so let us just outline a 
+ 

proof. Using shifts by powers of the Coxeter functors C and C- 

(see [3]) or of the Auslander-Reiten translations A = D Tr and 

A = Tr m (see [2] and [i]), we can assume that X is projective. 

If Y is not projective, then we get from the Auslander-Reiten 

sequence ending with Y , an irreducible map from AY to X . 
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Since X is projective, this map cannot be an epimorphism and thus it 

has to be a monomorphism. Consequently, AY is projective. 

Now, in view of Proposition 2.1, we obtain by induction on the 

"layer" r of the indecomposable preprojective R~,~)-modules 

P(i,r) the following result. 

PROPOSITION 3.2. a) If we choose, for any two indecomposable 

projective modules P and P' , a direct complement M(P,P') of 

rad2(p,P ') in End p'rad(P'P')End P ' then this determines a direct 

complement M(P,P') of rad2(p,P ') in rad (P,P') for any inde- 

l 
composable preprojective modules P, P . 

b) If we identify, for any arrow i ÷ j 

the bimodule M(P(j), P(i)) with .M. , then this yields an 

I 3 (2r)M. 
identification of any M(P(j,r) , P(i,r)) with . and any 

± 3 
M(P(i,r), P(j,r+l) with (2r+l!M for i + j . 

i 3 

PROPOSITION 3.3. Every map between two indecomposable prepro- 

jective modules is a sum of composites of maps from the various 

M(P,P') . 

Proof. Let Y be an indecomposable preprojective module, say 

Y = P(i,r). Then the radical of the endomorphism ring E of 

P(j,s) is generated (by using the addition and multiplication) 

j s I 

0<s<r 

by an arbitrary complement of Rad2E in Rad E. So we may choose as 

a complement the direct sum of M(P(j,s), P(j',s')). 

4. Abstract definition of the full subcategory of the preprojective 

modules 

First, let us introduce the following notation indicating the 

operation of the division rings F. and F. : For i ÷ j , put 
l 3 

2~M. : (2r) (.M.) and 2r+l.M. = (2r+l) (.M.) . 
13 l] ]l 13 

NOW, define the category ~(~) as follows: The objects of 

~,~) are pairs (i,r) , i c I , r > 0 with the endomorphism 

rings F. . For i ÷ j , 
1 

2r 
M((j,r) , (i,r)) = .M 

13 
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and 

2r+l 
M((i,r) , (j,r+l)) : M. 

3 l 

Denote by ~(~,~) the free category generated by these morphisms 

using the tensor products over F. . Furthermore, for every (j,r), 
1 

take 

2r 
c(j,r) = [ c( M ) + Z c(2r+~-Mj)n E 

] 

i÷ j i 3 j+k 

2r+l 2r M 2r+2 2r+l • 
( .M. @ .) • • ( j~ ® kMj} , 

i+j 3 i i 3 j+k 

and denote by J the category ideal generated by all elements 

c(j,r). The category P(~,Q) is then defined as the factor category 

of ~(~) by the ideal J . 

Observe that the definition of P~,~) requires only the 

knowledge of the bimodules M. for i ÷ j (and neither the 
1 3 cj i 

corresponding bimodules M , nor the bilinear forms and £.). 
] l i 3 

PROPOSITION 4.1. The full subcategory of the preprojective 

modules of the category of all T~,~)-modules is equivalent to 

p(~) 

Proof. Using Proposition 3.2, there is a canonical functor F 

from ~(~,Q) to the subcategory of preprojective T(~,Q)-modules 

given by the choice of M(P(i),P(j)) : .M. for projective modules 
3± 

P(i),P(j) where j + i . Also by Proposition 3.3, F is surjective. 

Moreover, according to Proposition 2.2, the elements c(j,r) are 

mapped to zero. 

Conversely, let a morphism f : (j,r) + (j',r') from 

~,~) be mapped under F to zero. We are going to show that f 

must lie in the ideal J . This is clear if r = r' ; for, then 

f = 0 . Thus, assume that f ~ 0 and proceed by induction on 

r' - r . Now j and r are fixed; let {...gp...} be the union of 

2r M bases of all vector spaces ( . .) for all i with i ÷ j and 
F. i 3 
1 

] I 
Fk(2r+kMj) for all k with j + k , and let {... gp ...] be the 

2r+l • (2r+2 
union of the corresponding dual bases of ( .M.;~ and ) 

3 i ~i J~ Fk 
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Thus, c(j,r) = ~ g' ® gp . Now, f = ~ h @ gp , where h is a 
p P p P P 

T l morphism of F~) either from (i,r) or (k,r+l) to (j ,r ). Since 

there is an Auslander-Reiten sequence 

(F (gp)) (F (gp)) 
0 --> P(j,r) P> Q - P-> p(j,r+l) --> 0 

and since 

0 = F(f) : v F(hp) r(gp) , 

P 

we can factor (F(h)) : Q ÷ P(j',r') through (F(g')) 
P P P P 

there is a homomorphism u : P(j,r+l) + P(j',r') such that 

Hence, 

F(h ) = { F(g') 
P P 

And, since F is surjective, we can find u : (j,r+l) ÷ (j',r') in 

~(~,~) such that F(u) = u . Obviously, the elements h - u ~ ' p gp 

lie in the kernel of F , and therefore, by induction, they belong to 

J . Consequently, 

i f = ~ hp ® gp = [ (hp - u (9 gp) O gp + ~ u ® g'p ® gp 

P P P 

also belongs to J ; for, ~ u ® gp' @ gp u ® c(j r) 

P 

5. Proof of the theorem 

The proof of the theorem consists in identifying the additive 

structure of ~(~) with a factor of a subcategory of ~(~,~) 

Indeed, we may consider both ~,~) and P~,O) defined in section 

4 as abelian groups forming the direct sum of all Hom((i,r), (j,s)). 

Denote by ~(~,~) and ~,~) the respective subgroups of all 

Hom((i,0) , (j,s)) . Then, both }~) and ~ )  contain a sub- 

ring R = ~ Hom((i,0), (j,0)) which is obviously isomorphic to 
i,j 

R~,Q). Furthermore, under the composition in ~,~), H(~O) is a 

right R~O)-module; for, if f : (i,0) ÷ (j,s) and a : (k,0) ÷ 

(i,0) from R , then fa -. (k,0) ÷ (j,s) in H~,O) . 

PROPOSITION 5.1. 

sum of all~preprojective 

multiplicity one). 

H(~'O)R~,~) is isomorphic to the direct 

R~,O)-modules (each occurring with 

Y= indecomposable 
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Proof. Using the notation of section 3, the indecomposable 

preprojective R-modules are P(j,s) , j ~ I , s > 0. ID particular, 

P(j,0) are the indecomposable projective R-modules and thus 

R R = . • P(i,0). For every R-module X R , 
i£I 

X R = Hom(RRR, XR) = Hom (R[~ P(i,0)], X R) = 
1 

Hence, 

= [Hom(~ P(i,0)R, XR)] R : [~ Hom(P(i,0)R, XR)] R . 
i i 

P(j,s) : [~ Hom(P(i,0), P(j,s))]R 

i 

and thus under the identification of P(j,s) with (j,s) and 

Hom(P(i,0), P(j,s)) with the maps in X~,~) , we get the statement. 

Now, define the map h : T~ + [~,~) as follows. First, 

the morphisms in [~) can be described in the following way: For 

an (unoriented path) w = in+ 1 - in - ... - i 2 - i I of ~ , call 

÷ i t 1 < t < n , in Q the layer the number of arrows it+ 1 

l(w) of w . Then, the morphisms in [~,~) are the elements of 

the tensor products 

r r 2 r 1 
nM. {9 ... {9 . M. {9 . M. , 

in+ 1 i n 13 12 12 l 1 

- i 0 ÷ i t where rt = 21(it it-i -'''- i2 - il) + [i if it+l ÷ i 

if it+ 1 t 

NOW, the map h is defined by 

r _rl r r 2 r 1 
rnQ {9. .{9 2 ~9 -~-> nM {9...(9. M. O . M. , 

M. {9 ... {9 . M. {9 . M. " . . 
in+ 1 1 13 12 12 1 in+ 1 1 n 13 12 12 11 n 1 

where rQ are the maps of Lemma 1.2 for M = .M. and N = .M.. 
1 ] j 1 

From the definition of ~ )  , it is clear that ~,~) is 

just the image of T~ under 4. Also, A is obviously R~,Q)- 

linear. 

LEMMA 5.2. h(<c>) = J~ ~ )  

Proof. By definition, c = Z (~ c i) = ~ c(j) ; note that 
j i 3 j 

c(j) = e. c e. , where e. is the idempotent of T~ corresponding 
3 ] ] 
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to the identity of F. ; thus <c> is the ideal generated by all 
] 

I 

c(j) s. Hence, the statement follows from Lemma 1.2 taking into 

account that, by definition, 

A(I ~ 1 ~ ... ~ c(j) ~ ... Q i) = 1 ~ 1 ~ ... ® c(rM) ~ ... ~ 1 . 

Now, from Lemma 5.2, it follows that ~ defines an isomorphism 

of ~ = T~/<c> onto ~(~) = ~,~)/J N ~,~). This completes 

the proof of the theorem. 

The corollaries follow from the results in [2]. 

[z] 

[2] 

[3] 

[4] 

[5] 

[6] 

[7] 
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