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Abstract

As the advent of next-generation sequencing (NGS) technology, various de novo assembly algorithms based on the de Bruijn

graph have been developed to construct chromosome-level sequences. However, numerous technical or computational

challenges in de novo assembly still remain, although many bright ideas and heuristics have been suggested to tackle the

challenges in both experimental and computational settings. In this review, we categorize de novo assemblers on the basis

of the type of de Bruijn graphs (Hamiltonian and Eulerian) and discuss the challenges of de novo assembly for short NGS

reads regarding computational complexity and assembly ambiguity. Then, we discuss how the limitations of the short reads

can be overcome by using a single-molecule sequencing platform that generates long reads of up to several kilobases. In

fact, the long read assembly has caused a paradigm shift in whole-genome assembly in terms of algorithms and supporting

steps. We also summarize (i) hybrid assemblies using both short and long reads and (ii) overlap-based assemblies for long

reads and discuss their challenges and future prospects. This review provides guidelines to determine the optimal approach

for a given input data type, computational budget or genome.
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Introduction

De novo whole-genome assembly is often described as a giant

jigsaw puzzle with millions of pieces. Because a whole-genome

sequence cannot be read at one glance with any state-of-the-art

technology, many fragmented sequences must be assembled

by finding shared regions of reads up to the chromosome level

[1–3]. For instance, the human genome, which comprises ap-

proximately 3 billion base pairs (�3Gb), requires billions of jig-

saw puzzle pieces (sequences) of approximately 100–250nt in

length to successfully assembly a whole genome. If the size of a

whole human genome is represented by the perimeter of the

earth (�4� 107m), constructing a whole-genome assembly

would be like drawing a world map by using only a 1 m ruler.

Moreover, the topological complexity and nonrandomness of

genome sequences cause other challenges in de novo assembly.

Approximately 50% of the human genome comprises nonran-

dom repeat elements, such as long interspersed nuclear

elements (LINEs), short interspersed nuclear elements (SINEs),

long terminal repeats (LTRs) and simple tandem repeats (STRs)

[4, 5], which often cause misarrangements or gaps in the assem-

bly. These repeat sequences also cause a nonuniform read

depth, thus resulting in copy loss or gain in the assembly.

As innovative next-generation sequencing (NGS) technolo-

gies are rapidly developed and advanced sequencing technolo-

gies are newly introduced, the sequencing of billions of reads

can be accomplished in an increasingly time- and cost-effective

manner. Although the earliest NGS technology, the 454 plat-

form, which sequences relatively long reads (400–700 nt), has

previously been popularly used in the de novo assembly of bac-

terial genomes [6], it is currently rarely used and has been

replaced by new NGS platforms and single-molecule sequenc-

ing (SMS) platforms. The average cost for sequencing of a whole

genome has dramatically decreased, owing to new NGS plat-

forms, such as Illumina and Ion Torrent [7–13]. Despite the short

length of NGS reads (typically 50–300 nt for Illumina, 100 or
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200 nt for Ion Torrent), de novo assembly of a large genome is

enabled by simultaneously overlapping billions of these short

reads. Many algorithmic and heuristic methods have been pro-

posed to assemble such a large number of short reads.

Recent large-scale genome studies, such as the 1000 Genome

Project (http://www.1000genomes.org/) [14, 15], 10k UK Genome

Project (http://www.uk10k.org/), International Cancer Genome

Consortium (http://icgc.org/) and 1001 Arabidopsis Genome

Project (http://1001genomes.org/), have successfully identified

genomic differences among individuals or cells. From the re-

sults of these studies, it is now understood that the structural

and single-nucleotide variations among individuals or cells are

more abundant than previously anticipated [16]. The genome

resequencing approach often fails to detect these highly vari-

able genomic regions [17, 18]. Hence, the de novo assembly of in-

dividual genomes would be a better choice for building a precise

map of highly rearranged genomes and for understanding the

associated phenotypes.

This article reviews the basic computational approaches

used for de novo assembly, classifies graph-based assembly algo-

rithms that use short and/or long reads and compares them in

terms of the computational cost and quality of assembly. This re-

view also discusses the current computational challenges in de novo

assembly of high-throughput short reads and possible solutions.

De novo short read assembly

Basic strategy of de novo short read assembly

The basic strategy for de novo assembly for short NGS reads

comprises three steps: (i) contig assembly, (ii) scaffolding and

(iii) gap filling ([2, 3, 19–22]; Figure 1). In the contig assembly

step, the reads are assembled as long consensus sequences

(called contigs) without gaps. Then, in the scaffolding step, the

contigs are connected by large-insert (pair-end/mate-pair)

reads, which generally originate from large DNA fragments or

fosmid inserts of several kilobases in length. The ordered set of

connected contigs is defined as a ‘scaffold’. Once the contigs are

scaffolded, spaces called ‘gaps’ remain between the contigs if

there is no overlap between the contigs, and undefined bases

and approximate distances are estimated from the insert size of

the large-insert reads. The gaps are carefully filled by using

other independent reads (gap-filling step) to complete the as-

sembly. The scaffolding and gap-filling steps can be performed

iteratively to enhance the quality of the assembly until no con-

tigs are scaffolded or no additional gaps are resolved [23–27].

The most popular approach for the short read assembly, the

de Bruijn graph [1, 3, 22], has been largely applied to many dif-

ferent assemblers. The popular assemblers for short NGS reads

are summarized in BOX A and Table 1. Generally, the de Bruijn

graph approach has been used for the assembly of short reads

by converting them to k-mers, whereas the overlap-layout con-

sensus (OLC) approach has been used for the assembly of long

reads. In this section, we will mainly focus on the de Bruijn

graph approach.

The de Bruijn graph approach

The graph using the k-mers, known as the de Bruijn graph, can

be simplified and significantly reduces the search time for the

optimal path [1–3, 39]. The de Bruijn graph refers to a directed

graph that represents overlaps between sequences with equal

Figure 1. General workflow of the de novo assembly of a whole genome. By overlapping reads, contigs are assembled from short reads before scaffolding by large-insert

reads, and the remaining gaps are filled. The scaffolding and gap-filling steps can be iteratively performed until no contigs are scaffolded or no additional gaps are

resolved before completion. Through this procedure, a draft genome consisting of chromosomes is built. Some unfilled gaps may remain in the draft genome.
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or similar in degrees and out degrees at each node, in which the

overlapped sequences are represented with a k-mer [2, 39]. All

reads are split into (L� kþ 1) k-mers, where L is the read length,

and k is the size of the k-mer. The k-mers are connected by over-

lapping prefix and suffix (k-1)-mers (Figure 2). Once the de

Bruijn graph is constructed, the optimal path is identified in the

graph [2]. The contigs or scaffolds are obtained by inversely

transforming the optimal path in the de Bruijn graph into

sequences.

The de Bruijn graph is classified into two types, Hamiltonian

and Eulerian de Bruijn graphs, according to the method of ex-

pressing the nodes and edges ([2, 20]; Figure 2). In the

Hamiltonian de Bruijn graph, the k-mer itself becomes a node,

and the (k-1)-mer suffix of the k-mer that overlapped with the

Box A. Short Read Assemblers

ALLPATHS-LG

ALLPATHS-LG [29] is based on the Eulerian de Bruijn graph, and is considered to be the most accurate assembler for short

NGS reads. Different from other Hamiltonian graph-based assemblers, ALLPATHS-LG does not remove erroneous or redun-

dant paths except certain ones until the last step because they may be the right paths. This requires relatively large memory

and may take several weeks for large vertebrate genomes. Although ALLPATHS-LG was originally designed for only Illumina

short reads, it is possible to use for PacBio long reads in small bacterial genomes [136].

SOAPdenovo

SOAPdenovo2 [25] implements an algorithm based on the sparse k-mer and reduces the required memory by up to 35 GB for

assembly of a human whole genome. Its assembly quality is comparable with that of ALLPATHS-LG (Tables 1 and 2). The

strong point of this assembler is that each step of de novo assembly (e.g. error correction, assembly of contigs or scaffolds,

gap filling) can be performed separately and simply as circumstances demand.

SparseAssembler

SparseAssembler [34] uses the sparse k-mer and drastically reduces the required memory by an order of magnitude. For the

assembly of human chromosome 14, the SparseAssembler only used 3 GB of memory for k ¼ 54, while other programs that

use the ordinary k-mer strategy required up to 30–50 GB of memory (37 GB for Velvet, 49 GB for ABySS and 30 GB for

SOAPdenovo) [34].

SGA

SGA [32, 40] implements assembly algorithms using the FM-index, a compressed substring index based on the Burrows–

Wheeler transform that reduces a large RAM memory. Basically, SGA is a one of the overlap-based assemblers [3], and can be

classified as a k-mer based assembler. SGA searches overlaps between reads implementing k-mer methods, and assembles

reads directly, instead of assemble k-mers. A recent version of SGA, implementing Bloom filter [32, 35, 62, 80, 81] to reduce

running time, assembled the whole human genome with 56 GB of memory in 24 h on a single hexa-core XEON X5650

(2.66 GHz) machine. In terms of computational cost, the SGA shows the best performance (Table 3).

MaSuRCA

For assembly of the giant genome of the Loblolly pine (�22 Gb), MaSuRCA [48] (hybrid method of OLC and Eulerian de Bruijn

graph) [48] compressed overlapping reads into super-reads of 3–13 kb, and the depth of the super-reads was reduced to 2–3X.

The preassembled super-reads are assembly with OLC assembler, e.g. Celera assembler [70]. Using this approach, Zimin et al.

[37] assembled the ‘giant genome’ of 22 Gb using 1 TB memory in 3 months.

Meraculous

Meraculous [28] builds a lightweight hash table, in which only high-quality extensions are stored. Owing to the high-quality

extensions, Meraculous does not require any explicit error correction step, and produces more accurate results (Figure 8).

Further, the required RAM memory size is reduced to <10 GB for whole human genome assembly, enabling parallel comput-

ing in distributed clustering systems with low memory per node.

JR-Assembler

The JR-Assembler [33] extends seed reads by overlapping other reads instead of using the de Bruijn graph, and is similar to

greedy assemblers. However, they overcame the limitation of greedy assembler by introducing jumping process and misas-

sembly/error-detecting methods (remapping/back-trimming). The N50 lengths of contigs or scaffolds are comparable with

ALLPATHS-LG. Although the extension-based method could reduce the required memory size, >400 GB of memory is required

for whole human genome assembly [33] (Table 3).

Velvet

Velvet [42] is one of the Eulerian de Bruijn graph assembler. Unlike other assemblers, Velvet uses bidirectional de Bruijn

graph. The potential assembly errors are corrected by so-called ‘tour-bus’ algorithms in assembly graph level.

SPAdes

SPAdes [47] is one of Eulerian de Bruijn graph assemblers, and was designed for single-cell sequencing. This program uses

paired de Bruijn graph [153], which is a kind of doubled-layered de Bruijn graph. The k-mers from DNA fragment reads build

the inner de Bruijn graph, which is used for contig assembly. On the other hand, the ‘paired k-mers’ with large insert size

build the outer de Bruijn graph, which is used for repeat resolving or scaffolding.

ABySS

ABySS [41] is computationally efficient. The main feature of ABySS is the distributed k-mer hash table. To reduce RAM mem-

ory requirement for a computer, ABySS distributes the k-mer hash table over clustering systems, in which the computers

with small RAM memory are connected to each other by network.

De novo whole-genome assembly | 25
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(k-1)-mer prefix of the next k-mer becomes an edge. In other

words, if the prefix of a node is the same (or overlaps) as the suf-

fix of another node, the two nodes are connected. In contrast,

the Eulerian de Bruijn graph presents nodes and edges in the

opposite manner: the sequence of the k-mer is an edge and the

overlapped (k-1)-mer is a node.

The Hamiltonian de Bruijn graph approach is commonly

applied in de novo assemblers such as SOAPdenovo [25], SGA

[40], ABySS [41], Meraculous [28] and Velvet [42]. The

Hamiltonian graph approach is similar to the OLC approach in

that the node is the sequence and the edge is the overlap. In

these approaches, the sequences are assembled by finding

Hamiltonian paths that traverse all nodes, each of which is vis-

ited only once; this scenario is known as the nondeterministic

polynomial time (NP)-complete problem when the number of

nodes is not trivial [2, 39]. Thus, as the size (or topological com-

plexity) of the genome increases, the computation time

required to solve the graph problem diverges indefinitely

(Figure 3A) because the scaffolding or repeat-resolving steps be-

come too complicated. Normally, the computational complexity

to find the Hamiltonian paths is Oðm� 2nÞ, where m is the total

number of nodes, and n is the number of branching nodes [43,

44]. The branching nodes refer to the nodes with � 2 in or out

degrees. As seen in Figure 3B, we have shown that the n is corre-

lated to the contig length L. Therefore, the complex graph is

often simplified when a large genome (e.g. a mammalian gen-

ome) is assembled. For instance, SOAPdenovo [45] removes all

branching nodes to reduce the computational complexity, ap-

proaching OðmÞ. However, the debranching may produce many

short contigs. Thus, its next version, SOAPdenovo2 partially re-

solves the branches caused by repeats, rather than removing all

of them.

In contrast, the Eulerian de Bruijn graph approach is able to

solve the complicated graph problem by finding the Eulerian

paths that traverse all edges, each of which is visited only once

without simplification in polynomial time, O n2
� �

[2, 39, 46].

Table 1. Summary of short read assemblers

Assembler Speeda Memory efficiencya N50 lengthb Input data type Assembly steps

Celera þ þ þþþ S,P,Li,L C,S,G

ALLPATHS-LG þ þ þþþ P,Li (Lc) E,C,S,G

ABySS þþ þþþ þþ S,P,Li E,C,S

Velvet þþ þþ þ S,P,Li C,S

SPAdes þþ þþþ þþ P,Li E,C,S

SOAPdenovo þþþ þþ þþ S,P,Li C,S,G

SparseAssembler þþ þþþ þþ S,P,Li C,S

SGA þþþ þþ þ S,P,Li E,C,S

MaSuRCA þ þ þþþ S,P,Li,L C,S,G

Meraculous þþ þþ þþ P,Li C,S,G

JR-Assembler þ þ þþþ S,P,Li E,C,S,G

Note: þþþ: high; þþ: medium; þ:low.

In the ‘Data Type’ column, the symbols S, P, M and L refer to Single-end reads, Paired-end reads, Large-insert reads and Long reads, respectively.

In the ‘Assembly steps’ column, the symbols E, C, S and G refer to Error-correction, Contig assembly, Scaffolding and Gap-filling steps, respectively.
aReference [25, 28, 29, 31, 32, 33, 34, 36, 37, 38].
bReference [17, 30, 31, 33, 34, 35, 37, 38].
cPacBio long reads can be used only for small genome for ALLPATHS-LG.

Figure 2. (A) In the de Bruijn graph approach, short reads are split into short k-mers before the de Bruijn graphs are built. (B) In the Hamiltonian approach, the k-mers

(or sequences) are the nodes, whereas they are the edges in the Eulerian approach. The k-mers are connected to neighbors by overlapping prefix and suffix (k-1)-mers.
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Eulerian de Bruijn graph-based assemblers generally perform

better in the assembly of a large genome than the Hamiltonian

de Bruijn graph approach in terms of the assembly results. In

fact, EULER [39], SPAdes [47], ALLPATHS-LG [29] and MaSuRCA

[48], which implement a Eulerian de Bruijn graph method, have

shown better performance in recent comparisons of assemblers

[30, 31, 49].

Challenges in de novo short read assembly

Computational challenges in de novo assembly

De novo assembly is a nontrivial problem that requires expen-

sive computations and a high-quality standard, and should be

able to overcome many computational challenges within the

workflow. In this section, we discuss four major computational

challenges of de novo assembly and solutions to overcome the

challenges. The strategies used to address the challenges for

different assemblers are summarized in Table 2.

The first challenge is the correction of sequencing errors,

which must be performed before or during assembly because

the errors might impede the extension of contigs or scaffolds

and introduce artifacts. The rate and types of sequencing errors

vary according to the NGS platform and library preparation

method, which should be taken into account when correcting

the sequencing errors. For example, Illumina platforms gener-

ally produce short reads with �1% random sequencing errors,

and the errors tend to be accumulated in the 30 part of reads

[12,50–52].

The second challenge is uneven read depth, which results

from polymerase chain reaction (PCR), cloning, extreme GC bias,

sequencing errors and copy number variations [53–59]. Uneven

depth often causes breaks in the assembly, resulting in the

introduction of gaps. The use of an optimal k might be needed

to resolve this problem.

The topological complexity of repetitive elements in gen-

omes presents a challenge. If the reads are long enough to cover

the repetitive elements, this challenge can be resolved.

Figure 3. (A) The function f ðxÞ refers to the computational complexity, where x indicates the number of branches of the de Bruijn graph. If x is sufficiently large, the

Hamiltonian approach leads to the NP problem, fNP xð Þ � eax , and takes too long to complete the task. As the number of branches decreases (the arrow below the x-axis),

the computational complexity of the Hamiltonian de Bruijn graph is drastically reduced. In contrast, there is no need to reduce the complexity in the Eulerian approach

because it leads to the polynomial problem, fP xð Þ ¼ a0 þ a1xþ a2x2 þ � � � þ anxn ! f ðxÞ � xn , thus indicating that it can be completed in a finite time. (B) The number of

branches is proportional to the length of contigs. The plots are obtained by analyzing the human reference genome (GRCh37/hg19). Each k-mer graph (45-mer) was con-

structed from each contig of human reference genome. Each dot indicates the number of the branches in a graph. The number of branches in the Hamiltonian de

Bruijn graph is as much as 2-fold greater than the number of branches in the Eulerian de Bruijn graph. (C) Because the Hamiltonian de Bruijn graph is normally difficult

to solve, simplification processes are necessary. For instance, the branches are removed in SOAPdenovo2; thus, the running time is drastically reduced in the contig as-

sembly steps, and the branches are resolved in the scaffolding step.
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However, because Illumina sequences are generally short, and a

sequence normally does not cover a repetitive region, long reads

are preferred to address this problem.

The fourth challenge is algorithmic complexity that requires

a high computation cost. De novo whole-genome assembly

based on the de Bruijn graph requires substantial random-

access memory (RAM), storage and long computation times.

Although the de novo assembly of small genomes, such as bac-

terial genomes, takes only several minutes, the assembly of

large genomes, such as mammalian genomes, typically takes

from several days to weeks and requires over tens to hundreds

of gigabytes (GB) of peak RAM memory, depending on the gen-

ome size and algorithms.

Sequencing error correction

Although the Illumina platform produces highly accurate reads

[12, 50–52], the reads may also lead to misassembly. The

sequencing errors occur more frequently in regions with an ex-

tremely high GC or AT content, such as constant heterochroma-

tin regions, including centromeres, telomeres or highly

repetitive sequences, all of which may generate a complex as-

sembly graph. Therefore, the sequencing errors should be cor-

rected for more accurate and contiguous de novo assembly

before or during assembly.

The essential issue in correcting sequencing errors is how to

identify sequencing errors and distinguish them from the het-

erozygous alleles. The error correction methods are categorized

into (i) k-mer counting, (ii) suffix tree- or array-based methods,

(iii) multiple sequence alignment-based methods and other

methods, including hybrid error correction methods [52, 60, 61]

(we recommend that these references be reviewed for more de-

tails about sequencing error correction).

Most of the sequencing error correction tools implement

the k-mer counting methods, and even tools in other catego-

ries often use k-mer counting to detect sequencing errors. In

k-mer counting methods, low-depth k-mers are assumed to be

erroneous. In suffix tree-based methods, the erroneous k-

mers are detected by low-frequency branches in the k-mer

suffix tree [52, 60]. In contrast to these two methods, the mul-

tiple sequence alignment-based method is more intuitive: the

sequencing errors are detected by directly aligning reads with

each other and are corrected by consensus. Although the

multiple sequence alignment-based method may be computa-

tionally expensive, this method is commonly used for

error correction of long SMS reads. In the next paragraph, the

k-mer counting methods for short NGS reads are discussed in

detail.

If a genome is amplified through an ideal amplification proc-

esses, the fragments of the reads are evenly distributed over all

regions, and the histogram of k-mer depth forms a normal dis-

tribution, e.g. a Poisson (if the coverage of the reads is rather

low) or Gaussian (high coverage) distribution [62, 63]. However,

if sequencing errors occur, the corresponding k-mer depth

shows an exponentially decreasing curve (Figure 4). In that

case, low-depth k-mers below the threshold can be simply

excluded, or the reads including the sequencing errors can be

corrected through multiple sequence alignment-based methods

or other methods before or during contig assembly. For in-

stance, SGA contains a precise sequencing error correction

module in which erroneous reads are detected by k-mer count-

ing, and the reads are corrected by a multiple sequence

alignment-based method [32, 40].

However, in these error detection methods, the error-free k-

mers below the threshold are treated as erroneous k-mers, and

some erroneous k-mers remain, thus potentially leading to

Table 2. Strategies for challenges

Challenges Strategies Assemblers

Assembly approach Eulerian de Bruijn graph ALLPATHS-LG, Velvet, MaSuRCA

Hamiltonian de Bruijn graph ABySS, SGA, SOAPdenovo, SparseAssembler, Meraculous

String graph SGA

OLC MaSuRCA

Sequencing error Searching by k-mer counting ALLPATHS-LG, SOAPdenovo, SGA, Meraculous

Correction by other reads ALLPATHS-LG, SGA

Excluding erroneous k-mer (or reads) ALLPATHS-LG, Meraculous, JR-assembler

Correction by suffix tree SOAPdenovo

Complexity reducing Removing tips or bubbles ABySS, Velvet, ALLPATHS-LG, SOAPdenovo, SparseAssembler, SGA

Removing erroneous branches AByss, SGA, JR-assembler, Velvet, SOAPdenvo, SparseAssembler

Removing redundant connections SparseAssembler, SGA

Sparse k-mer SOAPdenvo, SparseAssembler

High quality k-mer table ALLPATHS-LG, Meraculous

Large k-mer size ALLPATHS-LG

Maximum likelihood ABySS

Repeat resolving Pulling repeats using paired reads ALLPATHS-LG

Identifying repeats by read depth ALLPATHS-LG, SGA, MaSuRCA

Breaking repeats SOAPdenovo, Meraculous, JR-assembler

Uneven depth Multiple k-mer ALLPATHS-LG, SOAPdenovo

Direct assembly of reads SGA, JR-assembler

RAM memory Distributed memory on linux cluster ABySS, Meraculous

2 bits nucleotides SparseAssembler

FM-index SGA

Bloom filter SGA

Reducing depth by super-reads MaSuRCA

Lightweight hash ABySS, Meraculous
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misassembly. In particular, the k-mers resulting from heterozy-

gosity should be more carefully managed because these k-mers

are similar to the erroneous k-mers [65–67]; their peaks appear

at D
0
=n, where D0 is the main peak of the histogram, and n is

ploidy. In the case of diploidy, the peak is located at D
0
=2 (Figure

4). Beyond heterozygosity, the reads in repetitive regions are

also problematic. Because of the abnormally high frequency of

k-mers in the repetitive regions, the sequencing errors may not

be detected. These problems resulting from repeats or heterozy-

gosity can be overcome with multiple sequence alignment-

based error correction methods [52].

In some cases, the sequencing errors are discounted in the

step of building the hash table of k-mers before the assembly

step (ALLPATHS-LG [29] and Meraculous [28]) or are excluded by

back trimming during extensions in the assembly steps (JR-

Assembler [33]).

The k-mer counting method is also popularly used to esti-

mate genome size. For contextual reasons, the genome size esti-

mation is separately explained in BOX B.

Repetitive structures

Finding the shortest complete path, which is defined as the

shortest path (p) going through all nodes, Vs, in a complex k-

mer graph does not resolve the genome assembly problem,

mainly because of the nonrandomness of genome sequences

containing many repetitive structures, such as STRs, LINEs,

SINEs or the highly repetitive sequences (near centromeres,

telomeres or satellites on chromosomes). If a genome sequence

is perfectly random, the de novo whole-genome assembly might

be created by finding a super sequence containing all the subse-

quences. However, the real assembly problem is not the super

Figure 4. K-mer histogram. The x-axis refers to the k-mer depth D kð Þ, which indicates ‘k-multiplet’; the y-axis refers to the frequency of the k-multiplet, f ðDðkÞÞ [64]. For

example, if a set of k-mers is given by K¼ {ATT, ATA, GTG, GCA, GCA, CAT, CAT, TAT, TAT, TAT, TAT}; the frequency is calculated as f 1ð Þ ¼ 3 because there are three

unique k-mers, {ATT}, {ATA} and {GTG}; f 2ð Þ ¼ 4 because there are two twins, {GCA, GCA} and {CAT, CAT}; f 3ð Þ ¼ 0 because there is no triplet; f 4ð Þ ¼ 4 because there is

one quadruplet, {TAT, TAT, TAT, TAT}. The curve of the k-mer histogram shows a normal distribution in ideal cases, provided that the depth of the read is sufficient. If

there are sequencing errors in the reads, an exponentially decreasing curve is produced. The humps beyond the normal distribution peak are generated due to the re-

petitive structures and copy-gained regions. In the plot, a small peak resulting from heterozygous alleles appears below the main peak. The black dots are obtained by

using ERR244145, and the exponential (erroneous; red) and Gaussian (error-free; orange, blue, green and purple) functions are ideal case curves. The gray line (sum of

ideal cases) is similar to the real data (black dots).

Box B. Genome Size Estimation

The k-mer counting methods can be used also for esti-

mating genome size using the depth and length of reads

and the depth and size of the k-mer [154, 155], as follows:

D ¼
D0l

l� kþ 1
;

and

G ¼
Nbase

D
¼

Nreadðl� kþ 1Þ

D0
;

where D and G are an estimated depth of reads and the

genome size, respectively; l is the average read length; k

is the k-mer size; D
0
is the k-mer depth at the peak of the

k-mer histogram; Nk�mer ¼ ðl� kþ 1Þ is the number of k-

mers in a read; and Nbase is the number of sequenced

bases, where Nread ¼ Nbase=l is the number of reads. This

method is useful because genome size can be estimated

before or without whole-genome de novo assembly.
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sequence problem because of the repeats, which sometimes

form complicated repetitive structures. The highly repetitive se-

quences often generate numerous ambiguous paths and gaps in

the resulting assembly [4, 5, 17, 68, 69]. Some of the repeat prob-

lems in the assembly can be resolved by the read depth or the

information from large-insert or long reads [68]. In this section,

we mainly discuss the methods that use the read depth and the

information from paired reads with a large insert.

The statistics of the read depth (for instance, A-statistics

[70]) are often used to resolve repetitive structures. Because the

read depth in repeat regions is higher than that in other regions,

the copy number of the region can be estimated (Figure 5A).

However, this approach is not sufficient to resolve the repeat

structures because the read depth can be altered by many other

factors, thus resulting in a false estimation of the copy number.

A complementary method for resolving the repetitive

structures is to use the insert size of reads, wherein each

fragment matches a region outside of the repetitive regions

(Figure 5B). If multiple paths exist in the graph because of the

repetitive structures, these can be resolved by using the esti-

mated insert size (Figure 5C). However, large-insert reads

should be used carefully because constructing the assembly

graph can be complicated by the large inner distance. As

shown in Figure 5D, if the paired-end reads with a large insert

size are applied first (long-first approach), long-range repeats

(g in the graph) are resolved, but repetitive structures within a

shorter range than the insert size remain (f in the graph). As a

result, the complexity of the graph is not reduced, but can be

more complex, depending on the case. The reads of shorter in-

sert sizes must be applied first (short-first approach) and, in

turn, longer insert sizes are applied in the last step to properly

resolve the repetitive structures. By resolving the structures in

this order, the repetitive structures produce a less complex

graph (Figure 5D).

Figure 5. (A) The read depth in repetitive region is greater than those of other regions (B) The repeat R can be resolved, if the large-insert reads are supporting R and the

flanks a, b, c and d. (C) In this figure, there are two Eulerian paths. Of the paths, the latter path, which matches the insert size of the large-insert read, is optimal. (D)

The large-insert reads of the shortest insert size should be applied first to properly resolve the repeats. If the longest insert size is applied first, inadvertent additional

repeats are generated, thus complicating the repeat-resolving processes.
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The complexity of scaffolding

Scaffolding based on paired-end or mate-pair reads can also

help to overcome repeat problems [71, 72]. Recently, a study by

Gao et al. [73] has shown that the number of misassemblies can

be reduced by considering all large-insert read libraries at the

same time during a scaffolding step. However, when using a

long-first approach, large gaps and unscaffolded contigs can be

inadvertently generated (Figure 6).

The complexity of scaffolding can be considered in two dif-

ferent levels, mapping and algorithms. If read pairs map to re-

petitive elements, they could generate a wrong link between

two distant contigs. These false links should be removed to re-

duce the complexity of assembly graph. In the ideal case with

neither sequencing error nor misassembly, contigs may be

properly scaffolded by mate-pair reads as shown in Figure 7A.

However, even in the ideal case, numerous misassemblies are

possibly generated because of repeats or mapping errors (Figure

7B), if the information of read pairs are not sufficient, or if the

algorithms consider only local information. The mis-scaffolding

problem can be partly resolved by using long-spanning se-

quences (Figure 7C).

Highly repetitive regions are more problematic, which nor-

mally form star-like structures in assembly graphs (Figure 7D

and E). In this case, it is extremely difficult to find an optimal

path because of a high complexity. As a result, the highly repeti-

tive regions are often remained as gaps during assembly.

Uneven read depth

The limitations of short NGS reads, such as GC biases and PCR

biases, cause the problem of uneven sequencing depth, which

generates gaps in a draft genome. This problem has been poorly

resolved because of the absence of data. It could be addressed

by sequencing a greater depth of reads, but doing so would

greatly increase the computing time and cost. Multiple k-mer

approaches have been used to at least partially address this

problem [25, 29]. Short k-mers are used to connect reads in re-

gions with a shallow sequencing depth, whereas long k-mers

are used for the reads in other regions. This multiple k-mer

approach is implemented in several short read assemblers,

such as SOAPdenovo2 [25] and ALLPATHS-LG [29]. To our know-

ledge, there is no other algorithmic strategy for addressing the

uneven sequencing depth, except the multiple k-mer

approaches. However, the use of the small k-mers could poten-

tially cause unintended misassembly. The low sequencing

depth problem can be partially addressed in the gap closing

step.

Computational cost

RAM memory

Because the k-mer approach generates ðl� kþ 1Þ k-mers from a

read of length l, large RAM memory is required to assemble a

large genome. Approximately 2ðkþ 1ÞG bytes RAM memory is

required to store k-mer table of a genome of size G [28]. For in-

stance, approximately 0.5 terabytes (TB) of memory is required

to build a hash table of 75-mers for the human genome (3 Gb).

Indeed, ALLPATHS-LG (default k-mer size is 96) requires at least

512 GB of memory for a human whole-genome assembly [29].

Optimal data structures or complexity-reducing algorithms [78],

such as sparse k-mer [25, 34], FM-index [40, 79], Bloom filter [32,

35, 62,80, 81], light-weight hash table [28] or the super-read ap-

proach [48], are benefited to assemble such large genomes with

a tractable RAM memory. In particular, the super-read ap-

proach, which is a type of synthetic long read of short NGS

reads, has been used to reduce the required RAM memory for

the assembly of the large genome of the loblolly pine (�22 Gb)

[48].

Computing time

It is known that the Hamiltonian approach (known as a NP-

problem) is much slower than the Eulerian approach (known

as a P-problem) in a large genome, which is represented as a

high-complex k-mer graph with many nodes and edges

(Figure 3A). Paradoxically, most of the assemblers that imple-

ment the Hamiltonian de Bruijn graph, including SOAPdenovo

and SGA, are much faster than the assemblers that implement

the Eulerian de Bruijn graph, such as ALLPATHS-LG (Table 3).

Figure 6. (A) In scaffolding, the reads of shortest insert size should be applied first. If the longest reads are applied first, advertent large gaps and unscaffolded contigs

are generated. (B) We performed de novo assembly of human chromosome 14 with a Minia assembler [35] and OPERA scaffolder [73, 74] using the GAGE-A data set [49].

The left plots show the gap-size distribution in the scaffolds. If the large-insert reads with longer insert sizes are applied first (long-first scaffolding), numerous large

gaps are generated, whereas a few large gaps are generated in short-first scaffolding. The right plots show the number of scaffolds with or without gaps. Most of the

no-gap scaffolds are unscaffolded contigs in the long-first approach.
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In fact, ALLPATHS-LG required approximately 3 weeks with

48 processors and approximately 0.5 TB of memory for the

de novo human whole-genome assembly, whereas the

SOAPdenovo2 required only 3 days with eight Quad Core AMD

processors (2.3 Gz) and 35 GB of memory [25], and SGA required

only 1 day with a single hexa-core XEON processors and 56 GB

of memory [32].

The complexity of the k-mer graph is the key to fast assem-

blers. Theoretically, the Hamiltonian de Bruijn graph approach

could be faster than the Eulerian de Bruijn graph in a low-

complexity graph (Figure 3A). As removing branches, the com-

putational complexity of the Hamiltonian assemblers exponen-

tially decreases for the NP curve (Hamiltonian de Bruijn graph),

whereas the computational complexity of Eulerian assemblers

linearly decreases for the P curve (Figure 3A). However, the ac-

curacy (or continuity) represented by the N50 statistics is un-

avoidably reduced when such paths are removed, thus

suggesting that there is a trade-off between accuracy and com-

putational cost. In fact, both SOAPdenovo2 and SGA

(Hamiltonian) use filtering steps to exclude ambiguous or re-

dundant paths, thus leading to a short computational running

time. In the case of Meraculous (Hamiltonian), the complexity

of de Bruijn graph is reduced when building the hash table by

excluding low-quality extensions [28]. In contrast, the

ALLPATHS-LG (Eulerian) retains all possible paths up to the last

step to enhance sensitivity [29, 82].

Figure 7. (A) Solving repetitive structures during scaffolding by large-insert reads. Each large-insert reads are mapped to the corresponding contigs. The dotted line in-

dicates gaps. (B) Possible misassembly by erroneous mapping (indicating as *) of the mate-pair reads. The repetitive regions in the contig are indicated as a green line.

(C) Solving repetitive structure during scaffolding by long-spanning reads indicating as red, blue and dark-blue lines. (D–E) Shown are the simulated assembly graphs,

generated from Escherichia coli K-12 genome with simulated paired end with an insert size 200bp (30X), mate-pair reads with an insert size 2500 bp (20X) and PacBio

long reads with mean length 5000bp (20X) using ART [75] and PBSIM [76]. We have assembled the paired-end reads to contigs using SOAPdenovo2, and aligned mate-

pair reads and PacBio long reads to the contigs (>1000bp) using BWA-MEM [77], respectively. From the mapping results, we have built two assembly (scaffolding)

graphs (D and E), nodes and edges of which represent contigs and reads, respectively. We have set two contigs as connected if they are connected by at least three

mate-pair or PacBio long reads. There are more hub (star-like) nodes in the mate-pair graph (E) than the PacBio graph (D). (F) The plots are obtained by counting nodes

across their different degrees for the assembly graphs by mate pair (purple) and PacBio long reads (green), where the degree of node refers to the number of neighbor

nodes.
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Quality evaluation and polishing of the de novo
assembly

Normally, N50 is one of most popular metrics, considered for

the assessment of de novo assembly. N50 is a median length of a

set of contigs (or scaffolds). However, this metric is not suffi-

cient to evaluate the overall quality of the de novo assembly. The

metric does not validate information about misassembly and

the actual genome size. For these reasons, the ordinary N50

metric is often used in modified forms, such as NG50, NA50 or

NGA50. Notably, these metrics are usable only if a reference

genome exists. Although the contig (or scaffold) N50 is calculated

by setting the total size of contigs (or scaffolds), NG50 is an N50

normalized to the size of the reference genome. NA50, which

was introduced in QUAST [83], indirectly considers the misas-

sembly of the draft genome. The draft genome is first aligned to

the reference genome, and large indels >1 kilobase pairs (kb) are

assumed to bemisassemblies, generating breaks at the positions.

The NA50 is calculated by using the broken contigs.

Although nucleotide errors or single-nucleotide polymorph-

isms can be detected and polished by many tools, such as MAQ

[84], SAMtools [85], SOAPsnp [86, 87], SNVmix [88], GATK [89],

MaCH [90], FaSD [91], NGSEP [91] or VarDict [92], many misas-

sembly problems, which have adverse effects on the down-

stream analysis, still remain. The misassemblies are generated

by many factors, such as the heterozygosity and ploidy of gen-

omes, repeats, low read depth or algorithmic limitations. For

small genomes, the misassembly can be evaluated and/or fixed

with Pilon [93], which uses paired-end and mate-pair reads.

However, in the case of large genomes (i.e. vertebrates or

plants), the misassemblies are poorly detected or resolved un-

less accurate reference genomes are provided. If a reference

genome is provided, the quality assessment of the resulting as-

sembly can be performed by using publicly available tools, such

as GAGE [49], QUAST [83], REAPR [94], BUSCO [95], misFinder [96]

or Mauve [97]. However, it should be noted that the detected

misassemblies, such as insertions, deletions, inversions or

translocations, may not be misassemblies, but may instead be

existing structural variants.

Comparison of genome assemblers

The Assemblathon1 and 2 [30, 31] and GAGE-A and B [49, 98]

competitions have evaluated assembly pipelines proposed by

multiple teams using the same data, on the basis of computa-

tional cost and performance. In Assemblathon 2, which tested

the assemblies of bird (Melopsittacus undulatus), fish (Maylandia

zebra) and snake (Boa constrictor genomes), the pipeline proposed

by the Baylor College of Medicine Human Genome Sequencing

Center (BCM-HGSC) showed the best performance in the assem-

blies of theM. undulatus andM. zebra genomes in terms of contig

and scaffold N50s (Figure 8). The pipeline integrated multiple

software packages on the basis of ALLPATHS-LG. With the ex-

ception of the BMC-HGSC pipeline, the competition concluded

that there was no absolute winner assembler for all examined

species and that the performance depended on the species. For

example, the SGA outperformed other assemblers in the assem-

bly of the B. constrictor genome, but not the genomes of the other

species.

Additionally, we surveyed several de novo assemblies of ver-

tebrates from the NCBI Genome Resources (http://www.ncbi.

nlm.nih.gov/genome/), which are elaborated in the list shown

in Figure 8. The contig and scaffold N50s of ALLPATHS-LG are

slightly greater than the other assemblers, although ALLPATHS-

LG tends to have a greater gap percentage than do the other

assemblers.

Long SMS reads

The advantages of the long SMS read

As discussed earlier, repetitive structures, uneven sequencing

depth and missing gaps are substantial challenges in de novo as-

sembly, particularly for the second-generation short reads.

Although large-insert reads can mitigate the problems some-

what, they do not completely resolve the problems in genomic

regions with long repeats, e.g. LINEs (6–8 kb) or LTRs (1–10 kb) [4,

5, 99], and in long, low-depth regions or gaps. In contrast, long

SMS reads that cover the repeats could easily address the prob-

lem (Figure 7C), and because the long SMS reads are generated

by a PCR-free method and are less biased to regions with high

GC or AT contents [57, 100–102], they are greatly beneficial in

overcoming the uneven sequencing depth and gap problems.

According to Koren and Phillippy [103], the complexity of the

de Bruijn graph disappears if the k-mer length is greater than

the ‘golden threshold’ of 7 kb; thus, the substantial challenges

in de novo assembly can be resolved if the read length is >7 kb.

Table 3. Comparison of computational costs of short read assemblers

Assemblers Algorithm Genomea Sequencing Peak memoryb

(in GB)

Relative speedc Relative computational

costd
Referencese

type depth

ALLPATHS-LG Eulerian Human �100� >512 1 597 [29]

SOAPdenovo2 Hamiltonian Human �50� 35 10.8 4 [25]

ABySS Hamiltonian Human �35� <16 11.9 <8 [41]

SGAf Hamiltonian Human �100� 56 65 1 [32]

JR-Assembler Greedy like Human �130� 418 1.8 279 [33]

MaSuRCA EulerianþOLC Loblolly Pine �80� 800 1.4 644 [37, 38]

aEstimated genome size: Human, 3.1Gb; Loblolly Pine, 22Gb; bird (parrot), 1.2Gb.
bRAM memory of ALLPATHS-LG is a minimum requirement, while the others are peak.
cRelative speed is estimated by ðgenome sizeÞ=ðCPU timeÞ, and normalized by ALLPATHS-LG, where the CPU time is approximately ðrunning timeÞ=ðnumber of threadsÞ.

Note that the number of threads of Intel processors is twice the number of cores, whereas the number of threads of AMD processors is equal to the number of cores.
dRelative computational cost, ðpeak memoryÞ=ðrelative speedÞ, was normalized to SGA.
eALLPATHS-LG took 3.5 weeks with Dell R815, 48 processors [29]; SOAPdenovo2 took 81h with eight Quad-core AMD (2.3GHz) [25]; SGA took 24h with single Hexa-core

XEON X5650 (2.66GHz) [32]; JR-Assembler took 1.5 CPU weeks with four Octa-core Xeon E7-4820 (2GHz) [33]; MaSuRCA took about 3 months with 64-core IA64 computer

[37, 38].
fThe relative speed of SGA was estimated with the time to contig assembly.
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Because the average lengths of the long PacBio or Oxford

Nanopore reads are approximately the length of the golden

threshold, it would be more beneficial to take advantage of the

long PacBio or Oxford Nanopore reads to overcome the

challenges.

De novo assembly for long reads

Generally, the assemblers for long SMS reads are classified into

hybrid or long-read-only methods. The hybrid methods refer to

those using both long SMS reads and short NGS reads to in-

crease the quality of the assembly and to reduce sequencing

cost, whereas the long-read-only methods refer to the methods

that use only long SMS reads to correct the sequencing errors

and generate the assembly.

The hybrid/long-read-only assembly pipelines can be classi-

fied into the five categories. (i) The first category includes the

sequencing error correction methods for long SMS reads. SMS

platform, such as PacBio or Oxford Nanopore, is highly error

prone (PacBio RSII: �13% error; Oxford Nanopore MinION: �20%

error), and the errors tend to occur in regions with low sequence

complexity [12, 13, 104–106]. The hybrid assembly pipeline uses

hybrid error correction methods, whereas the long-read-only

assembly pipeline uses long-read-only methods. (ii) The second

category is the approach for contig assembly. The error-

corrected long reads are normally assembled by using overlap-

based approaches (Celera [70], Allora [107], AMOS [108] and

MIRA [109] for OLC or FALCON [110] for string graphs), rather

than the de Bruijn graph approach. (iii) The third category is the

aligners that generate the overlaps among the long reads.

Current pipelines often use BLASR [111], MinHash [112] and

DALIGNER [113]. (iv) The fourth category is the scaffolding using

long SMS reads, which is used for only the hybrid assembly

pipeline that connects contigs of short NGS reads. (v) The last

category is the gap closers that use long SMS reads, which are

also used for the hybrid assembly pipeline that closes the gaps

between contigs of short NGS reads. The existing hybrid/long-

read-only assembly pipelines are summarized by category in

Table 4.

In the following subsections, we will further discuss the hy-

brid and long-read-only assemblies, overlap-based approaches

for contig assembly, scaffolding by long reads and gap filling by

long reads.

Hybrid assembly

There are two types of hybrid assemblies: (i) The assembly of

long reads corrected with the support of short reads, and PBcR

[36] and Nanocorr [101] are known as type-1 hybrid assembly

pipelines (Table 4). (ii) The contig assembly by short read and

the scaffolding by long reads. Cerulean [114], hybridSPades

[115], AHA [107] and DBG2OLC [116] are known as type-2. PBcR

Figure 8. The de novo sort read assemblies of the bird (M. undulatus), fish (M. zebra) and snake (B. constrictor) genomes were reanalyzed using the Supplementary Table of

Assemblathon2 [31]. In addition, manymore assembly results below Assemblathon2 were collected from the NCBI assembly database.

34 | Sohn and Nam

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/1

9
/1

/2
3
/2

3
3
9
7
8
3
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

Deleted Text:  
Deleted Text: -
Deleted Text:  
Deleted Text: -
Deleted Text:  
Deleted Text: -
Deleted Text: 1
Deleted Text: -
Deleted Text:  
Deleted Text: -
Deleted Text:  
Deleted Text: -
Deleted Text: 2
Deleted Text: 64
Deleted Text: 99
Deleted Text: 100
Deleted Text: ,
Deleted Text: 101
Deleted Text: overlap-layout consensus (
Deleted Text: )
Deleted Text: 102
Deleted Text: 3
Deleted Text: 103
Deleted Text: 104
Deleted Text: ,
Deleted Text: 105
Deleted Text: 4
Deleted Text: 5
Deleted Text:  
Deleted Text: -
Deleted Text:  
Deleted Text: -
Deleted Text: ,
Deleted Text: -
Deleted Text: 1
Deleted Text: 106
Deleted Text: 93
Deleted Text: 2
Deleted Text: 107
Deleted Text: 108
Deleted Text: 99
Deleted Text: ,
Deleted Text: 109


has been successfully applied to assemble large genomes [36,

112] by using both short NGS reads and long PacBio reads. In the

Assemblathon2 competition, the CBCB team used PBcR with

PacBio, 454 and Illumina reads to assemble the M. undulatus

genome and reported the best result for contig N50 and cover-

age (Figure 8).

Hybrid error correction

Recently, new technologies have been introduced to reduce the

sequencing errors in the long SMS reads. In the case of the

PacBio, circular consensus reads tend to be shortened by ap-

proximately only �400 nt, thereby this method lacks the merits

of the long-read approach [36], despite its high accuracy (�98%

per base [117]). Several groups have suggested hybrid error cor-

rection approaches that use both short and long reads in the hy-

brid assembly pipelines, to correct the sequencing errors in the

long SMS reads with low sequencing costs by retaining the ad-

vantage of the long reads. For instance, LoRDEC [118], proovread

[119], ECTools [120] and Jabba [121] can successfully correct the

long reads with the support of short reads. LoRDEC and Jabba,

which are computationally efficient, use the de Bruijn graph,

whereas the others use multiple sequence alignment-based

approaches.

In the case of Oxford Nanopore, the two-dimensional (sense

and antisense) sequencing reads are used to reduce the error

rates, which are still high [122]. The error correction tools for

the PacBio long reads might be used for the Oxford Nanopore

long reads; however, some correctors do not work well because

their error rates are higher than the PacBio long reads [101]. For

that reason, Nanocorr [101] and NaS [105] were specifically de-

signed for the hybrid error correction of Oxford Nanopore reads

by using short NGS reads.

The hybrid error correction method can reduce the sequenc-

ing errors in long SMS reads with a lower sequencing cost than

the long-read-only error correction methods, which are further

described in the next subsection. However, the hybrid methods

have not performed better than long-read-only methods be-

cause (i) the sequences in the GC-rich region are rarely corrected

because of the low depth of the short NGS reads and (ii) the se-

quences of the repeats are poorly corrected by mismapping of

the short NGS reads.

Scaffolding and gap filling by long reads

SSPACE-LongRead [123], OPERA-LG [73], LINKS [124], DBG2OLC

[116], AHA [125], Cerulean [114] and hybridSPades [115] are scaf-

folders that connect contigs, as guided by long reads. The

detailed algorithms of the scaffolders vary, but all take advan-

tage of the long reads as the backbones of the scaffolds.

This approach has many merits compared with scaffolding

by mate-pair reads. It easily solves the problems that occur dur-

ing scaffolding with NGS reads with a large insert because long

SMS reads tend to have less systematic and nucleotide compos-

ition biases and to require less computational cost.

Furthermore, this approach is flexible for the various existing

state-of-the-art assemblers because the main function of this

approach is scaffolding.

The gaps produced by the short read assemblers are ineffi-

ciently closed by other short NGS reads. Most of the gap closers

are based on greedy-like extension processes and do not ex-

haustively search for the optimal solution; hence, the methods

may fall into local minima. Some, but not all, gaps can be closed

by existing gap closers, such as IMAGE [23], GapFiller [24], Sealer

[26] or GapCloser [25]. However, according to a recent study [27],

the misassembly rates by the gap closers that use the short NGS

reads are 20–500-fold higher than those of the long read gap

closers, such as PBJelly [126] and GMcloser [27].

Gap closing with the long SMS reads should be managed

after or during the sequencing error correction. In the case of

PBJelly, the remaining gaps in the scaffolds are closed by the

consensus of the supporting long PacBio reads. Because PBJelly

uses PBDAG-Con for consensus, the long Oxford Nanopore

reads may not be suitable for PBJelly (PBDAG-Con does not work

well for Oxford Nanopore [127]). For GMcloser [27], the gaps are

closed by contigs or error-corrected long PacBio reads.

Long-read-only assembly

An ultimate approach for de novo assembly may be to assemble

only long reads with sufficient depth because the long-read-

only assembly of long reads is promising for capturing genomic

structural variations and resolving long repeats in the genomes.

HGAP [128] is one of long-read-only assemblers that map

smaller long SMS reads to larger ones using BLASR [111] and

corrects sequencing errors by using multiple sequence align-

ment with the consensus tool PBDAG-Con [128] (Table 4).

However, PBDAG-Con does not work well for long Oxford

Nanopore reads because of the differences in the error profile

[127]. For the long Oxford Nanopore reads, one study has found

that Sparc [127], a new consensus tool for both the long PacBio

and Oxford Nanopore reads, works better than other tools.

The corrected reads are then assembled by overlap-based as-

semblers, such as Celera [70] or MIRA [109], and the resulting as-

sembly is polished by the consensus algorithm Quiver [128].

However, this process for long-read-only assembly requires at

Table 4. Assembly pipelines for long SMS reads

Pipelines Type Input Error corrector Contig assembler Aligner Scaffolder

Cerulean Hybrid Illumina, PacBio PBDAG-Con ABySS (short read) BLASR Cerulean

hybridSPades Hybrid Illumina, PacBio PBDAG-Con SPAdes (short read) (Own graph aligner) exSPAnder

DBG2OLC Hybrid Illumina, PacBio Sparc SparseAssembler (short read) (Own program) DBG2OLC

AHA Hybrid Illumina, PacBio AMOS Allora BLASR AHA

PBcR Hybird/long-read-only Illumina, PacBio PBDAG-Con Celera BLASR —

HGAP Long-read-only PacBio PBDAG-Con Celera BLASR —

HMAP Long-read-only PacBio PBDAG-Con Celera MHAP —

FALCON Long-read-only PacBio (own program) (Own program) DALIGNER —

Nanocorr Hybrid Illumina, Nanopore PBDAG-Con Celera BLAST —
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least 50X PacBio reads to construct a high-quality assembly,

requiring substantial sequencing costs for large genomes [129].

Hence, recent assembly projects using the long-read-only ap-

proach have mainly been applied to species with small gen-

omes, such as bacteria and viruses [36, 99, 103, 116, 118, 123,

128, 130–137]. Regardless of the high sequencing cost, several

plant and animal genomes have been successfully assembled

by using long-read-only assemblers (Table 5).

In long-read-only assembly, the alignment process is a

major bottleneck because the long SMS reads should be aligned

end to end to determine the overlapping pairs. To solve this

problem, Koren et al. [112] have introduced MHAP, a long-read-

only assembler pipeline that aligns the long PacBio reads by

using the MinHash technique [143], corrects sequencing errors

using PBcR [36] in a long-read-only manner, assembles the

reads using the Celera assembler [70] and then polishes the

reads with Quiver [128]. Using MinHash, this approach reduces

both the execution time and required RAM memory. As a result,

Koren et al. have assembled 20 Mb N50 contigs for Drosophila

melanogaster and 4.3 Mb N50 contigs for human (Table 5) [112].

Among the contigs, the N50 size of D. melanogaster almost

reaches the chromosome level.

Overlap-based approach

The overlap-based approach is a straightforward approach for

long read assembly because it assembles the long reads them-

selves without converting to k-mers. In this subsection, we dis-

cuss two types of overlap-based assemblers, which are OLC and

string graph assemblers.

Assemblers using the OLC approach, such as Celera [70],

Allora [107], AMOS [108] and MIRA [109], have been introduced

to relieve the local optimal problem. The OLC approach con-

structs an overlap graph based on pairwise sequence align-

ments by dynamic programming (overlap), extracts a

nonredundant graph (layout) and merges the reads while cor-

recting the sequencing errors (consensus). The OLC approaches

usually produce robust results for relatively low-throughput

long reads, such as 454 sequencing reads (�500 nt), Sanger

sequencing reads (�1 kb) and long PacBio reads (up to a few

tens of kilobases), but not for high-throughput short reads (gen-

erally, billions of short reads are used for large genomes) be-

cause a tremendous number of pairwise sequence alignments

are required for the short reads to construct an overlap graph.

This overlap graph of the short reads (similarly presented as a

Hamiltonian de Bruijn graph) easily forms a complex graph that

includes a large number of nodes and branches. In contrast, an

overlap graph for the low-throughput long reads generally

forms a much less complex graph.

The main hurdle of OLC approach is to properly and effi-

ciently align long reads to identify overlaps. String graph assem-

bly was first introduced by E. Myers [144] to overcome this

hurdle; it uses k-mers to identify overlaps between reads. A typ-

ical string graph assembly pipeline for long SMS reads is

FALCON, which implements DALIGNER [113], which uses k-

mers to find overlaps. This approach can reduce the alignment

time by as much as an order of magnitude as compared with

BLASR [111]. Another string graph assembly pipeline, MHAP,

uses the MinHash k-mer method [143] and reduces the align-

ment time to one similar to the time of DALIGNER. Note that

the short read assembler SGA is also one of string graph assem-

bler, but normally used for short NGS reads.

Discussion

In this review, we have discussed the challenges in de novo

whole-genome assembly for short NGS reads and how these

challenges can be overcome. Notably, the methods using short

NGS reads perform poorly for repetitive structures or GC-biased

regions. Assemblers using long reads are highly helpful in

resolving the problems, and they generate more contiguous re-

sults [36, 99, 106, 116, 118, 123, 128, 130–137]. However, the

sequencing and computational costs are currently substantially

higher for long SMS reads. At a minimum, the sequencing cost

problem can be mitigated by the hybrid approaches of short

NGS reads and long SMS reads, although there is an argument

that the hybrid approach may produce numerous misassem-

blies [145].

The scaffold size should be close to the chromosome scale

with a low number of gaps to ultimately generate the de novo as-

sembly. Recently, chromosome-scale scaffolding has been

achieved by using advanced physical mapping methods, such

as optimal mapping [146] and chromatin-interaction mapping

[147]. Optimal mapping takes advantage of genome-wide re-

striction site maps from a single DNA, generating ordered, high-

resolution restriction maps. In contrast, genome-wide chroma-

tin interaction mapping provides ordered information about the

long-range interactions within a chromosome, including

centromeres, and was originally designed to detect the regula-

tion of gene expression by the three-dimensional interactions

of chromosomes. Recently, this method has been applied to

ultra-long-range scaffolding of de novo assemblies, building

highly qualitative chromosome-scale scaffolds. Given the suc-

cessful scaffolding methods, the advent of new technologies for

generating genome-wide, ultra-long-range physical maps

should significantly improve the quality of the de novo assem-

blies in the near future.

Future sequencing technologies may also offer improve-

ments. Currently, the original PacBio long read sequencing is

expensive. However, with the advent of Oxford Nanopore

MinION and PacBio sequel platforms [148], inexpensive long

read sequencing technologies are within reach and may lead to

long-read-only assembly being more frequently used. It has

been also expected that quantum sequencing technologies may

further reduce the cost problem by increasing the throughput

and read length [149–151]. According to Di Ventra and

Taniguchi [150], the throughput of quantum sequencing should

reach �100 Tb per day by 2018. Although this throughput is only

an expectation, it appears promising that the throughput

Table 5. Recent whole-genome assembly of large genomes for

PacBio long reads

Species Pipeline N50 (contig) (in Mb) Reference

Oropetium (grass) HGAP 2.39 [138]

Arabidopsis thaliana HGAP 6.36 [139]

MHAP 11.16 [112]

D. melanogaster PBcR 15.3 [140]

MHAP 20.99 [112]

Capra hircus (goat) PBcR 2.56 [141]

Homo sapiens HGAP 2.56 [142]

FALCON 4.38 [130]

MHAP 4.32 [112]

FALCONa 26.9 —

Note: Error-corrected PacBio long reads were assembled with Celera assembler

[70] in all pipelines except FALCON [110].
aGenBank assembly accession: GCA_001297185.1.

36 | Sohn and Nam

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/1

9
/1

/2
3
/2

3
3
9
7
8
3
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

Deleted Text: 123
Deleted Text:  
Deleted Text: -
Deleted Text:  
Deleted Text: -
Deleted Text:  
Deleted Text: -
Deleted Text: of 
Deleted Text: -
Deleted Text: -
Deleted Text: 104
Deleted Text:  [104]
Deleted Text:  
Deleted Text: -
Deleted Text: 132
Deleted Text: 106
Deleted Text:  
Deleted Text: -
Deleted Text: 64
Deleted Text: ,
Deleted Text: 122
Deleted Text: 20 
Deleted Text: 3 
Deleted Text: Human 
Deleted Text: 104
Deleted Text: -
Deleted Text: string graph assembler
Deleted Text: utilizing 
Deleted Text: 64
Deleted Text: 99
Deleted Text: 100
Deleted Text: ,
Deleted Text: 101
Deleted Text: -
Deleted Text: -
Deleted Text: ,
Deleted Text: 500 
Deleted Text: 1 
Deleted Text: ,
Deleted Text: -
Deleted Text: -
Deleted Text: very 
Deleted Text: -
Deleted Text: 133
Deleted Text: string graph assembler
Deleted Text: 105
Deleted Text: 103
Deleted Text: 132
Deleted Text: DISCUSSION
Deleted Text: whole 
Deleted Text: -
Deleted Text: 134
Deleted Text: -
Deleted Text: 135
Deleted Text: 136
Deleted Text: 137
Deleted Text:  
Deleted Text: -
Deleted Text: 138-140
Deleted Text: 139
Deleted Text: p
Deleted Text:  [139]
Deleted Text: very 


problem of long SMS reads can be solved. Once the high-

throughput sequencing of long reads becomes a reality, the cur-

rent long read assemblers would be not suitable, owing to over-

flowing memory, and thus a high-priority challenge in de novo

assembly will be the development of new assembly algorithms

with efficient memory and computational costs.

The Oxford Nanopore Company provides an online-based

platform for real-time data analysis. The real-time assemblies

for large genomes are not currently available, although assem-

blies for the small bacterial and eukaryotic genomes are avail-

able [152]. For the real-time assembly of large genomes, the

error correction and assembly algorithms for erroneous long

reads must be much more efficient than ever before. In particu-

lar, the Oxford Nanopore reads often include indels, and the

indel-mediated mismatches may be abundantly detected dur-

ing read overlapping and error correction, thus potentially re-

sulting in error-prone assembly. Methods for addressing these

problems must be developed in the future.

In addition, as interest in precision medicine and personal-

ized genomics increases, scientists and nonscientists are ex-

pecting to analyze their genomes to understand their current

and future health conditions on a personal computer or smart-

phone. Genome analyzers that include assembly may need to

be implemented as a light application that requires a small

amount of memory and computing to make precision, personal-

ized medicine a reality. Together, the data suggest that given

the advanced technologies and clinical interests in personal

genomes, more memory- and computing-efficient technologies

to generate de novo assembly of personal genomes and metage-

nomes will be beneficial for clinical uses in the future.

Key Points

• The complexity of the de Bruijn graph is key to solving the

trade-off between computational cost and the accuracy.
• The execution time of the assemblers based on the

Hamiltonian de Bruijn graph, compared with the

Eulerian de Bruijn graph, is more efficiently reduced

when the de Bruijn graph is simplified because the

complexity is reduced.
• Long SMS reads, such as PacBio or Oxford Nanopore,

are needed to overcome the challenges resulting from

the complexity of the genome structure.
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48. Zimin AV, Marçais G, Puiu D, et al. The MaSuRCA genome as-

sembler. Bioinformatics 2013;29:2669–77.

49. Salzberg SL, Phillippy AM, Zimin A, et al. GAGE: a critical

evaluation of genome assemblies and assembly algorithms.

Genome Res 2012;22:557–67.

50. Mardis ER. Next-generation DNA sequencing methods. Annu

Rev Genomics Hum Genet 2008;9:387–402.

51. Schirmer M, Ijaz UZ, D’Amore R, et al. Insight into biases and

sequencing errors for amplicon sequencing with the

IlluminaMiSeq platform.Nucleic Acids Res 2015;43:e37.

52. Alic AS, Ruzafa D, Dopazo J, et al. Objective review of de novo

stand-alone error correction methods for NGS data. Wiley

Interdiscip Rev Comput Mol Sci 2016;6:111–46.

53. Xie C, Tammi MT. CNV-seq, a new method to detect copy

number variation using high-throughput sequencing. BMC

Bioinformatics 2009;10:80.

54. Medvedev P, FiumeM, Dzamba M, et al. Detecting copy num-

ber variation with mated short reads. Genome Res

2010;20:1613–22.

55. Aird D, Ross MG, Chen WS, et al. Analyzing and minimizing

PCR amplification bias in Illumina sequencing libraries.

Genome Biol 2011;12:R18.

56. Oyola SO, Otto TD, Gu Y, et al. Optimizing Illumina next-

generation sequencing library preparation for extremely

AT-biased genomes. BMC Genomics 2012;13:1.

57. Ross MG, Russ C, Costello M, et al. Characterizing and meas-

uring bias in sequence data. Genome Biol 2013;14:R51.

58. Chen YC, Liu T, Yu CH, et al. Effects of GC bias in next-

generation-sequencing data on de novo genome assembly.

PLoS One 2013;8:e62856.

59. Sims D, Sudbery I, Ilott NE, et al. Sequencing depth and

coverage: key considerations in genomic analyses. Nat Rev

Genet 2014;15:121–32.

60. Allam A, Kalnis P, Solovyev V. Karect: accurate correction of

substitution, insertion and deletion errors for next-

generation sequencing data. Bioinformatics 2015;31:3421–8.

61. Laehnemann D, Borkhardt A, McHardy AC. Denoising DNA

deep sequencing data-high-throughput sequencing errors

and their correction. Brief Bioinform 2016;17:154–79.

62. Li X,WatermanMS. Estimating the repeat structure and length

of DNA sequences using L-tuples.Genome Res 2003;13:1916–22.

63. Kelley DR, Schatz MC, Salzberg SL. Quake: quality-aware de-

tection and correction of sequencing errors. Genome Biol

2010;11:R116.

64. Lander ES, Linton LM, Birren B, et al. Initial sequencing and

analysis of the human genome.Nature 2001;409:860–921.

65. Meacham F, Boffelli D, Dhahbi J, et al. Identification and cor-

rection of systematic error in high-throughput sequence

data. BMC Bioinformatics 2011;12:451.

66. Liu B, Shi Y, Yuan J, et al. Estimation of genomic characteris-

tics by analyzing k-mer frequency in de novo genome pro-

jects. arxiv preprint arXiv:1308.2012, 2013.

67. Song L, Florea L, Langmead B. Lighter: fast and memory-

efficient sequencing error correction without counting.

Genome Biology 2014;15:509.

68. Treangen TJ, Salzberg SL. Repetitive DNA and next-

generation sequencing: computational challenges and solu-

tions.Nat Rev Genet 2012;13:36–46.

69. Peng Y, Leung HC, Yiu SM, et al. IDBA-UD: a de novo assem-

bler for single-cell and metagenomic sequencing data with

highly uneven depth. Bioinformatics 2012;28:1420–8.

70. Myers EW, Sutton GG, Delcher AL, et al. A whole-genome as-

sembly of Drosophila. Science 2000;287:2196–204.

38 | Sohn and Nam

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/1

9
/1

/2
3
/2

3
3
9
7
8
3
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



71. Dayarian A, Michael TP, Sengupta AM. SOPRA: scaffolding

algorithm for paired reads via statistical optimization. BMC

Bioinformatics 2010;11:345.

72. Boetzer M, Henkel CV, Jansen HJ, et al. Scaffolding pre-

assembled contigs using SSPACE. Bioinformatics 2011;27:578–9.

73. Gao S, Bertrand D, Chia BK, et al. OPERA-LG: efficient and

exact scaffolding of large, repeat-rich eukaryotic genomes

with performance guarantees. Genome Biol 2016;17:102.

74. Gao S, SungWK, Nagarajan N. Opera: reconstructing optimal

genomic scaffolds with high-throughput paired-end se-

quences. J Comput Biol 2011;18:1681–91.

75. Huang W, Li L, Myers JR, et al. ART: a next-generation

sequencing read simulator. Bioinformatics 2012;28:593–4.

76. OnoY,Asai K,HamadaM. PBSIM: PacBio reads simulator–toward

accurate genomeassembly. Bioinformatics 2013;29:119–21.

77. Li H. Aligning sequence reads, clone sequences and assem-

bly contigs with BWA-MEM. arXiv preprint arXiv:1303.3997,

2013.

78. Conway TC, Bromage AJ. Succinct data structures for assem-

bling large genomes. Bioinformatics 2011;27:479–86.

79. Ferragina P, Manzini G. Opportunistic data structures with

applications. In: The 41st Annual Symposium on Foundations of

Computer Science, Redondo Beach, CA, USA, 2000.

80. Melsted P, Pritchard JK. Efficient counting of k-mers in DNA

sequences using a bloom filter. BMC Bioinformatics 2011;

12:333.

81. Pell J, Hintze A, Canino-Koning R, et al. Scaling metagenome

sequence assembly with probabilistic de Bruijn graphs. Proc

Natl Acad Sci USA 2012;109:13272–7.

82. Butler J, MacCallum I, Kleber M, et al. ALLPATHS: de novo as-

sembly of whole-genome shotgun microreads. Genome Res

2008;18:810–20.

83. Gurevich A, Saveliev V, Vyahhi N, et al. QUAST: quality as-

sessment tool for genome assemblies. Bioinformatics

2013;29:1072–5.

84. Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads

and calling variants using mapping quality scores. Genome

Res 2008;18:1851–8.

85. Li H, Handsaker B, Wysoker A, et al. The sequence alignment/

map format and SAMtools. Bioinformatics 2009;25:2078–9.

86. Li R, Li Y, Kristiansen K, et al. SOAP: short oligonucleotide

alignment program. Bioinformatics 2008;24:713–4.

87. Li R, Li Y, Fang X, et al. SNP detection for massively parallel

whole-genome resequencing. Genome Res 2009;19:1124–32.

88. Goya R, Sun MG, Morin RD, et al. SNVMix: predicting single

nucleotide variants from next-generation sequencing of

tumors. Bioinformatics 2010;26:730–6.

89. McKenna A, Hanna M, Banks E, et al. The genome analysis

toolkit: a MapReduce framework for analyzing next-

generation DNA sequencing data. Genome Res

2010;20:1297–303.

90. Li Y, Willer CJ, Ding J, et al. MaCH: using sequence and geno-

type data to estimate haplotypes and unobserved geno-

types. Genet Epidemiol 2010;34:816–34.

91. Xu F, Wang W, Wang P, et al. A fast and accurate SNP detec-

tion algorithm for next-generation sequencing data. Nat

Commun 2012;3:1258.

92. Lai Z, Markovets A, Ahdesmaki M, et al. VarDict: a novel and

versatile variant caller for next-generation sequencing in

cancer research.Nucleic Acids Res 2016;44:e108.

93. Walker BJ, Abeel T, Shea T, et al. Pilon: an integrated tool for

comprehensive microbial variant detection and genome as-

sembly improvement. PLoS One 2014;9:e112963.

94. Hunt M, Kikuchi T, Sanders M, et al. REAPR: a universal tool

for genome assembly evaluation. Genome Biol 2013;14:R47.

95. Simao FA, Waterhouse RM, Ioannidis P, et al. BUSCO: assess-

ing genome assembly and annotation completeness with

single-copy orthologs. Bioinformatics 2015;31:3210–2.

96. Zhu X, Leung HC, Wang R, et al. misFinder: identify mis-

assemblies in an unbiased manner using reference and

paired-end reads. BMC Bioinformatics 2015;16:386.

97. Darling AE, Tritt A, Eisen JA, et al. Mauve assembly metrics.

Bioinformatics 2011;27:2756–7.

98. Magoc T, Pabinger S, Canzar S, et al. GAGE-B: an evaluation

of genome assemblers for bacterial organisms. Bioinformatics

2013;29:1718–25.

99. Ashton PM, Nair S, Dallman T, et al. MinION nanopore

sequencing identifies the position and structure of a bacter-

ial antibiotic resistance island. Nat Biotechnol 2015;33:

296–300.

100.Gross DC, Lichens-Park A, Kole C (eds). Genomics of Plant-

Associated Bacteria. Springer, 2014.

101.Goodwin S, Gurtowski J, Ethe-Sayers S, et al. Oxford Nanopore

sequencing, hybrid error correction, and de novo assembly of

a eukaryotic genome.Genome Res 2015;25:1750–6.

102.Oikonomopoulos S, Wang YC, Djambazian H, et al.

Benchmarking of the Oxford Nanopore MinION sequencing

for quantitative and qualitative assessment of cDNA popu-

lations. bioRxiv 2016;048074.

103.Koren S, Phillippy AM. One chromosome, one contig: com-

plete microbial genomes from long-read sequencing and as-

sembly. Curr Opin Microbiol 2015;23:110–20.

104.Roberts RJ, Carneiro MO, Schatz MC. The advantages of

SMRT sequencing. Genome Biol 2013;14:405.

105.Madoui MA, Engelen S, Cruaud C, et al. Genome assembly

using Nanopore-guided long and error-free DNA reads. BMC

Genomics 2015;16:327.

106.Laver T, Harrison J, O’Neill PA, et al. Assessing the perform-

ance of the Oxford Nanopore Technologies MinION. Biomol

Detect Quantifi 2015;3:1–8.

107.Rasko DA, Webster DR, Sahl JW, et al. Origins of the E. coli

strain causing an outbreak of hemolytic–uremic syndrome

in Germany. N Engl J Med 2011;365:709–17.

108.Treangen TJ, Sommer DD, Angly FE, et al. Next generation se-

quence assembly with AMOS. Curr Protoc Bioinformatics

2011;Chapter 11:Unit 8.

109.Chevreux B, Wetter T, Suhai S, Genome sequence assembly

using trace signals and additional sequence information. In:

The German Conference on Bioinformatics, Hannover, Germany,

1999.

110.FALCON. https://github.com/PacificBiosciences/FALCON.

111.Chaisson MJ, Tesler G. Mapping single molecule sequencing

reads using basic local alignment with successive refine-

ment (BLASR): application and theory. BMC Bioinformatics

2012;13:238.

112.Berlin K, Koren S, Chin CS, et al. Assembling large genomes

with single-molecule sequencing and locality-sensitive

hashing. Nat Biotechnol 2015;33:623–30.

113.Myers G. Efficient local alignment discovery amongst noisy

long reads. 2014;8701:52–67.

114.Deshpande V, Fung EDK, Pham S, et al. Cerulean: a hybrid as-

sembly using high throughput short and long reads. In: The

13th Workshop on Algorithms in Bioinformatics (WABI 2013),

Sophia Antipolis, France, 2013.

115.Antipov D, Korobeynikov A, McLean JS, et al. hybridSPAdes:

an algorithm for hybrid assembly of short and long reads.

Bioinformatics 2016;32:1009–15.

De novo whole-genome assembly | 39

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/1

9
/1

/2
3
/2

3
3
9
7
8
3
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

https://github.com/PacificBiosciences/FALCON


116.CMH CY, Wu Ruan SJ, Ma Z. DBG2OLC: efficient assembly of

large genomes using the compressed overlap graph.

arXiv:1410.2801v3.

117. Jiao X, Zheng X, Ma L, et al. A benchmark study on error as-

sessment and quality control of CCS reads derived from the

PacBio RS. J Data Mining Genomics Proteomics 2013;4:136.

118.Salmela L, Rivals E. LoRDEC: accurate and efficient long read

error correction. Bioinformatics 2014;30:3506–14.

119.Hackl T, Hedrich R, Schultz J, et al. proovread: large-scale

high-accuracy PacBio correction through iterative short read

consensus. Bioinformatics 2014;30:3004–11.

120.Lee H, Gurtowski J, Yoo S, et al. Error correction and assembly

complexity of single molecule sequencing reads. bioRxiv

2014;006395.

121.Miclotte G, Heydari M, Demeester P, et al. Jabba: hybrid error

correction for long sequencing reads. Algorithms Mol Biol

2016;11:10.

122. Jain M, Fiddes IT, Miga KH, et al. Improved data analysis for

theMinION nanopore sequencer. Nat Methods 2015;12:351–6.

123.Boetzer M, Pirovano W. SSPACE-LongRead: scaffolding bac-

terial draft genomes using long read sequence information.

BMC Bioinformatics 2014;15:211.

124.Warren RL, Yang C, Vandervalk BP, et al. LINKS: scalable,

alignment-free scaffolding of draft genomes with long

reads. Gigascience 2015;4:35.

125.Bashir A, Klammer AA, Robins WP, et al. A hybrid approach

for the automated finishing of bacterial genomes. Nat

Biotechnol 2012;30:701–7.

126.English AC, Richards S, Han Y, et al. Mind the gap: upgrading

genomes with Pacific Biosciences RS long-read sequencing

technology. PLoS One 2012;7:e47768.

127.Ye C, Ma ZS. Sparc: a sparsity-based consensus algorithm

for long erroneous sequencing reads. PeerJ 2016;4:e2016.

128.Chin CS, Alexander DH, Marks P, et al. Nonhybrid, finished

microbial genome assemblies from long-read SMRT

sequencing data.Nat Methods 2013;10:563–9.

129.Van Dijk EL, Auger H, Jaszczyszyn Y, et al. Ten years of next-

generation sequencing technology. Trends Genet 2014;30:

418–26.

130.Liao Y-C, Lin S-H, Lin H-H. Completing bacterial genome

assemblies: strategy and performance comparisons. Sci Rep

2015;5:8747.

131.Quick J, Quinlan AR, LomanNJ. A reference bacterial genome

dataset generated on the MinION(TM) portable single-

molecule nanopore sequencer. Gigascience 2014;3–22.

132.Miyamoto M, Motooka D, Gotoh K, et al. Performance com-

parison of second-and third-generation sequencers using a

bacterial genome with two chromosomes. BMC Genomics

2014;15:699.

133.Faino L, Thomma BP. Get your high-quality low-cost gen-

ome sequence. Trends Plant Sci 2014;19:288–91.

134.Koren S, Harhay GP, Smith TP, et al. Reducing assembly com-

plexity of microbial genomes with single-molecule sequenc-

ing. Genome Biol 2013;14:R101.

135.Fichot EB, Norman RS. Microbial phylogenetic profiling with

the Pacific Biosciences sequencing platform. Microbiome

2013;1:10.

136.Ribeiro FJ, Przybylski D, Yin S, et al. Finished bacterial genomes

from shotgun sequence data.Genome Res 2012;22:2270–7.

137.Au KF, Underwood JG, Lee L, et al. Improving PacBio long

read accuracy by short read alignment. PLoS One 2012;7:

e46679.

138.VanBuren R. De novo assembly of a complex panicoid grass

genome using ultra-long PacBio reads with P6/C4 chemistry.

In: Plant and Animal Genome XXIII. San Diego, CA, USA, 2015.

139.PacBio Blog. http://www.pacb.com/blog/data-release-54x-

long-read-coverage-for/.

140.Landolin JM, Chin J, Kim K, et al. Initial de novo Assemblies of

the D. melanogaster genome using long-read PacBio

sequencing. Pac Biosci 2014.

141.Smith TP. A genome assembly of the domestic goat from

70x coverage of single molecule, real-time sequence. In:

Plant and Animal Genome XXIII Conference. San Diego, CA, USA,

2015.

142.McCombieWR. PacBio Long Read Sequencing and Structural

Analysis of a Breast Cancer Cell Line. In: The 16th annual

Advances in Genome Biology and Technology (AGBT) meeting,

Marco Island, FL, 2015.

143.Broder AZ, On the resemblance and containment of docu-

ments. In: Compression and Complexity of Sequences. Amalfitan

Coast, Salerno, Italy, 1997.

144.Myers EW. The fragment assembly string graph.

Bioinformatics 2005;21 (Suppl 2):ii79–85.

145.Lin HH, Liao YC. Evaluation and validation of assembling

corrected pacbio long reads for microbial genome comple-

tion via hybrid approaches. PLoS One 2015;10:e0144305.

146.Dong Y, Xie M, Jiang Y, et al. Sequencing and automated

whole-genome optical mapping of the genome of a domes-

tic goat (Capra hircus). Nat Biotechnol 2013;31:135–41.

147.Burton JN, Adey A, Patwardhan RP, et al. Chromosome-scale

scaffolding of de novo genome assemblies based on chroma-

tin interactions.Nat Biotechnol 2013;31:1119–25.

148.Wj A. Next Generation DNA Sequencing (II): techniques, ap-

plications. J Next Gener Seq Appl 2015;01.

149.Arjmandi-Tash H, Belyaeva LA, Schneider GF. Single mol-

ecule detection with graphene and other two-dimensional

materials: nanopores and beyond. Chem Soc Rev

2016;45:476–93.

150.Di Ventra M, Taniguchi M. Decoding DNA, RNA and peptides

with quantum tunnelling.Nat Nanotechnol 2016;11:117–26.

151.Heerema SJ, Dekker C. Graphene nanodevices for DNA

sequencing. Nat Nanotechnol 2016;11:127–36.

152.Cao MD, Nguyen SH, Ganesamoorthy D et al. Scaffolding and

completing genome assemblies in real-time with nanopore

sequencing. bioRxiv 2016:054783.

153.Medvedev P, Pham S, Chaisson M, et al. Paired de bruijn

graphs: a novel approach for incorporating mate pair infor-

mation into genome assemblers. J Comput Biol 2011;18:

1625–34.

154.Marcais G, Kingsford C. A fast, lock-free approach for effi-

cient parallel counting of occurrences of k-mers.

Bioinformatics 2011;27:764–70.

155.Kurtz S, Narechania A, Stein JC, et al. A new method to com-

pute K-mer frequencies and its application to annotate large

repetitive plant genomes. BMC Genomics 2008;9:517.

40 | Sohn and Nam

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/1

9
/1

/2
3
/2

3
3
9
7
8
3
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

http://www.pacb.com/blog/data-release-54x-long-read-coverage-for/
http://www.pacb.com/blog/data-release-54x-long-read-coverage-for/

	bbw096-TF1
	bbw096-TF2
	bbw096-TF3
	bbw096-TF4
	bbw096-TF5
	bbw096-TF6
	bbw096-TF7
	bbw096-TF8
	bbw096-TF9
	bbw096-TF10
	bbw096-TF11
	bbw096-TF12
	bbw096-TF13
	bbw096-TF14

