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(WITH COOPERATION OF GREGORIO MILLAN AND S. S. PENNER) 

1. Formulation of the Problem 

There seems to be general agreement between 
the scientific workers engaged in the theory of 
laminar flame propagation that the theory shall 
be based on the application of the equations of 
conservation of mass, momentum and energy to 
a one-dimensional flow of a mixture which is un-
burned at the "cold boundary" and approaches 
an equilibrium state at the "hot boundary." It 
is assumed that the flow can be considered as 
that of a continuous gas, that chemical kinetics 
furnishes the necessary expressions for the quan­
tities entering into the conservation equations 
due to chemical changes, and finally that the 
transfer phenomena are determined by full 
knowledge of the heat transfer coefficient and 
the laws of diffusion. 

We have to satisfy the equations for the con­
servation of matter and energy. The law of con­
servation of momentum is taken care of by the 
assumption that pressure variations can be 
neglected. 

The conservation of total mass requires for a 
one-dimensional flow that 

pv = TO (1) 

where m is the constant mass flow per unit cross-
sectional area. 

The continuity equation for the species, j , re­
quires that 

m — = Wj (2) 
ax 

where Wj is the mass rate of production per unit 
volume of the species, j . 

The rate of production can be expressed in 
terms of the specific reaction rates, kr, of the 
individual reactions in which the species j par­
ticipates, and in terms of the stoichiometric co­

efficients Vjr and Vjr for the forward and back­
ward reactions, respectively, in the following way: 

v>, = u, ] r (*;; - ,;,)*r (•£- Y" y j (xd + m 

where the exponent nr = ~^, v'ir • The preceding 
i - l 

formula follows from the law of mass action. 
For the specific rate of reaction, we write the 

semitheoretical equation: 

*-*(?;)"'"*(-£:) (4) 

The quantity Ar is called the activation energy, 
/ T\"r 

the factor Br I — ) the frequency factor. 

The diffusion equations express the relation 
between the fractional mass flow rate ey and the 
weight ratio Yy of the species j in the form 

«, = Y, (l + ^ (5) 

Following Curtiss and Hirschfelder,1 we use the 
expression for the diffusion stream in terms of the 
binary diffusion coefficients, Djk , viz., 

lbl'm7l^^{XfSk-
XhMj (6) 

Finally, the equation for the conservation of 
energy reads: 

^ = r _ r / + ^ ( e , _ £ , / ) | (7) 
mhC, dx t-r1 Cv 

where eyy is the final value of the mass flow ratio 

t i ­
l t is seen that the last equation enables us to 

eliminate the space coordinate, x, and for a reac­
tion scheme involving « species, one has to deter-
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mine 2(s — 1) dependent variables tj and Xj JUS 
functions of the independent variable, T. The 
remaining variables, es and Xs, are determined 
by the conditions that the algebraic sum of the 
ej and Xj must be equal to unity. 

However, we have to satisfy 2(s-l) boundary 
conditions for the tj and Xj at T = To and 
T = Tf. The values of the e,- and Xj for T = To 
are given by the initial state of the unburned 
gas and the values for T = Tf by the chemical 
equilibrium between the products. Therefore, it 
is seen that the boundary conditions cannot be 
satisfied for arbitrary values of the parameter 
m, and the problem of laminar flame propagation 
culminates in the determination of an eigenvalue 
of the mass flow, m, for which all boundary con­
ditions can be satisfied. 

The system of differential equations can be 
written, after introduction of a dimensionless 

T 
variable 6 = — and the corresponding notations 

Tf 
To A 

do = — and 6a = ——, in the following form: 
Tf RTf 

dZj _ _X (RT\ 

<«-•> + £ <«-«> ( s | ) 

2. Methods of Solution. The Problem of the 
Cold Boundary 

One easily recognizes by computing a simple 
example that the problem stated in the foregoing 
paragraph, strictly speaking, has no solution. It 
appears necessary to assume that the chemical 
changes do not start at the initial temperature, 
To, but at a higher temperature, Tf, which is 
called the ignition temperature. Computing a 
simple example, such as the case of a one-step 
unimolecular reaction, Millan and I found2 that 
the value of the mass flow, m, becomes infinite if 
the ignition temperature coincides with the ini­
tial temperature, and becomes zero if the ignition 
temperature is equal to the final temperature, 
Tf . However, the eigenvalue considered as a 
function of Ti remains practically constant over 
a large interval of Ti, at least in the case that the 

activation energy is large in comparison with the 
quantity, RTf. 

We concluded that in most cases it must be 
possible to determine a value of the velocity of 
the propagation of the laminar flame, which is 
practically independent of the ignition process. 

Hirschfelder, Curtiss and Campbell3 pro­
posed to eliminate the difficulty arising from the 
boundary condition at the cold boundary by 
means of the assumption of a flameholder which 
is represented mathematically by a heat sink of 
small intensity. This means that the temperature 
as a function of the coordinate x starts at x = 0 
with a small but finite value of the gradient 
dT/dx. The intensity of the heat sink is given by 
(—\(dt/dx))x-o. Then it can be shown—as 
was first pointed out by Emmons4 for the case 
of the simple thermal theory—that the eigen­
value which satisfies the condition at the hot end 
and the new condition at the cold boundary is 
insensitive to the assumed intensity of the heat 
sink. To be sure, when the heat loss at the flame 
holder converges to zero, the computed flame 
velocity increases to infinity. 

The result obtained by Millan and myself 
holds for both the pure thermal theory of flame 
propagation and the complete theory which takes 
into account the diffusion. For this second case, 
Hirschfelder, Curtiss and Campbell,3' 6 propose 
that, in addition to the heat sink, the existence 
of a filter be assumed which prevents the diffusion 
of the burned gas products into the unburned gas 
upstream of the heat sink. This assumption, how­
ever, has the disadvantage that the composition 
of the gas at x = 0 is a priori unknown and, 
therefore, it is difficult to start the integration of 
the system of differential equations at the cold 
boundary. The procedure applied by Hirschfelder 
and his school until 1954 consisted of calculating 
by numeric integration a sequence of tempera­
ture vs. mass ratio curves which satisfy the boun­
dary conditions at the hot boundary. These 
curves correspond to a sequence of chosen values 
of the flame velocity or the mass flow. Then one 
tries to interpolate a curve which satisfies approx­
imately the conditions at the cold boundary and 
obtains by this interpolation the eigenvalue 
sought for. It appears that by replacing the 
method of point by point integration of the 
differential equations by an integral method, the 
difficulty created by the boundary conditions 
at the cold boundary disappears at least for re­
actions with not too small activation energies. 
The method is applicable both to the thermal 
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and the complete theory, i.e., the theory taking 
into account both heat conduction and diffusion. 

In our joint publications (with Millan and 
Penner2' 6 ' 7) in the years 1952-1953, we tried 
to develop such a method, which is relatively 
simple and sufficiently accurate for the computa­
tion of the flame velocity. Since 1954, after the 
British mathematician Klein joined the Wiscon­
sin group, this group also uses, in addition to the 
numerical point by point integration procedure, 
an integral equation method, which by iteration 
furnishes the solution of the flame equations and 
the value of the flame velocity.8 The first step of 
this method is very similar to the procedure pro­
posed previously by our group. 

Fundamentally, our procedure is similar to the 
methods proposed by Zeldovich, Frank-Kamen-
etski, and Semenow,9 and by Boyr and Corner.10 

We believe, however, that our method is some­
what more systematic and leads to fair accuracy 
already for the first step of the calculation. 

Before I try to describe our method and com­
pare it with the methods of the authors quoted, I 
want to note that a group of other authors pub­
lished so-called pure diffusional theories of lami­
nar flame propagation. The common funda­
mental idea of these latter theories is the concept 
that the presence of "active centers" in the reac­
tion zone determines the flame velocity. Tanford 
and Pease11 analyzed various mechanisms pro­
ducing atom and radical concentrations, such as 
equilibrium production in the burned gas and 
diffusion from the hot boundary. They arrived 
at the conclusion that in most cases the diffusion 
of atoms or radicals from the burned gases into 
the reaction zone is the governing mechanism. 
Van Tiggelen12 calculates for chain reactions the 
probability of chain branching and chain break­
ing for active centers which move from the burned 
gas into the reaction zone. He obtains from the 
analysis of such a mechanism a simple expression 
for the progression of the flame into the unburned 
gas. The theory of Gaydon and Wolfhard13 is 
also based on the picture that the diffusion of 
atoms or radicals from the burned gas into the 
unburned gas determines the propagation velocity 
of the flame. 

I will not say that the formulae developed by 
these authors are not useful for comparative 
studies of certain reactions; for example, for a 
quick determination of the dependence of the 
flame velocity on the initial concentrations of the 
reaction partners. Nevertheless, I believe that 
the good accordance with experiments is some­

times more a matter of good luck in the choice 
of the numerical parameters than a proof for the 
correct description of the phenomena. In my 
belief, all these diffusional theories tend toward 
oversimplification of the problem of laminar 
flame propagation. 

3. The Proposed Integral Method for 
Computation of the Flame Velocity 

The method proposed and actually used in our 
calculations can be described in the following 
way: 

The main assumption is that the behavior of 
the functions tj and Xj near the hot boundary, 
6 = 1, has an overwhelming influence on the 
value of the flame velocity. Therefore, for the 
first approximation, approximate expressions for 
these functions are used which correspond to their 
behavior near 0 = 1. 

Concerning the diffusion process, it is known 
from the pioneering work of Lewis and von 
Elbe14 and Semenow15 that, in the special case of 

two species for which the Lewis number I ratio 

between the binary diffusion coefficient, D, and 

the thermal diffusivity, ) is equal to one, the 
CPp/ 

weight ratio of each component is a linear func­
tion of the temperature.7 This corresponds to the 
rule—correct for this special case—that the sum 
of the thermal and chemical enthalpies of the 
gas mixture remains constant through the flame 
zone. Correspondingly, in the general case, we 
assume that Yj and Xj behave as linear functions 
near 0 = 1 . 

The behavior of ey near 6 = 1 is evaluated from 
the Equation (8a) and depends largely on the 
order of the reactions considered. 

The first approximation for the burning ve­
locity is obtained by integration of the Equation 
(8b) between the limits 6 = Do and 0 = 1 and sub­
stituting for the functions tj and Xj the approxi­
mate expressions established as indicated above. 

Jointly with Millan16 we have compared, for a 
simple case, the results obtained by our method 
with those obtained from the so-called Semenow 
formula and by the method of Boys and Corner. 
The comparison was made for an idealized reac­
tion of first order. We consider only two com­
ponents in the mixture, reactants and products. 
We assume for the sake of simplicity that both 
the molecular weight and the specific heat of the 
mixture are constant; furthermore, that the 
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the rmal conductivi ty is independent of the 
composition and varies proport ionally wi th the 
tempera ture of the mixture . Finally, we assume 
t h a t the diffusion coefficient between the two 
components is equal to the thermal diffusivity 
of t he mixture. 

Because of the last assumption, the mass rat io 
of the products, Y, can be assumed to be a linear 
function of the tempera ture in t he form 

Y = 
8 - e0 

1 - 0 o 
(9) 

The differential equat ion for the fractional mass 
flow ratio, e, of t he products can be wr i t ten in the 
form 

de 

m!Cp (0 - 1) + (1 - 0O) (1 - e) 
(10) 

For the ra te of production of t he products , we 

write 

, . 1 - Y 
w = k exp 

0 * (-?) (ID 

where k is a constant . The factor (1 — Y)/0 
corresponds to the assumption t h a t t he reaction 
is of t he first order. 

Thus , after subst i tut ing for Y the expression 
(0 — 0o)/(l — do) and writing A = X/0, we ob­
ta in from Equa t ion (10) 

de 

(1 — e) exp 
( - - ) 

(e - 1) + (1 - 0O) (1 - e) 

where the parameter A is defined by 

\/k exp (—e0) 
A = 

TOSCj(l - 0O) 

(12) 

(13) 

The factor e~ a is included for convenience in 
t he definition of A; otherwise A would be a very 
large number . 

The problem of t he burning velocity is reduced 
to t he determinat ion of the value for the pa ram­
eter A which allows t h a t t he boundary conditions 
e = 0 for 0 = 0o and e = 1 for 0 = 1 be satisfied. 

The consideration t h a t t he behavior of « near 
0 = 1 has an overwhelming influence on the cor­
rect value of A allows us to obtain a simple 
approximate formula which I would consider a 
zero-order approximation. We neglect in t he 
denominator t he quan t i ty (0 — 1) in comparison 
with (1 — 0O)(1 — «). This corresponds t o neg­

lecting in the energy balance the change of the 
hea t content of the mixture in comparison with 
the heat transfer by conduction and the heat 
production by chemical reaction. 

Then we readily obtain the equation 

(1 - e) de = A 
de 

( 1 - 0 ) 

exp(- f cLr) (14) 

in which the variables appear separated. In te ­

grating this equation between the limits 0 = 0o 

and 0 = 1, we obtain the zero-order approxima­

tion for the quant i ty l / y A which is propor­

tional to the burning velocity, St, i.e., 

vx y rrj0 

where / denotes the integral 

7 = £ ( l - 0 ) e x p ( - ^ ) 

(15) 

de (16) 

which can be easily evaluated. 
If we want a bet ter , say a first-order approxi­

mation, we approximate the quant i ty ( 0 — 1 ) 
which we neglected above, by an expression valid 
near 0 = 1 . Setting 

1 - 6 = «(1 - e) (17) 

we evidently obtain from Equat ion (12) the re­
lation 

1 
= A' 

1 

1 + - (1 - «o) 
(18) 

Using this value for a, we find after integration 

(19) vi y x 
27 

0o - V2I 

I n most cases this first-order approximation is 
satisfactory. A further improvement of the ap­
proximation can be obtained by computing the 
correction t e rm ( 0 — 1 ) from numerical integra­
t ion of Equat ion (12). 

Comparing now our result first with the well-
known Semenow formula, it is interesting to find 
t h a t Semenow, Zeldovich and Frank-Kamenetski 
obtained an approximation for the value of Sb 
which corresponds exactly to our zero-order ap­
proximation. However, they proceeded to evalu­
a te t he integral I b y means of a semiconvergent 
expansion in powers of 1 /6a . I n our notation 
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this leads to the expression 

-L = I JjL- (20) 

This formula, as will be clarified in the discussion 
of Figure 1, is greatly inferior to our first-order 
approximation. 

The procedure of Boys and Corner has the fol­
lowing common feature with our method: they 
use the linear relation between (1 — e) and (1 — 6) 
which is expressed by Equation (17). But they 
substitute the expression for (1 — e) in the 
denominator of Equation (12). I believe this 
procedure is fundamentally wrong because one 
retains in the denominator the small quantity 
(1 — 8) and approximates the relatively large 
quantity (1 — e) in terms of (1 — 8). The conse­
quence is a large error in the first-order approxi­
mation and a slow convergence of the iteration 
process which is, in general, quite laborious. 

In Figure 1 we represent the error in the evalua­
tion of Sb for the three methods in the special 
case 8a = 0.125. The ratio between the approxi­
mate values of 1 / \ / A and the exact value ob­
tained by careful numerical integration is plotted 
as a function of 8a . I t is seen that our zero-order 
approximation is better than the result obtained 
from the Zeldovich-Semenow formula and from 
the first-order approximation of Boys and Corner. 
The figure also includes the results of our first-
order approximation corresponding to Equation 
(19) as well as the results derived from the Boys-
Corner procedure by a further iteration. I t is 
seen that both of our approximations involve a 
smaller error than the values obtained from the 
rather laborious iteration of Boys and Corner. 

Similar comparative calculations have been 
made for the case of a second-order reaction and 
for values of the Lewis-Semenow number dif­
ferent from unity. These calculations led to the 
same general conclusions as were discussed above. 

In the case of chain reactions (reactions in 
which atoms or free radicals play a role), the 
assumption that the mass or mole ratios can 
be approximated by linear functions of (1 — 8) 
is restricted to the main reactants and reaction 
products, i.e., to the stable species. The concen­
trations of the radicals are approximated by func­
tions whose forms are determined by the chain-
initiating, chain-branching and chain-breaking 
reactions. The procedure followed for chain 
reactions will be clear from the examples treated 
in the following Section 4. Particularly, I want 

to show the application of the steady-state as­
sumption to the computation of the flame velocity 
in the case of simple chain reactions. 

4. Application of the Steady-State 
Assumption 

The application of the steady-state assumption 
to the problem of the computation of the flame 
velocity in the case of chain reactions was pro­
posed in 1953 by the present writer and Penner 
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FIG. 1. Comparison between various semi-
analytical methods for computation of the flame 
velocity. 

in connection with the theory of the ozone de­
composition flame.7 

The principle involved in the steady-state ap­
proximation is the following: one assumes that 
the production and removal of every species of 
radicals compensate each other in every cross-
sectional element of the flow. If we apply these 
conditions to all species of radicals, we obtain 
definite expressions for the radical concentrations 
as functions of the temperature and the mole 
fractions of the main reactants. Therefore, the 
system of reactions is reduced to a scheme in 
which only the main reactants enter. Then the 
computation of the flame velocity can be pursued 
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by means of any of the methods mentioned and 
explained in the foregoing Section 3. 

I t is noted that the assumption of the steady-
state condition for the concentrations of radicals 
is based on a physical picture diametrically 
opposite to that underlying the so-called diffu-
sional theories. The diffusion of the radicals from 
the burned gas into the flame zone—the most 
important process from the viewpoint of the 
diffusion theories—is neglected in our theory. 
The distribution of the radicals throughout the 

BURNING VELOCITY Sb vs. 

•t 

INITIAL HOLE FRACTION OF OZONE X 3 Q F O R 

.OZONE DECOMPOSITION FLAME 

O VON KARMAN - PENNER THEORY 

a L E W I S -VON ELBE THEORY 

O - EXPERIMENTAL 

A GROSSE: EXPERIMENTAL DATA 

FIG. 2. The ozone dissociation; comparison be­
tween compiled and measured values of the burn­
ing velocity. 

flame zone is computed from the balance between 
their production and disappearance by chemical 
reactions. 

I want to present the results of calculation for 
three typical chain reactions for which the chemi­
cal kinetics data are sufficiently well known and 
experimental data are available so that a judg­
ment on the validity and value of the steady-
state assumption can be formed. 

A. OZONE DECOMPOSITION 

The scheme of reactions involved in the ozone 
decomposition flame is assumed to be the follow­
ing: 

0 3 + G -> O + 0 2 + G (1) 

0 + O s - r - G - > 0 , + <? (2) 

0 + 0 3 -> 202 (3) 

202 -> 0 + 0 3 (4) 

02 + G -> 20 + 67 (5) 

20 + G -> 02 + G (6) 

HereG represents any of the three species 0, O2, 
or 0 3 . 

The examination of available chemical kinetics 
data (Ref. 17) shows that the reactions (4) and 
(5) have extremely high activation energies in 
comparison with the other reactions; for reactions 
(2) and (6) the frequency factor is of a very small 
order of magnitude. One concludes that the rate 
governing reactions are reactions (1) and (3). 

The condition that the productidh of O atoms 
according to the reaction (1) is balanced by their 
removal by means of reaction (3) leads to the 
following formula for the mole fraction Xt of 
the oxygen atoms 

X, = 1.48 exp (-7.30/0) (21) 

The problem of the ozone decomposition flame 
has now been reduced to the solution of the fol­
lowing two equations: 

A 
de 

(fH-'-?8) 

dX, 10 
•x, 

3 3 T 

e~i + fer 

(22a) 

(22b) 

where 

2xH^Bi 
./m*Cp 

[Bi denotes the frequency factor for reaction (1)]. 
The laminar flame velocity S0 is obtained, as us­
ual, from the relation 

S„ = (23) 

In Figure 2 we have plotted the following data: 
(1) The computed values of Sh according to the 
steady-state approximation for the following 
values of the initial ratio X3o (mole fraction of 
ozone): 0.25, 0.40, 0.50, 0.75 and 1.00. (2) The 
experimentally measured values of St. The 
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value for X3 = 0.25 is taken from the publication 
of Lewis and von Elbe.18 All other values were 
obtained by Grosse.19 

It is seen that the general trends of the experi­
mental and the computed values are in fair ac­
cordance; the maximum deviation is of the order 
of 15 to 20 per cent. The value of St for Xm = 
0.25 was computed by Hirschfelder and his group 
by numerical integration of the system of equa­
tions without using the steady-state assumption.17 

Near the final adiabatic flame temperature, tem­
perature intervals as small as one-tenth of a 
degree had to be used in the numerical integra­
tion. Nevertheless, the deviation between his and 
our results for the value of X30 = 0.25 is no more 
than 10 per cent. 

However, if one assumes—as Lewis and von 
Elbe did18—that the atom concentration Xi is 
determined by the equilibrium condition between 
0 3 , O, and O2, i.e., by the balance between the 
reactions (1) and (2), then one obtains a value for 
Sb which is more than five times larger than the 
measured value for X30 = 0.25. We have also 
calculated the burning velocity according to the 
assumption used by Lewis and von Elbe for other 
values of the initial concentration, namely, for 
X30 = 0.50, 0.75 and 1.00. We have found that, 
using the hypothesis of Lewis and von Elbe,18 the 
computed value agrees for X30 = 0.65; for X30 = 
1.00 the computed value becomes 40 per cent 
smaller than the measured value. As a matter of 
fact, the computed values are relatively insensi­
tive to the initial concentration of 0 3 and to the 
flame temperature, whereas the measured values, 
fo'r the same range of initial concentrations, 
change in a ratio of about 1:10. In this connec­
tion, it is worthwhile to mention that the early 
measurements of Sb by Lewis and von Elbe are in 
good accord with the more extensive study of 
Grosse.19 

B. HYDRAZINE DECOMPOSITION FLAME 

In the matter of the hydrazine decomposition, 
a small accident occurred in the past both to the 
Wisconsin group20 and to our group.7 We all con­
sidered the first order reaction 

N2H„ -> 2NH2 

as the rate-governing step. We all used a numerical 
value for the heat conduction coefficient which 
was given in a paper of Murray and Hall21 as ten 
times larger than the actual value because of a 
common misprint. We obtained perfect agree­
ment between the numerical integration of the 

Wisconsin group and our semianalytical method 
but too high numerical values for the burning 
velocity compared with the measurements. 

Spalding22 took up the problem again in 1955 
and introduced a chain reaction scheme proposed 
by Adams,23 as follows: 

A —> IB, radical production 

B -f A —» B + 2C, chain propagation 

B + B + G-+2C + G, chain breaking 

In this scheme no difference is made between 
the radicals NH 2 , H or other radicals which may 
be present. A denotes hydrazine and C end 
products. Spalding used for the computation of 
the radical concentration and for the burning 
velocity a numerical integration method which 
starts from an arbitrary temperature profile 
through the flame zone and tries to follow the 
transient process which converges to the sta­
tionary state. He uses the assumption that the 
sum of the thermal and chemical enthalpies 
remains constant throughout the flame zone so 
that the mass fraction of the hydrazine is a linear 
function of the temperature. 

Using the same assumption and the same 
chemical data, Millan and Sanz24 recalculated 
Spalding's result using our way of computation, 
then they computed the burning velocity using 
the steady-state assumption. The first calculation 
is more laborious because, if one uses the steady-
state condition, the mass fraction of the radicals 
is explicitly given as a function of the mass frac­
tion of the hydrazine and the temperature; thus, 
one has to deal only with one differential equation 
for the fractional mass flow ratio of the hydra­
zine. If the steady-state assumption is not used, 
one has a system of simultaneous differential 
equations for the fractional mass flow ratio of the 
hydrazine and both the mass fraction and the 
fractional mass flow ratios of the radicals. 

Figure 3 shows the result of these calculations 
including comparison with the available experi­
mental values. The burning velocity is plotted as 
a function of the flame temperature. Spalding 
gave two theoretical values of the burning velocity 
corresponding to one hot and one cool flame. 
These values were in good agrement with the 
observations. The recalculation according to our 
semianalytical method agreed with Spalding's 
results. The figure shows in addition three other 
theoretical values for intermediate temperatures. 
The general trend of the calculated burning 
velocities is in fair agreement with the experimen-



STRUCTURE AND PROPAGATION OF LAMINAR FLAMES 

FIG. 3. Hydrazine decomposition flame; com­
parison between compiled and measured values of 
the burning velocity. 
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tal curve. Finally, the burning velocity has been 
computed for the same cases using the steady-
state assumption. These values are also shown in 
Figure 3. 

I t is rather remarkable how little the theoretical 
values based on the steady-state assumption 
differ from the values calculated without the use 
of this assumption. 

In order to find out the reason for this rather 
surprising state of affairs, Millan and Sanz com­
pared the radical concentrations computed with 
and without the steady-state assumption. The 

CASE 1 

FIG. 4. Radical concentration vs temperature; 
computed with and without the use of the steady-
state assumption for the case of hydrazine decom­
position. 

FIG. 5. The integrand used in the computation 
of the burning velocity in the case of the hydrazine 
dissociation with and without use of the steady-
state assumption. 

results of this investigation are shown in Figures 
4 and 5. I t appears from Figure 4 that the steady-
state assumption (full lines) has the effect of 
exaggerating the radical concentration near the 
hot boundary. This was also found by Spalding, 
although the effect is much smaller than indicated 
in his paper. Spalding concluded that because of 
this effect the steady-state assumption overesti­
mates the burning velocity. This conclusion seems 
to be false because, for example, in the case of the 
hot flame, as shown in Figure 3, the theoretical 
value calculated with the use of the steady-state 
assumption is considerably lower than Spalding's 
value. The explanation of this apparent contra­
diction is given in Figure 5 
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In Section 3 of this paper we have shown that 
the first-order approximation to the burning 
velocity is obtained in terms of a definite integral, 
/ , over a given function of the nondimensional 
temperature, 6. Figure 5 shows the corresponding 
function which enters as the integrand in the 
analogous computation in the case of the hydra­
zine flame. One sees that the steady-state assump­
tion overestimates the integrand near the hot 
boundary because it overestimates the radical 
concentration. However, this effect is compen­
sated by the fact that the same assumption under­
estimates the radical concentration and the mag­
nitude of the integrand in the lower temperature 
range since it neglects the diffusion of the radicals. 
This is clearly shown also in Figure 4. 

The conclusion is that, at least in the case of 
the hydrazine flame, the steady-state assumption 
leads to a fair estimate of the magnitude of the 
burning velocity and its dependence on the flame-
temperature but does not necessarily give a cor­
rect picture of the actual radical concentration. 

C. THE HYDROGEN BROMINE FLAME 

The reaction between hydrogen and bromine, 
forming hydrogen bromide, is of great interest be­
cause it is a rare example of a chain reaction whose 
reaction mechanism and rate constants are well 
defined and have been determined experimen­
tally.25 As a matter of fact, this reaction played 
an important part in the history of the knowledge 
of chain reactions.26 

The reaction scheme is the following: 

(1) Br2 + G -

(2) Br + H2 -

(3) H + Br2 -

(4) HBr + H 

2 Br + G radical production 

HBr + H chain propagation 

HBr + Br chain propagation 

-> H2 + Br chain propagation 

(5) 2Br + G -» Br2 + G chain breaking 

where G denotes any of the chemical species 
present. 

The steady-state assumption requires that the 
number of H atoms produced by reaction (2) be 
equal to the sum of the number of H atoms re­
moved by the reactions (3) and (4). Furthermore, 
the total number of Br atoms produced by 
reactions (1), (3) and (4) has to be equal to the 
number removed by reactions (2) and (5). These 
conditions lead to the following equation for the 
production of HBr molecules in unit time: 

I t is seen that this Equation (24) contains only 
the main or stable reactants, H2 and Br2 , and 
the product, HBr. The proportionality factors 
are a known function of the temperature. 

The present author, jointly with Penner,27 ap­
plied this equation to the computation of the 
burning velocity with the additional assumption 
that the mass fraction of the radicals, H and Br, 
are small in comparison with the mass fractions 
of the stable reaction partners; in other words, 
that in the expressions for the conservation of 
the numbers of Br and H atoms through the 
flame zone, i.e., 2(Br2) + (HBr) + (Br) = 
2(Br2)0 and 2(H2) + (H) + (HBr) = 2(H2)0 

the quantities (Br) and (H) can be neglected. As 
a matter of fact, the H concentration is always 
small; however, as was first pointed out by 
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(24) 

FIG. 6. The hydrogen bromine flame; computed 
and measured values of the burning velocity for 
hydrogen-rich mixtures. 

Gilbert and Altman28 the concentration of Br is 
not negligible. This is especially true for the 
hydrogen-rich mixtures. 

Figure 6 represents the experimental curves 
for the burning velocity, St, plotted as a func­
tion of the initial mole ratio of H2 in the inter­
val between the stoichiometric mole ratio 
Xi. o = X3, o = 0.5 and the mole ratio X3,0 = 
0.67. 

The observations were made by Anderson.29 

Curves (1) and (2) were obtained by observations 
of the flame cone, measuring the flame cone area 
and the cone angle respectively. Curve (3) was 
obtained from observations of flame propagation 
in a tube. 

The first calculations of the author and Penner, 
as shown in the same figure, led to values of the 
flame speed which are definitely too high. Then 
Millan introduced a correction, which takes into 
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account the presence of Br atoms due to the dis­
sociation of Br2 . 

Instead of the relation 2(Br2) + (HBr) = 
2(Br2)0 the complete equation 2(Br2) + (Br) + 
(HBr) = 2(Br2)0 is used and the quantity Br is 
determined from the steady-state condition 
d(Br)/dt = 0. According to this condition (Br) is 
proportional to V (Br2). Therefore, for hydrogen-
rich mixtures, (Br2) —> 0 at the hot boundary 
and the Br concentration becomes even larger 
than the Br2 concentration and reduces the latter 
very considerably. The reduction of (Br2) means 
—according to Equation (24)—a reduction of the 
over-all reaction rate and of the burning velocity. 

As I mentioned before, Gilbert and Altman 
pointed out previously the importance of this 
correction for dissociation.28 However, they 
carried out the computation of the correction only 
for the pure thermal theory. Then they computed 
the burning velocity including the effect of dif­
fusion but neglecting the influence of the presence 
of (Br) atoms due to dissociation. In order to 
include the effect of dissociation they simply 
applied the same percentage reduction which 
they had obtained from the thermal theory. This 
assumption is rather arbitrary and overestimates 
the influence of dissociation which is, in general, 
less for a reaction with diffusion than for a pure 
thermal process. In addition, Gilbert and Altman 
followed the procedure of Boys and Corner and 
the apparent coincidence between the computed 
and measured values is essentially due to the fact 
that the first approximation of Boys and Corner 
furnishes too low values for the burning velocity, 
as we have shown in Figure 1. For example, 
Millan calculated for X3. o = 0.7 the burning 
velocity using first our method without and with 
dissociation and then the Boys-Corner approxi­
mation without dissociation. These results are 
also shown in Figure 6. It is seen that the value 
computed by the Boys-Corner approxima­
tion, without taking into account dissociation, 
lies even below our value corrected for dissocia­
tion. 

If we apply the same equations to the case of 
bromine-rich mixtures, we obtain values for the 
burning velocity which decrease rather rapidly 
with the increasing initial bromine concentration 
but are finite for arbitrary bromine-hydrogen 
ratios. The experimental evidence shows that it is 
not possible to obtain a stable flame if the 
bromine-hydrogen ratio is larger than the 
stoichiometric ratio. It is possible that this ap­
parent instability is a consequence of the en­
vironment, for example, of heat removal from the 

flame. In fact it can be shown—as suggested by 
Spalding30—that, if the external cooling of the 
mixture is taken into account, below and above 
certain well-defined initial mixture ratios there 
is no real eigenvalue at all. 

S u m m a r y 

Summarizing our considerations concerning 
the present status of the theory of laminar flame 
propagation, I wish to state: 

(1) That it appears in cases in which the 
reaction-scheme and the corresponding chemical 
kinetics are well-defined, a semianalytical method, 
as presented in this paper, makes a relatively easy 
determination of the flame velocity possible. 
There is no necessity for radical simplifying as­
sumptions such as are introduced, for example, in 
the pure diffusion theories. 

(2) There is no necessity to take recourse to 
laborious numerical integration of the differential 
equations, although the use of digital computers 
may facilitate such methods. 

(3) It appears that in the cases dealt with until 
now, the steady-state assumption facilitates a 
rather quick determination of the flame velocity 
of a chain reaction, even in those cases where it 
does not furnish an exact picture for the distribu­
tion of the radicals through the flame zone. 

(4) It is believed that in order to make further 
progress in the theory, the most urgent need is a 
better knowledge of the reaction schemes and the 
chemical kinetics of the important chain reac­
tions. Especially more exact data are necessary 
concerning the presence and distribution of the 
radicals involved. 

A paper by K. A. Wilde [J. Chem. Phys. 
22, 1788 (1954)] has recently come to our at­
tention. The procedure used by this author for 
the integration of the simple one-step flame 
reaction is the same as that used in our first 
approximation except that e is assumed to vary 
as ([0 = 0O)/(1 - 0o)]"+1. Here the exponent n 
is determined by equating the limiting slope of 
[(0 - 0O)/(1 - 0o)]" to the limiting slope of 
{exp [ — 0O(1 — 0)/0](. This procedure leads to 
the relation 

vi - yr 
2 / 

1 + ,(1 So) J (A-1) 

which is similar to our Equation (19). For suffi­
ciently large values of 0„ , i.e., small values of I, 
Equations (A-1) and (19) become evidently 
equivalent. We have evaluated 1 / v A according 
to Equation (A-1) and find the results to be less 
accurate than our second approximation for 
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8a > 5 bu t to be bet ter a t smaller values of da. 

Equat ion (A-l) gives results which are superior 
to those determined from Equa t ion (19) for 
6a < 8 bu t are roughly comparable [with y/k 

about as much too small according to Equa t ion 
(A-l) as it is too large according to Equa t ion 
(19)] for larger values of 6a • 

N o m e n c l a t u r e 

e,- fractional mass flow ra te of the species j 
Yj weight fraction of the species j 
Xj mole fraction of the species j 
Cv average specific heat 
hj s tandard specific formation enthalpy of the 

species j 
Ct total concentration, i.e., number of moles of 

mixture in unit volume 
To initial temperature of mixture 
Tf final temperature of mixture 
Mj molecular weight of the species j 
X heat conduction coefficient of the mixture 
p density of the mixture 
v mean mass velocity of the mixture 
Vj diffusion velocity of the species j 
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