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The Presentation of Lagrange’s Equations in 
Introductory Robotics Courses 

WARREN N. WHITE, JR.,  MEMBER, IEEE, DAVID D. NIEMANN, 
A N D  PAUL MICHAEL LYNCH, MEMBER,  IEEE 

Abstract-The topic of Lagrange’s dynamic equations is presented 
in a fashion suitable for introductory robotics courses. The develop- 
ment of the material does not rely on either principles of virtual work 
or variational calculus. The presentation assumes the students have 
previously taken an introductory course in dynamics. Depending upon 
the exact background of the students, this material can be covered in 
one or two lectures. 

INTRODUCTION 
HE subject of robotics is a discipline which spans the T fields of electrical, industrial, and mechanical engi- 

neering. The lecture material in a first course in robotics 
usually falls into one of two nonexclusive categories. The 
first category emphasizes a technological point of view 
and treats the manipulator arm as an integral part of a 
much larger picture consisting of the manufacturing en- 
vironment. A course devoted to developing the dynamics, 
kinematics, and control of the manipulator determines the 
second category. 

The second category has roots primarily in electrical 
and mechanical engineering. The topics of kinematics, 
dynamics, and hydraulics are courses well developed in a 
mechanical engineering curriculum while electrical actua- 
tors, continuous and discrete control, noise reduction, and 
microprocessors with the supporting circuitry are topics 
of interest to the electrical engineering student. An intro- 
ductory robotics course of the second category will use 
one of several popular texts, e.g., Snyder [ l ] ,  Paul [2], 
and Craig [3], regardless of who is teaching the class. The 
emphasis of the material might be weighted according to 
the department through which the course is offered. 

The topics of arm dynamics and especially Lagrange’s 
equations are not easy subjects to present to students 
whose dynamics background consists solely of the re- 
quired introductory course. Even if the robotics course is 
intended to emphasize topics thought to be “exclusively” 
electrical engineering subjects, the kinematic and dy- 
namic description of the arm must be covered at some 
point if only to appreciate the control strategies. During 

Manuscript received December 21 ,  1987; revised October 24, 1988. 
W. N. White,  Jr. is with the Department of Mechanical Engineering, 

D. D.  Niemann is with General Dynamics. Fort Worth,  TX 76101. 
P. M. Lynch is with the Department of Mechanical Engineering, Tulane 

IEEE Log Number 8825526.  

Kansas State University, Manhattan, KS 66506. 

University, New Orleans, L A  701 18. 

a recent workshop concerning robotics instruction [4], 
several electrical engineering faculty members brought up 
the question of how to present Lagrange’s equations with- 
out resorting to virtual work or variational calculus. It is 
frustrating to the student to merely present the equations 
with the exclusive justification that the technique works. 

This paper contains material presented to a robotics 
class consisting of mechanical engineering seniors and 
first-year graduate students, about half of which had only 
one undergraduate course in dynamics. This is significant 
since electrical engineering students within the same col- 
lege have only the same undergraduate dynamics course 
as their total dynamics background at this point in the cur- 
riculum. Thus, an instructor faces the same problem of 
presenting Lagrange’s equations regardless of the stu- 
dents’ major department. 

The conventional approaches to developing Lagrange’s 
equations consist of virtual work together with D’ Alern- 
bert’s principle and variational calculus together with 
Hamilton’s principle. Examples of these developments are 
contained in both intermediate and advanced dynamics 
texts such as Greenwood [5] and Goldstein [6]. By using 
the principle of virtual work, one is able to demonstrate 
that the work expression can be manipulated into a form 
consisting of the sum of products of the virtual displace- 
ment of a generalized coordinate and a term which is later 
shown to be the dynamic equation of motion expressed in 
terms of the Lagrangian of the system. In the variational 
derivation, one starts with Hamilton’s principle and seeks 
the stationary point with respect to the generalized coor- 
dinates (or state variables) of the time integral of the La- 
grangian using the algebra of variational calculus. The 
equations which constitute the stationary point are seen to 
be the dynamic equations of motion. 

In order to present either of these derivations sufficient 
background material must be developed and presented to 
the students. The success of such a demonstration can de- 
pend upon the inclination of the students toward this sub- 
ject area, the amount of time allotted for the development, 
and the instructor’s major field of expertise. 

It is the intention of this paper to convince the students 
that Lagrange’s method does work without resorting to 
virtual work or variational calculus arguments. It is not 
the claim of the authors that the material to be presented 
constitutes a rigorous proof. It will, however, present 
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enough justification to accept the technique on something 
more than faith. 

This paper consists of four examples of dynamic sys- 
tems common to both introductory dynamics and robotics 
courses. In each example, the equations of motion are de- 
rived by determining the time rate of change of linear and 
angular momentum. Having obtained the equations of 
motion it is then demonstrated that the dynamic equations 
can be manipulated back into the form of Lagrange’s 
equations. The first three examples each pertain to spe- 
cific dynamic systems while the last example consists of 
the rigid body dynamics of a system of n particles which 
can be generalized into the rigid body dynamics of solids 
as demonstrated in the example. 

The presentation of the material in this paper is tutorial 
in tone. While developing the relation between the La- 
grangian of the system and the dynamic equations, me- 
chanics fundamentals are illustrated and explained as they 
are required in the development. The authors believe that 
the presentation of Lagrange’s equations is facilitated by 
simultaneously reinforcing important concepts of dynam- 
ics. The material contained herein is intended to consti- 
tute two 1 h lectures. The level of detail used in deriving 
the dynamics equations could be reduced for those classes 
having stronger mechanics backgrounds. That the gener- 
alized coordinates for a problem also constitute a set of 
state variables is a point which may ease the theoretical 
development for those students more familiar with state 
variable theory. 

EXAMPLES 
The r - 8 Manipulator 

Consider the r - 8 manipulator shown in Fig. 1 which 
consists of a frictionless revolute joint followed by a fric- 
tionless prismatic joint. This 2”  of freedom arm is the 
same manipulator presented by Snyder [ 11. The mass of 
the shoulder ml is concentrated at the centroid which is 
located a constant distance rl from the axis of revolution. 
The centroid of the prismatic joint is located at a distance 
r from the axis of revolution and the mass of this joint m 
is concentrated at this point. The gravitational accelera- 
tion vector is consistent with the coordinate system and 
in this situation the vector is aligned with the negative Yo 
axis. Numerically, the gravitational acceleration g is a 
negative number. 

The dynamic equations for this body can be developed 
by Newton’s laws of motion and Euler’s equation. For the 
revolute joint, we set the time derivative of the angular 
momentum about the axis of revolution, namely ( ml r: + 
m 2 r 2 )  4, equal to the sum of the applied moments which 
consist of the applied torque T and that owing to the grav- 
itational field. This application of Euler’s equation pro- 
duces 

= T + (rnlr,  + m 2 r ) g  cos 8. ( 1 )  

‘I 

Fig. 1 .  r-8 manipulator, 

The dynamic equation for the prismatic joint is obtained 
by setting the time derivative of the linear momentum 
m z r  equal to the applied forces which consist of the ac- 
tuator force F ,  the centrifugal force m2rb2, and the grav- 
itational force m 2 g  sin 8. Thus, by Newton’s law we ar- 
rive at 

As a matter of direction at this point, we state that we 
seek a scalar L involving the mechanical energies of the 
system shown in Fig. 1 from which we can obtain the 
equations of motion. The development will depend on the 
following concepts: 

a) Potential mechanical energy is a function of the dis- 
placements of a system and is not a function of any of the 
velocities (time derivative of displacement). 

b) Kinetic energy is a function of the velocities of the 
system as well as displacements. 

c) Angular and linear momenta can be functions of both 
the velocities and displacements of the system. 

d) Integration followed by differentiation with respect 
to the same variable will return the original expression. 
(Note that differentiation followed by integration may not 
return the original expression; a constant may be lost.) 

In order to obtain this scalar function L,  we will ma- 
nipulate both (1) and (2) to demonstrate that the dynamic 
equations can indeed be obtained from a scalar quantity. 
This scalar function will later be shown to be the Lagran- 
gian of this system. 

The manipulation will consist of integrating and differ- 
entiating parts of the equations of motion with respect to 
the dynamic variables. The potential and kinetic energies 



41 WHITE, JR. et al. : LAGRANGE’S EQUATIONS IN ROBOTIC COURSES 

of the system can always be represented in terms of the 
dynamic variables. The dynamic variables, therefore, 
consist of a set of state variables for the system. 

In performing the following manipulations to the equa- 
tions of motion we will follow some general guidelines. 
These guidelines are as follows: 

1 )  All momentum terms will be integrated and differ- 
entiated with respect to their associated velocities. The 
integration process yields a contribution to the total ki- 
netic energy. 

2) All terms which are either constants or exclusive 
functions of displacements will be integrated and differ- 
entiated with respect to their associated displacements. 
This operation yields terms which contribute to the total 
potential energy. 

3) All remaining terms in the equations will be inte- 
grated and differentiated with respect to either a velocity 
or a displacement provided that the result of the integra- 
tion can be demonstrated to be either a kinetic or potential 
energy term, respectively. 

In order to show this correspondence, the momentum 
terms in (1) and (2) will be partially integrated and par- 
tially differentiated with respect to the dynamic variables. 
This operation yields for the angular momentum the result 

d 
- [ ( m l r f  + m 2 r 2 ) e ]  
dt 

while for the linear momentum we get the result 

d d a  
dt dt a i  m 2 -  
- ( m 2 i )  = - (- ;) (4 )  

Note that the partial, rather than ordinary, integration and 
differentiation allow the variable r in the momentum 
expression of (3) to be treated as a constant. 

The next step of the demonstration involves partial in- 
tegration and differentiation with respect to 8 of the re- 
maining excitations in ( 1 )  which are not produced by an 
actuator. A similar task is accomplished in (2) with re- 
spect to r .  Performing this procedure for (1) with respect 
to 8 yields 

a 
ae (mlrl  + m 2 r ) g  cos e = - [ ( m l r l  + m 2 r ) g  sin e] 

(7)  

and 

) 2 e2  - d a  ( - m 2 : )  - $ ( m 2 r  2 + m2rg sin e = F. 
dt a i  

( 8 )  
At this point, we examine the individual mechanical 

energies of the system. The rotational and translational 
kinetic energy is 

KE = i ( m l r :  + m 2 r 2 ) e 2  + ; m 2 i 2  (9) 

while the gravitational potential energy is 

(10) PE = - g ( m l r l  + m 2 r )  sin 8 .  

The minus sign in (IO) is necessary because g is defined 
as a negative number consistent with the coordinate sys- 
tem. Note that (10) increases with increasing displace- 
ment in the positive Yo direction. 

The term involving the time derivative in (7) contains 
the kinetic energy stemming from rotational motion while 
the corresponding term in (8) contains the kinetic energy 
from pure translation of the prismatic joint. The transla- 
tional kinetic energy depends only on the time derivative 
of displacement r and the only velocity term in the rota- 
tional kinetic energy is the angular velocity b .  If we were 
to add the translational kinetic energy to the rotational 
kinetic energy already present in (7), the resulting dy- 
namic equation is the same owing to the partial differen- 
tiation with respect to e. Similarly, if we were to add the 
rotational kinetic energy to the translational kinetic en- 
ergy already present in (8) the resulting dynamic equation 
is again unchanged since the partial differentiation is with 
respect to i-, a term absent in the rotational kinetic energy. 
Thus, we can replace the individual kinetic energies in (7) 
and (8) with the total kinetic energy. (In our example, the 
direction of motion of translation and rotation are always 
at right angles. However, the total kinetic energy may be 
used instead of the individual kinetic energies even if the 
directions are not orthogonal.) Performing this total ki- 
netic energy substitution yields 

( 5 )  [ ( m , r l  + m 2 r ) g  sin e ]  = T 

(11) 
while the corresponding terms of (2) provide 

) $ (:.E) - ( m 2 r 2  e 2  + m2rg sin e = F. 
) e2  m 2 r e 2  + m 2 g  sin e = - m 2 r 2  - + m2rg sin e . and 

ar a (  2 

( 6 )  

( 12) Combining the results of (3)-(6) shows that 
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The second terms of (1 1) and (12) primarily involve the 
potential energy. Again, owing to the partial derivatives 
with respect to 8 and r ,  the dynamic equations produced 
by (1 1) and (12) will be unchanged if the total potential 
energy is included in both equations. Performing this sub- 
stitution gives 

and 

$ ( $ K E ) - - $ ( m 2 r  2 e 2  T - P E  ) = F  (14) 

where the negative of the potential energy is necessary to 
provide consistency of signs. 

The remaining unidentified term in (14) is the rotational 
kinetic energy of the mass m 2  as it revolves around the 
joint 1 axis. If this term is replaced by the total kinetic 
energy, the dynamic equation will be unchanged owing to 
the partial differentiation with respect to r .  Performing 
this step produces for both (1 3) and (14) the result 

and the result 

(KE - PE) = F. (16) 
d (”E) - - a 
dt ai- a r  

Finally, note that the potential energy does not contain 
either the radial or angular velocities. Subtracting the po- 
tential energy from the kinetic energy within the first term 
of both (15) and (16) leaves us with 

S L  - - ( L ) = T  ) 
and 

(”) - s ( L )  a = F dt a i  
where L is the Lagrangian given by 

L = KE - PE. (19)  
Equations (17) and (18) are called Lagrange’s equa- 

tions which provide the description of motion for rigid 
body dynamics. The variables r ,  r, 8, and e are used to 
describe the energies of the system, both potential and 
kinetic, and, therefore, constitute a set of state variables 
Fc this mechanical system. 

Spring-Mass System 
Fig. 2 illustrates a spring-mass oscillator with an ap- 

plied force F,  mass m, gravitational load mg, and spring 
stiffness K .  The coordinate system is aligned such that 
positive displacement occurs downward. As a result of 
this choice of reference, the gravitational acceleration g ,  
which also points downward, is a positive number con- 
sistent with the coordinate system. 

/ / / / / / / / / / /  

m 

Fig. 2 .  Spring-mass system. 

The equation of motion for this system is obtained by 
setting the time derivative of the linear momentum mi 
equal to the net force consisting of the applied force, the 
gravitational load, and the stiffness force. This operation 
produces the familiar result 

d 
- ( m i )  = - K x  + F + mg. 
dt 

Integrating and differentiating the momentum with re- 
spect to i and performing the same operation on the stiff- 
ness and gravitational forces with respect to the displace- 
ment x yields 

d a mi2 Z (a, I) - [ - ($ - m g x ) ]  = F. (21)  

The use of the double negative signs in the second term 
of (21) is intentional. The quantity in the first term of (21) 
is the kinetic energy while the quantity in the second term 
is the negative of the total potential energy, strain plus 
gravitational potential. Altering (21) to reflect this fact 
gives us 

Since the potential energy only depends upon x and the 
kinetic energy is an exclusive function of the velocity in 
this problem, the dynamic equation will be unaltered if 
we subtract the potential energy from the kinetic energy 
in the first term and add the kinetic energy to the potential 
energy of the second term. Equation (22) then becomes 

or by use of (19) we get 

Equation (24) is Lagrange’s equation for this system 
while x and X constitute a set of state variables for this 
oscillator. 

The Double Pendulum 
In this more complicated example, we will show that 

by starting with the dynamic equations and working back- 
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wards we can recover Lagrange's equations for this sys- 
tem. The system under consideration is shown in Fig. 3. 
The double pendulum consists of two very light rods of 
lengths d ,  and d supporting the point masses m I and m 2 .  

The configuration of the pendulum is described by the an- 
gles O 1  and e2. A Cartesian inertial reference frame is fixed 
to the support point of joint 1. The positions of the mass 
m, and mass m2 with respect to the reference frame are 
described by the vectors y 1  and y2. respectively. The ve- 
locities of the masses are g l  and g 2 .  The position of the 
mass m2 with respect to the mass m l  is described by the 
vector I , ~ .  These vectors are illustrated in Fig. 3. The 
angle O I 2 ,  also shown in Fig. 3, is the sum of the angles 
8 ,  and t32. 

The equation of motion for joint 1 is obtained by setting 
the time derivative of the angular momentum equal to the 
sum of the applied external moments. The angular mo- 
mentum _HI about the support is given by 

I - I I  = LI  x m l v l  + r2 x m2g2 

= ( m l d f 8 ,  + m 2 [ ( d :  + d: + 2d1d2C2) i ) ,  

+ (4 + d l d 2 C 2 ) q j k  (25 1 
where C2 is the cosine of 6'2 and k is a unit vector along 
the 2, axis. The shorthand notation for trigonometric 
functions used by such authors as Paul [2] and Snyder [ 11 
has been adopted here. The external torques are given by 

Tlk + Ll  x m1g - + r 2  x m2g 

= [TI + mldlSlg + m,g(d,S, + d*SId]k (26) 

where, owing to the choice of the coordinate system, the 
gravitational acceleration g is a negative number. From 
(25) and (26) we have 

d 
( m l d ~ b l  + m 2 [ ( d :  + d :  + 2 d I d 2 C 2 ) & ,  

+ (4 + d l d 2 C 2 ) ~ 2 l j  

=TI + mldlSlg + m 2 g ( d l S 1  + d2S12).  (27) 

The equation for joint two will be found from the New- 
ton-Euler method described by Asada and Slotine [7] and 
originally presented by Luh, Walker, and Paul [SI. If the 
second link is considered as a rigid body moving through 
space we note that the mass center is located at the ex- 
treme end where the mass m 2  is attached to the link. By 
summing the forces acting on the link and equating this 
with the rate of change of the linear momentum of the l ink 
m 2 t 2  we get 

d 
dt (m2L2) = mzg + f 1 . 2  ( 2 8 )  - 

wheref,,, is the force of constraint which keeps the two 
links joined together. The forcef,.? is exerted by link one 
and acts on link two. Summing the moments about the 
location of the mass m 2  gives 

"2, , ,/' b 
(b) 

Fig. 3 .  Double pendulum 

where it is seen that the inertia of the link about the lo- 
cation of m 2  is zero owing to the assumption that m 2  is a 
point mass. Taking the cross product of (28) with the vec- 
tor and substituting forf, , ,  from (29) produces 

d 
dt r1.2 x - (m242) = L l . 2  x m2g + T2k. (30) 

Substituting for the position vectors in terms of the angles 
0 ,  and and simplifying the result shows that the equa- 
tion of motion is 

d 2  d' 
dr2 I 

m 2 d l d 2 C 2  - 6' + m2d ld2S2e :  + m2d:  dt2 812 

= T2 + m2gd2S12. (31) 

Equation (31) can be further modified into a form expe- 
dient to the later analysis by adding and subtracting 
m 2 d l  d 2  S2 el& and combining those terms which consti- 
tute perfect differentials in time to get 

d 2 ( m 2 d l d 2 C 2  6 ,  + d : m 2 b I 2 )  + m2dld2S2(8:  + e l&)  
= T2 + rn2gd2Sl2. (32)  

In order to show that (27) and (32) can be determined 
from Lagrange's equations we will integrate and differ- 
entiate the angular momentum in (27) with respect to 0 , .  
We will also integrate and differentiate the term within 

T2k - Y l . 2  x f l . 2  = 0 (29) the time derivative in (32) with respect to &. The gravi- 
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tational moments in (27) and (32) will be integrated and 
differentiated with respect to O1 and 02, respectively. Per- 
forming these operations produces the results 

The second term in (38) is the negative of the partial de- 
rivative of the kinetic energy with respect to 02. Equation 
(38) can be rewritten to reflect this fact as 

a 
dt ae2 862 

['(KE)] - - (KE - PE) = T2. (39) 

The potential energy does not include the angular veloc- 
ities nor does the kinetic energy contain the angle e l .  
Equations (37) and (39) then reduce to the form 

f ( & L )  - - ( L )  a = T I  
801 

(41 1 
and f ( & L ) - & L ) = T 2  a 

f [& [ m 2 ( d i  + d l d 2 C 2 ) b 1 b 2  + m 2 d 2  - 
which are Lagrange's equations for this system. Through 
the use of the particular kinematic description of Fig. 3 
we see that the angles O1 and e2, together with their first 
time derivatives, make up a set of state variables for this 

+ m2dld2(b: + e ,b2 )  ~2 

a 
=T2 + - ( -m2gd2CI2) .  (34) system. 

a02 

For this system, we note that the kinetic and potential 
energies are given by 

1 1 
2 2 

KE = - m l g l  . g l  + - m 2 g 2  * g 2  

and 

P E =  - -Y - 1  m1g - r 2  . m2g 

= mld1Clg + m2g(dlCI + d2Cl2). (36) 

Because of the partial differentiation, the terms involving 
derivatives with respect to angular velocity in (33) and 
(34) can be replaced with partials of the kinetic energy 
with respect to the same angular velocities without alter- 
ing the original dynamic equations. The rightmost term in 
(33) and (34) can be replaced with the partial of the neg- 
ative potential energy with respect to the angles 
by use of the same argument used for the kinetic energy. 
These substitutions leave us with 

and 

A System of Particles 
As a final example, we examine a system of n point 

masses shown in Fig. 4. Each particle is connected to the 
center of mass through a rigid, massless link (not shown). 
While the system is free to translate and rotate, the posi- 
tion of each particle remains fixed with respect to the re- 
maining particles. This system of point masses is sub- 
jected to an externally applied force and moment 1 in 
addition to the gravitational forces. 

The configuration of the body of particles is described 
by the position vector from the reference frame to the 
center of mass and by the orientation of the body de- 
scribed by the roll, pitch, and yaw angles &, q?,,, and 4: 
as described by Craig [3]. Let 4 denote the vector con- 
taining these orientation angles.-These orientation angles 
are measured with respect to the fixed frame. The velocity 
of the center of mass is R while the rate of rotation is 
described by the vector g defined by 

- w = - 4. (42) 
The vector + ci describes the position of each particle, 
consisting of mass mi, in the fixed frame. The velocity of 
each particle is 

(43 1 d 
nt - ( E  + Ti) = B + g x E,. 
I- 

a 
dt ab, ae 1 

[ (ICE)] = TI  + - ( -PE) (37) To determine the equations of motion, we first calculate 
the linear and angular momenta. The linear momentum is 

C m , ( B  + g x r l )  = R C m, + g x C mILr = M &  

(44)  

and n n n 

r = l  r = I  r = l  

a 
ae2 = T2 + - ( -PE)  ( 3 8 )  where M is the sum of the masses of the individual par- 

ticles. The cross product term of (44) vanishes owing to 
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c e n r e r  

x m i ( g  x r i )  = 1. (49) 1 
The first term in (49) vanishes by definition of the cross 
product. The second term of (49) also vanishes since the 
bracketed term is an equation of motion. We arrive at the 
result 

Fig. 4. System of n particles. 

as the equation of motion for the orientation angles. 
Equations (46) and (50) can be derived from La- 

grange's equations. To demonstrate this, first integrate 
and differentiate the momentum term in (46) with respect 

on the gravitational force with respect to B .  We now have 
the result 

the definition of the center of mass. The angular momen- 
turn of the particles about the reference frame is 

n to h.  Simultaneously, we will perform the same operation 
C ( 4  + ri) x m i ( &  + g x ri> 

i =  I 

n n 

+ C mi_ri x b + C _ri x mi(@ x _ r i )  
i =  I i =  1 

n 

= 8 x M &  + C t-; x m i ( @  x c i )  (45) 
i =  1 

where the definition of the center of mass has again been 
used to simplify the expression. 

The system of particles has 6" of freedom being the 
three spatial components of the center of mass and the 
three orientation angles. The equations of motion will be 
written in terms of these quantities. The dynamic equation 
for the translational motion is determined by setting the 
time derivative of the linear momentum equal to the ex- 
ternal forces and is seen to be 

d 
-(MI?) = E + c migk = F + M g k .  

n 

(46) dt i =  I 

The moments produced about the origin are 
n 

T + x E + C ( E  + ci) x migk 
i =  1 

- 

= - T + x E +  x M g k  (47 1 
where, again, the definition of the center of mass has been 
used to simplify the expression. Setting the time rate of 
change of the angular momentum equal to the applied mo- 
ments produces 

= - T + X E + 4 X M g k .  (48) 

This last expression can be rearranged into the form 

We can perform a similar operation on (50) with respect 
to g but first it is convenient to rewrite the angular mo- 
mentum about the mass center through the use of a vector 
identity as 

n n 

c Er x mr ( w  x rr) = C mr [ d r r  * rr> - ( w  * rr>rrI. 
r = l  I =  I 

( 5 2 )  

Integrating and differentiating the angular momentum of 
(50) with respect to g yields 

( 5 3 )  

The bracketed term in (53) can be rewritten, again by vec- 
tor identity, to produce the result 

Equations (51) and (54) can be simplified by determining 
the total kinetic energy which is 

n 

KE = C i m l ( &  + g x c r )  . (e  + g x r , )  
I =  I 

t1 

= C ;m,[& I? + 2 R .  (g x t-,) + ( g  x 
I =  I 

. ( w  x rr)] 
ti 

= ~ M B  . + C t m l ( g  x r l )  (g x c l ) .  ( 5 5 )  
I =  I 
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Equation ( 5 5 )  is seen to be the sum of the translational 
kinetic energy depending upon the velocity of the center 
of mass and the rotational kinetic energy, depending only 
upon the rate of rotation. The potential energy is given by 

n I!  

PE = - C m , g k  . e - C [ ( E  + E , )  X m,gk]  . 9 
I =  I 1 - 1  

= -Mgk * R .  ( 5 6 )  
Again, the simplification in (56) arises by invoking the 
definition of the center of mass. Substituting the kinetic 
and potential energy expressions into ( 5  1) and (54) shows 
that the equations of motion now become 

and 

Owing to the partial derivatives we may alter these equa- 
tions by substituting the Lagrangian defined by (19) into 
these equations to obtain 

$ ( $ L )  - - ( L )  a = F all  
and 

$ ( 5 L )  - a = 1 

(59) 

The partial with respect to 4 in (60) vanishes since L is 
not an explicit function of 4: this term was added merely 
to demonstrate the symmetry of the equations. 

The generalization of the foregoing development to 
rigid body dynamics is accomplished by replacing the 
summations over the point masses m, with integrals of the 
material density p [ mass/unit volume] over the volume. 
The location of the differential volumes inside the body is 
described by the vector 1 which now varies continuously. 
Using integrals in place of the summations, it is an easy 
process to show that (52) provides the familiar definition 
of the inertia tensor. 

CONCLUSIONS 
A technique for presenting Lagrange’s equations has 

been developed which neither uses variational calculus nor 
virtual work. The thrust of the demonstration is that given 
dynamic equations for a rigid body one can always ma- 
nipulate the equations to show that the equations depend 
exclusively on the difference between the total kinetic and 
potential energies of the system. 
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