
CHAPTER 108 

The Pressure Field due to Steep Water Waves 
Incident on a Vertical Wall 

D.H.Peregrine1 & M.E.Topliss2 

Abstract 

The entrained air present when a wave impacts upon a vertical wall is modelled. A 
numerical boundary-integral method is applied, with appropriate initial conditions 
giving a prescribed surface profile and corresponding velocity potential, to model 
an overturning wave trapping a single air pocket between the oncoming wave front 
and the vertical wall. The resulting detailed computations provide suitable initial 
parameters for a simple theoretical model of the trapped air pocket as described 
in Topliss, Cooker & Peregrine (1992). The fundamental frequencies, and pressures 
on the impact wall due to the bubble can thus be estimated from the numerical 
computations. Video frames of small-scale experiments by Hattori & Arami (1992 
and private communications) are also examined in detail and similar use of the model 
provides further pressure estimates. The resulting frequencies and maximum pressures 
are compared with the measured values. The peak pressures on the impact wall are 
within 30% of those measured and the frequencies are generally closer. Scaling with 
wave size is also discussed. 

Introduction 

Much attention has been given to the peak pressures developed when storm 
waves meet sea walls and breakwaters, e.g. experimental studies by Kirkgoz 
(1991), Hattori & Arami (1992), Oumeraci & Partenscky (1992) and theoretical 
studies by Cooker & Peregrine (1990,1992).   These breaking-wave impacts can 
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have substantial aeration, either as air trapped at the wall or as pre-entrained 
air. 

Aeration in wave impacts has been described in the laboratory experi- 
ments as either a cloud of small air bubbles in the water adjacent to the vertical 
structure or as a single air pocket trapped between the overturning wave and 
the impact wall. Numerical computations presented in this paper can simulate 
the motion of an overturning wave against a vertical structure on a finite depth, 
up until point of impact. This provides detailed data which can be used with 
theoretical analysis to describe the initial motion of an air pocket. Comparison 
of the analytic theory with the computations and experimental data, in partic- 
ular that of Hattori & Arami (1992 and private communications) and Hattori, 
Arami & Yui (1994), has led to fairly good agreement with the various parame- 
ters. Three experimental data sets have been compared with computations that 
produce the same size air pockets. 

The majority of experiments undertaken to study wave impact are per- 
formed in small-scale tanks and a discussion of scaling from model to prototype 
completes the paper. 

Numerical Method 

The numerical method used in this paper for computing the unsteady two- 
dimensional motion of a water surface, including that for breaking waves, is 
described in Dold & Peregrine (1986) and Dold (1992). 

The fluid is taken to be incompressible and the flow irrotational so that 
a velocity potential can be defined such that u = Vcf> and <f> satisfies Laplace's 
equation with the fully nonlinear free surface boundary conditions. We have taken 
the pressure immediately above the free surface to be a constant and neglected 
surface tension. 

The surface profile and velocity potential are prescribed on the free surface 
as initial data. The domain is reflected about the bed y = — h to form a 
symmetric image flow where a point on the upper free surface has an image 
on a lower free surface. The free surface boundary conditions are satisfied at 
the free surface which moves with time. The surface of the fluid is considered 
to be a smooth continuous profile approximated by a set of discrete points. 
A truncated Taylor series is used to perform explicit time-stepping. Cauchy's 
integral theorem is used to obtain a boundary integral equation for the evaluation 
of velocities and multiple derivatives of the surface motion. After the unsteady 
surface motion is calculated, the velocity and pressure beneath the surface can 
be evaluated at points over a rectangular grid. Variables are scaled accordingly: 

y* = y/h, x* = x/h, p* = p/pgh, t* = tJg/h, u* = uj\fgh and A* = Ag where 
h is a chosen value and * represents the scaled variables. 
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Computations for an overturning 'tanh' wave. 

Using this boundary-integral method for a non-periodic surface, Cooker (1990) 
has described the motion of a wave overturning immediately before a vertical 
wall (with a finite depth), trapping a pocket of air against the wall. This was 
achieved by allowing two equal waves propagating in opposite directions towards 
each other to form a flow which is symmetric about a point. This is equivalent 
to a single wave approaching a vertical wall at this point. The initial data used 
obtained from a tanh expression describing a long wave of elevation: 

u(x) = —-u0 11 + tanh 
(x - x0) 

(1) 

where x0 is the initial centre of the wave, u0 is the initial maximum velocity, and 
s is a constant. The wave elevation is of the form rj(x) = |u| + \u2 which gives a 
wave propagating towards the wall by shallow water theory. This long shallow 
water wave steepens and breaks as it propagates into water of constant depth, 
for an example see the surface profiles in figure 1. The computations have to 
stop just before the wave jet comes into contact with the wall and so the results 
only describe the motion immediately before impact. 

Three examples have been studied of a wave overturning immediately in 
front of a vertical wall. Different initial positions of the wave give different 
size air pockets to illustrate the varying characteristics of the motion due to 
the volume of air trapped. In this section, h is the lowest water depth at the 
wall. Approximately 250-350 discretisation points were used for the surface of 
the wave. The wave is taken to have a large initial amplitude of 1.7 with s = 
2.0, chosen to obtain large air pockets. Accuracy tests with more discretisation 
points have been very satisfactory. Surface profiles are presented for several 
timesteps and the pressure contours below the free surface have been evaluated 
in each case for the final computed time. 

The first example (example 1) presented has an initial distance from the 
wall of x0 = 8.0. 

The wave steepens and begins to overturn as it comes nearer to the wall 
as portrayed in the time history of the surface profiles in figure 1. The timesteps 
are reduced as the wave becomes steeper and the motion more violent. The 
computations stop just before impact with a small pocket of air is trapped 
between the wave front and the wall. 

The pressure field at the final computed time shown in figure 2 has pressure 
contours in increments of 0.4. The thickened line represents the water surface. 
As well as high pressures at the foot of the wall, a region of much higher pressure 
is found just below the waterline with very tightly packed contour lines. Note 
that no direct impact between the water and the wall has yet occured. The high 
pressures are spread over a substantial area of the fluid domain. 

For a similar wave of amplitude 1.7, the initial distance of wave from wall 
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Figure 1:  Surface profiles for a tanh waveform of amplitude 1.7, initial distance 8.0 
at times 1.53, 2.81, 3.45, 3.77, 3.93 and 4.01 - 4.17 in steps of 0.04. 
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Figure 2: Pressure contours for a tanh waveform of amplitude 1.7, initial distance 8.0 
at time 4.17 with increments of 0.4. 
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is now increased to x0 = 9.0 in example 2. The time history of the surface 
profiles of the wave is displayed in figure 3. The waterline at the wall now lower 
and a larger amount of air is trapped. As can be seen in figure 4, the isobars, 
are at the same intervals, and show much lower pressures and pressure gradients 
than in example 1. Now the greatest pressures are at the bed. 

0.0 0.5 5.0 5.5 6.0 7.0 7.5 8.0 

Figure 3:  Surface profiles for a tanh waveform of amplitude 1.7, initial distance 9.0 
at times 1.48, 2.76, 3.40, 3.72, 4.04, 4.36 and 4.44 - 4.56 in steps of 0.04. 

Example 3 has a further increase of initial distance of the wave from wall 
to x0 = 10.0. The wave now overturns further from the wall and produces the 
largest air pocket. The surface profiles in figure 5 show the time history of the 
wave. Figure 6 shows the pressure distribution under the free surface for the 
final profile before impact has lower values than for the previous two examples. 
The pressure field is now in sharp contrast with the pressures of example 1, 
as the isobars are almost horizontal, indicating that pressures are not much in 
excess of hydrostatic. These three examples show that as the amount of air 
trapped increases, the pressures decrease and the characteristics of the pressure 
field change. Other examples have confirmed this trend. 

The numerical data from the final computed times enables the character- 
istics of the three examples to be studied and compared. A representative set of 
numerical data includes the incident wave amplitude be H0, the vertical height 
of the water above the bed after the final computational time be H, the vertical 
height of the water line in contact with the wall at the final computed time be 
Hw, and the vertical velocity, acceleration at this point be up,ap respectively as 
shown in figure 7. The initial wave amplitude H0 is 1.7 in all three cases, but 
with three different size air pockets resulting from the original placing of the 
wave with regard to the wall.  Let the horizontal velocity at the centre line of 
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Figure 4: Pressure contours for a tanh waveform of amplitude 1.7, initial distance 9.0 
at time 4.56 with increments of 0.4. 
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0.0 0.5 5.0 5.5 6,0 

Figure 5: Surface profiles for a tanh waveform of amplitude 1.7, initial distance 10.0 
at times 2.0, 3.28, 3.92, 4.24 and 4.44 - 4.92 at steps of 0.04. 

the pocket be uj and the horizontal velocity at the tip of the jet be ut. The 
respective parameters for the three examples from the numerical results of the 
final computed time are shown in table 1. The horizontal velocity at the centre 
line of the bubble becomes much smaller as the radius of the pocket increases 
with the horizontal velocity of the tip of the jet not significantly altered. Thus 
in the first two examples, the velocity of the jet tip is larger than the velocity 
of the centreline as noted by Hattori, Arami & Yui (1994). In addition the up- 
ward velocity of the waterline at the wall decreases rapidly with the formation 
of larger pockets leading to the forward velocity Uf becoming greater than the 
upward velocity up. 

For very small bubble sizes, large values are obtained for the vertical ve- 
locity and acceleration of the waterline. This shows an approach to the violent 
conditions reported by Cooker & Peregrine (1990) in their report of the "flip 
through" phenomenon. The vertical height of the waterline at the wall be- 
comes much lower as the amount of air trapped increases resulting in the ratio 
Hw/H becoming smaller. These ratios are in agreement with those presented 
by Oumeraci, Klammer & Partenscky (1993). 

Comparison of numerical and experimental data 

The numerical method for an overturning wave provides many parameters al- 
lowing different sizes of air pockets to be studied.  Given experimental results, 
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Figure 6:   Pressure contours for a tanh waveform of amplitude 1.7, initial distance 
10.0 at time 4.92 with increments of 0.2. 

Example 1 Example 2 Example 3 

Wave amplitude H0 1.7 1.7 1.7 
Initial distance from wall 8.0 9.0 10.0 

Pocket radius 0.071 0.445 0.784 
Vertical height H 2.75 2.85 2.84 

Vertical height Hw 2.390 1.823 1.522 
Vertical velocity up 15.821 2.368 1.345 

Vertical acceleration ap 1700.7 10.93 4.09 
Horizontal velocity Uf 5.35 2.69 1.99 
Horizontal velocity ut 3.06 2.81 2.77 

Ratio Hw/H 0.869 0.640 0.536 

Table 1: Comparison of dimensionless numerical data from the final computed times 
for the three tanh waveform examples. 
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Figure 7: Parameters for an overturning wave 

either with data showing the size of a trapped air pocket and its position under 
the free surface or photographs from which these parameters can be measured, 
a computation can be used to model the overturning wave by producing a re- 
sulting trapped air pocket of the same dimensions. We choose a computation 
to compare with an individual experiment by varying the initial wave height H0 

and distance from the wall x0 until the computation gave a trapped air pocket 
which was a good match with the values for the radius r, the distance d of the 
bubble centre from the bed and the height H of the water after impact measured 
from the experimental data. We have compared with video frames from Hattori 
& Arami (1992). For a bubble nearer the bed than the free surface, a higher 
incident wave amplitude is required to obtain a correct d/H ratio. For a larger 
bubble, the initial distance of the wave from the wall needs to be increased as 
shown in the above examples. The numerical data for the final computed time 
gives values for the normal velocities around the curved surface which can then 
be averaged to give a radial velocity uT. 

The subsequent motion of the trapped air pocket has been modelled as a 
two-dimensional semi-circular bubble using Topliss, Cooker & Peregrine's (1992) 
result for the fundamental frequency. To a first approximation, it is 

^IVo 
p,a* log[\(*a/H) tan(l(«*/ff))] 

(2) 
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where pi is the density of water, p0 the atmospheric pressure, 7 the ratio of 
specific heats and u> = 2wf where / is the fundamental frequency of the bubble. 
Once values for a, d, H and ur have been obtained, either from a computation 
or, as in the next section, from experimental measurements, the frequencies 
and amplitudes of oscillation of the bubble can be predicted using equation 2, 
the linearised kinematic boundary condition, ur = toe0, a0 = ae0uj and the 
corresponding expression for maximum pressure, 

Pmax = -pu>a0 log ( — tan(Ad) j (3) 

Hattori & Arami have provided us with many details of their experiments 
to investigate the importance of a trapped air pocket between the breaking wave 
and the wall. The experiments were undertaken in a small wave tank with a 
1:20 bed slope to cause the wave to break. In each case the still water depth was 
five centimetres. High-speed video frames were taken of the fluid motion with 
simultaneous pressure histories. The experimental data sets with large clear 
trapped air pockets were chosen for comparison. 

The histories of the pressure, measured on the impact wall immediately 
after impact exhibit three stages when air is trapped. Initially the pressure rises 
to a peak value and is followed by an interval of regular smooth oscillations, of 
decreasing amplitude. These oscillations are displayed with the same frequency 
in all six pressure gauges. This finally develops into a more confused signal, 
consisting of higher frequencies with lower amplitudes, and which carries on for 
an indefinite time. 

The photographs show a cylindrical air pocket trapped between the wave 
front and the structure immediately after impact. In the video frames following 
the impact, it can be seen that the free surface rises and a thin jet of water 
shoots up the wall. We neglect this since it is usually much thinner than the 
bubble until a later stage and assume a flat surface in our models. The damped 
oscillations recorded by Hattori & Arami decay exponentially like e~^'. The 
peak pressure is presented in the dimensionless form p* = p/pgH0 where H0 is 
the incident wave height above the bed. 

Three sets of experimental data on the formation of an air pocket by 
Hattori & Arami have been examined in detail. In each case measurements 
have been taken from the video frames to obtain values for a, d, H, uj, where u/ 
is the forward velocity as previously defined. The bubble surface in the frames is 
not sufficiently well defined to take measurements around the surface and so the 
value obtained for uj is used for the average radial velocity ur. The video frames 
indicate a horizontal free upper surface at impact and so the computations 
of a tanh waveform should provide a good numerical model. For each of the 
cases studied, a table below shows the values of a, d, H and ur obtained from 
both measuring the video frames of the experiments and from the corresponding 
computation The table also gives the estimated values of /, e0, a0 and maximum 
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p* using the theoretical analysis for a semi-circular bubble and the measured 
values of peak pressure and oscillation frequency. 

In experiment No. 132-3 the bubble radius was measured to be 7.5 mm 
from the video frames. Comparisons are made with a computation using a wave 
of initial dimensionless amplitude 8.0 and at an initial distance 6.5 from the 
impact wall. The corresponding dimensional value is 72 mm for wave height 
and there are comparable values for d and H. The radial velocity given by the 
numerical computations also gives agreement with that measured from the pho- 
tographs. The top line in the table gives the maximum experimentally measured 
pressure and the frequency of its oscillation. 

d H / ur to a0 P* 
Hattori & Arami 190 38.1 

From video 0.0295 0.066 221 1.0 0.00072 0.0075 43.5 
Computation 0.0219 0.055 222.2 0.95 0.00068 0.0070 35.4 

Table 2:   Comparison of theory with experiment and computation for a pocket of 
radius 7.5 mm. 

In experiment No. 172-3 the trapped air pocket, from the video frames, 
had radius 9.5mm. The computation producing a trapped pocket of the same 
size uses a wave of initial dimensionless height 5.0 and initial distance of 7.4, 
corresponding to 62 mm dimensional wave height . 

d H / ur Co a0 P* 
Hattori & Arami 210 55.7 

From video 0.029 0.063 186.5 1.1 0.00093 0.01 49.0 
Computation 0.03 0.061 191.5 0.99 0.00082 0.0094 39.7 

Table 3: Comparison of theory with experiment and computation for pocket of radius 
9.5 mm. 

The third data set, experiment No. 178-3, has the largest trapped air 
pocket, radius 20 mm, and produces the lowest pressures. The computation of 
initial dimensionless wave amplitude 7.0 with an initial distance from the impact 
wall of 9.0 corresponds to an incident wave height of 86 mm. 

As can be seen from the comparisons, reasonable agreement is obtained 
between the experimental and theoretical results with larger bubble sizes pro- 
ducing lower frequencies. The measurements from the frames show that the 
lower surface rises more rapidly up the wall for a smaller pocket in agreement 
with the numerical computations.   The damping of the oscillations appears to 
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d H / ur £» a0 P* 
Hattori & Arami 106 22.5 

From video 0.026 0.067 99 0.8 0.0014 0.015 28.7 
Computation 0.029 0.069 101.2 0.76 0.0012 0.015 20.0 

Table 4: Comparison of theory with experiment and computation for a pocket of 
radius 20 mm. 

be not as strong for the largest bubble and the oscillations last the longer. The 
slow rise of the pocket and mass of small bubbles in the video frame during the 
oscillations indicate little air loss initially through the surface of the water. The 
damping of pressure oscillations is yet to be modelled. 

difference 
with Hattori & Arami 

pressure 
from 
video 

pressure 
from 

computation 

frequency 
from 
video 

frequency 
from 

computation 
132-3 +12% -7% +16% +17% 
172-3 -12% -29% -11% -9% 
178-3 +22% -11 % -7% -5% 

Table 5:  Comparison of the maximum pressure and oscillation frequency estimates 
for the three data sets. 

The pressures predicted by the theory give reasonable agreement for both 
the experimental and computational parameters. Table 5 shows the differences 
in the pressures and frequencies estimated compared to those those measured by 
Hattori & Arami in each of the three experiments. The pressure differences are 
the percentage change between the peak pressures recorded in the data and the 
predicted values from the theory. Differences with those from the computations 
are all lower. The frequencies are generally closer to the experimental values. 

Scaling 

Most experiments undertaken to investigate wave impact on vertical structures 
involve laboratory model-scale wave flumes. Scaling from model to prototype 
remains a complex and not fully understood problem. The number of parame- 
ters concerning the motion need to be identified and mathematical relationships 
established between the dimensionless scaling parameters. 

When modelling the entrained air as either a single air pocket or a uniform 
bubbly mixture, expressions for the resonant frequencies have been obtained in 
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each case. Peregrine (1994) has suggested, to get order of magnitude estimates, 
a simpler approximation, similar to 

w = (jgHJC) 1/2 
(4) 

but without 7, where C is the volume of trapped air per unit length of wall (r2 

for a single bubble or LH for a mixture of bubbles in a layer of width L at the 
wall), Ha is the hydrostatic head of water equal to atmospheric pressure. The 
comparison of this formula with 7=1.0 (for isothermal bubbles) and 1.4 with 
the analytical expressions in each case is shown in figure 8.   As can be seen 
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Figure 8: Comparison of the estimated fundamental frequencies, for a single cylin- 
drical bubble with d/H=0.5 (right) and for a column of bubbles next to a wall with 
Q=0.1 (left). 

from figure 8, the simplified formula presented by Peregrine is within a factor 
2, particularly for the single air bubble, except for small pockets or very thin 
columns of bubbles. 

Peregrine (1994) also presents a simple expression to estimate the maxi- 
mum pressures: 

ymax       n I  'tJ-La 

7gh~   \c~ 
(5) 
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where (5 is the fraction of the wall over which this impact occurs. For a reasonable 
ranges of /?, 0.1 to 1.0, and C, 0.01 h2 to 0.25 h2, this gives 

(H \1/2 

»-2 T     * 
Pn 

pgh 
< 10 

1/2 

(6) 

To assess these formulas, the maximum pressures for the three experimental 
data sets studied in have been evaluated using equation (5) with the data taken 
from the computational parameters and compared with the results obtained 
previously in tables 2, 3 and 4. 

C h P / / P* P* 
m2 m eq(2) eq(4) eq(3) eq(5) 

No 132-3 (0.0075)2 0.072 0.27 222.2 212.2 35.4 30.8 
No 172-3 (0.0095)2 0.062 0.31 191.5 167.5 39.7 25.8 
No 178-3 (0.02)2 0.086 0.58 101.2 79.6 20.0 26.9 

Table 6: Comparison of estimated frequencies and pressures evaluated earlier for the 
data sets from Hattori et. al. using the computational parameters, and the simple 
estimates for frequencies and maximum pressures given by Peregrine. 

The maximum pressures predicted by equation (5) show agreement with 
those predicted by equation (3) to within 30 percent and thus this equation 
gives a very simple calculation for rough estimates. Looking at the range for 
the pressures given by equation (5), the values C= 0.01, 0.02 and 0.05ft2 are 
obtained for No 132-3, 172-3 and 178-3 respectively, giving pmax/pgh to be 3.2, 
4.4 and 2.1 (Ha/h)1/2 respectively, well within in the range given by (6). 
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