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The pressure moment of a rigid particle is defined to be the trace of the first moment of the 
surface stress acting on the particle. A Fax&r law for the pressure moment of one spherical 
particle in a general low-Reynolds-number flow is found in terms of the ambient pressure, and 
the pressure moments of two rigid spheres immersed in a linear ambient flow are calculated 
using multipole expansions and lubrication theory. The results are expressed in terms of 
resistance functions, following the practice established in other interaction studies. The osmotic 
pressure in a dilute colloidal suspension at small P&let number is then calculated, to second 
order in particle volume fraction, using these resistance functions. In a second application of the 
pressure moment, the suspension or particle-phase pressure, used in two-phase flow modeling, is 
calculated using Stokesian dynamics and results for the suspension pressure for a sheared cubic 
lattice are reported. 

I. INTRODUCTION 

A mechanical definition of the osmotic pressure in a 
colloidal dispersion has been given by Brady’ in terms of 
the hydrodynamic interactions among the suspended par- 
ticles. In addition to the interactions already familiar in 
low-Reynolds-number hydrodynamics, a new “pressure in- 
teraction” must be defined. This new interaction is also 
needed in models of particulate two-phase systems, where 
particle-phase momentum balances necessitate the concept 
of a solid-phase pressure2-5 in order to complete the spec- 
ification of the bulk stress. The “suspension pressure” thus 
introduced requires for its determination [by Stokesian 
dynamics6 simulations, for example) the hydrodynamic 
pressure interactions between particles. Examples of os- 
motic pressure and suspension pressure calculations are 
given at the end of this paper, after we have defined the 
pressure interaction precisely and established how it can be 
calculated. 

In low-Reynolds-number hydrodynamics, interactions 
between particles are frequently specified by using the mo- 
ments of the surface stress acting on each particle. The first 
moment of the stress has been decomposed in the past into 
an antisymmetric part, which equals the couple acting on 
the particle, and a traceless symmetric part called the 
stresslet. These two quantities have been tabulated for two 
rigid spheres in a series of papers summarized in Jeffrey 
and Onishi,7 Jeffrey,’ and Kim and Karrila.’ It is the trace 
of the first moment, however, that is needed for the pres- 
sure interactions, and this has not been studied before. We 
denote it by S and define it for a specified particle as 

S=- x’*u*ndA, 
f 

where x’ is the position vector measured relative to the 
particle center, and the integration is over the surface of 
the particle. The minus sign is included because the previ- 
ous studies used it in their definitions; the integral can then 
be interpreted as the moment exerted by the sphere on the 
fluid. Such an interpretation and sign will be used in this 
paper in order to keep the equations similar to those al- 
ready developed. Before we proceed with the calculations, 
it is important to pause for a moment and consider termi- 
nology. We should decide whether the term stresslet, 
which until now has referred to a traceless quantity, is to 
be expanded to include the trace of the first moment, or 
whether it should be left as the traceless quantity. After 
considering the equations that arise in the applications de- 
scribed later in this paper, we think that it is most conve- 
nient to make an analogy with the terminology used for the 
stress tensor. Thus the stress tensor has a nonzero trace, 
and when the traceless part of the stress tensor is referred 
to separately it is called the deviatoric stress. In the same 
way, a stresslet should have a nonzero trace, and if a trace- 
less quantity is needed, it can be called either the traceless 
part of the stresslet, or the deviatoric stresslet. 

II. EXPRESSIONS FOR THE PRESSURE MOMENT OF 
A SPHERE 

First we derive a Fax&n law for the pressure moment 
by using the reciprocal theorem. We start by recallinggl” 
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that the pressure field p(x) produced by a point force F 
acting at a point y is p(x) =F* P(x-y), where 

P(X)+--. 
Next we note that the velocity field v(x) around a point 
source of fluid of strength Q located at the origin is 

v=$;=QP(x). 

The reciprocal theorem is used in the form’ 

s 
vl* (02*n)dA+ 

s 
vl- (V*a2)dV 

= 
s 

v2- (aI-n)dA+ 
s 

v20 (V*cr,)dV, 

where n is directed outward from the particle surface into 
the fluid. We take v1 to be the flow outside an expanding 
sphere whose radius is a and whose rate of volume increase 
is Q; the sphere center is at the origin. For v2, we take the 
flow generated by a point force F at y when there is a 
sphere of constant size stationary at the origin. The recip- 
rocal theorem becomes 

s $$- (ai’n)dA 

+ 
s 

QP(x) l (-F)G(x-y)dV(x) =O. 

Simplifying further, we obtain 

Q 
m (-&>-QF-P~Y)=O, 

and this gives an expression for the pressure moment as 

S,= -47&F-P(y). 

Now we observe that -F-P(y) =F*P( -y) is the pres- 
sure that would exist at the origin if the point force were 
acting in the absence of the sphere. This is the “ambient” 
pressure as seen by the sphere, usually denoted p” (x=0). 
Thus we obtain a Fax&n law in the form 

S=4n-a3p”(x=O). (1) 
The extension of this result to an arbitrary ambient flow 
follows by echoing Hinch’s argument cited in Kim and 
KarrilaY that any ambient flow can be modeled by a suit- 
able superposition of point forces. 

Next, we obtain an exact expression for the pressure 
moment of one sphere in the presence of another in terms 
of multipole expansions. We follow the notation of Jeffrey 
and Onishi7 throughout; equations taken from their paper 
will be labeled by JO. In terms of spherical coordinates 
(pa ,8, ,g) centered on sphere (Y, the quantity we wish to 
calculate is 

S= -a, -p + y $ ai sin 8, de, d$, 
a 

where U=U* i)a. Using (JO 2.3) and (JO 2. l), we obtain 

ai 
s 

p sin 8, de, d$=itra& $ pA:-“)t,t ‘f-, . (2) 
n=O 

A similar -calculation based on [JO Eqs. (2.4), (2.7), and 
(2.1>] shows that the &&3p term in the integrand inte- 
grates to 0. We should remember when comparing (2) 
with (1) that the coefficients pmn have the dimensions of 
velocity. Also, it is worth noting that the integration leads 
to a contribution poo from the sphere to its own pressure 
moment; however, this coefficient must always be zero, 
because it implies logarithmic velocities far from the 
sphere. The only contribution, then, is the pressure envi- 
ronment created by the second sphere. Since only m=O 
terms appear in the expression, we can see that only axi- 
symmetric motions will lead to nonzero pressure moments. 
This fact can also be deduced from general vector consid- 
erations. 

III. RESISTANCE FUNCTIONS 

As with the other interactions between spheres, the 
pressure moment can be expressed as a function of the 
velocities of the spheres and the ambient velocity field, 
given by 

U(x)=U,+&,Xx+E;x, 

with constant U, , 0,) and E, , in which case we are led 
to functions analogous to the resistance functions defined 
in earlier papers. We write 

Sl 0 i Pll P12 QII Q12 

s2 =p P21 P22 Q21 Q22 

(3) 

The rotations of the spheres do not appear in the equation 
because it can be shown that they do not contribute to the 
trace. Since the only vector in the problem is d, where 

d=(x2-x1)/1x2-xl] 

is the dimensionless unit vector along the line of centers 
directed from particle 1 to particle 2, clearly we have (in- 
cluding nondimensionalizing factors) 

P,=da,+a$2X $4 i4) 

Qap=rr(a,+ap)3X f$(dd-$1, (5) 

andXP n4, X af are functions only of s- 2r/( a, + ao) , where 
r= 1 x2-x1 1. The other resistance functions that are con- 
tracted with the rate of strain have been made traceless, so 
it seems reasonable to follow this practice here. The only 
symmetries obeyed by the functions are labeling ones: 

-1 
x~~(s,il)=x~_,,(,-B)(s,il 1. 
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IV. THE FUNCTIONS X cP 

A. Method of reflections 

We start by deriving the first few terms by the method 
of reflections. Suppose sphere 1 is moving with velocity 
U,= Ud toward sphere 2. The pressure field at the center 
of sphere 2 is 

p=ia+U/r”; 
hence 

and therefore 

X,q= 
4 6A3 

(1+12)2 (1+A>?& 

And, from the above relations, 

4 6A xp2=---- 
(l+A)Z (l+a)Y’ 

Sphere 2 responds to the ambient velocity induced near it 
by sphere 1 by exerting a force on the fluid; hence 

and 

18A 
“;=m* 

B. Twin multipole expansions 

These functions can be calculated using the results ob- 
tained in JO Sec. III. In terms of Pnpq defined in [JO, Eqs. 
(3.4)~( 3.9)], we have 

xg-~ (l+A>2xf2= jTil $ q$o ;P,$$+v+‘* 

For the complementary problem defined in [JO, Eq. 
(3.11)], we have 

1 
xp +- (l+a)2XP I1 4 12 

= 2 2 f$ (-1)rt+F+4+2~Pnppt~+nff+l. 
n=l p=o q=o 

From these equations, we see that the pattern observed 
with the earlier functions continues to hold, namely that 
the even and odd powers of s divide between the functions. 
Thus 

m  odd 

Y 
i 

f,(a) 
X(l+ay,+"= m=l 0'"s" (64 

TABLE I. Values of the function P$(/2), with il the size ratio of the two 
spheres, appearing in the asymptotic form of X  iB for small separation. 

/z pi”l pi”2 pfl p& 
1 -0.0118 -0.1435 0.1435 0.0118 
2 0.0930 -0.1279 0.258 1 -0.0634 
3 0.3236 -0.1283 0.3199 -0.0963 
4 0.5662 -0.1186 0.3337 -0.1024 
5 0.7925 -0.1059 0.3249 -0.0988 

10 1.6347 -0.0576 0.2286 -0.0653 
20 2.5543 -0.0237 0.1193 -0.0322 

100 4.0499 -0.0016 0.0114 -0.0029 

-4 
x.~~(s,/z)=---- 

(l+W 
(6b) 

where 

fpf1=0, f*=6il, f3=18a, 

f4=54a2, fs=--24a+i62a2+2i6a3, 

f,=432a2+498a3+2592a4+1440a5, 

fs=864a2+3888a3+7446a4+7128a5+3456a6. 

C. Lubrication theory 

The flow between nearly touching spheres has been 
studied in Jeffrey and Corless” and Jeffrey.12 Solutions 
based on an expansion in the small parameter E were given 
there. In the latter paper, it was shown that, when higher 
orders are included, not all quantities can be approximated 
successfully by considering only the flow in the gap. We 
follow the method given there to circumvent that difficulty 
by writing the pressure moment as 

s,=- s x’*u*n dA 

=arF.d-al 
s 

(n+d) *a*n dA. 

Using the known result for F and integrating the previ- 
ously obtained solution (which had been found using the 
algebra system Maple, and which was therefore easy to 
reprogram), we obtain 

and 

-g3g In ,$-‘+0(6), 0) m  odd 

and where 
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gr=3A2/(1+A)3, g2=&l-4a2)/( 1 +a)2, 

5 -97A + 64L2- 44A3 -&I4 (8) 
g3= 140(1+/2)2 ’ 

the nondimensional gap width is g=s-2 and the P$ are 
functions that we shall tabulate here (cf. Table I). We can 
notice that, as with the XA functions, the singular terms 
cancel if the two spheres have the same velocity. 

D. Arbitrary separations 

The singularities cause slow convergence of the series 
(6a) and (6b) when s is near 2. We remove them from the 
series by giving the gi appearing in (7a)-(7b) the values 
defined by (8) and then adding the left-hand side of (7a) 
to (6a), while at the same time subtracting the right-hand 
side of (7a) from (6a). If f(/Z) =2-mf(A), we write 

20' 

: 
: 
: 
: 
: 
: 

IO- \, 
: 
z ; 5 . . . . . 

'... 
xp, , 

--._ X' *-.. - ** 

$ o- 
-.-----*-.------..........~.~...........~...~.~~~~..~ ___..--.._---_. 

-10- 

x t =g* ~+[g2+g3(~s’-1)]ln~-g3s 

+ T, 
m odd 

B-4 

Mathematically this is equivalent to (6a), but numerically 
the rate of convergence has improved, because the coeffi- 
cients of Sern now decay faster by a factor me’, owing to 
cancellation. Similarly, 

(l+A12 
------x p2 4 

- 

it2 ( 

s!m a2 4g3 2 m 

(l+A)” -g1-L+m(m+2) I( 1 S ’ 
m even 

(9b) 

Numerical tabulations of X & are not given because the 
expressions and data given above are accurate to at least 
two significant digits for all s. We do tabulate the PC&A), 
however, because they provide a good test of the conver- 
gence of the series, as well as being useful in studies of 
nearly touching spheres. Expanding the leading terms in 
(9a) and comparing with (7a), we obtain 

Pt=agl+g2 ln4-2g3 
z?m 2g2 4g3 

(1+/2)m-g1-~+m(m+2) ’ (104 
m odd 

-20 -I I I I 1 I T 
2.1 2.2 2.3 2.4 2.5 2.6 

3 

FIG. 1. The functions X f1 and X p2 relating velocities to the trace of the 
first moment of the surface force distribution for equal-sized spheres are 
plotted against the separation distance scaled to the particle radius. 

(1 +A12 -p:2=;g1+g3- mz2 4 ( 
(~;;;m-gl-~ 

(lob) 

E. Results for X $ 

To illustrate the behavior of the pressure moment, in 
Fig., 1 we plot X r1 and X fz as a function of s for the case 
of identical spheres A= 1. Note that the singular behavior 
of X fi (and X f2) is proportional to the corresponding 
resistance functions X;li, etc., relating forces to transla- 
tional velocities. In Table I we give the results of summing 
the series (lOa)-( lob) for P zfi to 300 terms. We can es- 
timate the rate of convergence by making a comparison 
with sums to 200 terms, and that shows that the results are 
generally accurate to four significant figures. 

V. THE FUNCTIONS X $ 

A. Method of reflections 

If sphere 1 deforms at a rate Et = E, (kk-+I), the pres- 
sure at the center of sphere 2 is 

p=qaipE1/?. 

Hence, 

and therefore 

x,q = 
8 2oi13 

(I+/%)3 (l+#s3’ and similarly 
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There will be an ambient flow ( $alEl (ai/?)d created by 
sphere 1, which will lead to an induced S, of 

S,=8n&#($> E1=-~(ai+a2>2X~2(~)(a:/3)E1, 

imp1 ying 

Xfl = 
30/I 

Tm-FF 

B. Twin multipole expansions 

The calculation in Jeffrey8 used the problem 

E,=E,(kk-$I), 

together with the condition 

a,Er=azE2. 

This means that 

S1=8q& @EI+qdal+a2)3X f2$T2, 

6 

5 

4 
-3 

0 
x 

3 

2 

1 

0 

2.0 2.1 2.2 2.3 2.4 2.5 2.6 
s 

and therefore 
FIG. 2. The functions X ?, and X & relating the rate of strain to the trace 
of the first moment of the surface force distribution for equal-sized 
spheres are plotted against the separation distance scaled to the particle 
radius. 

Prom this we find 

x?l+ ~xf2= i 2 i ;p,,$+“rf+? 
n=l p=o q=o 

The complementary problem adds a factor ( - l)n+p+q+3 
to the summation, so we conclude 

x ?lw> = z, (l-$p 
m even 

and 

(114 

X~2=g4S-*+g51n~-‘+Q~+gsSIn~-‘, (12b) 

where 

g,=$12/(l+a)3, g2=&(a+2a2-9a3)/(i+a)3, 

s-a-2oia2+25ia3-i84a4 
g3= 28G(l+a)3 ’ 

g4=i2a3/(i+a)6, 

g5=~(-2a2+a3~2a4)/(i+a)6, 

-65a+34a2-4411a3+76a4-44a5 
a= wl+U 

m odd 

(lib) 
AS a check on our working we have the identity 

4x~~(1+a)(1+~~)-8x~~-(l+a)3x~2=o(1). 

where D. Arbitrary separations 

fo=fl=f2=o, f3=20a3, f4=30a, 

fs=90a4, f6=-72a+270a2+680a3, 

f,=720A4-t-810A5+864A6, 

As before, we have the following expressions for Qfi 
and Q F2 defined in Eqs. (12a>-( 12b): 

1 
Q;‘= -p--83 

f8=864/22+3888i13+7446/24+7128i15+3456A6. 

C. Lubrication theory 

We expect 

+ f2 (13a) 
m even 

and 

Xna& X fl $ E,=a$?*d-al (q+d) *a-n &I, utW x 
8 Q 12=igl+g2 In 4-k 

==4m3X GE -a lllu 1 
s 

(n+d) .a*n dA, 

and we obtain 
(~~;;m-&-~+m(~;2) 

m odd 

x ffl=glg-l +g2 In g-‘+Q $+g& ln C-t, (1W (1%) 
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TABLE II. Values of the function Q&(A), with A the size ratio of the two 
spheres, appearing in the asymptotic form of xeB for small separation. 

A Q:, Pi”, 05 Q& 

1 - 0.0799 0.1329 0.1329 -0.0799 
2 0.1581 0.1314 0.1332 -0.0413 
3 0.5166 0.1219 0.1263 -0.0000 
4 0.8686 0.1088 0.1146 0.0186 
5 1.1875 0.0959 0.1020 0.0262 

10 2.3350 0.0528 0.0571 0.0254 
20 3.5543 0.0226 0.0244 0.0138 

100 6.2409 0.0018 0.0020 0.0013 

E. Results for X $ 

To illustrate the behavior of the pressure moment, in 
Fig. 2 we plot X fi and X fZ as a function of s for the case 
of identical spheres d= 1. Again, the singular behavior as 
s-+2 is proportional to the corresponding force to rate of 
strain coupling Xfi, etc. In Table II we”give the results of 
summing the series ( 13a)-( 13b) for Q $ to 300 terms. We 
can estimate the rate of convergence by making a compar- 
ison with sums to 200 terms, and that shows that the re- 
sults are generally accurate to four significant figures. 

VI. OSMOTIC PRESSURE IN A DILUTE SUSPENSION 

We determine the correction to the osmotic pressure of 
a dilute suspension of Brownian hard spheres. Batchelori3 
determined the Brownian contribution to the bulk devia- 
toric stress, and here we complete that calculation for the 
isotropic stress. 

In the presence of Brownian motion there are two con- 
tributions to the bulk stress, which can be written asis 

(z)=--nkTI+2~(E)+n[(SE)+(SB)l, (14) 
where (E) is the bulk rate of strain in the material and the 
rate-of-strain and Brownian stresslets are given by 

(SE)=-=(Rscr.R&RFE-R&:(E), (15) 

(SB)=--kT(V* (Rsu*R&). (16) 

In (15)~(161, RFU, RSV, etc. are the hydrodynamic resis- 
tance tensors that couple the hydrodynamic force/torque 
to the particle velocities (RFLI), the stresslets to the veloc- 
ities (RsU), etc. (see Brady and Bossi&. Here we have 
assumed that the stresslets are not traceless, in contrast to 
the convention in the past, because we wish to determine 
the trace or pressure. In (14)-( 16), k is Boltzmann’s con- 
stant, T is the absolute temperature, and n is the number 
density of suspended particles. 

The osmotic or suspension pressure, II, is defined, me- 
chanically, as minus one-third the trace of the bulk stress: 

Il=nkT+nkT(V*A) +n(lB):(E), (17) 

where the hydrodynamic functions A and B are defined by 

A=$P*R,-:, (18) 

B=f(P*R$RFE-Q), (19) 

and P and Q are the pressure functions defined in (3). The 
procedure of obtaining (19) from (15) shows that 
P=I:Rsv and Q=I:RsE, where the resistance functions 
Rs, and RsE are regarded as the complete relations be- 
tween particle kinematics and the stresslets, as we are not 
restricting the hydrodynamic stress to be traceless. 

Under equilibrium conditions (when (E) = 03, the os- 
motic pressure is given by the first two terms on the right- 
hand side of (17), which may be shown to give precisely 
the osmotic pressure defined thermodynamically in terms 
of the free energy or interparticle potential.’ When a shear 
flow is applied, the suspension microstructure is distorted 
from its equilibrium isotropic form, and both the Brown- 
ian, nkT(V* A), and rate-of-strain, n(B):(E), contribu- 
tions to the osmotic pressure, are nonzero. When the am- 
plitude of the shearing motion is small, the distortion of the 
structure is linear and proportional to (E), which occurs 
to leading order in the P&let number, Pe=6Tpa3j/kT, 
where p= ] (E) 1, some measure of the rate of strain, for 
example, the largest principal strain rate. 

Although one might expect an 0( Pe) correction to the 
osmotic pressure, general considerations show that at equi- 
librium (B) must be proportional to the isotropic tensor, 
which contracts with (E) to give zero. (The trace of E is 
zero from the incompressibility of the material.) Thus, a 
nonzero, nonisotropic (B) must be proportional to (E), 
and hence proportional to Pe. Since the rate-of-strain con- 
tribution to the osmotic pressure is already proportional to 
(E) [cf. (17)], it is 0(Pe2>. This O(Pe”) rate-of-strain 
contribution can be determined from the 0( Pe) deforma- 
tion to the structure, which we now do for a dilute suspen- 
sion of Brownian hard spheres. 

In a similar way, the O(Pe) deformation to the struc- 
ture results in a contribution to (V l A) that averages to the 
isotropic tensor times (E), and this again gives zero. Pre- 
sumably, the next term in the development of the defor- 
mation of the microstructure is o(Pe*), and this would 
then give a nonzero, 0( Pe*), Brownian contribution to the 
osmotic pressure. Here we shall only calculate the O(Pe) 
deformation to the microstructure, and thus only the 
Q(Pe*> rate-of-strain contribution to the osmotic pressure. 

For a dilute suspension of Brownian hard spheres, 
Batchelort3 showed that it is sufficient to consider the in- 
teractions between only two particles alone in the fluid. 
The relevant microstructural quantity is the pair- 
distribution function g(r), which satisfies the following 
Smoluchowski equation: 

V*D*Vg-Pe V*Ug=O, 

with 

(20) 

g- 1, as r-rc0, 

no (D*Vg-Pe*Ug) =0, at r=2. 

Here, D = kTR& is the relative ditIusivity of two particles 
and U is the relative velocity due to the imposed shear 
flow, U=R$R FE:(E). [Care must be taken to ensure 
that the appropriate combinations of RF& etc. for two 
particles are taken to form the relative diffusivity and ve- 
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locity in (20).] All lengths have been made dimensionless 
by the particle radius a, the velocity by 1;u, and the time by 
the diffusive time scale a2/Do, where Do=kT/6n;ua is the 
diffusivity of an isolated particle. The P&let number in 
(20) measures the relative importance of shear and 
Brownian forces. 

The equilibrium solution of (20) is the Boltzmann dis- 
tribution 

go= 1, 

to U( 4). The perturbation to the equilibrium structure will 
be linear_ in (E), and therefore we define, writing 
W 4-W, 

g=go[l-Pef(s)~d.(k)*d], 

where, to leading order in Pe, f satisfies 

(21) 

$ s%$ -6Hf=-?W, 
( 1 

(22) 

with 

df 
Gx=0, at s=2 and f-+0, as s--r co. 

Here G and Hare the radial and tangential components of 
the relative diffusivity D, and may be written in terms of 
the mobility functions relating velocity to force as 

G(s) =xT1 (s) --x;;(s), H(s) =yrl (~1 -y;;(s), 

and W is defined by 

V4J=W(s)(d&.d). 

Batchelor13 wrote Win terms of two functions & and 6%’ 
(Batchelor and Green14), which relate the rate of strain to 
the axisymmetric and nonaxisymmetric motions, respec- 
tively, for a pair of particles [note that & and S4 are to be 
distinguished from A and B of (20)-(22)]: 

For equal-sized spheres, the functions L@ and S? may be 
expressed in terms of nondimensionalized (see Kim and 
Karrila’) resistance and mobility functions as 

and 

28 (s) =$(u fl --Y t) 

2($y~~--Ye)~Y~-y3 

-(y~~--y;*w::+yP,) ’ 1 
with x gaP and y & the functions relating the stresslet on 
particle (r to the force on particle fl in the formulation of 
Kim and Mifflin,‘5 X $ and Y zD the resistance functions 
relating force to rate of strain, and so forth. Equation (22) 

I 
2.0 2.5 3.0 3.5 4.0 

S 

FIG. 3. The function B(s), solid line, and -f;gf(r)B(r)dr from Eq. 
(23), dashed line labeled I, are plotted against dimensionless particle 
separation s. Here B(s) has the value - 1.33 at s=2 and the limiting 
value of I as s--r m  is -2.1. 

was solved by Batchelor13 [a factor off in (21) is included 
so the form agrees with that work], and we have repeated 
the calculation here in order to have numerical values off 
for integration in (23) below. Note that f decays as sV3 for 
large s. 

In the hydrodynamic contribution to the osmotic pres- 
sure for two spheres, B can be expressed as 

B= B(s) (dd-$I), 

where 

8s-a3p 
B(s) =3 

SJd (s) -- (x:1 -Xf*) 4 

Since the perturbation to g is proportional to dd:(E), the 
angular integration implied in the ensemble average of B 
will result in a term proportional to (E):(E). When B(s) 
is normalized with 8ra3,u/3 and the averaging is expressed 
as a probability integral over the pair-distribution function, 
we have 

1 kT 
n(B):(E) = --Liz Pe” 4” 

X 
s 

m B(s)f(s)? ds($):@). (23) 
2 

Note that the integral in (23) is absolutely convergent as 
f-s-3 and B(s) -sF3 for large s; also, note that the inte- 
grand is finite at contact, as the singularities in the P and Q 
functions cancel. Calculation of the integral gives 
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Alternatively, the result could be expressed as 
0.84 Pe &L~@):(~), corresponding to a hydrodynamic 
rather than thermal scaling of the stress. In Fig. 3, the 
nondimensional B(s) and the integral on the right-hand 
side of (23) as a function of the upper limit of integration 
are plotted; the latter, labeled 1, illustrates that the major- 
ity of the contribution is due to particles within two radii of 
the reference particle. 

A brief consideration shows why the (B):(E) contri- 
bution is positive. Two particles approaching one another 
along the compressional axis in a straining flow must force 
fluid out of the intervening region, and the pressure mo- 
ment for this interaction will be positive. For the case of 
two particles moving away from each other along an ex- 
tensional axis, the moment is therefore negative, based on 
the reversibility of Stokes flow, and tangibly because fluid 
must be “sucked” into the region between the particles. 
The equilibrium structure is distorted by the weak strain- 
ing, however, so that a second particle lies preferentially 
along the compressional axis relative to a reference parti- 
cle, as will be seen from a study of the pair distribution 
(21) . As a result, the average pressure from the interaction 
is positive. 

VII. SUSPENSION PRESSURE IN A SHEARED 
LATTICE 

In this second example, we show the behavior of the 
pressure as a function of particle volume fraction for a 
sheared simple cubic lattice of spheres. The volume frac- 
tions illustrated are #=O.lO, 0.30, 0.41, and 0.45. For a 
suspension of force- and torque-free non-Brownian 
spheres, the suspension pressure is given by the rate-of- 
strain contribution in ( 17) only: 

~~=(B):(E)=~(P~R,-:.R~~-Q):(E). ,(24) 

Equation (24) is the general form for the rate-of-strain 
pressure in any suspension, not just a periodic lattice. For 
a random suspension, for example that given by a hard- 
sphere microstructure, (B) =a( c$>I, with I the isotropic 
tensor, and this contracts with (E) to give zero. For an 
undeformed simple cubic lattice, (B) is also proportional 
to I, and there is no pressure. When the lattice is sheared 
along one of the lattice vectors, however, the instantaneous 
lattice is not simple cubic, but rather rhombohedral, and 
there is a nonzero pressure. As the lattice structure peri- 
odically repeats itself, the pressure must return to zero in 
one period. For small volume fractions, this occurs by the 
pressure taking positive values in the first half of the cycle 
and then negative values for the second half, as shown in 
Fig. 4 for 4 =O. 10 and $=0.30. The curves are antisym- 
metric about the midpoint of the cycle. At larger volume 
fractions, the values are seen to begin negative as the lattice 
is sheared away from registry; the curve is always antisym- 
metric about the midpoint of the cycle. This change of sign 
in the trace of the first moment as the particle fraction is 
increased may possibly be related to the negative second- 
order coefficient in the series expansion in C$ of the viscosity 
for a simple cubic lattice.16 We see the pressure increases 
with volume fraction as expected [the pressure is O(C$~) at 
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FIG. 4. Values of the trace of the tirst moment of the force distribution 
upon a sphere (of radius a) are plotted as a function of total strain for an 
initially simple cubic lattice undergoing simple shear flow at shear rate p 
in a fluid of viscosity p; the motion is along a lattice vector. Volume 
fractions shown are $=O.lO, 0.30,0.41, and 0.45. The lattice is at registry 
at zero strain and returns to registry tirst at a strain of unity. The trace is 
identically zero at registry and the midpoint of the cycle. The values are 
antisymmetric about the midpoint, and hence average to zero for a cycle; 
note the change of sign with incipient strain occurring near 4bO.41. 

low 4; we have plotted the instantaneous value of the pres- 
sure moment for a chosen particle, so the dependence on C$ 
is linear], although the change in sign at incipient strain at 
around $=0.41 leads to small values of the pressure for 
volume fractions near I#J =0.4 1. 

The procedure used to calculate the pressure interac- 
tions for the lattice structure involves an accounting for 
near- and far-field interactions essentially equivalent to 
that used in the Stokesian dynamics method for evaluating 
the grand resistance tensor.6 Expanding the force density 
as a series of moments about the particle centers in the 
integral formulation for the pressure,‘.” a “far-field” e&i- 
mate for the pressure at the particle of interest due to the 
moments on the other particles is calculated. We truncate 
the moment expansion at the level of the stresslet, which is 
calculated by Stokesian dynamics. When the interparticle 
distance is small, there is significant error in this approxi- 
mation. For close pairs, the resistance functions P and Q 
reported here are used to calculate the trace for the parti- 
cles, as prescribed by (3); in the flow of the lattice, there is 
no deviation of particle velocities from the bulk flow, so 
only Q:E contributes. The contributions to the pressure at 
a reference sphere by all neighbors within a distance s=4 
are calculated in this manner (s==4 being an arbitrary 
choice), and are added to the far-field estimate. For close 
pairs, this double counts that portion of the near-held in- 
teraction which is captured by the truncated moment ex- 
pansion. The leading error in the moment expansion is due 
to neglect of the change to the pressure environment of a 
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reference sphere by the induced quadrupole upon a neigh- 
boring sphere, which behaves as s-*. Hence, we subtract 
from the sum the terms in the resistance formulation of 
O(sV7) and larger. It should be noted that the pressure 
environment experienced by a particle due to the stresslet 
on a second particle behaves as sK3, with s the separation 
distance; the interactions would be nonconvergent if sim- 
ply summed pair-wise. Thus, O’Brien’s method17 for renor- 
malization of nonconvergent hydrodynamic interactions 
was applied, with Ewald summation employed to speed 
convergence of the resulting expression (see Beenakker18). 

VIII. CONCLUDING REMARKS 

The functions presented here make it possible to cal- 
culate the isotropic stress associated with rigid particle in- 
teractions in low-Reynolds-number flow. As the examples 
in the preceding sections illustrate, the functions may be 
applied in either analytical or computational contexts. 
These examples were restricted to systems where the par- 
ticle phase was under the influence of hydrodynamic and 
Brownian forces only. In general, suspensions with inter- 
particle forces (electrostatic, for example) will have a 
stress contribution associated with these forces. Hence, 
(14) will be replaced by 

(X>=--nkTI+2~(E)+n[(SE)+(Se)+(SP)l, 
(25) 

with 

(S’} = - (Rsu.R,-:+xI) l F’), 

where FP is the total (nonhydrodynamic) force exerted by 
the other particles upon the reference particle. The suspen- 
sion pressure, mechanically defined to be negative one- 
third of the trace of the bulk stress, for a system with 
hydrodynamic, Brownian, and specific interparticle forces 
is 

+dA*FP), (26) 
with (18) and (19) for A and B. The n(x*FP) is the 
familiar xFp pressure, just as found in molecular systems, 
and the last two terms are the contributions from hydro- 
dynamics. 

Efforts to model two-phase Sow have made use of the 
concept of “particle-phase pressure.” This quantity has 
not, to date, been placed on firm footing for viscously dom- 
inated suspensions; authors have given heuristic arguments 
for the scaling of the pressure with respect to system 

parameters’ or have stated that the particle interactions 
give rise to a positive pressure,3 without apparent justifica- 
tion. With the functions presented here, the pressure inter- 
actions of suspended particles in Stokes flow may be cal- 
culated. The roles of the strain rate and particle velocities 
are made clear, as is the fact that an induced pressure 
requires at least two particles. This work will, it is hoped, 
provide a means for rational investigation of the role of the 
particle-phase pressure in macroscopic models of two- 
phase flow. 
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