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Pressure of hot QCD up tog6ln„1Õg…
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The free energy density, or pressure, of QCD has at high temperatures an expansion in the coupling constant
g, known so far up to orderg5. We compute here the last contribution which can be determined perturbatively,
g6ln(1/g), by summing together results for the 4-loop vacuum energy densities of two different three-
dimensional effective field theories. We also demonstrate that the inclusion of the new perturbativeg6ln(1/g)
terms, once they are summed together with the so far unknown perturbative and nonperturbativeg6 terms,
could potentially extend the applicability of the coupling constant series down to surprisingly low tempera-
tures.
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I. INTRODUCTION

Because of asymptotic freedom, the properties of Q
might be expected to be perturbatively computable in vari
‘‘extreme’’ limits, such as high virtuality, high baryon den
sity, or high temperature. We concentrate here on the las
these circumstances, that is, temperaturesT larger than a few
hundred MeV.

The physics observable we consider is the pressure
minus the free energy density, of the QCD plasma. Poten
phenomenological applications include the expansion rat
the early Universe after it has settled into the standard mo
vacuum, as well as the properties of the apparently id
hydrodynamic expansion observed in on-going heavy
collision experiments, just shortly after impact.

In these environments, it turns out that the naive expe
tion concerning the validity of perturbation theory is too o
timistic. Indeed, even assuming an arbitrarily weak coupl
constantg, perturbation theory can only be worked out to
finite order in it, before the serious infrared problems of
nite temperature field theory deny further analytic progr
@1,2#. For the pressure, the problem is met at the 4-lo
order, orO(g6).

This leads to the interesting situation that there is a d
nite limit to how far perturbation theory needs to be push
So far, there are known loop contributions at ordersO(g2)
@3#, O(g3) @4#, O„g4ln(1/g)… @5#, O(g4) @6#, andO(g5) @7#.
There is also an all-orders numerical result available fo
theory with an asymptotically large number of fermion fl
vors @8#. The purpose of the present paper is to collect
gether results from two accompanying papers@9,10#, allow-
ing us to determine analytically the last remaini
perturbative contribution,O„g6ln(1/g)…, for the physical
QCD.

It must be understood that even if computed up to suc
high order, the perturbative expansion could well conve
only very slowly, requiring perhaps something likeT@ TeV,
to make any sense at all@7,11,12#. With one further coeffi-
cient available, we can to some extent now reinspect
issue. To do so we actually also need to assume somet
about the unknownO(g6) term, since the numerical facto
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inside the logarithm inO„g6ln(1/g)… remains otherwise un
determined. Therefore, our conclusions on this point rem
on a conjectural level, but turn out to show nevertheles
somewhat interesting pattern, which is why we would like
include them in this presentation.

Finally, it should be stressed that even if the perturbat
expansion as such were to remain numerically useless a
alistic temperatures, these multiloop computations are
worthwhile: the infrared problems of finite temperature QC
can be isolated to a three-dimensional~3D! effective field
theory @13# and studied nonperturbatively there with simp
lattice simulations@14#. However, to convert the results from
3D lattice regularization to 3D continuum regularization, a
from the 3D continuum theory to the original fou
dimensional~4D! physical theory, still necessitates a numb
of perturbative ‘‘matching’’ computations. Both of thes
steps are very closely related to what we do here, altho
we discuss explicitly only the latter one.

II. THE BASIC SETTING

We start by reviewing briefly how it is believed that th
properties of QCD at a finite temperatureT can be reduced to
a number of perturbatively computable matching coe
cients, as well as some remaining contributions from a se
of effective field theories@13#. Our presentation follows
mostly that in @11#, but there are a few significant differ
ences.

The underlying theory is finite temperature QCD with t
gauge group SU(Nc), andNf flavors of massless quarks. I
dimensional regularization the bare Euclidean Lagrang
reads, before gauge fixing,

SQCD5E
0

b\

dtE ddx LQCD, ~2.1!

LQCD5
1

4
Fmn

a Fmn
a 1c̄gmDmc, ~2.2!
©2003 The American Physical Society08-1
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where b5T21, d5322e, m,n50, . . . ,d, Fmn
a 5]mAn

a

2]nAm
a 1g fabcAm

b An
c , Dm5]m2 igAm , Am5Am

a Ta, gm
†

5gm, $gm ,gn%52dmn , andc carries Dirac, color, and fla
vor indices.

Denoting the generators of the adjoint representation
(Fa)bc52 i f abc, we define the usual group theory factors

CAdab5@FcFc#ab , CFd i j 5@TaTa# i j , ~2.3!

TAdab5Tr FaFb, TFdab5Tr TaTb, ~2.4!

dA5daa5Nc
221, dF5d i i 5TFdA /CF . ~2.5!

ObviouslyTA5CA . For the standard normalization, withNf

quark flavors,CA5Nc , CF5(Nc
221)/(2Nc), TA5Nc , TF

5Nf /2, dA5Nc
221, dF5NcNf .

We use dimensional regularization throughout this pap
The spatial part of each momentum integration measur
written as

E
p
[E ddp

~2p!d
5m22eF m̄2eS eg

4p D eE ddp

~2p!dG , ~2.6!

wherem5m̄(eg/4p)1/2, and the expression in square brac
ets has integer dimensionality. From now on we always
sume implicitly that the factorm22e is attached to some rel
evant coupling constant, so that the 4Dg2 is dimensionless,
while the dimensionalities ofgE

2 ,lE
(1) ,lE

(2) and gM
2 , to be

introduced presently, are GeV.
The basic quantity of interest to us here is minus the f

energy densityf QCD(T), or the pressurepQCD(T), defined by

pQCD~T![ lim
V→`

T

V
lnE DAm

a Dc Dc̄ expS 2
1

\
SQCDD ,

~2.7!

whereV denotes thed-dimensional volume. Boundary con
ditions over the compact time-like direction are periodic
bosons and anti-periodic for fermions. Moreover, we assu
pQCD(T) renormalized such that it vanishes atT50. To sim-
plify the notation, we do not show the infinite volume lim
explicitly in the following.

At high temperatures and a small coupling, there are p
metrically three different mass scales in the proble
;2pT,gT,g2T @13#. All the effects of the hard mass sca
;2pT can be accounted for by a method called dimensio
reduction@13,15#. Specifically,

pQCD~T![pE~T!1
T

V
lnE DAk

aDA0
a exp~2SE!, ~2.8!

SE5E ddx LE, ~2.9!

LE5
1

2
Tr Fkl

2 1Tr @Dk ,A0#21mE
2Tr A0

2

1lE
(1)~Tr A0

2!21lE
(2)Tr A0

41 . . . . ~2.10!
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Here k51, . . . ,d, Fkl5( i /gE)@Dk ,Dl #, Dk5]k2 igEAk ,
and we have used the shorthand notationAk5Ak

aT̄a,A0

5A0
aT̄a, whereT̄a are Hermitean generators of SU(Nc) nor-

malized such that TrT̄aT̄b5dab/2. Note that the quartic cou
plings lE

(1) , lE
(2) are linearly independent only forNc>4.

The relation in Eq.~2.8! contains five different matching
coefficients,pE,mE

2 ,gE
2 , lE

(1) ,lE
(2) . We are interested in the

expression forpQCD(T) up to orderO(g6T4). They will then
have to be determined to some sufficient depths, as we
specify later on. Let us here note that the leading order m
nitudes are pE;T4, mE

2;g2T2, gE
2;g2T, lE

(1);g4T, lE
(2)

;g4T.
Apart from the operators shown explicitly in Eq.~2.10!,

there are of course also higher order ones inLE. The lowest
such operators have been classified in@16#. Their general
structure is that one must add at least two powers ofDk or
gA0 to the basic structures in Eq.~2.10!. Since higher order
operators are generated through interactions with the sc
that have been integrated out,;2pT, they must also contain
an explicit factor of at leastg2. For dimensional reasons, th
schematic structure is thus

dLE;g2
DkDl

~2pT!2
LE. ~2.11!

To estimate the largest possible contributions such opera
could give, let us assume the most conservative possib
that the only dynamical scale in the effective theory is;gT.
By dimensional analysis, we then obtain a contribution

dpQCD~T!

T
;dLE;g2

~gT!2

~2pT!2
~gT!3;g7T3. ~2.12!

Therefore, all higher dimensional operators can be omit
from the action in Eq.~2.10!, if we are only interested in
computingpQCD(T) up to orderO(g6T4).

The theory in Eq.~2.10! contains still two dynamical
scales,gT,g2T. All the effects of the ‘‘color-electric’’ scale,
gT, can be accounted for by integrating outA0 @13#. Specifi-
cally,

T

V
lnE DAk

aDA0
a exp~2SE![pM~T!

1
T

V
lnE DAk

a exp~2SM!,

~2.13!

SM5E ddx LM , ~2.14!

LM5
1

2
Tr Fkl

2 1 . . ., ~2.15!

where Fkl5( i /gM)@Dk ,Dl #, Dk5]k2 igMAk , and Ak

5Ak
aT̄a.

The relation in Eq.~2.13! contains two matching coeffi
cients,pM ,gM

2 , which again have to be determined to suf
cient depths. At leading order,pM;mE

3T, gM
2 ;gE

2 . In addi-
8-2
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tion, there are also higher order operators in Eq.~2.15!. The
lowest ones can be obtained by imagining again that
apply at least two covariant derivatives to Eq.~2.15!, to-
gether with at least one factorgE

2 brought in by the interac-
tions with the massive modes. This leads to an operator

dLM;gE
2 DkDl

mE
3

LM . ~2.16!

The only dynamical scale in the effective theory bei
;g2T, dimensional analysis indicates that we then obtai
contribution of the order

dpQCD~T!

T
;dLM;gE

2 ~g2T!2

mE
3 ~g2T!3;g9T3. ~2.17!

Therefore, higher dimensional operators can again be o
ted, if we are only interested in the orderO(g6T4) for
pQCD(T).

After the two reduction steps, there still remains a con
bution from the scaleg2T:

pG~T![
T

V
lnE DAk

aexp~2SM!, ~2.18!

with SM in Eqs. ~2.14!, ~2.15!. SinceLM only has one pa-
rameter, and it is dimensionful, the contribution is of t
form

pG~T!;TgM
6 . ~2.19!

The coefficient of this contribution is, however, no
perturbative@1,2#.

In the following sections, we proceed in the opposite
rection with regard to the presentation above, from the ‘‘b
tom’’ scale g2T, producing pG(T), through the ‘‘middle’’
scalegT, producingpM(T), back to the ‘‘top’’ scale 2pT,
producingpE(T). We collect on the way all contributions u
to orderg6T4 to obtainpQCD(T)5pE(T)1pM(T)1pG(T).

III. CONTRIBUTIONS FROM THE SCALE g2T

The contribution topQCD(T) from the scalep;g2T is
obtained by using the theoryLM in Eq. ~2.15! in order to
computepG(T), as defined by Eq.~2.18!. As is well known
@1,2#, the computation involves infrared divergent integra
starting at the 4-loop level. This is a reflection of the fact th
LM defines a confining field theory. Therefore,pG(T) cannot
be evaluated in perturbation theory.

What can be evaluated, however, is the logarithmic ul
violet divergence contained inpG(T). For dimensional rea-
sons, the nonperturbative answer would have to be of
form
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pG~T!

Tm22e
5dACA

3
gM

6

~4p!4 FaGS 1

e
18ln

m̄

2mM
D 1bG1O~e!G ,

~3.1!

where mM[CAgM
2 . Now, because of the supe

renormalizability ofLM , the coefficientaG can be computed
in 4-loop perturbation theory, even if the constant partbG
cannot@29#.

Of course, if we just carry out the 4-loop computation
strict dimensional regularization, then the result vanishes,
cause there are no perturbative mass scales in the prob
This means that ultraviolet and infrared divergences~errone-
ously! cancel against each other. Therefore, we have to
more careful in order to determineaG.

To regulate the infrared divergences we introduce by h
a mass scale,mG

2 , into the gauge field~and ghost! propaga-
tors. This computation is described in detail in@9#. Individual
diagrams contain then higher order poles, like 1/e2, as well
as a polynomial of degree up to nine in the gauge param
j. However, terms of both of these types cancel in the fi
result, which serves as a nice check of the procedure.

As a result, we obtain

pG~T!

Tm22e
'dACA

3
gM

6

~4p!4 FaGS 1

e
18ln

m̄

2mG
D 1b̃G~j!1O~e!G ,

~3.2!

where ‘‘' ’’ is used to denote that only the coefficientaG
multiplying 1/e is physically meaningful, as it contains th
desired gauge independent ultraviolet divergence, define
Eq. ~3.1!. The value of the coefficient, obtained by extensi
use of techniques of symbolic computation~implemented
@17# in FORM @18#!, is @9#

aG5
43

96
2

157

6144
p2'0.195715. ~3.3!

On the contrary, the constant partb̃G(j) depends on the
gauge parameterj, because the introduction ofmG

2 breaks
gauge invariance, and has nothing to do withbG in Eq. ~3.1!.

IV. CONTRIBUTIONS FROM THE SCALE gT

We next proceed to include the contribution from t
scalegT, contained inpM(T), as defined by Eq.~2.13!. By
construction, Eq.~2.13! assumes that all the infrared dive
gences of the expression on the left-hand side are conta
in pG(T), defined in Eq.~2.18!, and determined in Eq.~3.1!.
Therefore, if we compute the functional integr
(T/V)ln@*DAi

aDA0
a exp(2SE)# using strict dimensiona

regularization~i.e., without introducing by hand any mas
mG for the gauge fieldAi), wherebypG(T) vanishes due to
the cancellation between infrared and ultraviolet divergen
mentioned above, we are guaranteed to obtain just the in
red insensitive matching coefficientpM(T). This is exactly
the computation we need, and carry out in@10,19#. It may be
mentioned that we have checked explicitly the infrared
8-3
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sensitivity of the result, by giving an equal mass to bothA0
and Ai in the 4-loop expression for the functional integra
and then subtracting the graphs responsible forpG(T), with
the same infrared regularization. This result is also indep
dent of the gauge parameter.

Keeping terms up to orderO(g6T4), the full outcome for
pM(T) is

pM~T!

Tm22e
5

1

~4p!
dAmE

3F1

3
1O~e!G

1
1

~4p!2
dACAgE

2mE
2F2

1

4e
2

3

4
2 ln

m̄

2mE
1O~e!G

1
1

~4p!3
dACA

2gE
4mE

3F2
89

24
2

1

6
p21

11

6
ln21O~e!G

1
1

~4p!4
dACA

3gE
6FaMS 1

e
18ln

m̄

2mE
D 1bM1O~e!G

1
1

~4p!2
dA~dA12!lE

(1)mE
2F2

1

4
1O~e!G

1
1

~4p!2
dA

2dA21

Nc
lE

(2)mE
2F2

1

4
1O~e!G , ~4.1!

where@10#

aM5
43

32
2

491

6144
p2'0.555017. ~4.2!

The finite constantbM can be expressed in terms of a num
ber of finite coefficients related to 4-loop vacuum scalar
tegrals@10#, but we do not need it here.

In addition topM(T), we also need to specify the effec
tive parametergM

2 appearing inLM , to complete contribu-
tions from the scalegT. It is of the form

gM
2 5gE

2@11O~gE
2/mE!#, ~4.3!

where the next-to-leading order correction is known~see,
e.g.,@20#!, but not needed here.

V. CONTRIBUTIONS FROM THE SCALE 2 pT

The contributions from the scale 2pT are contained in the
expressions for the parameters of the previous effective th
ries, as well as inpE(T). We write these as
10500
n-

-

o-

m2epE~T!5T4S aE11g2@aE21O~e!#1
g4

~4p!2
@aE31O~e!#

1
g6

~4p!4
@bE11O~e!#1O~g8!D , ~5.1!

mE
25T2S g2@aE41aE5e1O~e2!#

1
g4

~4p!2
@aE61bE2e1O~e2!#1O~g6!D , ~5.2!

gE
25TS g21

g4

~4p!2
@aE71bE3e1O~e2!#1O~g6!D ,

~5.3!

lE
(1)5TS g4

~4p!2
@bE41O~e!#1O~g6!D , ~5.4!

lE
(2)5TF g4

~4p!2
@bE51O~e!#1O~g6!G , ~5.5!

whereg2 is the renormalized coupling. We have named e
plicitly ( aE,bE) the coefficients needed up to orderO(g6).
The actual values for those needed at orderO@g6ln(1/g)#,
denoted byaE, are given in Appendix A. The additiona
coefficients needed at the full orderO(g6) are denoted by
bE; some of these are also known~for bE4,bE5, e.g., see
@21#!. The rest of the terms contribute only beyondO(g6).

The expression forpE(T) is simply the functional integra
in Eq. ~2.7!, calculated to the 4-loop level in the modifie
minimal subtraction (MS) scheme, but without any resum
mations. The only physical scale entering is thus 2pT. The
calculation has so far been carried out only to three lo
@6,11# so thatbE1 is not known. Even when performed wit
the fully renormalized theory, the results in general cont
uncancelled 1/e poles, as explicitly seen in the 3-loop ex
pression in Eq.~A3! for aE3. These only cancel when
physical fully resummed quantity is evaluated, i.e., in t
sumpQCD5pE1pM1pG. Similarly, mE

2 ,gE
2 ,lE

( i ) can be ob-
tained, for instance, from suitable 2-, 3-, and 4-point fun
tions, respectively.

VI. THE COMPLETE RESULT

Combining now the results of Secs. III, IV, V and expan
ing in g, we arrive at
8-4
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pQCD~T!

T4m22e
5

pE~T!1pM~T!1pG~T!

T4m22e

5g0$aE1%1g2$aE2%1
g3

~4p! H dA

3
aE4

3/2J 1
g4

~4p!2 H aE32dACAFaE4S 1

4e
1

3

4
1 ln

m̄

2gTaE4
1/2D 1

1

4
aE5G J

1
g5

~4p!3 H dAaE4
1/2F1

2
aE62CA

2S 89

24
1

p2

6
2

11

6
ln2D G J 1

g6

~4p!4 H bE12
1

4
dAaE4F ~dA12!bE41

2dA21

Nc
bE5G

2dACAF1

4
~aE61aE5aE713aE4aE71bE21aE4bE3!1~aE61aE4aE7!S 1

4e
1 ln

m̄

2gTaE4
1/2D G

1dACA
3FbM1bG1aMS 1

e
18ln

m̄

2gTaE4
1/2D 1aGS 1

e
18ln

m̄

2g2TCA
D G J 1O~g7!1O~e!. ~6.1!
to

e
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Utilizing the expressions in Appendix A, the terms up
orderO(g5) reproduce the known result in@7#.

For the contribution at orderO(g4), the 1/e divergence in
aE3 @cf. Eq. ~A3!# and the 1/e divergence frompM(T),
shown explicitly in Eq.~6.1!, cancel. This must happen sinc
pQCD(T) is a physical quantity. The associatedm̄ ’s also can-
cel, but a physical effect ln@mE/(2pT)#; ln(gaE4

1/2) remains
@5#.

For the contribution at orderO(g6), a number of un-
known coefficients remain~thebE’s, bM , bG), but a similar
cancellation is guaranteed to take place. In addition, the
sult must be scale independent to the order it has been c
puted. The first point can be achieved bybE1 ~the otherbE’s
are finite!, so that it has to have the structure

bE1[dACA~aE61aE4aE7!
1

4e
2dACA

3~aM1aG!
1

e
1bE6,

~6.2!

wherebE6 does not contain any 1/e poles. The latter point
can be achieved by adding and subtracting ln@m̄/(2pT)#’s,
such thatm̄ gets effectively replaced by 2pT in the loga-
rithms visible in the O(g6) term in Eq. ~6.1!. The
ln@m̄/(2pT)#’s left over, together with those coming from th
bE’s, serve to cancel the effects from the 2-loop running
g2(m̄) and 1-loop running ofg4(m̄) in the lower order con-
tributions, without introducing large logarithms.

This general information is enough to fix the contributio
of order O„g6ln(1/g)… to pQCD(T). Indeed, after inserting
Eq. ~6.2! and reorganizing the logarithms appearing in t
bE’s as mentioned, there remains a logarithmic 4-loop te

pQCD~T!

T4m22e U
g6ln(1/g)

5g6
dACA

~4p!4
$~aE61aE4aE7!ln~gaE4

1/2!

28CA
2@aMln~gaE4

1/2!12aGln~gCA
1/2!#%,

~6.3!
10500
e-
m-

f

,

whereaE4 is in Eq. ~A4!, aE6 is in Eq. ~A6!, aE7 is in Eq.
~A7!, aM is in Eq. ~4.2!, and aG is in Eq. ~3.3!. Note that
there are logarithms of two types, with different non-analy
dependences on group theory factors inside them. Equa
~6.3! is our main result.

Following @7,11#, let us finally insertNc53, and give also
the numerical values for the various coefficients, for an ar
trary Nf . We obtain

pQCD~T!5
8p2

45
T4F(

i 50

6

piS as~m̄ !

p D i /2G , ~6.4!

where

p0511
21

32
Nf , ~6.5!

p150, ~6.6!

p252
15

4 S 11
5

12
Nf D , ~6.7!

p3530S 11
1

6
Nf D 3/2

, ~6.8!

p45237.2115.96Nf20.4150Nf
2

1
135

2 S 11
1

6
Nf D lnFas

p S 11
1

6
Nf D G

2
165

8 S 11
5

12
Nf D S 12

2

33
Nf D ln

m̄

2pT
, ~6.9!
8-5
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p55S 11
1

6
Nf D 1/2F2799.1221.96Nf21.926Nf

2

1
495

2
S 11

1

6
Nf D S 12

2

33
Nf D ln

m̄

2pT
G , ~6.10!

p65F2659.2265.89Nf27.653Nf
21

1485

2
S 11

1

6
Nf D

3S 12
2

33
Nf D ln

m̄

2pT
G lnFas

p
S 11

1

6
Nf D G

2475.6ln
as

p
1qa~Nf !ln

2
m̄

2pT
1qb~Nf !ln

m̄

2pT

1qc~Nf !, ~6.11!

where qa(Nf), qb(Nf), qc(Nf) are as-independent polyno-
mials in Nf . Two of them,qa(Nf), qb(Nf), can already be
written down because they just cancel them̄ dependence
arising from the terms of ordersas(m̄), as

2(m̄):

qa~Nf !52
1815

16 S 11
5

12
Nf D S 12

2

33
Nf D 2

, ~6.12!

qb~Nf !52932.9142.83Nf216.48Nf
210.2767Nf

3 .
~6.13!

The third one,qc(Nf), remains, however, unknown.

VII. THE NUMERICAL CONVERGENCE

This section is devoted to a numerical discussion of
result. Since theO„g6ln(1/g)… term cannot be given an un
ambiguous numerical meaning until theO(g6) term is speci-
fied, we have to present the result for various choices of

latter. In the relevant range ofT/LMS the outcome will de-

10500
e

e

pend sensitively, even qualitatively, on this uncompu
term. One choice will be seen to agree with 4D lattice d
down to aboutT/LMS;2 . . . 3. Since, however, dimensiona
reduction, that is, an effective description of QCD via t
theory in Eq.~2.10!, is known to break down at about thi
point, and we have only kept a finite number of terms in t
expansion following from Eq.~2.10!, this cannot really be
considered a prediction, even if the eventual computation
the O(g6) term gave just the appropriate value. It is just
observation that a smooth transition from the domain of
lidity of our results to a domain of different approximation
should be possible.

A standard procedure in the discussion of perturbative
sults would be to take the expansion in Eq.~6.4! and to study
whether its scale dependence is reduced when further or
of perturbation theory are included. As is well known sin
@6#, this fails for the pressure, unlessT@LMS. Related to
this, the numerical convergence of the perturbative exp
sion is known to be quite poor for any fixed scale choice
least for temperatures below the electroweak scale@7,11,12#.
The new term we have computed does not change this
eral pattern. But the culprit is known: it ispM(T)1pG(T)
emerging from the 3D sector of the theory, where the exp
sion parameter is onlygE

2/(pmE);g/p. In contrast, for
pE(T) as well as for, say, jet physics, the expansion para
eter isas /p, and there are good reasons to expect numer
convergence to be much better.

For these reasons, we will only discuss the sensitivity
the result on the so far unknownO(g6) coefficient, as well as
the slow convergence of the 3D sector, in the following. F
simplicity, we only consider the caseNc53, Nf50 here.

As in @14#, the actual form we choose for plotting con
tains pM(T)1pG(T) @Eqs. ~4.1!1~3.1!# in an ‘‘un-
expanded’’ form, that is, withmE, gE

2 inserted from Eqs.
~5.2!, ~5.3!, andgM

2 from Eq. ~4.3!. This means that we are
effectively summing up higher orders: theO(g3) term is
really O(g21g4)3/2, while theO„g6ln(1/g)… term contains a
FIG. 1. Left: perturbative results at various orders~the precise meanings thereof are explained in Sec. VII!, including O(g6) for an
optimal constant, normalized to the non-interacting Stefan-Boltzmann valuepSB. Right: the dependence of theO(g6) result on the~not yet
computed! constant, which contains both perturbative and nonperturbative contributions. The 4D lattice results are from@22#.
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resummed coefficient, being then effectivelyO„(g2

1g4)3ln(1/g)…. We proceed in this way because then a co
parison with numerical determinations@14# of the slowly
convergent partpM(T)1pG(T) is more straightforward, and
also because the resummations carried out reduce them̄ de-
pendence of the outcome. However, we have checked
the practical conclusions remain the same even if we
directly the expression in Eqs.~6.4!–~6.11! ~but with a larger
scale dependence!.

To be specific, the genuineO„g6ln(1/g)1g6
… contribu-

tion, which collects the effects from all the terms involvin
the bE’s, bM , bG, aM , andaG in Eq. ~6.1!, is now written
in the form ~specific for Nc53, Nf50, where mE/gE

2

;1/g),

dF pQCD~T!

Tm22e G
g6ln(1/g)

[ 8dACA
3

gE
6

~4p!4

3F ~aM12aG!ln
mE

gE
2

1dG ,

~7.1!

while the remainingO(g6) terms of Eq.~6.1! are contained
in the resummed lower order contributions. The results
shown in Fig. 1 for various values ofd. The power ofg
labelling the curves indicates the leading magnitude of
highest order resummed contribution appearing. The sca
chosen asm̄'6.7T, as suggested by the next-to-leading
der expression forgE

2 @12#. We observe that for a specifi
value ofd, the curve extrapolates well to 4D lattice data.

While Fig. 1 looks tempting, the question still remai
whether the good match to 4D lattice data with a spec
value of the constant is simply a coincidence. This issue
be fully settled only once the constant is actually comput
However, we can already inspect how the slowly converg
part of the pressure,pM1pG, really behaves.

The different finite terms in (pM1pG)/(TgE
6) are plotted

in Fig. 2. ThelE
( i ) contributions are negligible. The resul

depend then essentially only onmE
2/gE

4 , which for Nc

53, Nf50 is mE
2/gE

4'0.32log10(T/LMS)10.29. We observe
that the leading 1-loop termO(g3) is dominant forT/LMS
*10, the 3-loop termO(g5) is rather big, bigger in absolut
value than the 2-loop termO(g4) within the T-range of the
figure, while the 4-loop term is always very small. Therefo
while it is quite possible that there is again a big ‘‘odd
O(g7) contribution, it is perhaps not completely outrageo
either to hope that the convergence could also already
reasonable, once the fullO(g6) contribution is included. If
this were the case, then all higher order contributions wo
have to sum up to a small number.

Finally, it is perhaps interesting to remark that at the tim
of the numerical lattice Monte Carlo study in Ref.@14#, noth-
ing was known about the coefficientbE1, which was there-
fore set to zero@cf. Eq. ~4! in @14##, while the partpM(T)
1pG(T) was determined nonperturbatively. But this mea
10500
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that a logarithmic term coming from the scale 2pT, ;

2g6(aM1aG)ln@m̄/(2pT)#, was missed. With the scal

choicem̄[m̄E5gE
2 within results obtained withLE, this con-

verted to a missingO„g6ln(1/g)… contribution g6(2aM

12aG)ln(1/g). With the same scale choice th
nonperturbative part, on the other hand, contribu
2g6aMln(1/g) and led to the wrong curvature of the pre
sure seen at smallT/LMS. Adding the missing part, which
now has been computed, leads to a total ofg6(aM

12aG)ln(1/g), with the opposite sign and the correct~i.e.,
the one seen in 4D lattice measurements! curvature in Fig. 1
~for small values ofd). Therefore theO„g6ln(1/g)… terms
are indeed physically very relevant.

VIII. CONCLUSIONS

We have addressed in this paper the 4-loop logarith
contributions to the pressure of hot QCD. Physical~regular-
ization independent! logarithms can only arise from a ratio o
two scales. Since there are three parametrically differ
scales in the system, 2pT,gT, g2T, there are then various
types of perturbatively computable logarithms in the 4-lo
expression for the pressure:

~1! Logarithms of the typeg6ln@(2pT)/(g2T)#. The coeffi-
cient of these is computed in@9#, and given in Eq.~3.3!.

~2! Logarithms of the typeg6ln@(2pT)/(gT)#. The coeffi-
cient of these is computed in@10#, and given in Eq.~4.2!.

~3! Logarithms related to the running of the coupling co
stant in the 3-loop expression of orderO„g4ln@(2pT)/(gT)#….

Their MS coefficient can be seen in the first term in E
~6.3!, but it depends on the scheme, and can in principle e
be chosen to vanish.

Logarithms of the first and second types can be written
many ways: it may be more intuitive, for instance, to reo
ganize them as

FIG. 2. The absolute values of the various terms of the slo
convergent expansion forpM(T)1pG(T), normalized byTgE

6 .
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g6aGlnS 2pT

g2T
D 1g6aMlnS 2pT

gT D
5g6~aM1aG!lnS 2pT

gT D 1g6aGlnS gT

g2T
D .

~8.1!

The existence of three kinds of logarithms is somewhat s
cific to non-Abelian gauge theory. In QED, in particula
none of the logarithms appear. This is due to the fact that
effective theories we have used for their computation, E
~2.10!, ~2.15!, are non-interacting@apart from a term;A0

4 in
Eq. ~2.10!, which does not lead to logarithms#. Therefore we
have nothing to add to the knownO(g5) QED result ob-
tained in @23#. In the f4 scalar theory, on the other han
there is a logarithm of the second type, and also one so
what analogous to the third type. Their coefficients were
ready computed in@24#.

There are interesting checks that can be made on the
ous logarithms mentioned, using methods completely dif
ent from those employed here. For instance, logarithms
the first and second types could in principle be seen with
lattice Monte Carlo methods@25,26#, as well as with stochas
tic perturbation theory@27#. A very interesting analytica
check would be to compute the 4-loop free energy directly
4D in strict dimensional regularization, but without any r
summation. By definition, this computation produces the
efficientbE1 in Eq. ~5.1! @11#, and one check is that the resu
must contain the 1/e divergences shown in Eq.~6.2!.

To complete the free energy from the current lev
O„g6ln(1/g)… to the full level O(g6) would require signifi-
cantly more work than the computation presented here. M
specifically, there are contributions from all the scales in
problem, ranging from 2pT ~the coefficientsbE1, . . . ,bE5),
through gT ~the coefficient bM), down to the non-
perturbative scaleg2T ~the coefficientbG). This then re-
quires carrying out 4-loop finite temperature sum-integra
4-loop vacuum integrals ind5322e, 4-loop vacuum inte-
grals in 3D lattice regularization, and lattice simulations
the pure 3D gauge theory in Eq.~2.15!. Nevertheless, given
the potentially important combined effect of all these con
butions, as indicated by Fig. 1, such computations wo
clearly be well motivated.
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APPENDIX: MATCHING COEFFICIENTS

In Eqs.~5.1!–~5.5! we have defined a number of matchin
coefficients, theaE’s and bE’s. For theaE’s, the following
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expressions can be extracted from@11,15,28#:

aE15
p2

180
~4dA17dF!, ~A1!

aE252
dA

144S CA1
5

2
TFD , ~A2!

aE35
dA

144
FCA

2 S 12

e
1

194

3
ln

m̄

4pT
1

116

5
14g1

220

3

z8~21!

z~21!

2
38

3

z8~23!

z~23!
D

1CATFS 12

e
1

169

3
ln

m̄

4pT
1

1121

60
2

157

5
ln218g

1
146

3

z8~21!

z~21!
2

1

3

z8~23!

z~23!
D

1TF
2 S 20

3
ln

m̄

4pT
1

1

3
2

88

5
ln214g1

16

3

z8~21!

z~21!

2
8

3

z8~23!

z~23!
D 1CFTFS 105

4
224ln2D G , ~A3!

aE45
1

3
~CA1TF!, ~A4!

aE55
2

3
FCAS ln

m̄

4pT
1

z8~21!

z~21!
D

1TFS ln
m̄

4pT
1

1

2
2 ln21

z8~21!

z~21!
D G , ~A5!

aE65CA
2 S 22

9
ln

m̄eg

4pT
1

5

9
D 1CATFS 14

9
ln

m̄eg

4pT
2

16

9
ln211D

1TF
2 S 2

8

9
ln

m̄eg

4pT
2

16

9
ln21

4

9
D 22CFTF, ~A6!

aE75CAS 22

3
ln

m̄eg

4pT
1

1

3
D 2TFS 8

3
ln

m̄eg

4pT
1

16

3
ln2D .

~A7!

Note that with our notation, the 1-loop running of the reno
malized coupling constant goes as

g2~m̄ !5g2~m̄0!2
2

3
~11CA24TF!

g4~m̄0!

~4p!2
ln

m̄

m̄0

. ~A8!
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