" NOTICE
- CERTAIN DATA
CONTAINED IN THIS
- DOCUMENT MAY BE
DIFFICULT TO READ
N MICROFICHE
PRODUCTS.




CONF-401007- -]

UCRL-CR--103909

DE91 000946

TG 000

THE PRESSURE RELAXATION OF LIQUID JETS
'AFTER ISOCHORIC HEATING

X.M. Chen and Virgil E. Schrock
Deparanent of Nuclear Engineering
University of California at Berkeley
Berkeley, CA 94720
(415) 642-6431

Paper Proposed for
the Ninth Topical Meeting on Technology of
Fusion Energy

October 7-11, 1990, Oak Brook, IL

Work performed under the auspices of the U.S, Department of Energy
by the Lawrence Livermore National Laboratory under conmact W-7405-

Eng-48

T
Ty

DISTRIBUTION OF THIS pocume

0 M oy . LT T I T I " ' ! L1

/ //, P

-
NT IS UNLIMITES



el IO

DISCLAIMER

Work performed under the auspices of the ULS, Depart-
ment of Energy by Lawrence Livermore National Labora-
tory under contruct number W-7405-ENG-48,

This document was prepared as an account of work
sponsored by an agency of the United States Government,
Neither the United States Government nor the Univers.y of
Californin nor any of their employees, makes any warranty,
express or implied, or assumes any legal lability or respon-
sibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights, Reference herein to any specifie commercial prod-
uets, process, or service by teade name, trademirk, manufac-
turer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United
States Government or the Usiversity of California, The
views and opinions of authors expressed herein do not neces-
‘sarily state or reflect those of the United States Government
or the University of California, and shall not be used for
advertising or product endorsement purposes,

Con e o

"

.

"oy



1

e s et

BEET L CE o it e
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ABSTRACT

During isochoric heating by fast neutron irradiation, a
high pressure is almost instantaneously built up inside
the falling liquid jets in a HYLIFE (ICF) reactor. Ithas
been suggested that the jets will breakup as a
consequence of negative pressure ocourring during the
relaxation™®, This is important 1o both the subscquent
condensation process and the chamber wall design, In

this paper the mechanism of the relaxationof liquid jets

after isochoric heating has becn studied with both .

incompressible and compressible models.  The
transient pressure ficld predicted is qualitatively similar
for bath models and reveals a srongly peaked tension
in the wake of a rarefaction wave. The pressure then
rises monotonically in radius to zero pressure on the
boundary. The incompressible approximation greatly
over predicts the peak tension, which jncreases with
time as the rarefaction wave moves toward the center
of the jet. Since the tension distribution is as a narrow
spike rather than uniform, a cylindrical fracture is the
mogt likely mode of failure. The paper also discusscs
the available methods for estimatng liquid tensile
strength, ‘ ‘

INTRODUCTION

The HYLIFE design study’ considered the possibility
that isochoric heating of neutron absorbing liquid jets
would cause fragmentation of the liquid, Tt was
recognized that the relaxation of the initial high liquid
pressure would produce tension within an outward
radial fiow. However, the flow ficld during relaxation
was not snalyzed but rather an implicit assumption was
that tension occurs uniformty throughout the liquid. As
a part of the current HYLIFE- 1l study (molten saltFlibe
replacing lithium) we have analyzed the velocity and

ressure fields using incompressible and compressible

luid models in order to gain greater insight into the
fragmentation problem. Results of the incompressible
model, which assumes the liquid is incompressible
everywher¢ exceplat a thin wave front, were presented
previously’. It was found that a sharp peak tension

occurs immediately behind the advancing rarefsction

wave and the pressure then rises monotonically in

Work performed under the auspices Of the uU§
Department of Energy by the Lawrcnce Livermore
National Laboratory under Contract W-7405-Eng-48

radius to zero on the boundary., The magnitude of the

instantaneous tension increases very rapidly asthe

wave approaches the center of the cylindncal }/e.t and

g;%cnding on the inltial pressure, the liquid may
ture.

Because there is a sharp peak in the tension, it
appears that fracture will most likely occur in 2
cylindrical surface. Such a fracture would set free an
annulus of liguid whichis in outward radial motion with
2e£0 pressure on bath boundaries. As the rarefaction
wave continues into the undisturbed core of the fluid
the process is repeated so that the cylinder may break
into a)sen'es of hiquid annuli (sirnilar 10 sections of an
onion).

The incompressible model is not exaci. We know
that rarefaction waves tend to broaden as the move and
the wave docs not appear as a discontinuity, Also the
range of grcssures predicted suggest that the motion is
affected by compressibility. For this reason we have
developed a compressible model for the problem.

COMPRESSIBLE FLUID MODEL

Figure 1, The Description of the Relaxation Jet
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The relaxation process begins with the liquid

‘cylindrical region at & uniform high pressure induced

by uniform (assumed) ncutron pulsed heating (sco
Figure 1). The leading edge of a rarefaction wave
maoves at the sound speed C toward the center of the

cylinder, Thus, at any instant, we have an undisturbed
~ ¢ylindrical core (region ) and an annular zone (region

10) that has expenienced expansion and is moving
radially outward, The motion is region II is one
dimensional and the govering conservation equations

are (herefore the following®
Mass
%1 -

Radial Momentum

ov, av,) oP
)--—a—; | (2)

(TG
where viscosity is neglected,

The relationship between density and pressure
during an isentropic process may be expressed as

p=pP.S) . €)
Initial and boundary conditions are:
1.C. ‘

Plr)="Py r Ry (4a)
p(r) = Po rsR, (4b)
V(r)=0, r<k, (4¢)

BLC. |
PR =0 (5a)
POD (5b)

Following Chaudhry* we introduce the sound speed

K dr
P EAREY Bk 6
C=1 5 ’\f PR (6)

where K is the bulk modulcs of elasticity of the liquid.
The continuity Equation 1 Lecomes, since we have
VIC « 1,

oP 0V, 2 Ve
al+pc ar~+pc T"O . M
Similarly the momentum equation reduces to
oV, P
P @

The equations arc then solved numerically.

L R I TR IR B VDR T

NUMERICAL SOLUTION METHOD

The Gabutti scheme’ is a suitable method for the

" numerical solution of compressible relaxation. In this

scheme, the go verning equations are first transforrned
into the characteristics form and the partial derivatives
are replaced by the finite difference approximations.
The scheme is comprised of two steps: predictor and
corrector. The predictor part is further subdivided into
two parts,

By adding Equation 8 to the product of Equation 7 and

N, we have

9P nap), (8V, pCcv, Y
(ax*par)”('ér*"n—ﬂ*”c F=0 O
Let . wp=didt=pCl . (10)

It follows from this equaton that the charucteristic
dircctions are:

A =dridt =4C (¢3))
Ne=dridt=~C . (12)

After further combination and simplificailon we
obtain the characieristic equations

oP LOPY 0P
5 +0-5()\. "5;—+x "é}")

oV dvr 4V
+O.5pC(x*-éT.-x'r5r—]+pc’~;—=0 (13

and

d or

05(,,pt ,_ar)_
+pc(l.-§;'—).—é-;‘]-0 ! (14)

in which the superscripts indicate the characteristic
directions along which the derivative are 10 be
approximated.

v C v
%_r + 0.{;\«?}_’1 + )C%)
t ar

Substitution of finite difference approximations for
the time derivatives into equations (13) and (14) yields

the predicted values of V; and £ :

" = /. 4?.‘2: '..df.:
P/ =P o.sm(x 5+ ar)
vy av; Ve .
~0.5pC AN =L = N e | = pCi—A (15
p (x 5 7‘<arJ e~ (1%)

; .

!
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ar or

05 (., 0P _ 0P
pc“(’”?ﬁ“?)

7+ -
V=V o.sm(yﬂf:. + ;VQY..)

(16)

The spatial derivatives in Equation (15) and (16) are
approximated as follows.

Predictor Part

Part 1! Calculating the predicted values of P and
Vv, which are going to'be used in the corrector part, In
this part, the following finite-difference
approximations are used to determine the values of P/
and V. from equation (15) and (16): .

aF‘_Ff"Ff.-l
CAN A an
?EMF{H"F/
o Ar (18)

Part 2; To determine the predicted values of time
derivatives oP “/gt and 0V '/at in equation (13) and (14)
the following finie-difference approximations are

used:
%}:,“_‘z?F{-BfZ'r_ﬁ-F{_; 19
%;=—M{+3g+l~F!,2 0)
Correct Part

In this part, we want to find the other set of JP/dt
and 3V/3r, This time the derivatives dV'/3r and oP/dr,
take the finite-difference approximations shown below
and £*and V" are from (15) and (16).

aF* F:‘F,"_
or A ‘ @)
oF~ I, =F/
T e

Then the values of V oand P at the new time are
determined from the following equations:

e R

L C P £ B TSI S N U RO IR TSV C

P'f”:: / SAL ?f..,.: ?.f-) 2
] f’.+05) (d: 57 (23)
I v 0.5A8 9!_ .Q.‘./,) )
1% 1405 (a‘ 5 (24)

Note that the above discretization is possible onls at
nodes 3.4,..,,n-2 during part20mxcgredicmrstep. ne
sided differences are used at nodes 2 and n-1,

Boundary conditions

In our problem, the border is changing' with time,
When the surface velocity is positive the size R s

increasing; otherwise it is decreasing. It can be
determined by :
RU+AD =R+ V(R, A (29)

From Equation 17, we have two one-sided
finite-difference equations at A =+p(C Equations 21
and 22, At the downstream end we can make use of
Equation 21, while at the upstream end Equation 22 can
be used. Inour problem, the surface is the only interface
with surrounding, It is "downstream"” in terms of the
fluid veloclty direction. So, Equation 21 ig used for
surface nodes with the knowledge that 0P /9t m 0, Thus
we have

) 1ap‘ +av’+ V’ .
aV/81=-E$-~l 3;"—‘0'7‘. (26)

At the center of the jet the pressure profile must be
symmetrical. Andthe fluid velocity must be zero. That
is to say ‘

P(Ar)=P(-Ar)

Vir=0)=0

@7

We must also notice that during the predictor part
we can not write out the forward fintte-difference at the
downstream  boundary (nor the  backward
finite - difference at the upstream), i.¢,, in order 1o solve
a boundary node n we must have the values at the node
n+1. To solve this problem, we need to extrapolate
the boundaries by assuming fictitions nodes beyond the
boundaries. The fictitious values of pressure and
velocity can be extrapolated using the following
cquations®;

fa=u-1.,
A=~

(284)
('281)5

Now we can use the finite-difference equations at the
boundary nodes 1 and n.
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RESULTS OF COMPRESSIBLE ANALYSIS AND
COMPARISON WITH INCOMPRESSIBLE -
ANALYSIS

Figure 2, The Pressure History of Compressible
Analysis .

Figure 3. The Pressure History of Incompressible
Model

Firom Figure 2, we can see that the pressure history
within the relaxing jet is similar (o the incompressible
analysis result shows in Figure 3, The tiquid behind
the rarefaction wave front is in negative pressure
(lension) domain, As the process proceeds, the tension
at a local position does not change much, But the
tension right behind the wave front’ is increasing
steadily as the wave front proceeds. As a characteristic
of racefaction wave propagation we can also sce that
the wave front is broadening in Figure 2, The

incompressible analysis obviously can not show thls‘

feature,

Allhough both compressible and incompressible’

analysis have the similar shapes of pressure profile, the
magnitude of the tension in liquid is different. The
incompressible model over predicts the magnitude of
the tension. The predicted peak tensions are compared
in Figure 4 where peak (casion is plotted as a function
of the position of the peak, It is seen that error in the

Figurc 4. The Comparison of Local Peak Tension

incompressible result increases at an ever increasing
rate.  The incompressible theory predicts infinite
tension when the wave reachesthe cenierofthe cylinder

- while a finite maximum value s predicted by the

compressible theory at a time shortly after the wave
reflects as un outward moving shock. The transient
fluid velocity predicted by the compressible model is
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Figure 5, The Transient.Yelocity from Compressible
Model

shown in Figure § and the surface aceelcration rates by
the two models are compared in Figt’ue 6. More
comparisons may be found in reference '

Figure 6. The Comparison of the Surface
Accelerations

LIQUID FRAGMENTATION CONSIDERATIONS
Both incompressible and ¢compressible models

Ives pressure profiles which suggest that the lquid will
ail in a cylindrical fracture mode. The compressible

theory is considered 10 give accurate quantitative results

for transient pressure field, The tension limitis bounded
by the thermodynamic limit of metastability
(spinodal)"*. We have shown that for a pure liquid tho
spinodal is equivalent to homogeneous nucleation,

This may be useful in the case of a complex liquid such

as Flibe for which the equation of state is not known,
In any case, experiment have shown that most Hquids
fracture at tensions considerably lower than that at the
spinodal'. Consequently experiments on Flibo are
need to establish its tensile streagth,

Another  possible  mechanism  of  liquid
fragmentations Taylor like surface instabilities,
Plrzser'’ derived the conditions of sability for an
accelerating spherical surface. Chen and Schrock
recently applied the same method to obtain the
conditions for a cylindrical surface®. These conditions
indicate that there will not be fragmentation due to
surface instability. Ina companion paper on motion of
a free annulus™ we discugs this further,

CONCLUSIONS

Therelaxation of an isochorically heated cylindrical
column of liquid has been analyzed. The predicted
transient pressure. profiles show that the liquid is likely
to fracture in a cylindrical surface rather than fragment
homogeneously as previously thought. Experimenis
arce nceded to establish the tensile strength of candidate
liquids.
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Fig. | Discription of Relaxation Model
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