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The prevalence of Borrelia miyamotoi infection,
and co-infections with other Borrelia spp. in Ixodes
scapularis ticks collected in Canada
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Abstract

Background: Blacklegged ticks, Ixodes scapularis are vectors of the tick-borne pathogens Borrelia burgdorferi,
Anaplasma phagocytophilum and Babesia microti. Recently, the I. scapularis-borne bacterium Borrelia miyamotoi
has been linked to human illness in North America. The range of this tick is expanding in Canada which may
increase the potential for human exposure to these agents.

Methods: In this study, 4938 I. scapularis ticks collected in 2012 were tested following a newly developed
PCR-based testing protocol to determine the prevalence of infection with B. miyamotoi and other pathogens
in I. scapularis in Canada.

Results: Borrelia miyamotoi was detected in blacklegged ticks from all provinces except Newfoundland, although
the infection prevalence was low (<1%). There was significant variation among provinces in the prevalence of
infection of ticks with B. burgdorferi and A. phagocytophilum, but not with B. miyamotoi.

Conclusions: Given the widespread distribution of B. miyamotoi, infection due to this agent should be considered in
patients who have been exposed to blacklegged ticks in Canada.
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Background
Borrelia miyamotoi was first described in Ixodes persul-
catus ticks and in the blood of rodents collected in Japan
in the early 1990s [1]. Subsequently, B. miyamotoi was
detected, for the first time in North America, associated
with blacklegged ticks, Ixodes scapularis in several states
in the Northeastern United States [2]. Infection rates in
field-collected nymphal I. scapularis were 1.9-2.5% [2]
and unlike the agent of Lyme disease, Borrelia burgdor-
feri, B. miyamotoi is transmitted vertically from infected
female I. scapularis to a variable proportion of larval
progeny [2,3]. Initially the public health significance of
B. miyamotoi was poorly understood; however, recent
studies in Russia demonstrate that Old World strains of
B. miyamotoi, transmitted by I. persulcatus cause an
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influenza-like illness with relapsing fever [4]. In North
America, meningoencephalitis was recently described in
an elderly immunocompromised patient [5] and results
of a serosurvey of patients from southern New England
and New York demonstrate that B. miyamotoi infection
can cause a viral-like illness [6]. These studies support
the contention that B. miyamotoi is yet another of the
guild of pathogens, which includes the agents of Lyme
disease, anaplasmosis, babesiosis, Powassan virus and the
Ehrlichia muris-like agent, associated with blacklegged
ticks in North America [7]. The discovery of DNA of
B. miyamotoi in ticks during a study of B. burgdorferi di-
versity signaled the possible occurrence of B. miyamotoi
in Canada [8].
Passive surveillance for blacklegged ticks, which in-

volves the submission of ticks collected by the general
public and participating medical and veterinary clinics,
has been conducted across Canada (excluding British
Columbia) since the 1990s [9,10]. Ticks identified as
I. scapularis have been routinely tested for infection with
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B. burgdorferi and Anaplasma phagocytophilum using first
a multiplex real-time PCR assay [11], followed by an ospA
real-time PCR to confirm B. burgdorferi infection [9]. Most
I. scapularis are submitted from locations where reprodu-
cing populations of I. scapularis occur (southern Manitoba,
southern and eastern Ontario, southern Quebec, and loca-
tions in New Brunswick and Nova Scotia). Some I. scapu-
laris are also submitted from locations where populations
are not known to occur (e.g. Alberta, Saskatchewan, Prince
Edward Island and Newfoundland) and it is thought that
these ticks are ‘adventitious’ ticks dispersed from tick
populations in Canada and the USA by migratory birds
[9]. Each year a small number of I. scapularis submitted
in passive surveillance test positive for Borrelia species
infection in the 23S rRNA real-time PCR screening assay
but are negative for B. burgdorferi infection in the con-
firmatory ospA real-time PCR assay. Subsequent testing
by nested PCR (nPCR) and sequencing indicate that
some of these extracts are positive for infection with
B. miyamotoi. This supports earlier Multilocus Sequence
Typing (MLST) analysis in which a small number of
B. burgdorferi-infected ticks were found to be co-infected
with B. miyamotoi [8].
We have developed and evaluated molecular assays to

identify B. miyamotoi and a PCR-based testing protocol
or diagnostic approach for testing I. scapularis ticks col-
lected in surveillance for tick-borne agents. Data on the
western blacklegged tick I. pacificus, and B. miyamotoi
prevalence were not addressed by this study. Here we
undertake a systematic analysis of ticks recently col-
lected in surveillance in Canada to i) better under-
stand the possible geographic range of B. miyamotoi
in Canada; ii) estimate the prevalence of B. miyamotoi
infection in I. scapularis ticks in Canada; and iii) investi-
gate the frequency of co-infections with B. miyamotoi,
B. burgdorferi and A. phagocytophilum in I. scapularis in
Canada.

Methods
Development of B. miyamotoi-specific IGS real-time PCR
DNA from 25 ticks collected in surveillance prior to
2012 that tested positive with the screening 23S rRNA
real-time PCR, but negative with the confirmatory ospA
real-time PCR was tested with a nPCR specific to the
genus Borrelia [12] which amplifies 587 bp of the 16S-
23S IGS region. For this PCR, 5 μl DNA template was
added to 95 μl master mix containing 0.2 mM each
dNTP, 0.5 μM forward and reverse primers, 5 Units of
AmpliTaq Gold® polymerase and 1.5 mM MgCl2 (Life
Technologies, Carlsbad, CA). The thermocycler condi-
tions used were as follows: denaturation at 94°C for 4 mi-
nutes, 35 cycles of amplification at 94°C for 1 minute,
50°C for 1 minute and 72°C for 1 minute, followed by
a 10 minute extension phase at 72°C for both stages of
the nested PCR reaction. Amplification products were
analyzed by ethidium bromide-stained 2% agarose gels.
All nPCR products were purified using Montage®PCR fil-
ter units (Millipore) and sequenced on an ABI 3130xl
Genetic Analyzer using BigDye™ Terminator version
3.1 cycle sequencing kits. Sequence data was analyzed
using DNASTAR Lasergene 9 Software and multiple align-
ments were performed using Clustal W. Sequences were
compared to those in GenBank and BLAST results indi-
cated that 8 of the 25 tick extracts were positive for
B. miyamotoi. Subsequently, B. miyamotoi-specific and
B. burgdorferi-specific primers and FAM-labeled probes
annealing to the 16S-23S IGS were designed from these se-
quences for real-time IGS PCR (Table 1).

Validation of real-time PCR
Validation of the species-specific IGS real-time PCR
assays was performed using DNA from the eight 23S
PCR-positive and ospA PCR-negative ticks mentioned
previously, DNA from 72 ticks (collected from 2008
to 2012) that were positive on both the 23S and the ospA
real-time PCR confirming B. burgdorferi infection, and
DNA from 9 ticks that were 23S PCR-positive and ospA
PCR-negative and had been confirmed as being infected
with B. bissettii by flagellin nPCR. DNA from cultures
of B. garinii strain ATCC® 51991™ and B. afzelii strain
ATCC® 51567™, and B. hermsii DNA from a clinical sam-
ple was used to evaluate the specificity of the assays.
Once validated, the species-specific real-time PCR assays
were applied to DNA from an additional 39 23S PCR-
positive and ospA PCR-negative ticks collected during
2008–2012.
Reaction mixtures were prepared in 2x TaqMan® Univer-

sal Mastermix (Applied Biosystems, Life Technologies) to
contain 300 to 600 nM of each primer and 200 nM probe.
Amplification was carried out on either an ABI 7500
Real-time PCR System, ABI 7900HT or ABI ViiA7 using
96 well optical plates. Thermocycling conditions consisted
of: activation of AmpErase at 50°C for 2 minutes, 10 mi-
nutes at 95°C for denaturation of AmpErase and activation
of AmpliTaq Gold® Polymerase, followed by 40 cycles of
amplification with denaturation at 95°C for 15 seconds and
annealing at 58°C for 1 minute. Following amplification
and real-time data acquisition, analysis was performed
using the Sequence Detection System software. A second
real-time PCR assay targeting B. miyamotoi glpQ [13] was
performed as a confirmatory assay, using an annealing
temperature of 50°C.
DNA from B. miyamotoi-positive, B. bissettii-positive

and most B. burgdorferi-positive ticks was tested using
the nested 16S-23S IGS PCR to generate products for
sequencing. This sequence data was considered the gold
standard and provided validation data for the B. miya-
motoi real-time PCR assays.



Table 1 Primer and probe sequences for the detection of A. phagocytophilum and Borrelia species

Primer/Probe 5′-3′ nucleotide sequence

Duplex screening assay

Bb23Sf CGAGTCTTAAAAGGGCGATTTAGT

B. burgdorferi 23S rRNA Bb23Sr GCTTCAGCCTGGCCATAAATAG

Bb23S-P FAM-AGATGTGGTAGACCCGAAGCCGAGTG-TAMRA

ApMSP2f ATGGAAGGTAGTGTTGGTTATGGTATT

A. phagocytophilum msp2 ApMSP2r TTGGTCTTGAAGCGCTCGTA

ApMSP2-P VIC-TGGTGCCAGGGTTGAGCTTGAGATTG-TAMRA

B. burgdorferi confirmatory assay(s)*

ospAF CTGGGGAAGTTTCAGTTGAAC

B. burgdorferi ospA ospAR TTGGTGCCATTTGAGTCGTA

ospA-P FAM-CTGCAGCTTGGAATTCAGGCACTT-BBQ

BbIGSf AAGAAGGACAAGTATTGTAGCGAG

B. burgdorferi IGS* BbIGSr GCAATCTTTGCCTTCCTCC

BbIGS-P FAM-TGCCAGTATTTAGTGGTAGGGATTCGG-BBQ

B. miyamotoi assays

BmiyaIGSf CGTCTTGTTGCTTTTAAAGTGT

B. miyamotoi IGS BmiyaIGSr CATGATCAGGTCCTTGATAATATG

BmiyaIGS-P FAM-TGGATTCCAAATTTGATTACATGCAA-BBQ

MGlpQF GATAATATTCCTGTTATAATGC

B. miyamotoi glpq MGlpQR CACTGAGATTTAGTGATTTAAGTTC

MYS-P FAM-CCCAGAAATTGACAACCACAAATGT-BHQ2

Borrelia spp. Nested PCR

16S-23S IGS 1st stage rrs GTATGTTTAGTGAGGGGGGTG

rrl GGATCATAGCTCAGGTGGTTAG

2nd stage Fn AGGGGGGTGAAGTCGTAACAAG

Rn GTCTGATAAACCTGAGGTCGGA

Flagellin 1st stage FO1 AAGTAGAAAAAGTCTTAGTAAGAATGAAGGA

FO2 AATTGCATACTCAGTACTATTCTTTATAGAT

2nd stage FI1 CACATATTCAGATGCAGACAGAGGTTCTA

FI2 GAAGGTGCTGTAGCAGGTGCTGGCTGT

*B. burgdorferi IGS real-time PCR is performed solely for validation of the specificity of B. miyamotoi real-time PCR assays and is not routinely used in the
testing protocol.
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Analysis of infections and co-infections in I. scapularis
ticks collected in passive surveillance
A total of 4938 I. scapularis ticks collected in passive
surveillance in 2012 (excluding the 68 used in validation)
were tested using the developed testing protocol (Figure 1).
The screening 23S and confirmatory ospA real-time PCR
were used to assess B. burgdorferi infection as described
above. The screening 23S PCR is a multiplex assay that
also detects the presence of A. phagocytophilum DNA
using primers specific for the msp2 gene (ApMSP2f and
ApMSP2r) [14]. Confirmation of infection with A. phagocy-
tophilum is achieved by an in-house real-time PCR assay
targeting 16S rRNA. The Borrelia miyamotoi-specific IGS
real-time PCR was used to detect B. miyamotoi infections
that were subsequently confirmed by B. miyamotoi glpQ
real-time PCR. All real-time PCR assays were conducted
using the conditions described above for B. miyamotoi
IGS. Tick extracts that were positive for Borrelia spp. infec-
tion in the screening 23S real-time PCR, but negative for
B. burgdorferi in the ospA real-time PCR, and negative in
the B. miyamotoi IGS assay, were tested by 16S-23S IGS
nPCR with the aim of sequencing products to identify
other infecting Borrelia species.
Associations of infections and co-infections in ticks

with province of origin, level of engorgement of the
tick, host of origin, and tick instar were investigated by lo-
gistic regression in STATA version 11.0 for Windows
(STATACorp, College Station, TX, USA). The most



Field-collected tick DNA

Multiplex B. burgdorferi 23S and A. phagocytophilum msp2 real-time PCR  

A. phagocytophilum +/- ve Borrelia spp. -ve Borrelia spp. +ve 

B. burgdorferi ospA real-time PCR 

B. burgdorferi +ve * B. burgdorferi -ve 

B. miyamotoi IGS real-time PCR  

B. miyamotoi +ve 

B. miyamotoi glpQ real-time PCR  

+ve

+ve

-ve

-ve

Borrelia spp. 16S-23S nested PCR 

Product sequencing and 
Borrelia spp. identification

*test for co-infection with B. miyamotoi real-time PCR

Figure 1 Testing protocol to detect B. burgdorferi, A. phagocytophilum and B. miyamotoi in I. scapularis ticks.
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parsimonious multivariable model was created by back-
wards and forwards elimination and substitution of vari-
ables. Logistic regression models were used to investigate
whether or not there were significant associations between
infections of ticks with different pathogens. The level of
significance throughout was P < 0.05.

Results
Development and validation of B. miyamotoi-specific IGS
real-time PCR
Primers were developed using a sequence with 100%
similarity to a sequence from B. miyamotoi (GenBank:
AY531879) obtained in the 16S-23S IGS nPCR. All 8
(100%) of the B. miyamotoi-positive ticks, that were so
determined by 16S-23S IGS nPCR and sequencing, were
positive by B. miyamotoi IGS and glpQ real-time PCR.
These extracts were also negative in the B. burgdorferi
IGS real-time PCR assay. All 72 (100%) of the B. burg-
dorferi extracts were positive in the B. burgdorferi IGS
real-time PCR. Two of 72 (2.8%) of these extracts were
also reactive with B. miyamotoi IGS and glpQ real-time
PCR indicating co-infection. The nine extracts known to
be positive for B. bissettii, DNA from cultures of B. afze-
lii and B. garinii did not react in either the B. burgdorferi
or B. miyamotoi IGS or glpQ real-time PCR assays. DNA
of B. hermsii did not react in either the B. miyamotoi
IGS or glpQ real-time PCR but produced a late amp-
lification product (Ct >39) in the B. burgdorferi IGS
real-time PCR. Of the 39 23S rRNA-positive ospA-negative
ticks obtained in 2008–2012, 31 (79.5%) were positive
for B. miyamotoi, while one extract was also co-
infected with B. bissettii. In total, 7/39 (17.9%) of the
extracts were negative by IGS real-time PCR and were
subsequently identified as B. bissettii by sequencing of
products of the 16S-23S IGS nPCR. One of the 39 ex-
tracts was positive for B. burgdorferi by IGS real-time
PCR and subsequently confirmed with 16S-23S IGS
sequencing. The reactivity profiles of B. burgdorferi,
B. miymotoi and B. bissettii in the various PCR assays
(Table 2) serve as the basis for our testing protocol to
detect the suite of Borrelia species found in black-
legged ticks collected in Canada.

Analysis of infections and co-infections in I. scapularis
ticks collected in passive surveillance
Of the 4938 ticks tested (Table 3), 41 (0.8%) were infected
with A. phagocytophilum (0/4 larvae, 0/139 nymphs, 37/
4778 adults), 696 (14.1%) were infected with B. burgdorferi
(0/4 larvae, 16/139 nymphs, 676/4778 adults) and 23
(0.5%) were infected with B. miyamotoi (0/4 larvae,
1/139 nymphs, 22/4778 adults) (Tables 4 and 5). No other
Borrelia spp. were detected in the ticks.
Borrelia miyamotoi was found in blacklegged ticks

from all provinces except Newfoundland, and there
were no significant variations amongst provinces in
the prevalence of B. miyamotoi infection of ticks. All



Table 2 PCR reactivity profiles for Borrelia species
detected in I. scapularis ticks in Canada

Borrelia species

PCR reaction B. burgdorferi B. miyamotoi B. bissettii

Real-time PCR

23S rRNA + + +

ospA + - -

B.burgdorferi IGS + - -

B. miyamotoi IGS - + -

B. miyamotoi glpQ - + -

Conventional nested PCR

Flagellin + - +/−

ospA + - +/−

16S-23S IGS + + +
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other explanatory variables were not significantly as-
sociated with B. miyamotoi infection.
There were significant variations amongst provinces in

the likelihood that a tick was positive for B. burgdorferi.
The provinces could be simplified into three groups
within which the prevalence of infection was similar:
i) Alberta and Manitoba, ii) New Brunswick and Prince
Edward Island, and iii) ticks from all other provinces
(Ontario, Quebec, Nova Scotia and Newfoundland)
(χ2 = 4.8, df = 5, P > 0.1). Ticks from New Brunswick and
Prince Edward Island were significantly less likely to be in-
fected with B. burgdorferi than ticks from Ontario, Quebec,
Nova Scotia and Newfoundland combined (OR = 0.55, 95%
CI = 0.39 – 0.78, P < 0.01), and less likely to be infected
than ticks in Alberta and Manitoba (by Wald test of final
model parameters: χ 2 = 14.7, df = 1, P < 0.001). Ticks from
Alberta and Manitoba were less likely to be infected with
Table 3 Collection data by province for I. scapularis ticks subm

Province Total no. ticks Instar*

Larvae Nymphs Adults

AB 87 87

MB 170 13 152

ON 2591 4 97 2482

NB 366 14 350

NL 33 1 32

NS 34 34

PEI 178 1 176

QC 1479 13 1465

Total 4938 4 139 4778

*Of the adult ticks 61 were males the rest females and for 17 ticks the instar was no
†For 26 ticks the state of engorgement was not recorded.
AB = Alberta, MB =Manitoba, ON = Ontario, NB = New Brunswick, NL = Newfoundlan
Ap = A. phagocytophilum, Bb = B. burgdorferi and Bm = B. miyamotoi.
B. burgdorferi than ticks from Ontario, Quebec, Nova
Scotia and Newfoundland combined (OR = 0.64, 95%
CI = 0.41 – 0.98, P < 0.05). Ticks were significantly less
likely to be infected if they fed on humans (OR = 0.59, 95%
CI = 0.46 – 0.75, P < 0.001), and were less likely to be in-
fected if they were slightly, partially or fully engorged than
if they were unfed (ORs = 0.44, 0.30, 0.21; 95% CIs = 0.33-
0.60, 0.24-0.39, 0.10-0.44; P < 0.001 for all).
No immature ticks were infected with A. phagocyto-

philum but there was significant variation amongst prov-
ince of origin in the proportion of adult ticks infected
with A. phagocytophilum. Adult ticks collected in Alberta
and Manitoba were significantly more likely to be infected
than ticks from other locations (OR = 4.5, 95% CI = 2.0-
10.4, P < 0.001). Ticks from Quebec were significantly
more likely to be infected than ticks from Ontario, New
Brunswick, Nova Scotia and Newfoundland combined
(OR = 3.7, 95% CI = 1.7-7.7, P < 0.001). There were no
significant variations in prevalence of A. phagocyto-
philum infection associated with state of engorgement
or host of origin.
Co-infections were detected in 19 ticks (15 being adult

females, one being an adult male and 3 having the instar
unrecorded), of which 11 (0.23% of adult ticks) were co-
infected with A. phagocytophilum and B. burgdorferi,
and 8 (0.17% of adult ticks) were co-infected with
B. burgdorferi and B. miyamotoi (Tables 4 and 5).
Consequently statistical analysis was limited to adult
ticks. Adult ticks were significantly more likely to be
infected with B. miyamotoi if they were infected with
B. burgdorferi (OR = 3.5, 95% CI = 1.5 – 8.4, P < 0.01).
This relationship remained significant when other vari-
ables (province of origin, level of engorgement of the tick,
host of origin, and tick instar) were included in the
model. There was no significant association between
itted through passive surveillance in 2012

State of engorgement † Host

Unfed Fed Dog Cat Human Other

87 78 9

51 115 98 16 53 1

1397 1183 445 28 2102 7

76 285 187 21 123 7

3 30 20 10 3

9 24 21 13

8 168 139 28 11

297 1179 919 129 427 3

1841 3071 1907 241 2732 18

t recorded.

d & Labrador, NS = Nova Scotia, PEI = Prince Edward Island, QC = Quebec,



Table 4 Prevalence of infection of ticks* with A. phagocytophilum, B. burgdorferi and B. miyamotoi by province

Province total no. ticks Number (%) infected Number (%) co-infected

Ap Bb Bm Ap-Bb Ap-Bm Bb-Bm

AB 87 5 (5.7) 12 (13.8) 1 (1.1) 1 (1.1)

MB 170 5 (2.9) 15 (8.8) 2 (1.2) 3 (1.8)

ON 2591 7 (0.3) 411 (15.9) 7 (0.3) 2 (0.08) 2 (0.08)

NB 366 3 (0.8) 25 (6.8) 3 (0.8) 1 (0.3)

NL 33 1 (3.0) 9 (27.3) 1 (3.0)

NS 34 4 (11.8) 1 (2.9) 1 (2.9)

PEI 178 1 (0.6) 17 (9.6) 1 (0.6)

QC 1479 19 (1.3) 203 (13.7) 8 (0.5) 3 (0.2) 5 (0.3)

Total 4938 41 (0.8) 696 (14.1) 23 (0.5) 11 (0.2) 0 8 (0.2)

*I. scapularis ticks collected by passive surveillance in 2012.
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A. phagocytophilum and B. burgdorferi infection in
adult ticks.

Discussion
The objective of this study was to develop and imple-
ment a systematic approach using real-time PCR assay
to detect B. miyamotoi, B. burgdorferi and A. phagocyto-
philum infections and co-infections in ticks collected in
surveillance. In doing so, we were able to assess the
prevalence of infection of ticks collected in Canada, with
the newly-recognized pathogen B. miyamotoi. Results of
our study identified B. miyamotoi-infected ticks at low
(<1%) prevalence in most provinces. Few ticks were co-
infected, however a third of B. miyamotoi-infected ticks
and a quarter of A. phagocytophilum-infected ticks were
also infected with B. burgdorferi and co-infections of
B. miyamotoi and B. burgdorferi occurred more fre-
quently than would be expected by chance.
It is increasingly recognized that I. scapularis ticks

transmit a range of bacteria including the Lyme disease-
causing B. burgdorferi, B. miyamotoi, the E. muris-like
agent [15], and A. phagocytophilum [16] as well as bac-
teria such as B. carolinensis [17] and B. bissettii [18]
Table 5 Prevalence of infection of I. scapularis ticks†

by instar*

Tick Instar

Pathogen Larvae Nymphs Adults

B. miyamotoi 0/4 (0) 1/139 (0.7) 22/4778 (0.5)

B. burgdorferi 0/4 (0) 16/139 (11.5) 676/4778 (14.1)

A. phagocytophilum 0/4 (0) 0/139 (0) 37/4778 (0.8)

Coinfections of B. miyamotoi and
B. burgdorferi

0/4 (0) 0/139 (0) 8/4778 (0.2)

Coinfections of A. phagocytophilum
and B. burgdorferi

0/4 (0) 0/139 (0) 11/4778 (0.2)

*This table does not include data from 17 ticks for which instar was
not recorded.
†Collected by passive surveillance in 2012.
whose pathogenicity has not yet been determined. Here
we have developed new assays and combined them with
existing ones to create a PCR testing protocol, similar to
that of Ullman et al. [13], which allowed us to detect
and identify infections and co-infections of ticks with
different Borrelia species and A. phagocytophilum. The
new 16S-23S IGS real-time PCR assays were robust
showing 100% concordance between positive results and
sequence analysis indicating high specificity. There was
slight reactivity of B. hermsii DNA in the B. burgdorferi
IGS real-time assay, but this is of little consequence on
test outcomes as B. hermsii is transmitted by Argasid
ticks and would rarely, if ever, be encountered in black-
legged ticks obtained in surveillance. Future refinements
of this testing protocol will include implementation
of a duplex real-time PCR assay for B. burgdorferi
ospA and B. miyamotoi 16S-23S IGS to reduce PCR
steps, development of a real-time PCR assay to detect
B. bissettii and incorporation of PCR assays for non-
bacterial I. scapularis-borne pathogens such as Powassan
encephalitis virus.
By implementation of this new testing protocol for the

detection of selected species of Borrelia, we have ex-
panded on the findings of Ogden et al. [8] who first de-
tected B. miyamotoi in blacklegged ticks collected in
Canada. The prevalence of B. miyamotoi in blacklegged
ticks in our study (<1%) was lower than the 1 – 5% re-
ported in the eastern USA [2,3], and this difference may
suggest that B. miyamotoi transmission cycles are at an
early stage of becoming established amongst resident
tick and rodent populations in Canada compared to lo-
calities in the USA [19]. Infection prevalence of tick-
borne pathogens in ticks and hosts may take some years
to rise to an equilibrium level, particularly if the ticks
are at low densities, being themselves at an early stage of
becoming established [20]. However, our study also con-
firms that as in the US, B. miyamotoi can be detected
across the geographic range of I. scapularis in Canada
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[2,3,8]. Geographic variations in the prevalence of
B. burgdorferi and A. phagocytophilum infection in ticks
were detected and these are consistent with previous
studies. Low B. burgdorferi infection prevalence was de-
tected in ticks from New Brunswick and Manitoba,
which is consistent with previous analyses linking low
B. burgdorferi infection prevalence in I. scapularis pop-
ulations that are emerging in these locations [21,22], as
well as in provinces where ticks from these new popula-
tions are likely carried by migratory birds (from New
Brunswick into Prince Edward Island where no deer
occur to permit ticks to establish, and from Manitoba
into Alberta). There were no ticks submitted from
Saskatchewan during this study period and ticks from
Alberta would be expected to be ‘adventitious’ ticks dis-
persed by migratory birds from Manitoba or the upper
Mid-West of the USA [8,9,22]. Higher infection preva-
lence of A. phagocytophilum in ticks from Manitoba and
Alberta is consistent with spring synchrony of larval and
nymphal I. scapularis tick activity in the west of the tick’s
range enhancing transmission of short-lived rodent host
infections compared to the more asynchronous trans-
mission in the east [20,23]. Higher infection A. pha-
gocytophilum prevalence in ticks in some locations in
Quebec has been detected possibly associated with
founder events in naïve host populations [24,25]. In con-
trast to B. burgdorferi, there was no evidence of geo-
graphic variation (in the presented analysis as well as in
cluster analysis not described here) in the prevalence of
B. miyamotoi infection of ticks, which is consistent with
more simultaneous introduction of B. miyamotoi with
I. scapularis. As B. miyamotoi is transovarially and
transtadially transmitted in ticks, this bacterium can be
imported in host-dispersed infected engorged nymphal
ticks as well as larval ticks, while only imported engorged
larvae can efficiently introduce B. burgdorferi [22].
Variations in prevalence of B. burgdorferi infection

with stage of engorgement are consistent with our find-
ings in previous studies; B. burgdorferi multiplies in the
tick as it feeds [21]. Variations in prevalence of B. burg-
dorferi infection with host of origin have also been ob-
served in our passive surveillance data [21] although
here ticks collected from humans were less likely to be
detected as infected. The underlying reason for this vari-
ation is unknown; however an analysis of the quality of
the submitted ticks did not indicate significant differ-
ences between ticks removed from humans or compan-
ion animals (data not shown). It is possible that ticks
from dogs had higher infection prevalence than ticks
from humans because some of the dogs were infected
and consequently infective for ticks that fed on them
[26]. Some I. scapularis ticks were co-infected with
B. miyamotoi and B. burgdorferi or with A. phagocy-
tophilum and B. burgdorferi however, co-infection with
B. miyamotoi and B. burgdorferi occurred more fre-
quently than by chance, which is consistent with shared
reservoirs for these species [20,27]. The implications of
these observations for disease in humans are at present
unknown and require further investigation, as does the
occurrence of B. miyamotoi in I. pacificus ticks, the other
main vector of tick-borne zoonoses that occurs in British
Columbia.

Conclusions
The relatively limited (though expanding) distribution of
blacklegged tick populations in Canada [22,28,29] and
the lower prevalence of B. miyamotoi infection in these
ticks means that at present the risk of infection of humans
in Canada would be lower than in parts of the USA [6].
Nevertheless, our study indicated that B. miyamotoi is
present across a wide geographic range in Canada, and cli-
nicians should consider B. miyamotoi infection as a pos-
sible diagnosis, alongside Lyme disease, Anaplasmosis,
Ehrlichiosis, Babesiosis and arboviral infections, in pa-
tients suffering from suspected infectious disease who
have potentially been exposed to ticks in Canada. Our
findings underline the need for improved diagnostics for
B. miyamotoi and other tick-borne pathogens, and on-
going exploration for novel tick-borne pathogens.
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