The price dynamics of common trading strategies

J. Doyne Farmérand Shareen Johi

A deterministic trading strategy can be regarded as a signal
processing element that uses external information and past
prices as inputs and incorporates them into future prices.
This paper uses a market maker based method of price for-
mation to study the price dynamics induced by several com-
monly used financial trading strategies, showing how they
amplify noise, induce structure in prices, and cause phe-
nomena such as excess and clustered volatility.

1. g 0o [0 111 o] o PP PP TP 1
11 Y o111 11 o o PP PP PURT PP 1
1.2 Relation 10 PreVioUS WOIK ...........uieiiiiieeaii et 2.
2. Price formation MOUEL..........cooiiiiiiie e e e e e e e e e eeenneees 3
21 MOdEl FrTAMEWOIK ... e e e e e e e eeeeeaeas T
2.2 Derivation of market impact fUNCHON ............ooiiiiiiii e 5
2.3 [0 = 1 41T R 6..
2.4 DiSCUSSION Of ASSUMPLIONS .....eiiiiiiee ittt e e e e Buevvreee
3. AGENT DENAVIOIS ... e e e e 8
3.1 TrENd fOIIOWETS ... ..t e e e e e e e s s e e e e e e e e e e e e sananes 8....
3.2 VAlUB INVESTONS .oeiei ettt e et e e e e e e e s e s st eeeaeaeeeesaasnnnsesseee e s s 12...
3.2.1  SIMPle VAlUE SIFALEUIES ....eeiieiiiiiiee ettt e e sabneee e 12
3.2.2  When do prices traCk VAlUEBS? .......ccoiuiiiieiiiiiiee ettt 14
3.2.3  Order-based value StrategiesS..........uuuuiiiiiiiaiiiiiiiiiiiiee e a e e e eaeeees 14
3.24 State-dependent threshold value Strategies...........oooviiiiiiiiiiiiieeeieeeeeeee 15
3.2.5 Heterogeneous values, representative agents, and excess volatility .................... 18
3.3 Value investors and trend followers together ... 20
CoNCIUAING FEMATKS ....ceiiiiieee et e e e e e e e 24
5. RETEIENCES ...ttt e e e e e e e e e e e e e 26

1. Introduction

1.1 Motivation

Under the efficient market hypothesis prices should instantly and correctly adjust to
reflect new information. There is evidence, however, that this may not be the case: The
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largest price movements often occur with little or no news (Cutler et al. 1989), price vola-
tility is strongly temporally correlated (Engle 1982), short term price fluctuations are non-
normaP, and prices may not accurately reflect rational valuations (Campbell and Shiller
1988). This suggests that markets have nontrivial internal dynamics. Traders may be
thought of as signal processing elements, that process external information and incorpo-
rate it into future prices. Insofar as individual traders use deterministic decision rules, they
act as signal filters and transducers, converting random information shocks into temporal
patterns in prices. Through their interaction they can amplify incoming noisy information,
alter its distribution, and induce temporal correlations in volatility and volume.

This papet investigates a simple behavioral model for the price dynamics of a few,
common archetypal trading strategies. The goal is to understand the signal processing
properties of these strategies, both separately and in concert. There are three groups of
agentsyvalue investorgor fundamentalistsyvho hold an asset when they think it is under-
valued and short it when it is overvalué@nd followerqa particular kind ofechnical
trader, or chartis?), who hold an asset when the price has been going up and sell it when it
has been going down; amdarket makersyho absorb fluctuations in excess demand, low-
ering the price when they have to buy and raising it when they have to sell. These are of
course only a few of the strategies actually used in real markets. But they are known to be
widely used (Keim and Madhaven 1995, Menkoff 1998), and understanding their influ-
ence on prices provides a starting point for more realistic behavioral models.

1.2 Relation to previous work

The first behavioral model that treats the dynamics of trend followers and value inves-
tors that we are aware of is due to Beja and Goldman (1980). Assuming linear trading
rules for each type of trading, they showed that equilibrium is unstable when the fraction
of trend followers is sufficiently high. A related model using nonlinear investment rules
was introduced by Day and Huang (1990), who demonstrated that this could result in cha-
otic price series. The Beja and Goldman model was extended by Chiarella (1992), who
made the trend following rule nonlinear. When the fraction of trend followers is suffi-
ciently low, the equilibrium is stable, but when it exceeds a critical value it becomes unsta-
ble, and is replaced by a limit cycle. The excess demand of each trader type oscillates as
the cycle is traversed, causing sustained deviations from the equilibrium price. This model
was further enhanced by Sethi (1996), who studied inventory accumulation, cash flow, and
the cost of information acquisition. He showed that for certain parameter settings the
money of trend followers and value investors oscillates, and when trend followers domi-
nate there are periods where the amplitude of price oscillations is large. Except for some
remarks by Chiarella, this work is done in a purely deterministic setting.

Studies along somewhat different lines have been made by Lux et al. (1997, 1998,
1999), and also by Brock and Hommes (1997, 1998, 1999). Both study the effect of
switching between trend following and value investing behavior. Brock and Hommes
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assume market clearing, and focus their work on the bifurcation structure and conditions
under which the dynamics are chaotic. The Lux et al. papers use a disequilibrium method
of price formation, and focus their work on demonstrating agreement with more realistic
price series. They also assume a stochastic value process, and stress the role of the market
as a signal processor. Bouchaud and Cont (1998) introduced a “Langevin model”, which is
closely related to the work presented Refidese are not the only studies along these

lines; for example, see Goldbaum (1999), or for brief reviews see LeBaron (1999b) or
Farmer (1999).

The model discussed here was developed independently, and takes this study in a
somewhat different direction. The cast of characters is expanded to include a market
makeP. This makes it possible to study the dynamics of each trading strategy individually,
i.e. in a market that includes only that strategy, the market maker, and noisy inputs. We
characterize the noise amplification and price autocorrelations caused by each strategy. We
investigate simple linear strategies analytically, and also present some numerical results
for a heterogeneous market with more complicated nonlinear strategies.

This study also raises some issues about price formation. We assume the market maker
is risk neutral, setting the price in response to received orders, without worrying about
accumulated inventory. The market framework and price formation mechanism are similar
to that of Kyle (1985). We show that this leads to problems with stability of equilibrium
for simple value investing strategies. While these are ameliorated for some more complex
value strategies, this study illustrates the importance of including market maker risk aver-
sion in the price formation process.

2. Price formation model

In most real markets changes in the demand of individual agents are expressed in
terms oforders The two most common types of orders are market orders and limit orders.
A market ordelis a request to transact immediately at the best available price. The fill
price for small market orders is often quoted, so that it is known in advance, but for large
market orders the fill price is unknown. In contradimat order is a request to transact
only at a given price or better. Thus the fill price is known, but the time of the transaction
is unknown -- indeed the transaction may not be completed at all. In both cases there is
uncertainty in either the time or the price of the transaction. Thus markets using either type
of order violate the general equilibrium theory assumption of perfect competition.
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2.1 Model framework

We will study only market orders. The goal of this section is to derimeasket impact
function@ Gometimes also calledpaice impact functionhat relates the net of all such
orders at any given time to prices. We assume there are two broad types of financial
agents, trading a single asset (measured in units of shares) that can be convedadyto
(which can be viewed as a risk free asset paying no interest). The first type of agents are
directional tradersThey buy or sell by placing market orders, which are always filled. In
the typical case that the buy and sell orders of the directional traders do not match, the
excess is taken up by the second type of agent, whmaslket makerThe orders are
filled by the market maker at a price that is shifted from the previous price, by an amount
that depends on the net order of the directional traders. Buying drives the price up, and
selling drives it down. The market impact functipn is the algorithm that the market
maker uses to set prices. This defines a price formation rule relating the net order to the
new price.

Let there beN directional traders, labeled by the superscript , hotfling shares at
time t . Although this is not necessary, for simplicity we assume synchronous trading at
times ...,t—1,t,t+1, ... .Letthe position of thé" directional trader be a function
x{), = xO(P, P,_y, ..., 1), wherel {) represents any additional external informa-
tion. The functionx() can be thought of as #ategyor decision ruleof agenti . The
orderw{") is determined from the position through the relation

W) = x{—x{l,. (Eq 1)

A single timestep in the trading process can be decomposed into two parts:

1. The directional traders observe the most recent prices and information &t time  and
submit ordersw{1) ;

2. The market maker fills all the orders at the new pfice,
To keep things simple, we will assume that the pice  is a positive real number, and

that positions, orders, and strategies are anonymous. This motivates the assumption that
the market maker bases price formation only om#teorder

N
W = (),
2,

The algorithm the market maker uses to compute the fill price for the netorder is an
increasing function ofo

Piyqp = f(P, ). (Eq 2)
The fact that the new price depends only the current order, and not on the accumulated

inventory of shares held by the market maker, implies that the market maker must be risk
neutral.



2.2 Derivation of market impact function

An approximation of the market impact function can be derived by assuminfg that is
of the form

f(Pt, w) = Pt(p(oo) ) (Eq 3)

where@ is an increasing function wigif0) = 1 . Taking logarithms and expanding in a
Taylor’'s series, providing the derivatigg0)  exists, to leading order

w
IogPHl—IogPt:-X. (Eq 4)

This functional form forp will be called tHeg-linear market impact functiom\ is a
scale factor that normalizes the order size, and will be callddjtheity. A is the order
size that will cause the price to change by a fact@ of , measured in units of shares.

For an equilibrium model the clearing price depends only on the current demand func-
tions. In contrast, if prices are determined based on market impact using equation 3, in the
general case they are path dependent. That is, the price at any given time depends on the
starting price as well as the sequence of previous net orders. The log-linear rule is some-
where in between: The price change over any given period of time depends only on the net
order imbalance during that time. In fact, we can show that this property implies the log-
linear rule: Suppose we require that two orders placed in succession result in the same
price as a single order equal to their sum, i.e.

f(F(P,wy), ) = f(P, 0w, +w,). (Eq 5)

By grouping orders pairwise, repeated application of equation 5 makes it clear that the
price change in any time interval only depends on the sum of the net orders in this interval.
Substituting equation 3 into equation 5 gives

(g +@y) = () P(w,).
This functional equation fop has the solution
O(w) = e, (Eq 6)

which is equivalent to equation 4. Other possible solutionspésg® = O oae)l = 1 ,
but neither of these satisfy the requirement ghat is increasing.

Note that this is similar to Kyle’s (1985) model, with the important difference that in
Kyle’s modelP, ., ; —P, = w/A . The exponential form fqr  used here guarantees that
prices remain positive.



2.3 Dynamics

We can now write down a dynamical system describing the interaction between trad-

ing decisions and prices. Lettiny = logP, , and adding a noise &grm , equation 4
becomes
L N
Prrr = Pty Y OOPu Pg 1) + &y (Eq7)
i=1
To complete the mode| we need to make the functiofis used by agent explicit. Note
that from equation 1(,0(') is automatically defined once the function is given

The addition of the random terfp  can be interpreted in one of two ways: It can be
thought of as corresponding to “noise traders”, or “liquidity traders”, who submit orders at
random, in which case it should be dividedXy . Alternatively, it can be thought of as
simply corresponding to random perturbations in the price, for example random informa-
tion that affects the market maker’s price setting decisions. By using the form in
equation 7 we take the latter interpretation.

The choice of a discrete time, synchronized trading process is a matter of convenience.
We could alternatively have used an asynchronous process with random updating (which
is also easy to simulate), or a continuous time Weiner process (which has advantages for
obtaining analytic results). The discrete time mapping used here is convenient because it
avoids conceptual problems associated with stochastic processes and makes causality very
explicit. The timeAt corresponding to a single iteration should be thought of as the times-
cale on which the fastest traders observe and react to the price, e.g. a minute to a day.

In this model the number of shares is conserved, i.e., every time an agent buys a share
another agent loses that share. Thus the sum of all the agents’ positions are constant, pro-
viding the market maker’s position is included. All the agents, including the market maker,
are free to take arbitrarily large positions, including net short (negative) positions. Thus,
they are effectively given infinite credit. We have made considerable studies of wealth
dynamics, but these are beyond the scope of this paper. Some preliminary results can be
found in Farmer (1998).

2.4 Discussion of assumptions

Many assumptions have been made that deserve discussion. We think the most ques-
tionable is neglecting the market maker’s risk. However, we discuss the others first.

The log linear rule is simply the first term in a Taylor’s expansion, and is not intended
as an accurate model of market impact. Indeed, several different empirical studies suggest
that the shift in the logarithm of the price shift plotted against order size is a concave non-
linear functiod. The log-linear rule is just a reasonable first order model, with the accu-
racy one would expect from the first term in a Taylor expansion. The derivation above
implicitly assumes that market impact is permanent. That is, price changes caused by a net
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order at any given time persist until new net orders cause other changes. In contrast, if the
market impact is temporary, price changes decay, even without new order flow. By letting
the price be a real number we neglect the possibility of different prices for buying and sell-
ing, which occurs in real markets.

There is an implicit assumption that the market is symmetric in the sense that there is
no a priori difference between buying and selling. Indeed, with any price formation rule
that satisfies equation 5 buying and selling are inverse operations. (This is clear by letting
w, = —w,, which implies thatf (P, w) = f(P,—w)). This is reasonable for currency
markets and many derivative markets, but probably not for most stock markets. The short
selling rules in the American stock market are an example of a built-in asymmetry. From
an empirical point of view for American equities the market impact of buying and selling
are different, as observed by Chan and Lakonishok (1993, 1995). Such asymmetries can
be taken into account by in terms of a different liquidity for buying and selling.

For the purposes of this study strategies will be fixed. This implies, for example, that
profits are not reinvested. We study the price dynamics in the context where the noise
inputs are stationary; this means that, providing the dynamics of equation 7 are stable, the
returns are also stationary. Although this is unlikely to be the case for real price series, itis
a useful simplifying assumption.

Last but not least: The assumption that the market impact fungtion  depends only on
the net ordery does not take into account the market maker’s risk aversion. Real market
makers use their ability to manipulate the price to keep their inventory as small as possi-
ble. This makes the price formation process depend on the market maker’s ifventory

The significance of this is made clearer by comparison to a standard disequilibrium
price formation model originally proposed by Walras (Walker 1996). This model is used,
for example, by Beja and Goldman (1980) and their descendents.

dp _ _
= = -BD(p...). (Ea®)

D is the aggregate excess demand, which depends on the price and possibly other vari-
ables, an@3 is a constant that determines the rate of approach to equilibrium. The justifi-
cation for this price formation rule is purely heuristic: It allows deviations from

equilibrium, but providingD = D(p) is a monotonic increasing function of price alone,
results in a stable exponential approach to equilibrium.

Although this looks similar to the price formation model used here, it is actually quite
different. To see this, assume the initial price clears the market, so that the market maker’s
starting position is zero. The market maker’s position at subsequent times is theBjust

7. For discussions of empirical evidence concerning market impact see Hausman and Lo (1992), Chan and
Lakonishok (1993, 1995), Campbell et al. (1997), Torre (1997), and Keim and Madhaven Zha88)
(1999) has offered a heuristic derivation of a nonlinear market impact rule.

8. See, e.g. Huang and Stoll (1994).



whereD is the accumulated change in the net position of the directional traders. The net
orderw , however, is the net change in position. In a continuous time setting the model
used here is thus like equation 8 with  replaced By dt (and replackddy .
Like Kyle’s (1985) model, price changes depend on received orders rather than the accu-
mulated position of the market maker. To get an analogous model to equation 8 it would
be necessary for price changes to demsmglon the market maker’s position at time

t+ 1. In a future paper (involving other co-authors), we will report on a model of price
formation exploring both these effects, which reduces to either as a special case. But for
now we will analyze the effects of the model developed here, which because of its similar-
ity to Kyle’s influential market making model has some credibility in the literature.

3. Agent behaviors

We now describe some trading strategies in more detail and study their price dynam-
ics. Since the market maker is in a sense a “neutral” agent, we can begin by studying each
strategy trading against the market maker. Each strategy induces price dynamics that char-
acterize its signal processing properties. We can then study the noise amplification, auto-
correlation function, and frequency response of each strategy.

One approach to classifying financial trading strategies is based on their information
inputs. Decision rules that depend only on the price history are daltduhicalor chartist
strategiesTrend followingstrategies are a commonly used special case in which positions
are positively correlated with recent price chanyakieor fundamentattrategies, in
contrast, are based on external information leading to a subjective assessment of the long
term fundamental value. Investors using these strategies do not believe this is the same as
the current price. Pure technical strategies can be thought of as signal filters: They accept
past prices as inputs and transform future prices. Value strategies, in contrast, are primarily
signal transducers: they use external value signals as inputs and, through their trading,
incorporate them into prices.

3.1 Trend followers

Trend followersalso sometimes called positive-feedback investors (DelLong et al.
1990), invest based on the belief that price changes have inertia. A trend strategy takes a
positive (long) position if prices have recently been going up, and a negative (short) posi-
tion if they have recently been going down. More precisely, a trading strategy is trend fol-
lowing on timescal® if the positioxy  has a positive correlapion  with past price
movements on timesca@ |, i.e.

P(X;+ 1 (Py—Pi_g)) > 0.
A strategy can be trend following on some timescales but not on others.

An example of a simple linear trend following strategy, which can be regarded as a
first order Taylor approximation of a general trend following strategy, is



Xev1 = C(P—Pi_g). (Eq 9)

wherec >0 . Note that if we lat<0 this becomesoatrarian strategylLetting the bg-
returnr, = p,—p;_,. from equation 7, the induced dynamics are

Feeq = O(r—ri_g) +&. (Eq 10)

wherea =c/A>1 and,_g = p,—P;_g - Figure 1 shows a series of prices with
a =0.2and6 = 10.

2 3 4 5

log prices

1

O

—

1200 1400 1600 1800 2000 2200 2400
time

FIGURE 1. Log price vs. time for trend followers with a = 0.2 and® = 10
in Equation 10. Trend followers tend to induce short term trends in prices, but
they also cause oscillations on longer timescales.

The stability of the dynamics can be calculated by writing equation 10 in the form
U ., = Au, whereu, = (ry, ...,r,_g) , and computing the eigenvaluef\of . For
0 = 1 these are

_a(l-a)*J5-20+a?

2

The dynamics are stable whar< 1

Trend strategies overall amplify the noise in prices. This is reflected in the variance of
the log-returns, which is computed by taking the variance of both sides of equation 10.

of
(1-202(1~p,(6)))’

2 —
OofF =



o? is the variance of log-returns, aog is the variance of the gpise . Since the auto-
correlation of log-returnsp, (6) <1 , it follows that, > o; . Regardless of the value of

or p,, the variance of the price fluctuations is larger than of the noise driving term. How-
ever, note that this is also true for a contrarian strategy: Reversing the sign of in
equation 9 leaves this result unchanged. Thus we see that either trend or contrarian strate-
gies can contribute to excess volatility by amplifying noise in prices.

Trend strategies induce trends in the price, but as we show below, they can also have
other side effects. For example, consider Figure 2, which shows the autocorrelation func-
tion for the return series of Figure 1. The decaying oscillations between positive and neg-

1.0

acf log returns
-02 00 02 04 06 038

0 5 10 15 20 25 30
lag

FIGURE 2. The autocorrelation function for Equation 10 with a = 0.2 and
0 = 10. The positive coefficients for smalll indicate short term trends in
prices, and the negative coefficients indicate longer term oscillations.

ative values are characteristic of trend strategies with large lags. #dr the
autocorrelation function is of order . As increases it decays, crossing zero at roughly
T=0/2+1. Ast continues to increase it becomes negative, reaching a minimum at

T = 6+1, where itis of ordera . The autocorrelation then increases again, reaching a
local maximum at = 20+ 2 , where itis of orda? .As increases still further it
oscillates between positive and negative values with p&@ot2 , decaying by a factor
of a with every successive period.

This behavior can be understood analytically. A recursion relation for the autocorrela-
tion function can be obtained by multiplying equation 10 by, , Subtracting the mean,
and averaging, which gives

p,(n+1) = a(p,(n)—p,(In-8)). (Eq 11)
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Doing thisforn = 0O, ...,8—1 givesasystem & linear equations that can be solved for
the first® values op, (1) by making use of the requirement th&0) = 1 . The remain-
der of the terms can be found by iteration. For example fer1 T, forl, ..., 6 the

autocorrelation function is

p, (1) = 1 ia(a, —a,—202, a?(1-2a), a3(3-2a), a%(3-2a)). (Eq 12)
Solving this for a few other values 8f demonstrates that the first autocorrefgtia IS

always positive and of order , bpt(6+1) is always negative of order . For large
and smalla , using equation 11 it is easy to demonstrate that the autocorrelation follows
the behavior described above. kar 6 + 1 , to leading order in

p(T) ~ ar_a\r—e—l\ +1

Representing this in frequency space adds insight into the signal processing properties.
The power spectrum of the returns can be computed by taking the cosine transform of the
autocorrelation function, or alternatively, by computing the square of the Fourier trans-
form of the log-returns and averaging. The result is shown in Figure 3. We see that the
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FIGURE 3. Power spectrum of returns induced by a trend following strategy. Same parameters as
Figure 2.

power spectrum has a large peak at frequeziey 2 , with peaks of decreasing amplitude
at the odd harmonics of this frequency. The amplitude of the peaks is greater than one,
indicating that the trend strategy amplifies these frequencies. However, the troughs, which
occur at the even harmonics, have amplitude less than one, indicating that the trend strat-
egy damps these frequencies. When viewed as a signal processing element, the trend strat-
egy is essentially a selective low frequency noise amplifier, which induces oscillations at
frequencies related to the time horizon over which trends are evaluated. The detailed prop-
erties are specific to this particular trend rule; in particular, the oscillations in the spectrum
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are caused by the fact that this trend rule uses a moving average with a sharp cut off. How-
ever, the basic property of amplifying low frequency noise is present in all the trend rules
we have studied.

3.2 Value investors

Value investors make a subjective assessment of value in relation to price. They
believe that their perceived value may not be fully reflected in the current price, and that
future prices will move toward their perceived value. They attempt to make profits by tak-
ing positive (long) positions when they think the market is undervalued and negative
(short) positions when they think the market is overvalued.

In a homogeneous equilibrium setting in which everyone agrees on value, price and
value are the same. In a nonequilibrium context, however, prices do not instantly reflect
values - there can be interesting dynamics relating the two. Indeed many authors, such as
Campbell and Shiller (1988), have suggested that prices may not track rational valuations
very well, even in liquid markets, and that in some cases the differences can be substantial.

For the purposes of this paper it doesn’t matter how individual agents form their opin-
ions about valud We take the estimated value as an exogenous input, and focus on the
response of prices to changes in it. Let the logarithm of the value  be a random walk,

Vier = Vit Nisns (Eq 13)

wheren, is a normal, IID noise process with standard deviation andpmean . We
will begin by studying the case where everyone perceives the same value, and return to
study the case where there are diverse views about value in Section 3.2.5.

The natural way to quantify whether price tracks value is by using the concept of coin-
tegration, introduced by Engle and Granger (1987). This concept is motivated by the pos-
sibility that two random processes can each be random walks, even though on average
they tend to move together and stay near each other. More specifically, two random pro-
cesseg;, and, amwintegratedfthere is a linear combinatiom = ay, +bz thatis
stationary. For example, the log price and log value are cointegrgtgd has a well
defined mean and standard deviation.

3.2.1 Simple value strategies

For the simplest class of value strategies the position is of the form

Xeve1 = X(V P) = V(v =Py, (Eq 14)

9. They could, for example, use a standard dividend discount model, in which case their valuations depend
on their forecasts of future dividends and interest rates. The results here, however, are independent of the
method of valuation.
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whereV is an increasing function with(0) = 0 Vi, is the logarithm of the perceived
value, andp, is the logarithm of the price. This class of strategies only depends on the
mispricingm, = p,—V,. Such a strategy takes a positive (long) position when the asset is
underpriced; if the asset becomes even more underpriced, the position either stays the
same or gets larger. Similarly, if the mispricing is positive it takes a negative (short) posi-
tion.

If Vis differentiable we can expand itin a Taylor series. To first order the position can
be approximated as

Xi+1 = C(Vt—pt),

wherec >0 is a constant proportional to the trading capital. From equations (1) and (7)
the induced price dynamics in a market consisting only of this strategy and the market
maker are

Mg = —Or+0N +& 9

(Eq 15)

Pre1 = PrFTlisn
wherer, = p,—p;_1 Ny = V;—V,_1 ,andx = c/A . These dynamics are second order.
This is evident from equation 15 sinpg, ; depends on ppth  pand . The stability
can be determined by neglecting the noise terms and writing equation 15 in the form
U1 = Au, whereu, = (r,, p,) . The eigenvalues Af d%B—a) . Thus wbenl
the dynamics are neutrally stable, which implies that the logarithm of the price, like the
logarithm of the value, follows a random walk. Wiees 1 the dynamics are unstable.

Simple value strategies induce negative first autocorrelations in the log-ngturns
This is easily seen by multiplying both sides of equation 1%,by , Subtracting the mean,
and taking time averages. Assuming stationarity, this gives the recursion relation
p,(t) = —ap,(t1—-1). Sincep,(0) = 1 , this implies

p (1) = (-o)T, (Eq 16)

wheret = 0, 1, 2 ... . Becausa >0 , the first autocorrelation is always negative. Since
the autocorrelation is determined by the linear patvof |, this is true for any differentiable
value strategy in the form of equation 14.

This value strategy amplifies the price nofge , but may or may not amplify the value
noisen; . To see this, compute the variance of the log-returns by squaring equation 15 and
taking time averages. This gives

262 + G2

0202 +0

02 = 1 "¢ (Eq 17)
1-a?

whereo? andoZ are the variancesrpf ~ d@pd . This amplifies the external noise, since

for any value ofx g, > g . Similarly, iftx > 1/J2 theo, > oy,
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This strategy by itself does not cause prices to track values. This is evident because
Equation 15 shows no explicit dependence on price or value. The lack of cointegration can
be shown explicitly by substitutingy, = p,—V, into Equation 15, which gives

Amy,, = —aldm-n;+§&,,

whereAm, = m,—m,_,; . Whera <1 Am, is stationary ang is a random walk. We
have made several numerical simulations using various nonlinear forMs for , and we
observe similar results. The intuitive reason for this behavior is that, while a trade entering
a position moves the price toward value, an exiting trade of the same size moves it away
from value by the same amount. Thus, while the negative autocorrelation induced by sim-
ple value strategies might reduce the rate at which prices drift from value, this is not suffi-
cient for cointegration. The lack of cointegration can lead to problems with unbounded
positions, implying unbounded risk. This comes about because the mispricing is
unbounded, and the position is proportional to the mispricing. Thus if this is the only strat-
egy present in the market the position is also unbounded. This problem disappears if
another strategy is present in the market that cointegrates prices and values.

So far we have assumed ongoing changes in value. It is perhaps even more surprising
that the price fails to converge even if the value changes once and then remains constant.
To see this, consider equation 15wty = v ,ak = 0  tforl . Assgme O :
and for convenience lgt; = v; = 0 arfip;, = 0 . Iterating a few steps by hand shows
thatp, = (a —a?+a3+ ... (—a)!~Y)v.Ifa <1, inthe limitt —» o this converges to
p, = av/(1+a). Thuswhena <1 the price initially moves toward the new value, but
it never reaches it; whem>1 the dynamics are unstable.

3.2.2 When do prices track values?

How can we solve the problem of making prices track values? One approach is to
change the price formation rule. As already discussed in Section 2.4, this can be achieved
by including risk aversion for the market maker. An alternative that is explored here is to
investigate alternative value investing strategies. The order based value strategies dis-
cussed below fix the problem, but at the unacceptable cost of generating unbounded inven-
tories. The threshold value strategies introduced in the following section manage to
achieve both.

3.2.3 Order-based value strategies

One way to make prices track values is to make the strategy depend on the order
instead of the position. A strategy of this type buys as long as the asset is underpriced, and
sells as long as it is overpriced. Under the simple value strategy of the preceding section, if
the mispricing reaches a given level, the trader takes a position. If the mispricing holds
that level, he keeps the same position. For an order-based strategy, in contrast, if the asset
is underpriced he will buy, and if on the next time step it is still mispriced he will buy
again, and continue doing so as long as the asset remains mispriced. One can define an
order based value strategy the form
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Wvp = WOV P) = WY —py)

where as befor®/ is an increasing function Wwitfi0) = 0 . If we again expand in a
Taylor’s series, then to leading order this becomes

Wyq = C(—Py)-

Without presenting the details, let us simply state that it is possible to analyze the dynam-
ics of this strategy and show that the mispricing has a well-defined standard deviation.
Prices track values. The problem is that the position is not stationary, and the trader can
accumulate an unbounded inventory. This is not surprising, given that this strategy does
not depend on position.

The signal is to buy or sell as long as a mispricing persists, which means that typically
the position is not forced to go to zero, even when the mispricing goes to zero. This prob-
lem occurs even in the presence of other strategies that cause cointegration of price and
value. Numerical experiments suggest that non-linear extensions have similar problems.
Real traders have risk constraints, which mean that position is of paramount concern.
Strategies that do not depend on the position are unrealistic.

3.2.4 State-dependent threshold value strategies

The analysis above poses the question of whether there exist strategies that cointegrate
prices and values and have bounded risk at the same time. This section introduces a class
of strategies with this property.

From the point of view of a practitioner, a concern with the simple position-based
value strategies of Section 3.2.1 is excessive transaction costs. Trades are made whenever
the mispricing changes. A common approach to ameliorate this problem and reduce trad-
ing frequency is to use state dependent strategies, with a threshold for entering a position,
and another threshold for exiting it. Like the simpler value strategies studied earlier, such
strategies are based on the belief that the price will revert to the value. By only entering a
position when the mispricing is large, and only exiting when it is small, the goal is to trade
only when the expected price movement is large enough to beat transaction costs.

An example of such a strategy, which is both nonlinear and state dependent, can be
constructed as follows: Assume that a short pos#ion is entered when the mispricing
exceeds athreshol@ and exited when it goes below a threshold . Similarly, a long posi-
tion c is entered when the mispricing drops below a threshold and exited when it
exceeds-t . Thisis illustrated in Figure 4. Since this strategy depends on its own position
as well as the mispricing, it can be thought of as a finite state machine, as shown in
Figure 5.

In general different traders will choose different entry and exit thresholds. Let trader
have entry threshol@()  and exit threshofd . For the simulations presented here we
will assume a uniform distribution of entry thresholds ranging figg),  T,tg, ,and a
uniform density of exit thresholds ranging fram,,, T, . with a random pairing of
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FIGURE 4. Schematic view of a nonlinear, state-dependent value strategy. The trader enters a
short position —C when the mispricingm, = p,—V, exceeds a threshold , and holds it
until the mispricing goes belowT . The reverse is true for long positions.

(o)
(’ m > - tau

m < tau

)

FIGURE 5. The nonlinear state-dependent value strategy represented as a finite-state machine.
From a zero position a long-positionC is entered when the mispricingl  drops below the
threshold —T . This position is exited when the mispricing exceeds a thresholdt . Similarly, a
short position —C is entered when the mispricing exceeds a threshold  and exited when it

drops below a thresholdT
entry and exit thresholds. is chosen so that a( T—1) , Wwhere is a positive con-
stant®.
There are several requirements that must be met for this to be a sensible value strategy.
The entry threshold should be positive and greater than the exit threshdids De. and
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T >1. In contrast, there are plausible reasons to make either positive or negative. A
trader who is very conservative about transaction costs, and wants to be sure that the full
return has been extracted before the position is exited, willttalk® . However, others
might decide to exit their positions earlier, because they believe that once the price is near
the value there is little expected return remaining. We can simulate a mixture of the two
approaches by making,;,<0 anmg_, >0 . However, to be a sensible value strategy, a
trader would not exit a position at a mispricing that is further from zero than the entry
point. T..;, should not beoo negative, so we should hav& <t<T  guogh|< T,

T <0 is a desirable property for cointegration. When this is true the price changes
induced by trading always have the opposite sign of the mispricing. This is true both enter-
ing and exiting the position. A simulation with,,, = 0 ang;,<0  is shown in
Figure 6. Numerical tests clearly show that the price and value are cointegrated. The coin-

5.0

log prices, log value
4.8

4.6

4.4

6500 7000 7500 8000
time

FIGURE 6. The induced price dynamics of a nonlinear state-dependent value
strategy with 1000 traders using different thresholds. The log- price is shown as a

solid line and the log-value as a dashed lin&., -0.5 1, 0o ,
Toin = 0.5 T = 6.N = 1000a_'6001o %01, and
o = 0.01, and A =

tegration is weak, however, in the sense that the mispricing can be large and keep the same
sign for many iterations.

Figure 7 shows a simulation with the range of exit thresholds chosen so,fhat 0
butt,,,,> 0. For comparison with Figure 6 all other parameters are the same. The price
and value are still cointegrated, but more weakly than before. This is apparent from the
increased amplitude of the mispricing. In addition, there is a tendency for the price to
“bounce” as it approaches the value. This is caused by the fact that when the mispricing

10. This assignment is natural because traders managing more money (witB larger ) incur larger transac-
tion costs. Traders with larger positions need larger mispricings to make a profit.
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FIGURE 7. Price (solid) and value (dashed) vs. time for the nonlinear state-
dependent strategy of Figure 5. The parameters and random number seed are
the same as Figure 6, except that,;, = —0.5 andt,,,, = 0.5

approaches zero some traders exit their positions, which pushes the price away from the
value. The value becomes a “resistance level” for the price (see e.g. Edwards and Magee,
1992), and there is a tendency for the mispricing to cross zero less frequently than it does
whent() <0 foralli . Thus, we see that a value strategy can create patterns that could be
exploited by a technical strategy. Based on results from numerical experiments it appears
that the price and value are cointegrated as long,as< 0 . Necessary and sufficient con-
ditions for cointegration deserve further stlitly

3.2.5 Heterogeneous values, representative agents, and excess volatility

So far we have assumed a single perceived value, but given the tendency of people to
disagree, in a more realistic setting there will be a spectrum of different values. We will
show that in this case, for strategies that are linear in the logarithm of value, the price
dynamics can be understood in terms of a sirggeesentative agenivhose perceived
value is the mean of the group. However, for nonlinear strategies this is not true -- there
exists no representative agent, and diverse perceptions of value can cause excess volatility.

Suppose there aid  different traders perceiving velie , using a value strategy
V(v p) = cOV(v, p,), wherecll) is the capital of each individual strategy. The
dynamics are

11. Problems can occur in the simulations if the cagitat a( T —T) for each strategy is not assigned
reasonably. Ifa is too small the traders may not provide enough restoring force for the mispricing; once all
N traders are committed to a long or short position, price and value cease to be cointegrated. If  is too big
instabilities can result because the price kick provided by a single trader creates oscillations between entry
and exit. Nonetheless, between these extremes there is a large parameter range with reasonable behavior.
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N
1 . .
pt+1 = pt +X Z C(I)V(Vt(l)a pt)7
i=1

Providing the strategy is linear in the value the dynamics will be equivalent to those of a
single agent with the average perceived value and the combined capital. This i¥true if
satisfies the property

N

Y cOV(D, p) = V(Y% py),
i=1

where

olR

N
z cviD,
i=1

andc = ) ¢ . For example, the linearized value strategy of Section 3.2.1 satisfies this
property. Thus, for strategies that depend linearly on the logarithm of value, the mean is
sufficient to completely determine the price dynamics, and the diversity of opinions is
unimportant. The market dynamics are those of a single representative agent.

The situation is quite different when the strategies depend nonlinearly on the value. To
demonstrate how this leads to excess volatility, we will study the special case where trad-
ers perceive different values, but these values change in tandem. This way we are not
introducing any additional noise to the value process by making it diverse, and any ampli-
fication in volatility clearly comes from the dynamics rather than something that has been
added. The dynamics of the values can be modeled as a simple reference valueiprocess
that follows equation 13, with a fixed random offgét for each trader. The value per-
ceived by thaéth trader at tinte is

Vt(i) =V, + v(i) (Eq 18)
In the following simulations the value offsets are assigned uniformly betwggn and
Vimax Wherev, ... = —v,... , sothatrange &, ..

We will define the excess volatility as

€ = /orz/(o,?] + 052) , (Eq 19)

i.e. as the ratio of the volatility of the log-returns to the volatility of the exogenous noise.
This measures the noise amplificationgl$ 1 the log-returns of prices are more volatile
than the fluctuations driving the price dynamics. Figure 8 illustrates how the excess vola-
tility increases as the diversity of perceived values increases, using the threshold value
strategy of Section 3.2.4. The excess volatility also increases as the capital increases. This
is caused by additional trading due to disagreements about value. In the linear case these
would cancel and leave no effect on the price, but because of the nonlinearity of the strat-
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range of perceived values

FIGURE 8. Excess volatility as the range of perceived values increases while the
capital is fixed at 0.035. See Equation 19. The other parameters are the same as

those in Figure 6.

egy, this is not the case. If the market is a machine whose purpose is to keep the price near
the value, this machine is noisy and inefficient.

3.3 Value investors and trend followers together

In this section we investigate the dynamics in a more heterogeneous setting including
both nonlinear trend following and value investing strategies. We use the threshold value
strategies described in Section 3.2.4, and use the trend strategy of Section 3.1, except that
we make it nonlinear by adding entry and exit thresholds, just as for the value strategy of
Section 3.2.4. We make a qualitative comparison to annual prices and dividends for the
S&P index? from 1889 to 1984, using the average dividend as a crude measure of value,
and simulating the price dynamics on a daily timescale. As a proxy for daily value data we
linearly interpolate the annual logarithm of the dividends, creating 250 surrogate trading

days for each year of data. These provide the reference value process

12. See Campbell and Shiller (198Bhth series are adjusted for inflation

in equation 18.
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The parameters for the simulation are given in Table 1. There were two main criteria

TABLE 1. Parameters for the simulation with trend followers and value investors in Figure 10.

Description of parameter symbol value
number of agents Nyaive Ntreng 1200
minimum threshold for entering positions Tr‘]’rﬁ‘llq”e T%?n“d 0.2
maximum threshold for entering positions T}’n"’}j\')‘fe T}Tﬂgg‘(d 4
minimum threshold for exiting positions ~ Tyalue tlrend  _Q .2

i i it value ttrend
maximum threshold for exiting positions T 7% © TmZx 0

scale parameter for capital assignment  a,41ue &trend 2.5%x 103

minimum offset for log of perceived value Vi, -2
maximum offset for log of perceived value V5, 2
minimum time delay for trend followers Gmin 1
maximum time delay for trend followers 8, 100
noise driving price formation process O¢ 0.35
liquidity A 1

for choosing parameters: First, we wanted to match the empirical fact that the correlation
of the log-returns is close to zero. This was done by matching the population of trend fol-
lowers and value investors, so that the positive short term autocorrelation induced by the
trend followers is cancelled by the negative short term autocorrelation of the value inves-
tors. Thus the common parameters for trend followers and value investors are the same.
Second, we wanted to match the volatility of prices with the real data. This is done prima-
rily by the choice ola andN in relation fo , and secondarily by the choiug,pf and
Vmax- Finally, we chose what we thought was a plausible timescale for trend following
uniformly distributed froml — 100 days.

The real series of American prices and values are shown in Figure 9 and the simulation
results are shown in Figure 10. There is a qualitative correspondence. In both series the
price fluctuates around value, and mispricings persist for periods that are sometimes mea-
sured in decades. However, at this point no attempt has been made to make forecasts,
which is not trivial for this kind of model. The point of the above simulation is just to dem-
onstrate how a combination of trend and value investors results in oscillations in the mis-
pricing.

Because of the choice of parameters there is no short term linear autocorrelation struc-
ture in this price series. There is plenty of nonlinear structure, however, as illustrated in
Figure 11, which shows the smoothed voldref value investors and trend followers as a
function of time. The two groups of traders become active at different times, simply
because the conditions that activate their trading are intermittent and unsynchronized. This
is true even though the capital of both groups is fixed. Since the trend followers induce
positive autocorrelations and the value investors negative autocorrelations, there is predict-

13. The smoothed volume is computed7qs: [3\7t _1+t(1- B)Vt , wM?re is the volume and
B =0.9.
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FIGURE 9. Inflation-adjusted annual prices (solid) and dividends for the S&P
index of American stock prices.
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FIGURE 10. A simulation with value investors and trend followers. The linearly
interpolated dividend series from Figure 9 provides the reference value process.
Prices are averaged to simulate reduction to annual data. There was some
adjustment of parameters, as described in the text, but no attempt was made to
match initial conditions. The oscillation of prices around values is qualitatively
similar to Figure 9.

able nonlinear structure for a trader who understands the underlying dynamics well
enough to predict which group will become active. Without knowledge of the underlying
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FIGURE 11. Smoothed trading volume of value investors (solid line) and trend
followers (dashed line). The two groups become active at different times; when
the value investors dominate the log-returns have a negative autocorrelation, and
when the trend followers dominate there is a positive autocorrelation. Even
though there is no linear temporal structure, there is strong nonlinear structure.
Parameters are as described in Table 1; this is only a short portion of the total
simulation.

generating process, however, it is difficult to find such a forecasting model directly from
the timeseries.

Statistical analyses display many of the characteristic properties of real financial
timeseries, as illustrated in Figure 12. The log-returns are more long-tailed than those of a
normal distribution, i.e. there is a higher density of values at the extremes and in the center
with a deficit in between. This also evident in the size of the fourth moment. The excess
kurtosisk = [{r,—T,)*0*-3 isroughljk=9 ,incontrastto= 0 for a normal dis-
tribution. The histogram of volumes is peaked near zero with a heavy positive skew. The
volume and volatility both have strong positive autocorrelations. The intensity of the long-
tails and correlations vary as the parameters are changed or strategies are altered. How-
ever, the basic properties of long tails and autocorrelated volume and volatility are robust
as long as trend followers are included.

Clustered volatility has now been seen in many different agent-based Hottels
seems there are many ways to do produce this behavior. The mechanism in this case is due
to positive feedback: Large price fluctuations cause large trading volume, which causes
large price fluctuations, and so on, generating volatility bursts. Even without any autocor-
relations in prices themselves, the nonlinearly driven variations in the trading activity of
value and trend strategies can cause autocorrelations in volatility. Several authors, includ-
ing Lux et al. (1997, 1998, 1999) and Brock and Hommes (1997, 1998, 1999) have sug-
gested that fluctuating volatility is driven by changes in the population of trend followers.
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For real markets, this may be problematic: Real agents may not change strategies this fast.
The feedback hypothesis offered here does not require agents to change strategies. How-
ever, it is not clear whether the resulting volatility correlations are strong enough to match
those observed in real data. More work is needed to resolve this question.

The few results presented here fail to do justice to the richness of the trend follower/
value investor dynamics. We have observed many interesting effects. For example, the
presence of trend followers increases the frequency of oscillations in mispricing. The
mechanism seems to be more or less as follows: If a substantial mispricing develops by
chance, value investors become active. Their trading shrinks the mispricing, with a corre-
sponding change in price. This causes trend followers to become active; first the short term
trend followers enter, and then successively longer term trend followers enter, sustaining
the trend and causing the mispricing to cross through zero. This continues until the mis-
pricing becomes large, but with the opposite sign, and the process repeats itself. As a
result the oscillations in the mispricing are faster than they would be without the trend fol-
lowers. This mechanism is a less regular version of that postulated by Chiarella (1992).

4. Concluding remarks

These results illustrate how commonly used trading strategies can be viewed as signal
processing elements. Trend following strategies act as signal filters, amplifying high fre-
guency noise and inducing short term positive autocorrelations. Value investing strategies
act as signal transducers, incorporating information about value into prices, and inducing
negative short term autocorrelations. The fact that prices have very small autocorrelations
suggests that value investors alone cannot be the only group present -- there must be other
groups present, such as trend followers, to cancel their negative autocorrelations.

Nonlinear value investing strategies can amplify noise in a heterogeneous setting
where there are diverse views concerning value. Trend following strategies strongly
amplify high frequency noise, so that when the two groups are combined the result is
excess volatility. When value investing and trend following strategies are combined, by
adjusting their relative populations, the short term autocorrelations can be made to cancel,
so that in a long time average there is very little linear structure. However, because each
style of trading is activated differently, there may be bursts of trading by either group, even
without agents defecting from one group to the other. The feedback effects studied here
give rise to clustered volatility; unlike explanations that rely on oscillations in the popula-
tions of different groups of traders, this explanation is plausible even on fairly rapid times-

14. Some examples include Brock and LeBaron (1996), Levy et al. (1996), Takayasu et al. (1997), Arthur et
al. (1997), LeBaron et al. (1999), Caldarelli et al. (1997), Brock and Hommes (1997, 1998, 1999), Lux
(1997,1998), Lux and Marchesi (1999), Youssefmir et al.(1998), Bouchaud and Cont (1998), Gaunersdorfer
and Hommes (1999) and lori (1999). Fat tails with realistic tail exponents have been observed by Lux and
Marchesi (1999) in simulations of value investors and trend-followers based on the log-linear price forma-
tion rule; Stauffer and Sornette (1999) have predicted realistic exponents using equation 8 with randomly
varying liquidity.
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FIGURE 12. An illustration that an ecology of threshold based value investors and trend followers
shows statistical properties that are typical of real financial time series. The upper left panel is a
“g-g” plot, giving the ratio of the quantiles of the cumulative probability distribution for the log-
returns to those of a normal distribution. If the distribution were normal this would be a straight
line, but since it is “fat tailed” the slope is flatter in the middle and steeper at the extremes. The
upper right panel shows a histogram of the volume. It is heavily positively skewed. The lower left
panel shows the autocorrelation of the volume, and the lower right panel shows the
autocorrelation of the volatility. These vary based on parameters, but fat tails and temporal
autocorrelation of volume and volatility are typical.

cales. Whether such feedback effects are strong enough to explain the clustered volatility
observed in real markets, however, remains an open question.

A key element missing from the price formation mechanism studied here is risk aver-
sion by the market maker. This has several profound effects on price dynamics. First, it
serves to reduce deviations from market clearing, and makes prices track values more
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closely. However, it also induces additional temporal structure in prices. Under the price
formation mechanism of equation 8, for example, the market maker’s price adjustments
are positively correlated. This can be exploited by trend followers, and provides one possi-
ble explanation for the persistence of trend followers. In a future paper we will present
some results that include market maker risk aversion, and which also study the profitabil-
ity and reinvestment dynamics of different groups of agents.
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