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ABSTRACT
We study Nash equilibria in the setting of network creation
games introduced recently by Fabrikant, Luthra, Maneva,
Papadimitriou and Shenker. In this game we have a set of
selfish node players, each creating some incident links, and
the goal is to minimize α times the cost of the created links
plus sum of the distances to all other players. Fabrikant et
al. proved an upper bound O(

√
α) on the price of anarchy,

i.e., the relative cost of the lack of coordination. Albers,
Eilts, Even-Dar, Mansour, and Roditty show that the price
of anarchy is constant for α = O(

√
n) and for α ≥ 12 ndlg ne,

and that the price of anarchy is 15
“
1 + (min{α2

n
, n2

α
})1/3

”
for any α. The latter bound shows the first sublinear worst-
case bound, O(n1/3), for all α. But no better bound is
known for α between ω(

√
n) and o(n lg n). Yet α ≈ n is

perhaps the most interesting range, for it corresponds to
considering the average distance (instead of the sum of dis-
tances) to other nodes to be roughly on par with link cre-
ation (effectively dividing α by n).

In this paper, we prove the first o(nε) upper bound for

general α, namely 2O(
√

lg n). We also prove a constant upper
bound for α = O(n1−ε) for any fixed ε > 0, substantially
reducing the range of α for which constant bounds have not
been obtained. Along the way, we also improve the constant
upper bound by Albers et al. (with the lead constant of 15)

to 6 for α < (n/2)1/2 and to 4 for α < (n/2)1/3.
Next we consider the bilateral network variant of Corbo

and Parkes in which links can be created only with the con-
sent of both endpoints and the link price is shared equally by
the two. Corbo and Parkes show an upper bound of O(

√
α)
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and a lower bound of Ω(lg α) for α ≤ n. In this paper, we
show that in fact the upper bound O(

√
α) is tight for α ≤ n,

by proving a matching lower bound of Ω(
√

α). For α > n,
we prove that the price of anarchy is Θ(n/

√
α).

Finally we introduce a variant of both network creation
games, in which each player desires to minimize α times the
cost of its created links plus the maximum distance (instead
of the sum of distances) to the other players. This variant
of the problem is naturally motivated by considering the
worst case instead of the average case. Interestingly, for
the original (unilateral) game, we show that the price of

anarchy is at most 2 for α ≥ n, O(min{4
√

lg n, (n/α)1/3})
for 2

√
lg n ≤ α ≤ n, and O(n2/α) for α < 2

√
lg n. For the

bilateral game, we prove matching upper and lower bounds
of Θ( n

α+1
) for α ≤ n, and an upper bound of 2 for α > n.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Nonnumerical Algorithms and
Problems; G.2.2 [Mathematics of Computing]: Discrete
Mathematics—graph theory, network problems

General Terms
Performance, Design, Economics

Keywords
network design, routing, price of anarchy, Nash equilibrium

1. INTRODUCTION
Network design is an fundamental family of problems at

the intersection between computer science and operations
research, amplified in importance by the sustained growth of
computer networks such as the Internet. Traditionally, the
goal is to find a minimum-cost (sub) network that satisfies
some specified property such as k-connectivity or connec-
tivity on terminals (as in the classic Steiner tree problem).
Such a formulation captures the (possibly incremental) cre-
ation cost of the network, but does not incorporate the cost
of actually using the network. By contrast, network routing
has the goal of optimizing the usage cost of the network, but
assumes that the network has already been created.



The network creation game attempts to unify the network
design and network routing problems by modeling both cre-
ation and usage costs. Specifically, each node in the system
can create a link (edge) to any other node, at a cost of
α. In addition to these creation costs, each node incurs a
usage cost related to the distances to the other nodes. In
the model introduced by Fabrikant, Luthra, Maneva, Pa-
padimitriou, and Shenker at PODC 2003 [8], the usage cost
incurred by a node is the sum of distances to all other nodes.
Equivalently, if we divide the cost (and thus α) by the num-
ber n of nodes, the usage cost is the average distance to
other nodes. In another natural model, the usage cost in-
curred by a node is the maximum distance to all other nodes:
this model captures the worst-case instead of average-case
behavior of routing.

To model the dominant behavior of large-scale networking
scenarios such as the Internet, we consider each node to be
an agent (player) [9] that selfishly tries to minimize its own
creation and usage cost [8, 1, 5]. In this context, the price of
anarchy [10, 13, 15] is the worst possible ratio of the total
cost found by some independent selfish behavior and the
optimal total cost possible by a centralized, social welfare
maximizing solution. The price of anarchy is a well-studied
concept in algorithmic game theory for problems such as
load balancing, routing, and network design; see, e.g., [13,
6, 14, 8, 3, 2, 4, 5, 1].

Previous work.
Three papers consider the price of anarchy in the sum

network creation game. Fabrikant et al. [8] prove an upper
bound of O(

√
α) on the price of anarchy for all α. Lin [12]

prove that the price of anarchy is constant for two ranges
of α: α = O(

√
n) and α ≥ c n3/2 for some c > 0. In-

dependently, Albers et al. [1] prove that the price of anar-
chy is constant for α = O(

√
n), as well as for the larger

range α ≥ 12 ndlg ne. In addition, Albers et al. prove a gen-

eral upper bound of 15
“
1 + (min{α2

n
, n2

α
})1/3

”
. The latter

bound shows the first sublinear worst-case bound, O(n1/3),
for all α. But no better bound is known for α between
ω(
√

n) and o(n lg n). Yet α ≈ n is perhaps the most inter-
esting range, for it corresponds to considering the average
distance (instead of the sum of distances) to other nodes to
be roughly on par with link creation (effectively dividing α
by n).

The bilateral variation on the network creation game, con-
sidered by Corbo and Parkes in PODC 2005 [5], requires
both nodes to agree before they can create a link between
them. In the sum bilateral network creation game, Corbo
and Parkes prove that the price of anarchy is between Ω(lg α)
and O(

√
α) for α ≤ n. Although not claimed in their paper,

the proof of their upper bound also establishes an upper
bound of O(n/

√
α) for α ≥ n.

Our results.
In the sum (unilateral) network creation game of Fab-

rikant et al. [8], we prove the first o(nε) upper bound for

general α, namely 2O(
√

lg n). We also prove a constant up-
per bound for α = O(n1−ε) for any fixed ε > 0, substantially
reducing the range of α for which constant bounds have not
been obtained. Along the way, we also improve the constant
upper bound by Albers et al. [1] (with the lead constant

of 15) to 6 for α < (n/2)1/2 and to 4 for α < (n/2)1/3.

In the max (unilateral) version, we prove that the price

of anarchy is at most 2 for α ≥ n, O(min{4
√

lg n, (n/α)1/3})
for 2

√
lg n ≤ α ≤ n, and O(n2/α) for α < 2

√
lg n.

Our primary proof technique can be most closely viewed
as a kind of “region growing” from approximation algo-
rithms; see, e.g., [11].

In the (sum) bilateral network creation game of Corbo
and Parkes [5], we show that their O(min{

√
α, n/

√
α}) up-

per bound is tight by proving a matching lower bound of
Ω(min{

√
α, n/

√
α}). In the max (bilateral) version, we

prove matching upper and lower bounds of Θ( n
α+1

) for
α ≤ n, and an upper bound of 2 for α > n.

Table 1 summarizes the best bounds known for each of
the three models and for all ranges of α. Interestingly, these
results reveal that the price of anarchy can depend signifi-
cantly on α.

2. MODELS
Formally, we define four games depending on the objective

(sum or max) and the consent (unilateral or bilateral). In all
versions, we have n players; call them 1, 2, . . . , n. The strat-
egy of player i is specified by a subset si of {1, 2, . . . , n}−{i},
which corresponds to the set of neighbors to which player
i forms a link. Together, let s = 〈s1, s2, . . . , sn〉 denote the
strategies of all players.

To define the cost of a strategy, we introduce an undi-
rected graph Gs with vertex set {1, 2, . . . , n}. In the unilat-
eral game, Gs has an edge {i, j} if either i ∈ sj or j ∈ si. In
the bilateral game, Gs has an edge {i, j} if both i ∈ sj and
j ∈ si. Define ds(i, j) to be the distance between vertices i
and j in graph Gs. In the sum game, the cost incurred by
player i is

ci(s) = α |si| +
nX

j=1

ds(i, j),

and in the max game, the cost incurred by player i is

ci(s) = α |si| +
n

max
j=1

ds(i, j).

In both cases, the total cost incurred by strategy s is c(s) =Pn
i=1 ci(s).
In the unilateral game, a (pure) Nash equilibrium is a

strategy s such that c(s) ≤ c(s′) for all strategies s′ that
differ from s in only one player i. The price of anarchy is
then the maximum cost of a Nash equilibrium divided by the
minimum cost of any strategy (called the social optimum).

In the bilateral game, Nash equilibria are not so interest-
ing because the game requires coalition between two players
to create an edge (in general). For example, if every player
i chooses the empty strategy si = ∅, then we obtain a Nash
equilibrium inducing an empty graph Gs, which has an in-
finite cost c(s). To address this issue, Corbo and Parkes [5]
define a strategy to be pairwise stable if (1) for any edge
{i, j} of Gs, both ci(s) ≤ ci(s

′) and cj(s) ≤ cj(s
′) where

s′ differs from s only in deleting edge {i, j} from Gs; and
(2) for any nonedge {i, j} of Gs, either ci(s) < ci(s

′) or
cj(s) < cj(s

′) where s′ differs from s only in adding edge
{i, j} to Gs′ . The price of anarchy is then the maximum
cost of a pairwise-stable strategy divided by the social opti-
mum (the minimum cost of any strategy).

We spend the bulk of this paper (Sections 3–6) on the
original version of the network creation game, sum unilat-
eral. Then we consider the max unilateral game in Section 7,



α = 0 1 2 2
√

lg n 3
p

n/2
p

n/2 O(n1−ε) n 12 ndlg ne n2

Sum unilateral 1 4
3

[8] ≤ 4 (§4) ≤ 6 (§4) Θ(1) (§5) 2O(
√

lg n) (§6) Θ(1) [1]

Max unilateral O(n2/α) (§7) O(min{4
√

lg n, (n/α)1/3}) (§7) ≤ 2 (§7)
Sum bilateral 1 Θ(

√
α) (O in [5], Ω in §8) Θ( n√

α
) (O in [5]a, Ω in §8)

Max bilateral Θ( n
α+1

) (§9) ≤ 2 (§9)

Table 1: Summary of best known results for all three models of network creation games and for all ranges
of α. a[5, Proposition 4] claims O(

√
α) for α < n2 but in fact proves O(min{

√
α, n/

√
α}).

the sum bilateral game in Section 8, and the max bilateral
game in Section 9. Thus we default to the unilateral game,
often omitting the term, and within the unilateral game, we
default to the sum version.

3. PRELIMINARIES
In this section, we define some helpful notation and prove

some basic results. Call a graph Gs corresponding to a Nash
equilibrium s an equilibrium graph. In such a graph, let
ds(u, v) be the length of the shortest path from u to v. Let
Nk(u) denote the set of vertices with distance at most k
from vertex u, and let Nk = minv∈G |Nk(v)|.

We start with a lemma proved in [1] about the sum uni-
lateral game:

Lemma 1. [1, proof of Theorem 3.2] For any Nash equi-
librium s and any vertex v0 in Gs, the cost c(s) is at
most 2α(n − 1) + n Dist(v0) + (n − 1)2 where Dist(v0) =P

v∈V (Gs) ds(v0, v).

Now we use this lemma to relate the price of anarchy
to depth in a breadth-first search (BFS) tree, a connection
also used in [1]. We assume henceforth that α ≥ 2, because
otherwise the price of anarchy for the sum unilateral game
is already known from [8]. In this case, it is known that the
social optimum is attained by a star graph [8].

Lemma 2. If the BFS tree in a equilibrium graph Gs

rooted at vertex u has depth d, then price of anarchy is at
most d + 1.

Proof. By Lemma 1 and because the cost of the so-
cial optimum (a star) is at least α(n − 1) + n(n − 1), the

price of anarchy is at most 2α(n−1)+n Dist(u)+(n−1)2

α(n−1)+n(n−1)
. Be-

cause the height of the BFS tree rooted at u is d, we
have Dist(u) ≤ (n − 1)d. Hence the price of anarchy is

at most 2α(n−1)+n(n−1)d+(n−1)2

α(n−1)+n(n−1)
< 2α(n−1)+n(n−1)(d+1)

α(n−1)+n(n−1)
≤

max{ 2α(n−1)
α(n−1)

, n(n−1)(d+1)
n(n−1)

} = max{2, d + 1} = d + 1.

Lemma 3. For any equilibrium graph Gs, |N2(u)| >
n/(2α) for every vertex u and α ≥ 1.

Proof. We can assume that the number vertices with
distance more than 2 from u is at least n/2; otherwise
|N2(u)| > n/2 ≥ n/(2α). Let S be the vertices whose
distance is exactly 2 from u. For each vertex v with
ds(u, v) ≥ 2, we pick any one of its shortest paths to u
and assign v to the only vertex in this path that is in S.
The number of vertices assigned to a vertex w ∈ S can be
no more than α, because otherwise vertex u could buy edge
{u, w} and decrease its distance to each vertex assigned to
w by at least 1. There is one assignment for each vertex
with distance at least 2 from u, so the total number of as-
signments to vertices in S is more than n/2. Therefore,
|S| > (n/2)/α = n/(2α).

4. IMPROVED CONSTANT UPPER
BOUNDS FOR α = O(

√
N)

In this section, we use the basic results from the previous
section to improve the O(1) bounds for the sum unilateral
game with α = O(

√
n) obtained by Albers et al. [1]. Re-

call that their bound has a lead constant of (and is thus at

least) 15. We prove an upper bound of 6 for α < (n/2)1/2

and 4 for α < (n/2)1/3.

Theorem 1. For α < (n/2)1/2, the price of anarchy is
at most 6.

Proof. We prove that the height of the BFS tree rooted
at an arbitrary vertex u in an equilibrium graph is at most 5.
Suppose for contradiction that there is a vertex v at dis-
tance at least 6 from u. Vertex v can buy {u, v} to decrease
its distance from all vertices in N2(u) by at least 1. Be-
cause vertex v has not bought the edge {u, v}, we conclude
that |N2(u)| < α. By Lemma 3, |N2(u)| > n/(2α). Hence
α > n/(2α), which contradicts the hypothesis of the lemma.
Therefore the height of the BFS tree rooted at u is at most 5.
By Lemma 2, the price of anarchy is at most 5 + 1 = 6.

Theorem 2. For α < (n/2)1/3, the price of anarchy is
at most 4.

Proof. We prove that there is a choice of root vertex v in
an equilibrium graph such that the height of the BFS tree is
at most 3. Let ∆ be the maximum degree of a vertex in the
graph and let u be an arbitrary vertex. Certainly |N2(u)| ≤
1+∆2. On the other hand, by Lemma 3, |N2(u)| > n/(2α).
By the hypothesis of the lemma, 1 + ∆2 > n/(2α) > α2.
Hence ∆ > α− 1. Let v be a vertex with degree equal to ∆.
Suppose for contradiction that there is vertex u at distance
at least 4 from v. Vertex u can buy edge {u, v} to decrease
its distance to all vertices in N1(v) by at least 1 and thus
decrease its total cost by at least |N1(v)| = ∆ + 1 > α,
contradicting equilibrium. Therefore the height of the BFS
tree rooted at v is at most 3. By Lemma 2, the price of
anarchy is at most 3 + 1 = 4.

5. CONSTANT UPPER BOUND FOR
α = O(N1−ε)

In this section, we extend the range for which we know
a constant upper bound on the price of anarchy in the sum
unilateral game. Specifically, for α = O(n1−ε), we prove an

upper bound of 2O(1/ε). We start with some lemmas that
will be useful in this section and the next.

Lemma 4. For any vertex u in an equilibrium graph Gs,
if |Nk(u)| > n/2, then |N2k+2α/n(u)| ≥ n.

Proof. We prove the contrapositive. Suppose
|N2k+2α/n(u)| < n. Then there is a vertex v



with ds(u, v) ≥ 2k + 1 + 2α/n. For every vertex
x ∈ Nk(u), ds(u, x) ≤ k. By the triangle inequality
ds(u, x)+ds(x, v) ≥ ds(u, v), we have ds(x, v) ≥ k+1+2α/n.
If vertex v bought the edge {v, u}, then the distance be-
tween v and x would decrease by at least 2α/n, so Dist(v)
would decrease by at least Nk(u) · 2α/n. Because v has not
bought the edge {v, u}, we have α ≥ |Nk(u)| · 2α/n, i.e.,
|Nk(u)| ≤ n/2.

By setting α = n/2 and α = 12 n lg n, we conclude the
following corollaries, which we will use in Theorems 3 and 4.

Corollary 1. For any vertex u in an equilibrium graph
Gs with α < n/2, if |Nk(u)| > n/2, then |N2k+1(u)| ≥ n.

Corollary 2. For any vertex u in an equilibrium
graph Gs with α < 12 n lg n, if |Nk(u)| > n/2, then
|N2k+24 lg n(u)| ≥ n.

Lemma 5. If |Nk(u)| > Y for every vertex u in an equi-
librium graph Gs, then either |N2k+3(u)| > n/2 for some
vertex u or |N3k+3(u)| > Y n/α for every vertex u.

Proof. If there is a vertex u with |N2k+3(u)| > n/2,
then the claim is obvious. Otherwise, for every vertex u,
|N2k+3(u)| ≤ n/2. Let u be an arbitrary vertex. Let S
be the set of vertices whose distance from u is 2k + 3. We
select a subset of S, called center points, by the following
greedy algorithm. First we unmark all vertices in S. Then
we repeatedly select an unmarked vertex x ∈ S as a center
point, mark all unmarked vertices in S whose distance from
x is at most 2k, and assign these vertices to x.

Suppose that we select l vertices x1, x2, . . . , xl as center
points. We prove that l ≥ n/α. Let Ci be the vertices in

S assigned to xi. By construction, S =
Sl

i=1 Ci. We also
assign each vertex v at distance at least 2k + 3 from u to
one of these center points, as follows. Pick any one shortest
path from v to u, which contains exactly one vertex w ∈ S,
and assign v to the same center point as w. Let Ti be the set
of vertices assigned to xi and whose distance from u is more
than 2k + 3. By construction,

Sl
i=1 Ti is the set of vertices

at distance more than 2k+3 from u. The shortest path from
v ∈ Ti to u uses some vertex w ∈ Ci. If u bought the edge
{u, xi}, then the distance between u and w would become
at most 2k + 1. Because ds(u, w) = 2k + 3 in the current
graph, buying edge {u, xi} would decrease u’s distance to v
by at least 2k + 3− (1 + 2k) = 2. Because u has not bought
the edge {u, xi}, we conclude that α ≥ 2 |Ti|. On the other

hand, |N2k+3(u)| ≤ n/2, so
Pl

i=1 |Ti| ≥ n/2. Therefore,

l α ≥ 2
Pl

i=1 |Ti| ≥ n and hence l ≥ n/α.
According to the greedy algorithm, the distance between

any pair of center points is more than 2k; hence, Nk(xi) ∩
Nk(xj) = ∅ for i 6= j. By the hypothesis of the lemma,

|Nk(xi)| > Y for every vertex xi; hence |
Sl

i=1 Nk(xi)| =Pl
i=1 |Nk(xi)| > l Y . For every i ≤ l, we have ds(u, xi) =

2k + 3, so vertex u has a path of length at most 3k + 3 to
every vertex whose distance to xi is at most k. Therefore,
|N3k+3(u)| ≥ |

Sl
i=1 Nk(xi)| > l Y ≥ Y n/α.

Theorem 3. For ε ≥ 1/ lg n and 1 ≤ α < n1−ε, the price

of anarchy is at most 4.667 · 3d1/εe + 8.

Proof. Consider an equilibrium graph Gs. Let X =
n/α > nε. Define a1 = 2 and ai = 3ai−1 + 3 for all i > 1.

By Lemma 3, N2(u) > n/(2α) = X/2. By Lemma 5, for
each i ≥ 1, either N2ai+3(v) > n/2 for some vertex v or
Nai+1 ≥ (n/α) Nai = X Nai . Let j be the least number for
which |N2aj+3(v)| > n/2 for some vertex v. By this defini-
tion, for each i < j, Nai+1 > (n/α) Nai = X Nai . Because

Na1 = N2 > X/2, we obtain that Nai > Xi/2 for every
i ≤ j. On the other hand, Xj/2 < Naj ≤ n, so Xj < 2n.
Thus j ≤ d1/εe, so |Na2d1/εe+3(v)| ≥ |N2aj+3(v)| > n/2.

By Corollary 1, |N4ad1/εe+7(v)| = n. Hence, the height of
the BFS tree rooted at vertex v is at most 4ad1/εe + 7. By
Lemma 2, the price of anarchy is at most 4ad1/εe + 8. Solv-
ing the recurrence relation ai = 3ai−1 + 3 with a1 = 2, we
obtain that ai = 7

6
3i − 3

2
< 7

6
3i. Therefore the price of

anarchy is at most 4 7
6

3d1/εe + 8 ≤ 4.667 · 3d1/εe + 8.

6. O(N ε) UPPER BOUND FOR
α < 12 N lg N

In this section, we prove the first o(nε) bound for the sum
unilateral game with α between Ω(n) and o(n lg n). Specif-

ically, we show an upper bound of 2O(
√

lg n). First we need
the following lemma.

Lemma 6. If |Nk(u)| > Y for every vertex u in an equi-
librium graph Gs, then either |N4k+1(u)| > n/2 for some
vertex u or |N5k+1(u)| > Y k n/α for every vertex u.

Proof. The proof is similar to the proof of Lemma 5. If
there is a vertex u with |N4k+1(u)| > n/2, then the claim is
obvious. Otherwise, for every vertex u, |N4k+1(u)| ≤ n/2.
Let u be an arbitrary vertex. Let S be the set of vertices
whose distance from u is 4k + 1. We select a subset of S,
called center points, by the following greedy algorithm. First
we unmark all vertices in S. Then we repeatedly select an
unmarked vertex x ∈ S as a center point, mark all unmarked
vertices in S whose distance is from x at most 2k, and assign
these vertices to x.

Suppose that we select l vertices x1, x2, . . . , xl as center
points. We prove that l ≥ k n/α. Let Ci be the vertices in

S assigned to xi. By construction, S =
Sl

i=1 Ci. We also
assign each vertex v with at distance at least 4k + 1 from
u to one of these center points. Pick any one shortest path
from v to u, which contains exactly one vertex w ∈ S, and
assign v to the same center point as w. Let Ti be the set of
vertices assigned to xi and whose distance from u is more
than 4k + 1. By construction,

Sl
i=1 Ti is the set of vertices

at distance more than 4k + 1 from u. The shortest path
from v ∈ Ti to u uses some vertex w ∈ Ci. If u bought
the edge {u, xi}, then the distance between u and w would
become at most 2k + 1. Because ds(u, w) = 4k + 1, buying
edge {u, xi} would decrease u’s distance to v by at least
4k + 1 − (2k + 1) = 2k. Because u has not bought the
edge {u, xi}, we conclude that α ≥ 2k|Ti|. On the other

hand, |N4k+1(u)| ≤ n/2 and
Pl

i=1 |Ti| ≥ n/2. Therefore,

l α ≥ 2k
Pl

i=1 |Ti| ≥ k n and hence l ≥ k n/α.
According to the greedy algorithm, the distance between

any pair of center points is more than 2k; hence, Nk(xi) ∩
Nk(xj) = ∅ for i 6= j. By the hypothesis of the lemma,

|Nk(xi)| > Y for every vertex xi; hence |
Sl

i=1 Nk(xi)| =Pl
i=1 |Nk(xi)| > l Y . For every i ≤ l, we have ds(u, xi) =

4k + 1, so vertex u has a path of length at most 5k + 1 to
every vertex whose distance to xi is at most k. Therefore,
|N5k+1(u)| ≥ |

Sl
i=1 Nk(xi)| > l Y ≥ Y k n/α.



Theorem 4. For 1 ≤ α < 12 n lg n, the price of anarchy

is O(5
√

lg n lg n).

Proof. The proof is similar to the proof of Theorem 3.
Let Z = 12 lg n. By the hypothesis of the theorem, α/n <
12 lg n = Z. Because any equilibrium graph Gs is connected,
|NZ | > Z. By Lemma 6, either |N4k+1(v)| > n/2 for some
vertex v or N5k+1 ≥ (n/α)k Nk. Define a0, a1, . . . by the
recurrence relation ai = 5 ai−1 + 1 with a0 = Z. By induc-
tion, ai > Z 5i. Suppose j is the least number for which
|N4aj+1(v)| > n/2. By this definition, and because n/α >

1/Z, we obtain that Nai+1 ≥ (n/α)aiNai > 5iNai for each

i < j. From these inequalities we derive that Naj > 5
Pj−1

i=0 i.

But Naj ≤ n, so
Pj−1

i=1 i = j(j−1)/2 ≤ log5 n. This inequal-

ity implies that j < 1 +
p

2 log5 n < 1 +
√

lg n. By Corol-
lary 2, the height of the BFS tree rooted at v is at most
2(4 a1+

√
lg n + 1) + 24 lg n. Solving the recurrence relation,

we obtain that aj = O(5j lg n). By Lemma 2, the price of

anarchy is O(5
√

lg n lg n).

7. UPPER BOUNDS FOR MAX
UNILATERAL GAME

In this section, we introduce and analyze the natural max
variation on the (unilateral) network creation game. This
problem is motivated by players forming a network with
guaranteed worst-case performance subject to budget con-
straints. We prove that the price of anarchy is at most 2 for

α ≥ n, O(min{4
√

lg n, (n/α)1/3}) for 2
√

lg n ≤ α ≤ n, and

O(n2/α) for α < 2
√

lg n.
Let Dv be the distance of the furthest vertex from v and

N=
k (v) be the set of vertices whose distance to v is exactly k.

Thus the cost incurred by vertex v is α ev + Dv, where ev is
the number of edges that v has bought.

Lemma 7. Any equilibrium graph Gs has no cycle of
length less than α + 2.

Proof. Suppose for contradiction that there is cycle C
with |C| < α+2. Let {u, v} be an edge of this cycle. Suppose
by symmetry that u bought this edge. If vertex u removed
the edge, it would decrease its buying cost eu by α and
increase its distance cost Du by at most |C| − 2 < α. Hence
it is cost effective for u to remove this edge, contradicting
equilibrium.

Theorem 5. For α ≥ n, the price of anarchy is at
most 2.

Proof. By Lemma 7, the equilibrium graph Gs has no
cycle of length at most n, which implies that G is a tree.
The cost of s is at most α(n − 1) +

P
v∈V (G) Dv ≤ α(n −

1) + n(n − 1) ≤ 2α(n − 1). On the other hand, the cost of
the social optimum is at least α(n− 1). Therefore the price

of anarchy is at most 2α(n−1)
α(n−1)

= 2.

Lemma 7 gives us a lower bound on the girth (length of
the shortest cycle) of an equilibrium graph. We use the
following result of [7] to relate the number of edges to the
girth:

Lemma 8. [7] The number of edges in an n-vertex graph

of odd girth g is O(n1+2/(g−1)).

Lemma 9. The number of edges in an equilibrium graph
is O(n1+2/α).

Proof. By Lemma 7, the girth of the equilibrium graph
G is at least α + 2. So by Lemma 8, the number of edges in
G is O(n1+2/(α+2−1)) for odd values of α, and the number

of edges is O(n1+2/(α+1−1)) for even values of α.

Lemma 10. For k ≤ Dv/2, we have |N=
k+1(v)| ≥ k/α and

|Nk+1(v)| > k2/(2α).

Proof. If vertex v bought the |N=
k+1(v)| edges connect-

ing v to the vertices in N=
k+1(v), it would decrease Dv by

at least Dv − max{Dv − k, k} = Dv − (Dv − k) = k. The
cost of buying these edges is |N=

k+1(v)|α. Because v has
not bought these edges, we conclude that this cost is at
least k. Hence |N=

k+1(v)| ≥ k/α. Therefore |Nk+1(v)| ≥Pk
i=1(i/α) > k2/(2α).

Lemma 11. The diameter of an equilibrium graph Gs,
diam(Gs), is O((n α2)1/3).

Proof. Set k = diam(Gs)/4 − 1. Let v be some vertex
with Dv = diam(Gs). Similar to the proof of Lemma 6, we
select a subset of vertices as center points by the following
greedy algorithm. First we unmark all vertices in Gs. Then
we repeatedly select an unmarked vertex x as a center point,
and mark all unmarked vertices whose distances are at most
2k from x.

Suppose that we select l vertices x1, x2, . . . , xl as center
points. By construction, every vertex in the graph has dis-
tance at most 2k to some center point. If vertex v bought the
l edges {v, x1}, {v, x2}, . . . , {v, xl}, it would decrease Dv by
at least Dv−(2k+1) ≥ (4k+4)−(2k+1) > 2k. Buying these
edges costs α l. Because v has not bought these edges, we
have α l ≥ 2k. On the other hand, according to the greedy
algorithm, the distance between any pair of center points is
at least 2k + 1. Thus we have Nk(xi) ∩ Nk(xj) = ∅ for 1 ≤
i < j ≤ l. Therefore, |

Sl
i=1 Nk(xi)| =

Pl
i=1 |Nk(xi)|, which

should be less than or equal to n. By Lemma 10, we have
n ≥ |

Sl
i=1 Nk(xi)| =

Pl
i=1 |Nk(xi)| ≥ l(k−1)2/(2α), which

means that l ≤ 2 n α/(k − 1)2. Combining with α l ≥ 2 k,
we obtain that 2k ≤ 2 n α2/(k − 1)2, i.e., k(k − 1)2 ≤ n α2.

Therefore diam(Gs) = O((n α2)1/3).

Theorem 6. For 6 ≤ α < n, the price of anarchy is
O((n/α)1/3).

Proof. By Lemma 9, the number of edges in Gs is
O(n1+2/α)). By Lemma 11, diam(Gs) = O((n α2)1/3).

Hence the cost of Gs is at most α O(n1+2/α)+n O((nα2)1/3).
On the other hand, the cost of the social optimum is Ω(n α).

Therefore the price of anarchy is O(n2/α + (n α2)1/3/α) ≤
O(n2/α + (n/α)1/3) = O((n/α)1/3).

Lemma 12. If |Nk(u)| > Y for every vertex u in an equi-
librium graph Gs, then either Du ≤ 5 k for some vertex u or
|N4k+1(u)| > Y k/α for every vertex u.

Proof. The proof is similar to the proof of Lemma 6. If
there is a vertex u with Du ≤ 5 k, then the claim is obvious.
Otherwise, for every vertex u, we have Du > 5k. Let u be an
arbitrary vertex. Let S be the set of vertices whose distance
from u is 3k + 1. We select a subset of S, called center
points, by the following greedy algorithm. First we unmark
all vertices in S. Then we select an unmarked vertex x ∈ S



as a center point, mark all unmarked vertices in S whose
distance from x is at most 2k, and assign these vertices to x.

Suppose that we select l vertices x1, x2, . . . , xl as center
points. We prove that l ≥ k/α. If vertex u bought the l
edges {u, x1}, {u, x2}, . . . , {u, xl}, it would decrease Du by
at least Du − max{Du − k, 3k + 1} = Du − (Du − k) = k.
Because u has not bought these edges, we must have l α ≥ k.

According to the greedy algorithm, the distance between
any pair of center points is more than 2k; hence Nk(xi) ∩
Nk(xj) = ∅ for i 6= j. By the hypothesis of the lemma,

|Nk(xi)| > Y for every vertex xi; hence |
Sl

i=1 Nk(xi)| =Pl
i=1 |Nk(xi)| > l Y . For every i ≤ l, we have ds(u, xi) =

3k + 1, so vertex u has a path of length at most 4k + 1 to
every vertex whose distance to xi is at most k. Therefore
|N4k+1(u)| ≥ |

Sl
i=1 Nk(xi)| > l Y ≥ Y k/α.

Theorem 7. The price of anarchy is O(4
√

lg n + n2/α).

Proof. The proof is similar to the proof of Theorem 4.
Let Z = α. Consider an arbitrary vertex v. Because any
equilibrium graph is connected, |NZ | > Z. By Lemma 12,
either Dv ≤ 5k for some vertex v or N4k+1 > (k/α)Nk

for every vertex v. Define the numbers a0, a1, . . . using the
recurrence relation ai = 4 ai−1 + 1 with a0 = Z. By in-
duction, ai ≥ Z 4i. Suppose that j is the least number
for which Dv ≤ 5 aj for some vertex v. By this definition,
Nai+1 ≥ (ai/α)Nai ≥ 4iNai for each i < j. From these in-

equalities we derive that Naj > 4
Pj−1

i=0 i. But |Naj (v)| ≤ n,

so
Pj−1

i=1 i = j(j−1)/2 ≤ log4 n. This inequality implies that

j ≤ 1+
p

2 log4 n = 1+
√

lg n. Also, Dv ≤ 5 aj . Solving the

recurrence relation, aj = O(4jα). Thus Dv and therefore

diam(Gs) are O(4
√

lg nα).
On the other hand, by Lemma 9, the number of edges in

the graph is O(n1+2/α). Hence the cost of the graph is at

most n diam(Gs)+α O(n1+2/α) = O(n α 4
√

lg n +α n1+2/α).
The cost of the social optimum is at least α(n−1) = Ω(n α).

Therefore the price of anarchy is O(4
√

lg n + n2/α).

We conclude the following corollaries from Theorem 7:

Corollary 3. For α >
√

lg n, the price of anarchy is

O(4
√

lg n).

Corollary 4. For α ≤
√

lg n, the price of anarchy is
O(n2/α).

8. TIGHT LOWER BOUNDS FOR SUM
BILATERAL GAME

In this section, we prove tight lower bounds on the sum
version of the bilateral network creation game. Although
not stated explicitly, [5, Proposition 4] establishes an upper

bound of O(n
√

α
α+n

). For α < n, this upper bound is O(
√

α);

for α > n, this upper bound is O(n/
√

α). We prove match-
ing lower bounds using the following lemma:

Lemma 13. There is a tree Td,k with n = 1 + dk vertices
and the total cost greater than 2α(n−1)+C(k, 2)d2(d+1) =
2α(n − 1) + k(k − 1)d2(d + 1), for α > 2d2.

Proof. We construct the tree Td,k as follows. Put a ver-
tex r as root in the tree. Attach k paths P1, P2, . . . , Pk each
of which of length d to r. So there are k paths with d edges

which all of them have r as one of their endpoints. Note
that there are kd edges and n = 1 + kd vertices in this tree.

Because all edges are cut edges, there is no edge {u, v}
that u and v want to remove. On the other hand, it is
sufficient to prove that no edge will be added, to conclude
that Td,k is an equilibrium graph. For sake of contradiction,
suppose there is a pair of vertices such as a and b such that
both of them want to build the edge {a, b} and pay α for
the edge. Suppose that a ∈ Pi and b ∈ Pj , note that i may
be equal to j which means that a and b are from one path.
Let da and db be the length of the paths from r to a and
b in Td,k respectively. One of the da and db might be zero
which means that one of the a and b is the root r. Without
loss of generality, assume that da ≤ db. The length of the
shortest path from a to the vertices out of path Pj would not
decrease with this edge. On the other hand its distance to
vertices in Pj is decreased at most |Pi|+ |Pj | = 2d. Because
there are d vertices in Pj , vertex a has decreased its sum of
distances to the other n − 1 vertices at most d(2d) = 2d2.
But a paid α to buy this edge. So α ≤ 2d2 which is a
contradiction. Therefore Td,k is an equilibrium graph. The
cost of Td,k is α(n − 1) +

P
u,v∈V (T ) ds(u, v). The sum of

the distances between vertices in different paths is obviously
less than the sum of distances over all pairs of vertices. The
distance between two vertices from two different paths is
equal to the sum of their distances to r. So the cost of
the tree is at least 2α(n − 1) +

P
i6=j

Pd
a=1

Pd
b=1 a + b =

2α(n − 1) + k(k − 1)d2(d + 1).

Theorem 8. The price of anarchy is at least Ω(
√

α)
when α < n.

Proof. By Lemma 13 and setting d =
p

α/2 − 1, we
reach an equilibrium graph with cost at least d2(d+1)k(k−
1) = Ω(n2d). The social optimum (a star) has cost at most
2α(n− 1) + 2n2 = O(n2). Therefore the price of anarchy is
at least Ω(d) = Ω(

√
α).

Theorem 9. The price of anarchy is at least Ω(n/
√

α)
when α ≥ n.

Proof. Again by Lemma 13 and setting d =
p

α/2 − 1,
we reach an equilibrium graph with cost at least d2(d +
1)k(k − 1) = Ω(n2d). The social optimum (a star) has cost
at most 2α(n − 1) + 2n2 = O(α n). Therefore the price of
anarchy is at least Ω(n d/α) = Ω(n/

√
α).

9. TIGHT BOUNDS FOR MAX
BILATERAL GAME

In this section, we prove tight bounds on the max version
of the bilateral network creation game.

Theorem 10. The price of anarchy is at least Ω( n
α+1

) for
any α.

Proof. Consider tree Td,3 as it is defined in Lemma 13
which has n = 1 + 3d vertices. Again because all edges
are cut edges, there is no edge {u, v} that u and v want
to remove. On the other hand, suppose there is a pair of
vertices such as a and b such that both of them want to
build the edge {a, b} and pay α for the edge. Assume that
a ∈ Pi and b ∈ Pj , note that i may be equal to j which
means that a and b are from one path. Let da and db be the
length of the paths from r to a and b in Td,3 respectively.



One of the da and db might be zero which means that one of
the a and b is the root r. Without loss of generality, assume
that da ≤ db. After adding this edge, the height of the BFS
tree rooted at a remains da + d which has not changed. So
vertex a has no interest to buy this edge. Therefore Td,3 is
an equilibrium graph.

The cost of Td,3 is at least Ω(2α(n − 1) + nd) = Ω(α n +
n2) = Ω(n2). Because the cost of the social optimum is
O(α n + n), the price of anarchy is at least Ω( n

α+1
).

Theorem 11. The price of anarchy is O( n
α+1

) for any
α ≤ n, and at most 2 for α > n.

Proof. Because players can force the removal of edges
in the bilateral version, Lemma 7 still holds by the same
proof. Thus we can apply Theorem 5 to obtain the de-
sired upper bound of 2 in the case α > n. When α ≤ n,
we can apply Lemma 9 to derive that no cycle has length
less than α + 2 in an equilibrium graph. Because the num-
ber of edges in the graph is also at most n(n − 1)/2, there

are O(min{n2, n1+2/α}) edges in the equilibrium graph.
On the other hand, the height of the BFS tree rooted
at any vertex of the graph is at most n. So the cost is
O(min{n2, n1+2/α}α + n2). Knowing the fact that the so-
cial optimum cost is at least Ω(α n+n), the price of anarchy

is O(n1+2/αα+n2)
Ω(nα+n)

= O(n2/α + n
α+1

) = O( n
α+1

) for 2 < α ≤ n

and O(n2α+n2)
Ω(nα+n)

= O(n) = O( n
α+1

) for α ≤ 2. Therefore, for

any α ≤ n, the price of anarchy is O( n
α+1

).

10. CONCLUSION
In this paper, we have bounded the price of anarchy in four

different network creation games. We have significantly im-
proved the bounds for the sum unilateral game, introduced
the new max game, and completely resolved the bilateral
games. We conjecture that the correct bound on the price
of anarchy for the sum unilateral game is Θ(1). For the max
unilateral game, a general constant bound does not seem im-
possible; in any case, it would be interesting to determine
the optimal bound.

One interesting generalization of all of these games is when
only some links can possibly be created (because of physi-
cal limitations, for example). More precisely, we are given
a (connected) graph of the allowable edges, and the players
correspond to nodes in this graph. In this case, the socially
optimal strategy is no longer simply a clique or a star, and
it is not even clear whether it can be computed in polyno-
mial time. Thus the price of stability (the minimum cost
of a Nash equilibrium divided by the social optimum) also
becomes of interest.
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