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1 Introduction

Network design is a fundamental family of problems at the intersection between
computer science and operations research, amplified in importance by the sustained
growth of computer networks such as the Internet. Traditionally, the goal is to find
a minimum-cost (sub) network that satisfies some specified property such as k-
connectivity or connectivity on terminals (as in the classic Steiner tree problem).
Such a formulation captures the (possibly incremental) creation cost of the network,
but does not incorporate the cost of actually using the network. By contrast,
network routing has the goal of optimizing the usage cost of the network, but
assumes that the network has already been created.

The network creation game attempts to unify the network design and network
routing problems by modeling both creation and usage costs. Specifically, each
node in the system can create a link (edge) to any other node, at a cost of α. In
addition to these creation costs, each node incurs a usage cost related to the dis-
tances to the other nodes. In the model introduced by Fabrikant, Luthra, Maneva,
Papadimitriou, and Shenker [2003] at PODC 2003, the usage cost incurred by a
node is the sum of distances to all other nodes. Equivalently, if we divide the cost
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(and thus α) by the number n of nodes, the usage cost is the average distance to
other nodes. In another natural model, the usage cost incurred by a node is the
maximum distance to all other nodes: this model captures the worst-case instead
of average-case behavior of routing.

To model the dominant behavior of large-scale networking scenarios such as the
Internet, we consider each node to be an agent (player) [Jackson 2003] that selfishly
tries to minimize its own creation and usage cost [Fabrikant et al. 2003; Albers et al.
2006; Corbo and Parkes 2005]. In this context, the price of anarchy [Koutsoupias
and Papadimitriou 1999; Papadimitriou 2001; Roughgarden 2002b] is the worst
possible ratio of the total cost found by some independent selfish behavior and
the optimal total cost possible by a centralized, social welfare maximizing solution.
The price of anarchy is a well-studied concept in algorithmic game theory for prob-
lems such as load balancing, routing, and network design; see, e.g., Papadimitriou
[2001; Czumaj and Vöcking [2002; Roughgarden [2002a; Fabrikant et al. [2003;
Anshelevich et al. [2003; Anshelevich et al. [2004; Chun et al. [2004; Corbo and
Parkes [2005; Albers et al. [2006].

Previous work. Three papers consider the price of anarchy in the sum network
creation game. Fabrikant et al. [2003] prove an upper bound of O(

√
α) on the

price of anarchy for all α. Lin [2003] prove that the price of anarchy is constant
for two ranges of α: α = O(

√
n) and α ≥ c n3/2 for some c > 0. Independently,

Albers et al. [2006] prove that the price of anarchy is constant for α = O(
√
n),

as well as for the larger range α ≥ 12ndlg ne.3 In addition, Albers et al. prove
a general upper bound of 15

(
1 + (min{α

2

n ,
n2

α })
1/3
)

. The latter bound shows the

first sublinear worst-case bound, O(n1/3), for all α. But no better bound is known
for α between ω(

√
n) and o(n lg n). Yet α ≈ n is perhaps the most interesting

range, for it corresponds to considering the average distance (instead of the sum
of distances) to other nodes to be roughly on par with link creation (effectively
dividing α by n).

The bilateral variation on the network creation game, considered by Corbo and
Parkes [2005] in PODC 2005, requires both nodes to agree before they can create a
link between them. In the sum bilateral network creation game, Corbo and Parkes
prove that the price of anarchy is between Ω(lgα) and O(

√
α) for α ≤ n. Although

not claimed in their paper, the proof of their upper bound also establishes an upper
bound of O(n/

√
α) for α ≥ n.

Our results. In the sum (unilateral) network creation game of Fabrikant et al. [2003],
we prove the first o(nε) upper bound for general α, namely 2O(

√
lgn). We also prove

a constant upper bound for α = O(n1−ε) for any fixed ε > 0, substantially reducing
the range of α for which constant bounds have not been obtained. Along the way,
we also improve the constant upper bound by Albers et al. [2006] (with the lead
constant of 15) to 6 for α < (n/2)1/2 and to 4 for α < (n/2)1/3.

In the max (unilateral) version, we prove that the price of anarchy is at most 2 for
α ≥ n, O(min{4

√
lgn, (n/α)1/3}) for 2

√
lg n ≤ α ≤ n, and O(n2/α) for α < 2

√
lg n.

Our primary proof technique can be most closely viewed as a kind of “region

3As usual, lgn denotes log2 n.
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α = 0 1 2 2
√

lgn 3
p
n/2

p
n/2 O(n1−ε) n 12ndlgne n2

Sum unilateral 1 4
3
∗ ≤ 4 (§4) ≤ 6 (§4) Θ(1) (§5) 2O(

√
lgn) (§6) Θ(1) †

Max unilateral O(n2/α) (§7) O(min{4
√

lgn, (n/α)1/3}) (§7) ≤ 2 (§7)
Sum bilateral 1 Θ(

√
α) (O in ‡, Ω in §8) Θ( n√

α
) (O in ¶, Ω in §8)

Max bilateral Θ( n
α+1

) (§9) ≤ 2 (§9)

∗[Fabrikant et al. 2003]
†[Albers et al. 2006]
‡[Corbo and Parkes 2005]
¶[Corbo and Parkes 2005, Proposition 4] claims O(

√
α) for α < n2 but in fact proves

O(min{
√
α, n/

√
α})

Table I. Summary of best known results for all three models of network creation
games and for all ranges of α.

growing” from approximation algorithms; see, e.g., Leighton and Rao [1999].
In the (sum) bilateral network creation game of Corbo and Parkes [2005], we show

that their O(min{
√
α, n/

√
α}) upper bound is tight by proving a matching lower

bound of Ω(min{
√
α, n/

√
α}). In the max (bilateral) version, we prove matching

upper and lower bounds of Θ( n
α+1 ) for α ≤ n, and an upper bound of 2 for α > n.

Table I summarizes the best bounds known for each of the three models and for
all ranges of α. Interestingly, these results reveal that the price of anarchy can
depend significantly on α.

2 Models

Formally, we define four games depending on the objective (sum or max) and the
consent (unilateral or bilateral). In all versions, we have n players; call them
1, 2, . . . , n. The strategy of player i is specified by a subset si of {1, 2, . . . , n}− {i},
which corresponds to the set of neighbors to which player i forms a link. Together,
let s = 〈s1, s2, . . . , sn〉 denote the strategies of all players.

To define the cost of a strategy, we introduce an undirected graph Gs with vertex
set {1, 2, . . . , n}. In the unilateral game, Gs has an edge {i, j} if either i ∈ sj or
j ∈ si. In the bilateral game, Gs has an edge {i, j} if both i ∈ sj and j ∈ si. Define
ds(i, j) to be the distance (the number of edges in a shortest path) between vertices
i and j in graph Gs. In the sum game, the cost incurred by player i is

ci(s) = α |si|+
n∑
j=1

ds(i, j),

and in the max game, the cost incurred by player i is

ci(s) = α |si|+
n

max
j=1

ds(i, j).

In both cases, the total cost incurred by strategy s is c(s) =
∑n
i=1 ci(s).

In the unilateral game, a (pure) Nash equilibrium is a strategy s such that ci(s) ≤
ci(s′) for all strategies s′ that differ from s in only one player i. The price of anarchy
is then the maximum cost of a Nash equilibrium divided by the minimum cost of
any strategy (called the social optimum).

Transactions on Algorithms, Vol. ?, No. ?, ? 20?.
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In the bilateral game, Nash equilibria are not so interesting because the game
requires coalition between two players to create an edge (in general). For example, if
every player i chooses the empty strategy si = ∅, then we obtain a Nash equilibrium
inducing an empty graph Gs, which has an infinite cost c(s). To address this issue,
Corbo and Parkes [2005] use the notion of pairwise stability [Jackson and Wolinsky
1996]: a strategy is pairwise stable if (1) for any edge {i, j} of Gs, both ci(s) ≤ ci(s′)
and cj(s) ≤ cj(s′) where s′ differs from s only in deleting edge {i, j} from Gs; and
(2) for any nonedge {i, j} of Gs, either ci(s) < ci(s′) or cj(s) < cj(s′) where s′

differs from s only in adding edge {i, j} to Gs′ .4 The price of anarchy is then the
maximum cost of a pairwise-stable strategy divided by the social optimum (the
minimum cost of any strategy).

We spend the bulk of this paper (Sections 3–6) on the original version of the
network creation game, sum unilateral. Then we consider the max unilateral game
in Section 7, the sum bilateral game in Section 8, and the max bilateral game in
Section 9. Thus we default to the unilateral game, often omitting the term, and
within the unilateral game, we default to the sum version.

3 Preliminaries

In this section, we define some helpful notation and prove some basic results. Call
a graph Gs corresponding to a Nash equilibrium s an equilibrium graph. In such
a graph, let ds(u, v) be the length of the shortest path from u to v. Let Nk(u)
denote the set of vertices with distance at most k from vertex u, and let Nk =
minv∈G |Nk(v)|.

We start with a lemma proved in Albers et al. [2006] about the sum unilateral
game:

Lemma 1. [Albers et al. 2006, proof of Theorem 3.2] For any Nash equilibrium
s and any vertex v0 in Gs, the cost c(s) is at most 2α(n− 1) +nDist(v0) + (n− 1)2

where Dist(v0) =
∑
v∈V (Gs)

ds(v0, v).

Now we use this lemma to relate the price of anarchy to depth in a breadth-
first search (BFS) tree, a connection also used in Albers et al. [2006]. We assume
henceforth that α ≥ 2, because otherwise the price of anarchy for the sum unilateral
game is already known from Fabrikant et al. [2003]. In this case, it is known that
the social optimum is attained by a star graph [Fabrikant et al. 2003].

Lemma 2. If the BFS tree in a equilibrium graph Gs rooted at vertex u has
depth d, then price of anarchy is at most d+ 1.

Proof: By Lemma 1 and because the cost of the social optimum (a star) is at least
α(n−1)+n(n−1), the price of anarchy is at most 2α(n−1)+nDist(u)+(n−1)2

α(n−1)+n(n−1) . Because
the height of the BFS tree rooted at u is d, we have Dist(u) ≤ (n − 1)d. Hence
the price of anarchy is at most 2α(n−1)+n(n−1)d+(n−1)2

α(n−1)+n(n−1) < 2α(n−1)+n(n−1)(d+1)
α(n−1)+n(n−1) ≤

max{ 2α(n−1)
α(n−1) ,

n(n−1)(d+1)
n(n−1) } = max{2, d+ 1} = d+ 1. 2

4To correctly handle the case of disconnected graphs, we must define c(s) to consist of two parts,
a finite part and an infinite part, and observe that adding an edge to a disconnected graph reduces

the infinite part.
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Lemma 3. For any equilibrium graph Gs, |N2(u)| > n/(2α) for every vertex u
and α ≥ 1.

Proof: We can assume that the number vertices with distance more than 2 from
u is at least n/2; otherwise |N2(u)| > n/2 ≥ n/(2α). Let S be the vertices whose
distance is exactly 2 from u. For each vertex v with ds(u, v) ≥ 2, we pick any one
of its shortest paths to u and assign v to the only vertex in this path that is in S.
The number of vertices assigned to a vertex w ∈ S can be no more than α, because
otherwise vertex u could buy edge {u,w} and decrease its distance to each vertex
assigned to w by at least 1. There is one assignment for each vertex with distance
at least 2 from u, so the total number of assignments to vertices in S is more than
n/2. Therefore, |S| > (n/2)/α = n/(2α). 2

4 Improved Constant Upper Bounds for α = O(
√
n)

In this section, we use the basic results from the previous section to improve the
O(1) bounds for the sum unilateral game with α = O(

√
n) obtained by Albers et

al. [2006]. Recall that their bound has a lead constant of (and is thus at least) 15.
We prove an upper bound of 6 for α < (n/2)1/2 and 4 for α < (n/2)1/3.

Theorem 4. For α < (n/2)1/2, the price of anarchy is at most 6.

Proof: We prove that the height of the BFS tree rooted at an arbitrary vertex
u in an equilibrium graph is at most 5. Suppose for contradiction that there is
a vertex v at distance at least 6 from u. Vertex v can buy {u, v} to decrease its
distance from all vertices in N2(u) by at least 1. Because vertex v has not bought
the edge {u, v}, we conclude that |N2(u)| < α. By Lemma 3, |N2(u)| > n/(2α).
Hence α > n/(2α), which contradicts the hypothesis of the lemma. Therefore the
height of the BFS tree rooted at u is at most 5. By Lemma 2, the price of anarchy
is at most 5 + 1 = 6. 2

Theorem 5. For α < (n/2)1/3, the price of anarchy is at most 4.

Proof: We prove that there is a choice of root vertex v in an equilibrium graph
such that the height of the BFS tree is at most 3. Let ∆ be the maximum degree
of a vertex in the graph and let u be an arbitrary vertex. Certainly |N2(u)| ≤
1 + ∆ + ∆(∆− 1) = 1 + ∆2. On the other hand, by Lemma 3, |N2(u)| > n/(2α).
By the hypothesis of the lemma, 1+∆2 > n/(2α) > α2. Hence ∆ > α−1. Let v be
a vertex with degree equal to ∆. Suppose for contradiction that there is vertex u
at distance at least 4 from v. Vertex u can buy edge {u, v} to decrease its distance
to all vertices in N1(v) by at least 1 and thus decrease its total cost by at least
|N1(v)| = ∆ + 1 > α, contradicting equilibrium. Therefore the height of the BFS
tree rooted at v is at most 3. By Lemma 2, the price of anarchy is at most 3+1 = 4.

2

5 Constant Upper Bound for α = O(n1−ε)

In this section, we extend the range for which we know a constant upper bound on
the price of anarchy in the sum unilateral game. Specifically, for 1 ≤ α < n1−ε and

Transactions on Algorithms, Vol. ?, No. ?, ? 20?.
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Fig. 1. Proof of Lemma 9.

ε ≥ 1/ lg n, we prove an upper bound of 2O(1/ε). We start with some lemmas that
will be useful in this section and the next.

Lemma 6. For any vertex u in an equilibrium graph Gs, if |Nk(u)| > n/2, then
|N2k+2α/n(u)| ≥ n.

Proof: We prove the contrapositive. Suppose |N2k+2α/n(u)| < n. Then there is a
vertex v with ds(u, v) ≥ 2k+1+2α/n. For every vertex x ∈ Nk(u), ds(u, x) ≤ k. By
the triangle inequality ds(u, x)+ds(x, v) ≥ ds(u, v), we have ds(x, v) ≥ k+1+2α/n.
If vertex v bought the edge {v, u}, then the distance between v and x would decrease
by at least 2α/n, so Dist(v) would decrease by at least Nk(u) · 2α/n. Because v
has not bought the edge {v, u}, we have α ≥ |Nk(u)| · 2α/n, i.e., |Nk(u)| ≤ n/2. 2

By setting α = n/2 and α = 12n lg n, we conclude the following corollaries,
which we will use in Theorems 10 and 12.

Corollary 7. For any vertex u in an equilibrium graph Gs with α < n/2, if
|Nk(u)| > n/2, then |N2k+1(u)| = n.

Corollary 8. For any vertex u in an equilibrium graph Gs with α < 12n lg n,
if |Nk(u)| > n/2, then |N2k+24 lgn(u)| = n.

Lemma 9. If |Nk(u)| > Y for every vertex u in an equilibrium graph Gs, then
either |N2k+3(u)| > n/2 for some vertex u or |N3k+3(u)| > Y n/α for every vertex u.

Proof: If there is a vertex u with |N2k+3(u)| > n/2, then the claim is obvious.
Otherwise, for every vertex u, |N2k+3(u)| ≤ n/2. Let u be an arbitrary vertex; refer
to Figure 1. Let S be the set of vertices whose distance from u is exactly 2k + 3.
We select a subset of S, called center points, by the following greedy algorithm.
First we unmark all vertices in S. Then we repeatedly select an unmarked vertex
x ∈ S as a center point, mark all unmarked vertices in S whose distance from x in
Gs is at most 2k, and assign these vertices to x.

Suppose that we select l vertices x1, x2, . . . , xl as center points. We prove that
l ≥ n/α. Let Ci be the vertices in S assigned to xi. By construction, S =

⋃l
i=1 Ci.

We also assign each vertex v at distance at least 2k + 3 from u to one of these
center points, as follows. Pick any one shortest path from v to u, which contains
Transactions on Algorithms, Vol. ?, No. ?, ? 20?.
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exactly one vertex w ∈ S, and assign v to the same center point as w. Let Ti be
the set of vertices assigned to xi and whose distance from u is more than 2k + 3.
By construction,

⋃l
i=1 Ti is the set of vertices at distance more than 2k+ 3 from u.

A shortest path from v ∈ Ti to u uses some vertex w ∈ Ci. If u bought the edge
{u, xi}, then the distance between u and w would become at most 2k+ 1. Because
ds(u,w) = 2k + 3 in the current graph, buying edge {u, xi} would decrease u’s
distance to v by at least 2k + 3 − (1 + 2k) = 2. Because u has not bought the
edge {u, xi}, we conclude that α ≥ 2 |Ti|. On the other hand, |N2k+3(u)| ≤ n/2, so∑l
i=1 |Ti| ≥ n/2. Therefore, l α ≥ 2

∑l
i=1 |Ti| ≥ n and hence l ≥ n/α.

According to the greedy algorithm, the distance between any pair of center points
is more than 2k; hence, Nk(xi) ∩ Nk(xj) = ∅ for i 6= j. By the hypothesis of the
lemma, |Nk(xi)| > Y for every vertex xi; hence |

⋃l
i=1Nk(xi)| =

∑l
i=1 |Nk(xi)| >

l Y . For every 1 ≤ i ≤ l, we have ds(u, xi) = 2k + 3, so vertex u has a path of
length at most 3k+ 3 to every vertex whose distance to xi is at most k. Therefore,
|N3k+3(u)| ≥ |

⋃l
i=1Nk(xi)| > l Y ≥ Y n/α. 2

Theorem 10. For ε ≥ 1/ lg n and 1 ≤ α < n1−ε, the price of anarchy is at most
4.667 · 3d1/εe + 8.

Proof: Consider an equilibrium graph Gs. Let X = n/α > nε. Define a1 = 2
and ai = 3ai−1 + 3 for all i > 1. By Lemma 3, N2(u) > n/(2α) = X/2 for
all u. By Lemma 9, for each i ≥ 1, either N2ai+3(v) > n/2 for some vertex v or
Nai+1 ≥ (n/α)Nai = X Nai . Let j be the least number for which |N2aj+3(v)| > n/2
for some vertex v. By this definition, for each i < j, Nai+1 > (n/α)Nai = X Nai .
Because Na1 = N2 > X/2, we obtain that Nai > Xi/2 for every i ≤ j. On the
other hand, Xj/2 < Naj ≤ n, so Xj < 2n. Therefore j < 1

ε (1 + 1/ lg n). Because
ε ≤ 1/ lg n, we must have j < 1

ε + 1. Because j is an integer, j ≤ d1/εe. So
|N2ad1/εe+3(v)| ≥ |N2aj+3(v)| > n/2. Because α < n1−ε and ε ≥ 1/ lg n, we have
α < n/2, and thus we can use Corollary 7. By Corollary 7, |N4ad1/εe+7(v)| = n.
Hence, the height of the BFS tree rooted at vertex v is at most 4ad1/εe + 7. By
Lemma 2, the price of anarchy is at most 4ad1/εe+8. Solving the recurrence relation
ai = 3ai−1 + 3 with a1 = 2, we obtain that ai = 7

6 3i − 3
2 < 7

6 3i. Therefore the
price of anarchy is at most 4 7

6 3d1/εe + 8 ≤ 4.667 · 3d1/εe + 8. 2

6 o(nε) Upper Bound for α < 12n lg n

In this section, we prove the first o(nε) bound for the sum unilateral game with
α between Ω(n) and o(n lg n). Specifically, we show an upper bound of 2O(

√
lgn).

First we need the following lemma.

Lemma 11. If |Nk(u)| > Y for every vertex u in an equilibrium graph Gs, then
either |N4k+1(u)| > n/2 for some vertex u or |N5k+1(u)| > Y k n/α for every
vertex u.

Proof: The proof is similar to the proof of Lemma 9. If there is a vertex u
with |N4k+1(u)| > n/2, then the claim is obvious. Otherwise, for every vertex u,
|N4k+1(u)| ≤ n/2. Let u be an arbitrary vertex. Let S be the set of vertices whose
distance from u is 4k + 1. We select a subset of S, called center points, by the

Transactions on Algorithms, Vol. ?, No. ?, ? 20?.
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following greedy algorithm. First we unmark all vertices in S. Then we repeatedly
select an unmarked vertex x ∈ S as a center point, mark all unmarked vertices in
S whose distance from x is at most 2k, and assign these vertices to x.

Suppose that we select l vertices x1, x2, . . . , xl as center points. We prove that
l ≥ k n/α. Let Ci be the vertices in S assigned to xi. By construction, S =

⋃l
i=1 Ci.

We also assign each vertex v with distance at least 4k + 1 from u to one of these
center points. Pick any one shortest path from v to u, which contains exactly
one vertex w ∈ S, and assign v to the same center point as w. Let Ti be the
set of vertices assigned to xi and whose distance from u is more than 4k + 1. By
construction,

⋃l
i=1 Ti is the set of vertices at distance more than 4k + 1 from u.

The shortest path from v ∈ Ti to u uses some vertex w ∈ Ci. If u bought the edge
{u, xi}, then the distance between u and w would become at most 2k+ 1. Because
ds(u,w) = 4k + 1, buying edge {u, xi} would decrease u’s distance to v by at least
4k+1−(2k+1) = 2k. Because u has not bought the edge {u, xi}, we conclude that
α ≥ 2k|Ti|. On the other hand, |N4k+1(u)| ≤ n/2 and

∑l
i=1 |Ti| ≥ n/2. Therefore,

l α ≥ 2k
∑l
i=1 |Ti| ≥ k n and hence l ≥ k n/α.

According to the greedy algorithm, the distance between any pair of center points
is more than 2k; hence, Nk(xi) ∩ Nk(xj) = ∅ for i 6= j. By the hypothesis of the
lemma, |Nk(xi)| > Y for every vertex xi; hence |

⋃l
i=1Nk(xi)| =

∑l
i=1 |Nk(xi)| >

l Y . For every i ≤ l, we have ds(u, xi) = 4k + 1, so vertex u has a path of length
at most 5k + 1 to every vertex whose distance to xi is at most k. Therefore,
|N5k+1(u)| ≥ |

⋃l
i=1Nk(xi)| > l Y ≥ Y k n/α. 2

Theorem 12. For 1 ≤ α < 12n lg n, the price of anarchy is O(5
√

lgn lg n).

Proof: The proof is similar to the proof of Theorem 10. Let Z = 12 lg n. By the
hypothesis of the theorem, α/n < 12 lg n = Z. Because any equilibrium graph Gs
is connected, |NZ | > Z. By Lemma 11, either |N4k+1(v)| > n/2 for some vertex v
or N5k+1 ≥ (n/α)kNk. Define a0, a1, . . . by the recurrence relation ai = 5 ai−1 + 1
with a0 = Z. By induction, ai > Z 5i. Suppose j is the least number for which
|N4aj+1(v)| > n/2. By this definition, and because n/α > 1/Z, we obtain that
Nai+1 ≥ (n/α)aiNai > 5iNai for each i < j. From these inequalities we derive that
Naj > 5

Pj−1
i=0 i. But Naj ≤ n, so

∑j−1
i=1 i = j(j − 1)/2 ≤ log5 n. This inequality

implies that j < 1 +
√

2 log5 n < 1 +
√

lg n. By Corollary 8, the height of the BFS
tree rooted at v is at most 2(4 a1+

√
lgn+1)+24 lg n. Solving the recurrence relation,

we obtain that aj = O(5j lg n). By Lemma 2, the price of anarchy is O(5
√

lgn lg n).
2

7 Upper Bounds for Max Unilateral Game

In this section, we introduce and analyze the natural max variation on the (uni-
lateral) network creation game. This problem is motivated by players forming a
network with guaranteed worst-case performance subject to budget constraints. We
prove that the price of anarchy is at most 2 for α ≥ n, O(min{4

√
lgn, (n/α)1/3})

for 2
√

lg n ≤ α ≤ n, and O(n2/α) for α < 2
√

lg n.
Let Dv be the distance of the farthest vertex from v and N=

k (v) be the set of
vertices whose distance to v is exactly k. Thus the cost incurred by vertex v is
Transactions on Algorithms, Vol. ?, No. ?, ? 20?.
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α ev +Dv, where ev is the number of edges that v has bought.

Lemma 13. Any equilibrium graph Gs has no cycle of length less than α+ 2.

Proof: Suppose for contradiction that there is cycle C with |C| < α + 2. Let
{u, v} be an edge of this cycle. Suppose by symmetry that u bought this edge. If
vertex u removed the edge, it would decrease its buying cost eu by α and increase
its distance cost Du by at most |C| − 2 < α. Hence it is cost effective for u to
remove this edge, contradicting equilibrium. 2

Theorem 14. For α ≥ n, the price of anarchy is at most 2.

Proof: By Lemma 13, the equilibrium graph Gs has no cycle of length at most n,
which implies that G is a tree. The cost of s is at most α(n− 1) +

∑
v∈V (G)Dv ≤

α(n−1)+n(n−1) ≤ 2α(n−1). On the other hand, the cost of the social optimum
is at least α(n− 1). Therefore the price of anarchy is at most 2α(n−1)

α(n−1) = 2. 2

Lemma 13 gives us a lower bound on the girth (length of the shortest cycle) of
an equilibrium graph. We use the following result of Dutton and Brigham [1991]
to relate the number of edges to the girth:

Lemma 15. [Dutton and Brigham 1991] An n-vertex graph of girth at least g,
where g is odd, has O(n1+2/(g−1)) edges.

Lemma 16. The number of edges in an equilibrium graph is O(n1+2/α).

Proof: By Lemma 13, the girth of the equilibrium graph G is at least α + 2
and hence at least dα + 2e. So by Lemma 15, the number of edges in G is
O(n1+2/(dα+2e−1)) for odd values of dαe, and the number of edges isO(n1+2/(dα+1e−1))
for even values of dαe. 2

Lemma 17. For a vertex v in an equilibrium graph, and for k ≤ Dv/2, we have
|N=

k+1(v)| ≥ k/α and |Nk+1(v)| > k2/(2α).

Proof: If vertex v bought the |N=
k+1(v)| edges connecting v to the vertices in

N=
k+1(v), the distance from v to all vertices outside Nk(v) decreases by k, while

possibly not changing the distance from v to vertices in Nk(v). Thus the new value
of Dv would become at most max{k,Dv − k} = Dv − k because k ≤ Dv/2. Thus
Dv would decrease by at least Dv − (Dv − k) = k. The cost of buying these edges
is |N=

k+1(v)|α. Because v has not bought these edges, we conclude that this cost is
at least k. Hence |N=

k+1(v)| ≥ k/α. Therefore |Nk+1(v)| ≥
∑k
i=1(i/α) > k2/(2α).

2

Lemma 18. The diameter of an equilibrium graph Gs, diam(Gs), is O((nα2)1/3).

Proof: Set k = bdiam(Gs)/4c − 1. Let v be some vertex with Dv = diam(Gs).
Similar to the proof of Lemma 11, we select a subset of vertices as center points
by the following greedy algorithm. First we unmark all vertices in Gs. Then we
repeatedly select an unmarked vertex x as a center point, and mark all unmarked
vertices whose distances are at most 2k from x.
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Suppose that we select l vertices x1, x2, . . . , xl as center points. By construction,
every vertex in the graph has distance at most 2k to some center point. If vertex
v bought the l edges {v, x1}, {v, x2}, . . . , {v, xl}, it would decrease Dv by at least
Dv − (2k + 1) ≥ (4k + 4)− (2k + 1) > 2k. Buying these edges costs α l. Because v
has not bought these edges, we have α l ≥ 2k. On the other hand, according to the
greedy algorithm, the distance between any pair of center points is at least 2k+ 1.
Thus we have Nk(xi) ∩Nk(xj) = ∅ for 1 ≤ i < j ≤ l. Therefore, |

⋃l
i=1Nk(xi)| =∑l

i=1 |Nk(xi)|, which should be less than or equal to n. By Lemma 17, we have n ≥
|
⋃l
i=1Nk(xi)| =

∑l
i=1 |Nk(xi)| ≥ l(k − 1)2/(2α), which means that l ≤ 2nα/(k −

1)2. Combining with α l ≥ 2 k, we obtain that 2k ≤ 2nα2/(k−1)2, i.e., k(k−1)2 ≤
nα2. Therefore diam(Gs) = O((nα2)1/3). 2

Theorem 19. For 6 ≤ α < n, the price of anarchy is O((n/α)1/3).

Proof: By Lemma 16, the number of edges in Gs is O(n1+2/α). By Lemma 18,
diam(Gs) = O((nα2)1/3). Hence the cost ofGs is at most αO(n1+2/α)+nO((nα2)1/3).
On the other hand, the cost of the social optimum is Ω(nα). Therefore the price
of anarchy is O(n2/α + (nα2)1/3/α) = O(n2/α + (n/α)1/3) = O((n/α)1/3) because
α ≥ 6. 2

Lemma 20. If |Nk(u)| > Y for every vertex u in an equilibrium graph Gs, then
either Du ≤ 5 k for some vertex u or |N4k+1(u)| > Y k/α for every vertex u.

Proof: The proof is similar to the proof of Lemma 11. If there is a vertex u
with Du ≤ 5 k, then the claim is obvious. Otherwise, for every vertex u, we have
Du > 5k. Let u be an arbitrary vertex. Let S be the set of vertices whose distance
from u is 3k + 1. We select a subset of S, called center points, by the following
greedy algorithm. First we unmark all vertices in S. Then we select an unmarked
vertex x ∈ S as a center point, mark all unmarked vertices in S whose distance
from x is at most 2k, and assign these vertices to x.

Suppose that we select l vertices x1, x2, . . . , xl as center points. We prove that l ≥
k/α. If vertex u bought the l edges {u, x1}, {u, x2}, . . . , {u, xl}, it would decrease
Du by at least Du−max{Du− k, 3k+ 1} = Du− (Du− k) = k. Because u has not
bought these edges, we must have l α ≥ k.

According to the greedy algorithm, the distance between any pair of center points
is more than 2k; hence Nk(xi) ∩ Nk(xj) = ∅ for i 6= j. By the hypothesis of the
lemma, |Nk(xi)| > Y for every vertex xi; hence |

⋃l
i=1Nk(xi)| =

∑l
i=1 |Nk(xi)| >

l Y . For every i ≤ l, we have ds(u, xi) = 3k + 1, so vertex u has a path of
length at most 4k + 1 to every vertex whose distance to xi is at most k. Therefore
|N4k+1(u)| ≥ |

⋃l
i=1Nk(xi)| > l Y ≥ Y k/α. 2

Theorem 21. The price of anarchy is O(4
√

lgn + n2/α).

Proof: The proof is similar to the proof of Theorem 12. Let Z = α. Consider
an arbitrary vertex v. Because any equilibrium graph is connected, |NZ | > Z.
By Lemma 20, either Dv ≤ 5k for some vertex v or N4k+1 > (k/α)Nk for every
vertex v. Define the numbers a0, a1, . . . using the recurrence relation ai = 4 ai−1 +1
with a0 = Z. By induction, ai ≥ Z 4i. Suppose that j is the least number for which
Transactions on Algorithms, Vol. ?, No. ?, ? 20?.



The Price of Anarchy in Network Creation Games · 11

Dv ≤ 5 aj for some vertex v. By this definition, Nai+1 ≥ (ai/α)Nai ≥ 4iNai for
each i < j. From these inequalities we derive that Naj > 4

Pj−1
i=0 i. But |Naj (v)| ≤ n,

so
∑j−1
i=1 i = j(j − 1)/2 ≤ log4 n. This inequality implies that j ≤ 1 +

√
2 log4 n =

1 +
√

lg n. Also, Dv ≤ 5 aj . Solving the recurrence relation, aj = O(4jα). Thus Dv

and therefore diam(Gs) are O(4
√

lgnα).
On the other hand, by Lemma 16, the number of edges in the graph is O(n1+2/α).

Hence the cost of the graph is at most n diam(Gs) + αO(n1+2/α) = O(nα 4
√

lgn +
αn1+2/α). The cost of the social optimum is at least α(n− 1) = Ω(nα). Therefore
the price of anarchy is O(4

√
lgn + n2/α). 2

We conclude the following corollaries from Theorem 21:

Corollary 22. For α >
√

lg n, the price of anarchy is O(4
√

lgn).

Corollary 23. For α ≤
√

lg n, the price of anarchy is O(n2/α).

8 Tight Lower Bounds for Sum Bilateral Game

In this section, we prove tight lower bounds on the sum version of the bilateral
network creation game. Although not stated explicitly, [Corbo and Parkes 2005,
Proposition 4] establishes an upper bound of O(n

√
α

α+n ). For α < n, this upper
bound is O(

√
α); for α > n, this upper bound is O(n/

√
α). We prove matching

lower bounds using the following lemma:

Lemma 24. There is a tree Td,k with n = 1 + dk vertices and the total cost
greater than 2α(n−1)+2

(
k
2

)
d2(d+1) = 2α(n−1)+k(k − 1)d2(d+1), for α > 2d2.

Proof: We construct the tree Td,k as follows. Put a vertex r as root in the tree.
Attach k paths P1, P2, . . . , Pk each of which is of length d to r. So there are k paths
with d edges which all of them have r as one of their endpoints. Note that there
are kd edges and n = 1 + kd vertices in this tree.

Because all edges are cut edges, there is no edge {u, v} that u and v want to
remove. On the other hand, it is sufficient to prove that no edge will be added, to
conclude that Td,k is an equilibrium graph. For sake of contradiction, suppose there
is a pair of vertices such as a and b such that both of them want to build the edge
{a, b} and pay α for the edge. Suppose that a ∈ Pi and b ∈ Pj , note that i may be
equal to j which means that a and b are from one path. Let da and db be the length
of the paths from r to a and b in Td,k respectively. One of the da and db might be zero
which means that one of the a and b is the root r. Without loss of generality, assume
that da ≤ db. The length of the shortest path from a to the vertices outside of path
Pj would not decrease with this edge. On the other hand its distance to vertices in
Pj is decreased at most |Pi|+ |Pj | = 2d. Because there are d vertices in Pj , vertex
a has decreased its sum of distances to the other n−1 vertices at most d(2d) = 2d2.
But a paid α to buy this edge. So α ≤ 2d2 which is a contradiction. Therefore Td,k
is an equilibrium graph. The cost of Td,k is 2α(n − 1) +

∑
u,v∈V (T ) ds(u, v). The

sum of the distances between vertices in different paths is obviously less than the
sum of distances over all pairs of vertices. The distance between two vertices from
two different paths is equal to the sum of their distances to r. So the cost of the
tree is at least 2α(n− 1) +

∑
i6=j
∑d
a=1

∑d
b=1 a+ b = 2α(n− 1) + k(k− 1)d2(d+ 1).

2
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Theorem 25. The price of anarchy is at least Ω(
√
α) when α < n.

Proof: By Lemma 24 and setting d =
√
α/2 − 1, we reach an equilibrium graph

with cost at least d2(d + 1)k(k − 1) = Ω(n2d). The social optimum (a star) has
cost at most 2α(n − 1) + 2n2 = O(n2). Therefore the price of anarchy is at least
Ω(d) = Ω(

√
α). 2

Theorem 26. The price of anarchy is at least Ω(n/
√
α) when α ≥ n.

Proof: Again by Lemma 24 and setting d =
√
α/2 − 1, we reach an equilibrium

graph with cost at least d2(d+ 1)k(k − 1) = Ω(n2d). The social optimum (a star)
has cost at most 2α(n − 1) + 2n2 = O(αn). Therefore the price of anarchy is at
least Ω(nd/α) = Ω(n/

√
α). 2

9 Tight Bounds for Max Bilateral Game

In this section, we prove tight bounds on the max version of the bilateral network
creation game.

Theorem 27. The price of anarchy is at least Ω( n
α+1 ) for any α.

Proof: Consider tree Td,3 as it is defined in Lemma 24 which has n = 1 + 3d
vertices. Again because all edges are cut edges, there is no edge {u, v} that u and
v want to remove. On the other hand, suppose there is a pair of vertices such as a
and b such that both of them want to build the edge {a, b} and pay α for the edge.
Assume that a ∈ Pi and b ∈ Pj , note that i may be equal to j which means that
a and b are from one path. Let da and db be the length of the paths from r to a
and b in Td,3 respectively. One of the da and db might be zero which means that
one of the a and b is the root r. Without loss of generality, assume that da ≤ db.
After adding this edge, the height of the BFS tree rooted at a remains da+d which
has not changed. So vertex a has no interest to buy this edge. Therefore Td,3 is an
equilibrium graph.

The cost of Td,3 is at least Ω(2α(n−1)+nd) = Ω(αn+n2) = Ω(n2). Because the
cost of the social optimum is O(αn+n), the price of anarchy is at least Ω( n

α+1 ). 2

Theorem 28. The price of anarchy is O( n
α+1 ) for any α ≤ n, and at most 2

for α > n.

Proof: Because players can force the removal of edges in the bilateral version,
Lemma 13 still holds by the same proof. Thus we can apply Theorem 14 to obtain
the desired upper bound of 2 in the case α > n. When α ≤ n, we can apply
Lemma 13 to derive that no cycle has length less than α + 2 in an equilibrium
graph. Because the number of edges in the graph is also at most n(n− 1)/2, there
are O(min{n2, n1+2/α}) edges in the equilibrium graph. On the other hand, the
height of the BFS tree rooted at any vertex of the graph is at most n. So the cost
is O(min{n2, n1+2/α}α+ n2). Knowing the fact that the social optimum cost is at
least Ω(αn+n), the price of anarchy is O(n1+2/αα+n2)

Ω(nα+n) = O(n2/α + n
α+1 ) = O( n

α+1 )

for 2 < α ≤ n and O(n2α+n2)
Ω(nα+n) = O(n) = O( n

α+1 ) for α ≤ 2. Therefore, for any
α ≤ n, the price of anarchy is O( n

α+1 ). 2
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10 Conclusion

In this paper, we have bounded the price of anarchy in four different network
creation games. We have significantly improved the bounds for the sum unilateral
game, introduced the new max game, and completely resolved the bilateral games.
We conjecture that the correct bound on the price of anarchy for the sum unilateral
game is Θ(1). For the max unilateral game, a general constant bound does not seem
impossible; in any case, it would be interesting to determine the optimal bound.

One interesting generalization of all of these games is when only some links can
possibly be created (because of physical limitations, for example). More precisely,
we are given a (connected) graph of the allowable edges, and the players correspond
to nodes in this graph. In this case, the socially optimal strategy is no longer simply
a clique or a star, and it is not even clear whether it can be computed in polynomial
time. Thus the price of stability (the minimum cost of a Nash equilibrium divided
by the social optimum) also becomes of interest.
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