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The Price of Correlation Risk: Evidence
from Equity Options

JOOST DRIESSEN, PASCAL J. MAENHOUT, and GRIGORY VILKOV∗

ABSTRACT

We study whether exposure to marketwide correlation shocks affects expected option
returns, using data on S&P100 index options, options on all components, and stock
returns. We find evidence of priced correlation risk based on prices of index and indi-
vidual variance risk. A trading strategy exploiting priced correlation risk generates
a high alpha and is attractive for CRRA investors without frictions. Correlation risk
exposure explains the cross-section of index and individual option returns well. The
correlation risk premium cannot be exploited with realistic trading frictions, provid-
ing a limits-to-arbitrage interpretation of our finding of a high price of correlation
risk.

CORRELATIONS PLAY A CENTRAL ROLE in financial markets. There is considerable ev-
idence that correlations between asset returns change over time1 and that stock
return correlations increase when returns are low.2 A marketwide increase in
correlations negatively affects investor welfare by lowering diversification ben-
efits and by increasing market volatility, so that states of nature with unusually
high correlations may be expensive. It is therefore natural to ask whether mar-
ketwide correlation risk is priced in the sense that assets that pay off well
when marketwide correlations are higher than expected (thereby providing a
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hedge against correlation risk) earn lower returns than can be justified by their
exposure to other priced risk factors. Index options are an obvious example of
such assets, as they will appear expensive when correlation risk is priced.

This is the first paper to analyze whether cross-sectional differences in expo-
sure to marketwide correlation risk can account for cross-sectional differences
in expected returns. Our first contribution is to provide evidence of a large
correlation risk premium. We show that the differential pricing of index and
individual stock options contains unique information on the price of correlation
risk. In particular, our analysis of the cross-section of index and individual op-
tion returns, as well as the study of variance risk premia in index and individual
options, highlights an important tension between index and individual option
prices. Demonstrating this tension and offering a risk-based explanation for it
forms the second contribution of this paper.

The bulk of recent work on empirical option pricing studies index options.
Although there is growing evidence that individual option prices and returns
behave differently empirically, most work focuses on Black and Scholes (1973)
and Merton (1973a) implied volatility functions.3 We add formal evidence that
individual options, unlike index options, do not embed a negative variance risk
premium, nor earn economically significant returns in excess of a one-factor
model. By considering individual options on all index components, our analysis
emphasizes that a challenge in option pricing concerns explaining the differ-
ence between expected index and individual option returns. This is challenging
since the index process is the weighted average of the individual processes. A
risk-based explanation for the contrast between index and individual options
requires that aggregated individual processes be exposed to a risk factor that
is lacking from the individual processes. Priced correlation risk makes this
possible. Intuitively, index options are expensive and earn low returns, unlike
individual options, because they offer a valuable hedge against correlation in-
creases and insure against the risk of a loss in diversification benefits.4,5 Our
results thereby also offer a novel view on the source of the large volatility risk
premium that recent work on index options has disclosed.

We use data on S&P100 index options and on individual options on all the
S&P100 index components, combined with prices of the underlying stocks from
January 1996 until the end of December 2003. We provide evidence for a corre-
lation risk premium in three different ways.

3 See, for instance, Bakshi and Kapadia (2003b), Bakshi, Kapadia, and Madan (2003), Bollen
and Whaley (2004), Branger and Schlag (2004), Dennis and Mayhew (2002), and Dennis, Mayhew,
and Stivers (2006).

4 Rubinstein (2000) revisits the 1987 crash and lists correlation risk as a potential reason why
stock market declines and increases in volatility coincide, noting that “Correlation increases in
market declines, which increases volatility and reduces opportunities for diversification.”

5 Garleanu, Pedersen, and Poteshman (2005) develop a model where risk-averse market makers
cannot perfectly hedge a book of options, so that demand pressure increases the price of options.
The authors document empirically that end-users are net long index options, which could explain
their high prices, but the model is agnostic about the source of the exogenous demand by end-users.
Our findings suggest that the demand for index options may well be driven by investors’ desire to
hedge against correlation risk.
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First, we present a general decomposition of index variance risk. Index vari-
ance changes are due to changes in individual variances and changes in cor-
relations, so that index variance risk is priced to the extent that individual
variance risk and correlation risk are priced. We find a large negative index
variance risk premium, in line with results in the recent literature.6 Unlike
recent work, we also estimate variance risk premia in all individual options
on all S&P100 components and find no evidence of a negative risk premium
on individual variance risk.7 As the decomposition shows, these two findings
are only consistent with each other in a risk-based model if exposure to cor-
relation shocks is priced. Therefore, the stylized facts about index and indi-
vidual variance risk provide model-free indirect evidence for priced correlation
risk.

Second, we derive a simple option-based trading strategy aimed at exploit-
ing priced correlation risk. The strategy sells index straddles and buys individ-
ual straddles and stocks in order to hedge individual variance risk and stock
market risk, respectively. This trading strategy offers an attractive risk-return
trade-off. Its Sharpe ratio is 77% higher than the one for bearing stock market
risk in our sample. Correcting for standard risk factors, we find a large excess
return of more than 10% per month. This is direct evidence of a large corre-
lation risk premium. We demonstrate that this strategy has more attractive
risk-return properties than the option-based trading strategies that have been
suggested in the literature (like selling index puts or selling market variance),
especially when considering higher moments of the return distributions. In a
portfolio choice setting we find that the correlation strategy generates a utility
gain for a CRRA investor that is substantially larger than what can be ob-
tained with existing option-based strategies (selling market variance or selling
index puts).

Finally, we estimate the correlation risk premium from the cross-section of in-
dex and individual option returns. Because of the large dispersion in their sensi-
tivities to marketwide correlation shocks, these assets constitute a particularly
well-chosen cross-section. Furthermore, recent work has shown that expected
index option returns are very large in absolute value and extremely challenging
to explain (e.g., Bondarenko (2003a, 2003b), Buraschi and Jackwerth (2001),
Coval and Shumway (2001), and Jones (2006)). We show that differences in
exposure to the correlation risk factor account for 70% of the cross-sectional
variation in CAPM residuals of index and individual option returns. The es-
timated correlation risk premium is large and highly significant. Exposure to
individual variance risk is not priced in this cross-section, in line with our other
results.

6 The relevant literature includes Aı̈t-Sahalia and Kimmel (2005), Andersen, Benzoni, and Lund
(2002), Bakshi and Kapadia (2003a), Bollerslev, Gibson, and Zhou (2004), Bondarenko (2004),
Broadie, Chernov, and Johannes (2007), Buraschi and Jackwerth (2001), Carr and Wu (2004),
Coval and Shumway (2001), Eraker, Johannes, and Polson (2003), Eraker (2004), Jones (2006),
and Pan (2002). Bates (2003) surveys earlier work.

7 In fact, we obtain weak evidence of a positive variance risk premium in individual options,
which strengthens the evidence of a correlation risk premium.
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In sum, our findings strongly suggest that correlation risk is priced.
Merton’s ICAPM (1973b) may provide a theoretical explanation for this finding
to the extent that marketwide correlation levels have predictive power for mar-
ket variance. As an alternative hypothesis, the large correlation risk premium
we document may be interpreted as reflecting mispricing of index options due
to investor irrationality and lack of arbitrage. For example, some investors may
be overly cautious about correlation risk and this may lead to an irrationally
high correlation risk premium. Simultaneously, rational arbitrageurs may face
market frictions, which prevent them from exploiting the high correlation risk
premium. To explore this limits-to-arbitrage hypothesis, we analyze the impact
on the profitability and feasibility of our correlation trading strategy of market
frictions in the form of transaction costs and margin requirements as in Santa-
Clara and Saretto (2007). We show that transaction costs have an important
impact on the profitability of the trading strategy. Its Sharpe ratio no longer
exceeds the equity Sharpe ratio and the optimal portfolio weight for the cor-
relation strategy becomes statistically insignificant. The impact of transaction
costs on the correlation strategy is large because of the high bid-ask spreads
for individual options. Furthermore, margin requirements make the correla-
tion trading strategy infeasible for risk-tolerant investors, who stand to gain
most from the strategy. Thus, if the large correlation risk premium reflects
mispricing of index options, rational investors facing realistic market frictions
cannot arbitrage the mispricing away and cannot exploit the correlation risk
premium.

Very few papers have studied trading strategies based on individual options.
A notable exception is Goyal and Saretto (2007), who analyze trading strate-
gies using the cross-section of individual options and obtain very high Sharpe
ratios. Their paper is complementary to ours, since they study in detail the
cross-sectional predictability of individual option returns, while we focus on
the difference between index and individual option returns (without modeling
the cross-sectional differences of individual stock options).

Our paper is also related to work on option-implied correlations. Several
articles investigate the correlation structure of interest rates of different ma-
turities. Longstaff, Santa-Clara, and Schwartz (2001), De Jong, Driessen, and
Pelsser (2004), and Han (2007) provide evidence that interest rate correlations
implied by cap and swaption prices differ from realized correlations. Collin-
Dufresne and Goldstein (2001) propose a term structure model where bond re-
turn correlations are stochastic. Campa and Chang (1998) and Lopez and Walter
(2000) study the predictive content of implied correlations obtained from for-
eign exchange options for future realized correlations between exchange rates.
Skintzi and Refenes (2003) describe how index and individual stock options can
be used to find implied equity correlations for the Dow Jones Industrial Aver-
age index. They study the statistical properties and dynamics of the implied
correlation measure with 1 year of data, but do not analyze the key implications
for index option pricing. In fact, none of these articles investigates or estimates
a risk premium on correlation risk. The negative correlation risk premium we
find implies higher expected correlation paths under the risk-neutral measure
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than under the actual measure. This divergence in expected correlations under
the two measures can explain why option-implied correlations exceed average
realized correlations.

Finally, it is interesting to note that practitioners have recognized the possi-
bility of trading priced correlation risk, by implementing a strategy known as
“dispersion trading.” This strategy typically involves short positions in index
options and long positions in individual options. Very recently, a new contract
aimed at directly exploiting the correlation risk premium has been introduced,
namely, the correlation swap.

The paper is organized as follows. Section I presents the general decom-
position of index variance risk. The data are described in Section II. Sec-
tion III provides empirical evidence on variance and correlation risk premia,
based on the framework of Section I. Section IV develops and empirically
implements a correlation trading strategy. In Section V, we study whether
priced correlation risk can explain the empirical cross-section of option returns.
Section VI discusses the impact of transaction costs and margin require-
ments on the feasibility and profitability of the correlation trading strategy.
Section VII concludes.

I. Understanding Market Variance Risk

We show in a general framework how market variance risk can be decom-
posed into individual variance risk and correlation risk. The risk premium for
bearing market variance risk can be similarly decomposed. This section also
briefly discusses the model-free implied variance estimator used in our empir-
ical analysis in Section III.

A. The Determinants of Market Variance Risk

We study (priced) market variance risk from a new perspective by explicitly
acknowledging that market variance risk can be decomposed into individual
variance risk and correlation risk. Existing work does not entertain the possi-
bility of priced correlation risk.

The stock market consists of N stocks. The price of stock i, Si, follows an Ito
process with instantaneous variance φ2

i , which itself also follows an Ito process.8

The instantaneous correlation between Wiener processes Bi and Bj that drive
stocks i and j is

Et[dBi dB j ] = ρi j (t) dt, i �= j . (1)

While we impose more structure on the dynamics of ρij(t) in Section IV, for now
we only assume that ρij(t) follows an Ito process and that the conditions on φi(t)
and ρij(t) for the resulting variance–covariance matrix to be positive-definite
are satisfied for all t.

8 We omit time as an argument for notational convenience throughout, except when placing
particular emphasis.



1382 The Journal of Finance R©

Given a set of index weights {wi}, the instantaneous index variance φ2
I (t) at

time t is

φ2
I (t) =

N∑
i=1

w2
i φ2

i (t) +
N∑

i=1

∑
j �=i

wiwj φi(t)φ j (t)ρi j (t). (2)

It is clear from (2) that index variance changes are driven by shocks to both
individual variances φ2

i (t) and correlations ρij(t). We are interested in the extent
to which exposure to these shocks is priced. If the price of correlation risk is
negative (because states with higher-than-expected correlation are associated
with a deterioration in investment opportunities and investor welfare), assets
with payoffs that covary positively with correlation provide a hedge against
unexpected correlation increases and earn negative excess returns relative to
what is justified by their exposure to standard risk factors. An index option
has by construction a large positive exposure to index-wide correlation risk
and thus constitutes a prime example of such an asset. Formally, a negative
correlation risk premium manifests itself in a higher drift for the instanta-
neous correlation under the risk-neutral measure Q than under the physical
measure P, thus driving a wedge between expected correlations under the two
distributions. Intuitively, an index option will then seem expensive relative to
a benchmark without priced correlation risk like Black–Scholes. The concept
of priced variance risk follows the same reasoning.

The total index variance risk premium is EQ
t [dφ2

I ] − EP
t [dφ2

I ].9 Given constant
index weights {wi} and defining ιi ≡ w2

i + ∑
j �=i wiwj

φ j

φi
ρi j , applying Ito’s lemma

to (2) shows that

E Q
t

[
dφ2

I

] − E P
t

[
dφ2

I

] =
N∑

i=1

ιi
{
E Q

t
[
dφ2

i

] − E P
t

[
dφ2

i

]}

+
N∑

i=1

∑
j �=i

wiwj φiφ j
{
E Q

t [dρi j ] − E P
t [dρi j ]

}
. (3)

In words, the index variance risk premium reflects all individual variance
risk premia EQ

t [dφ2
i ] − EP

t [dφ2
i ], as well as correlation risk premia EQ

t [dρij] −
EP

t [dρij].10 The factor ιi multiplying the individual variance risk premium rep-
resents the contribution of stock i’s return variance to the index variance, scaled
by its own variance. This is intuitive since the ιi’s are used as weights when
summing the individual variance risk premia to obtain their importance for the
index variance risk premium.

Below, we first present a detailed study of index and individual variance risk
premia, that is, the left-hand side and the first sum on the right-hand side of
equation (3). This analysis provides indirect evidence on the importance of the

9 This definition represents the total variance risk premium, that is, including compensation
for market risk if variance shocks are correlated with market risk (the “leverage effect”). In the
empirical analysis, we correct for this in order to obtain the risk premium for “pure” variance risk.

10 The simplifying assumption of constant index weights is innocuous. Simulations show that
allowing for stochastic index weights has a negligible impact on the empirical results with N = 100.
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final sum in equation (3), that is, on correlation risk premia. In particular, since
the time-series average of ιi is empirically positive for all stocks that make up
the S&P100 index over our 8-year sample, any evidence of a negative index
variance risk premium and of nonnegative individual variance risk premia
implies a negative correlation risk premium. Subsequently, we test directly for
a correlation risk premium by analyzing a correlation trading strategy and
we investigate empirically whether a common correlation risk factor and a
common individual variance risk factor can account for cross-sectional variation
in option returns.

Before turning to the data description and the empirical results, we present
the model-free methodology used to estimate variance risk premia.

B. Model-Free Implied Variances and Variance Risk Premia

Consider the risk-neutral expected integrated variance of the return on asset
a ∈ {I, 1, . . . , i, . . . , N} over a discrete interval of length τ starting at time t:

σ 2
a (t) = E Q

t

[∫ t+τ

t
φ2

a(s) ds
]

. (4)

We follow the methodology of Britten-Jones and Neuberger (2000), Carr and
Madan (1998), and Dumas (1995), who build on the work of Breeden and Litzen-
berger (1978), to estimate the risk-neutral expected integrated variance σ 2

a (t)
defined in (4) from index options for a = I and from individual options for a = i.
As derived in Britten-Jones and Neuberger, their procedure gives the correct
estimate of the option-implied (i.e., risk-neutral) integrated variance over the
life of the option contract when prices are continuous but volatility is stochastic,
in contrast to the widely used, but incorrect, Black–Scholes implied volatility.
Furthermore, Jiang and Tian (2005) show that the method also yields an ac-
curate measure of the (total) risk-neutral expected integrated variance in a
jump-diffusion setting. The measure is therefore considered “model-free,” and
can be labeled the model-free implied variance (MFIV).

We denote the price of a τ -maturity call option on asset a with strike price K
at time t by Ca(K, t). The main result of Britten-Jones and Neuberger is that
the risk-neutral expected integrated variance σ 2

a (t) defined in (4) equals the
model-free implied variance, which is defined as

σ 2
M F ,a(t) ≡ 2

∫ ∞

0

Ca(K , t) − max(S(t) − K , 0)
K 2

dK. (5)

Jiang and Tian show that the integral over a continuum of strikes in (5)
can be approximated accurately by a sum over a finite number of strikes. Fi-
nally, Bollerslev et al. (2004), Bondarenko (2004), and Carr and Wu (2004)
establish that the difference between the model-free implied variance and
the realized variance can be used to estimate the variance risk premium.
In particular, the null of a zero total variance risk premium implies a
zero difference between average realized and average model-free implied
variance.
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Finally, it is noteworthy that MFIV equals the no-arbitrage variance swap
rate. Equation (5) can therefore be used to synthetically create variance swaps
from options across strikes K. This interpretation will prove useful in the sub-
sequent tests in Section III.B.

II. Data Description

We use daily data from OptionMetrics for S&P100 index options and for
individual options on all the stocks included in the S&P100 index from January
1996 until December 2003.11

The S&P100 is a value-weighted index with quarterly rebalancing. During
our sample period, the new index shares for the quarter are fixed (unless the
number of floating shares changes during the quarter by more than 5%) based
on the market values at the closing prices of the third Friday of the last month in
the previous quarter. In addition, 47 changes in the list of constituent companies
took place in our sample. These also occur on the rebalance dates. At each
rebalance date, we construct index component weights using market values
based on stock prices from CRSP. We keep these weights fixed until the next
rebalance date. This introduces a small discrepancy between actual S&P100
daily weights and our fixed weights because the (actual) value-based weights
fluctuate daily due to price changes. As we have 100 companies in the index,
any such discrepancy due to changes in prices is small and can be neglected for
our purposes (see also footnote 10).

From the OptionMetrics database, we select all put and call options on
the index and on the index components. We work with best bid and ask
closing quotes rather than the interpolated volatility surfaces constructed by
OptionMetrics. In Sections III to V, we use the midquotes for these option
data (average of bid and ask), and we assess the effect of bid-ask spreads in
Section VI. We discard options with zero open interest, with zero bid prices,
and with missing implied volatility or delta (which occurs for options with non-
standard settlement or for options with intrinsic value above the current mid
price). We focus on short-maturity options, which are known to trade most liq-
uidly and consider all options with remaining maturity between 14 and 60
days. When multiple maturities are available within this interval, we select
the maturity that generates the largest average number of call and put op-
tions with matching strike prices (to enable us to construct straddles). We also
eliminate options of extreme moneyness (Black–Scholes delta below 0.15 for
calls and above −0.05 for puts) as outliers, which filters out options with ex-
tremely high implied volatilities. From Section III onwards, when constructing
straddle returns and a cross-section of option returns, we eliminate calls and
puts without a matching option of the other type for the straddle construction.
The options are American-style. However, for short-maturity options, the early
exercise premium is typically negligible. Using a binomial tree, we find that,

11 Interestingly, Standard and Poor’s mentions on its website that a requirement for companies
to be included in the S&P100 index is that they have listed options. This makes the S&P100 a
natural index to consider for our study.
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indeed, this premium is between 0.3% and 1.1% of the 1-month option price for
puts (depending on volatility and moneyness), and thus has a small impact on
option returns. For call options, the early exercise premium is zero with a con-
tinuous dividend yield (which is an appropriate assumption for index options).
Santa-Clara and Saretto (2007) find that returns on American and European
index options are very similar. Any early exercise premium in individual call
options (due to discrete dividends) will actually bias against finding evidence
for a correlation risk premium, since our correlation strategy buys individual
options (see Section IV) and because MFIV would be too high in this case for
individual options.

To construct the model-free implied variances, we require observations over
time and across strikes of prices of S&P100 index options and individual stock
options. Across the strike dimension, we use out-of-the-money (OTM) options,
namely, calls with Black–Scholes delta below 0.5 and puts with delta above
−0.5. We implement the model-free implied variance measure of Section I.B
following the procedure in Jiang and Tian (2005), suitably adjusted for put
options when needed.12 We calculate model-free implied variance on each day
for each underlying that has at least three available options outstanding, with
the restriction that at least one put and call be included.

We use daily returns from CRSP for individual stocks and from OptionMetrics
for the S&P100 to estimate the realized variance. For each day, we calculate the
realized variance over the same period as the one over which implied variance
is calculated for that day, that is, ranging from 14 to 60 days, requiring that no
more than 10 returns be missing from the sample. Since the window spans on
average 1 month, this means that we require on average at least 12 observations
out of 22 trading days.

We annualize both model-free and realized variance using 252 trading days
in a calendar year. We use the T-bill rate of appropriate maturity (interpolated
when necessary) from OptionMetrics as the risk-free rate.

III. Evidence on Variance and Correlation Risk Premia

Based on the general framework of Section I, we test for the presence of vari-
ance risk premia in index options, in individual options on all constituent stocks,
and in the cross-section of individual variance swap returns. These tests are
conducted using the model-free implied variance of Section I.B. In light of the
general decomposition of index variance risk in equation (3), this analysis pro-
vides indirect evidence on the importance of priced correlation risk. Section IV
presents direct evidence of a risk premium on correlation risk by developing

12 One subtlety regarding the index weights emerges. If the expiration of the index option occurs
after the next rebalance date, the index variance will reflect both the “old” and the “new” index
weights. We calculate the projected weights of the index components using current market values.
Moreover, in the period between rebalance dates there may be announcements of deletions from
and additions to the index, which take effect at the next rebalance. We incorporate this migration
in the projected weights. We weight the old fixed weights and the new projected weights using the
relative time to maturity of the index option before the rebalance date and after the rebalance date.
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and implementing a simple option-based trading strategy that exploits priced
correlation risk. Finally, in Section V we test whether correlation and individ-
ual variance risk is priced in a well-chosen cross-section of assets (individual
and index options).

A. Implied versus Realized Variances

The recent empirical literature on equity options primarily studies index
options. Individual options have attracted much less attention. The major-
ity of the recent work on individual options focuses on Black–Scholes implied
volatility functions (Bakshi and Kapadia (2003b), Bakshi et al. (2003), Bollen
and Whaley (2004), Branger and Schlag (2004), Dennis and Mayhew (2002),
Dennis et al. (2006), and Garleanu et al. (2005)). A common finding is that
implied volatility functions are flatter for individual options than for index op-
tions. While implied volatility functions provide very interesting information,
they do not permit a formal test of the presence of variance risk premia. This
section presents such a formal test, based on the model-free methodology de-
scribed in Section I.B. Moreover, our OptionMetrics sample is more recent and
spans 8 years (January 1996 up until December 2003) and includes options
on all stocks that were included in the S&P100 over that period. Carr and
Wu (2004) also use OptionMetrics and a related methodology, but focus on a
subsample of 35 individual options.

We start with the index variance. Figure 1 plots the time series of (the square
root of) the implied index variance and of (the square root of) the realized histor-
ical variance. The well-established finding that option-implied index variance
is higher than realized index variance also holds for our recent sample. While
all calculations are done for variances, we take square roots of the computed
variances for interpretation purposes. Table I reports an average (annualized)
realized index volatility of 20.80%, while the MFIV average is 24.69%. The null
hypothesis that implied and realized index variance are on average equal is very
strongly rejected, based on a t-test with Newey and West (1987) autocorrelation
consistent standard errors for 22 lags (t-statistic of 6.81).

Turning to the equally weighted average of the individual variances in
Figure 2, there is, quite remarkably, less systematic difference between the two
volatility proxies. On average, the square root of realized variance (41.44%) ac-
tually exceeds the square root of implied variance (38.97%). The null hypothesis
that, on average across all stocks in the index, the implied and realized variance
are equal is rejected (t-statistic of 3.2), which suggests a significantly positive
variance risk premium in individual options. However, when conducting the
test in ratio form the null that RV

M F IV = 1 is only marginally rejected at the 5%
confidence level. More importantly, carrying out the test for all stocks individ-
ually, the null of a zero variance risk premium (RV = MFIV) is not rejected at
the 5% confidence level for 98 stocks out of the 127 stocks that are included in
the sample for this analysis. Of the remaining 29 stocks, only seven exhibit a
significant positive difference between implied and realized variance. We there-
fore find no evidence for the presence of a negative variance risk premium in
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Figure 1. Implied versus realized volatility for index options. The figure presents the time
series of the square root of the model-free implied index variance and of the square root of the
realized variance over our 1/1996 to 12/2003 OptionMetrics sample. The model-free implied index
variance is calculated from a cross-section (across strikes) of 1-month options on the S&P100,
using the methodology of Britten-Jones and Neuberger (2000) and Jiang and Tian (2005) described
in Section I.B. Realized variance is calculated from daily index returns over a 1-month window.
Variances are expressed in annual terms.

individual stock options. If anything, there is weak evidence of a positive risk
premium for variance risk in individual options.

This is quite surprising, given the well-known empirical regularity for index
options. Bakshi and Kapadia (2003b) find a difference of 1% to 1.5% (depending
on the treatment of dividends) between the average implied and the average
historical volatility in their 1991 to 1995 sample of 25 individual stock options.
They also stress that the difference is smaller than for index options. The dis-
crepancy between our results and theirs may not only reflect the difference in
sample, but also the difference in methodology to calculate the option-implied
variance. Bollen and Whaley (2004) also report that the average deviation
between (Black–Scholes) implied volatility and realized volatility is approxi-
mately zero for the 20 individual stocks in their sample. Finally, Carr and Wu
(2004) use a similar methodology to ours and also report much smaller average
variance risk premia for individual stocks than for S&P indices. The mean vari-
ance risk premia are insignificant for 32 out of the 35 individual stocks they
study.13

13 Carr and Wu (2004) also report that estimates of mean log variance risk premia are signif-
icantly negative for 21 out of 35 individual stocks. However, mean log variance risk premia are
expected to be negative (because of Jensen’s inequality), even under the null of a zero variance risk
premium, and thus lead to a biased test.
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Table I
Variance Risk Premia in Index and Individual Options

The table reports the time-series averages of realized and model-free implied variances, for S&P100
options and for individual options on the stocks in the S&P100 index over the 1/1996 to 12/2003
sample period. For individual options the variances are equally weighted cross-sectional averages
across all constituent stocks. Realized variance RV is calculated from daily returns over a 1-month
window. The model-free implied variance MFIV is calculated from a cross-section (across strikes) of
1-month options, using the methodology of Britten-Jones and Neuberger (2000) and Jiang and Tian
(2005) described in Section I.B. The data on option prices are from OptionMetrics and variances
are expressed in annual terms. The p-values, based on Newey and West (1987) autocorrelation
consistent standard errors with 22 lags, are for the null hypothesis that implied and realized
variance are on average equal (RV = MFIV and RV/MFIV = 1).

Index Options Individual Options

Mean Realized Variance 0.20802 0.41442

Mean Model-Free Implied Variance 0.24692 0.38972

Difference
√

RV − √
MFIV −0.0389 0.0247

p value for H0 : RV − MFIV = 0 0.0000 0.0014
p value for H0 : RV

MFIV − 1 = 0 0.0000 0.0485

Individual Tests of Variance Risk Premia # Stocks

H0 : RV − MFIV = 0 not rejected 98
H0 : RV − MFIV ≤ 0 rejected 22
H0 : RV − MFIV ≥ 0 rejected 7

These findings provide indirect evidence of a negative correlation risk pre-
mium. As can be seen from equation (3), when individual variance risk is not
priced (or carries a positive risk premium), index variance risk only carries a
negative risk premium to the extent that the price of correlation risk is negative.
Our results strongly suggest that this is the case.

B. The Cross-section of Individual Variance Swap Returns

We find that the total individual variance risk premium in individual options
is not significantly negative for almost all index components. To gain further
insight into this important result, we study cross-sectional pricing of individual
variance risk in stock options. This analysis complements the approach above
and investigates explicitly whether exposure of individual variances to market
risk or to a common variance factor is priced in individual options.

We consider the cross-section of returns on synthetic individual variance
swaps, which are natural assets to consider for a study of priced variance risk.
Each variance swap can be synthetically created from a cross-section of options
on the underlying stock.

Denoting the realized return variance of asset a from t to t + τ by RVa(t) ≡∫ t+τ

t φ2
a(s) ds and using the model-free implied variance MFIVa(t) ≡ σ 2

MF,a(t) de-
fined in Section I.B, the return on a variance swap from t to t + τ is ra(t) ≡

RVa(t)
MFIVa(t) − 1 (Bondarenko (2004) and Carr and Wu (2004)). The variance swap
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Figure 2. Cross-sectional average of implied versus realized volatility for individual
options. The figure presents the time series of the (equally weighted) cross-sectional average of
the square root of the model-free implied individual stock variance and of the square root of the
realized individual stock variance over our 1/1996 to 12/2003 OptionMetrics sample. For each stock
in the S&P100 index, the model-free implied variance is calculated from 1-month options, using
the methodology of Britten-Jones and Neuberger (2000) and Jiang and Tian (2005) described in
Section I.B. Realized variance is calculated from daily CRSP stock returns over a 1-month window.
Variances are expressed in annual terms. Because of migrations, a total of 135 individual stocks
are considered over the entire 8-year sample period.

return is driven by unexpected variance shocks and on average reflects the
variance risk premium. We construct the time series of 1-month variance swap
returns for all stocks with at least 18 monthly observations during the sample
period, approximating RVa(t) ≡ ∫ t+τ

t φ2
a(s) ds using daily return observations.

To enhance the practical feasibility of the variance swap as a (synthetically)
tradable instrument, we focus on monthly observations, selecting options that
have 1 month to maturity, and construct a time series of non-overlapping re-
turns.

As factors to explain the cross-section we consider the excess return on the
market (proxied by S&P100) and a common individual variance component.
The latter is calculated as the cross-sectional weighted average (using index
weights) of the returns on individual variance swaps

∑N
i=1 wiri(t). We follow

the standard two-step procedure, estimating first the factor loadings and then
regressing average returns on factor loadings to estimate factor risk premia.

We find that exposure to market risk does not explain the cross-section of
individual variance swap returns, as almost all of the first-step betas are sta-
tistically insignificant. The common individual variance risk factor

∑N
i=1 wiri(t)

is also not priced in individual options; the individual variance risk premium
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is found to be insignificant. The point estimate is actually positive (0.077 with
a t-statistic of 1.74), which is in line with the finding above that realized indi-
vidual variance exceeds option-implied variance. Including both factors simul-
taneously leads to the same finding.

In sum, covariance of individual variance shocks with either market risk
or with a systematic individual variance risk factor does not command a risk
premium in individual options, consistent with the results in the previous sub-
section. Combined with the finding of priced market variance risk in index
options, this provides more indirect evidence of priced correlation risk.

IV. Risk and Return of a Correlation Trading Strategy

Motivated by the results of a significantly negative risk premium for index
variance risk, but not for individual variance risk, we now explicitly examine
whether exposure to correlation risk is priced. We do this by constructing a
trading strategy that only loads on correlation risk. Examining the risk-return
properties of this trading strategy provides direct evidence on the extent to
which correlation risk carries a risk premium that cannot be explained by ex-
posure to standard risk factors.

A. Trading Correlation Risk

We derive a correlation trading strategy based on the general framework of
Section I and make some additional simplifying assumptions allowing us to
implement the trading strategy empirically.

First, we assume that a single state variable ρ(t) drives all pairwise correla-
tions in (1):

ρi j (t) = ρi j ρ(t). (6)

This is a natural assumption, given our interest in priced correlation risk. If the
risk of correlation changes carries a risk premium, we expect this to be compen-
sation for the risk of marketwide correlation changes. The specific process for ρ

can be left unspecified, except that dρ − E[dρ] = σ (ρ) dBρ , where the Brownian
motion dBρ may be correlated with other risk factors, and suitable conditions
on σ (ρ) and the drift of ρ such that the resulting variance–covariance matrix
be positive-definite are assumed to be satisfied. As a second simplification, we
assume an equally weighted stock market index, that is, I = 1

N

∑N
i=1 Si, when

initiating the trading strategy.
Each stock’s instantaneous variance φ2

i (t) follows an Ito process, with diffu-
sion term ςi(φi) dBφi :

dφ2
i − E

[
dφ2

i

] = ςi(φi) dBφi . (7)

Denoting the price of an at-the-money (ATM) straddle on asset a ∈
{I, 1, . . . , i, . . . , N} by Oa (i.e., the sum of the put price and call price), we focus
on unexpected straddle returns:
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dOi

Oi
− E

[
dO
Oi

]
= Si

Oi

∂Oi

∂Si
φidBi + 1

Oi

∂Oi

∂φ2
i

ςi(φi) dBφi (8)

and

dOI

OI
− E

[
dOI

OI

]
=

N∑
i=1

Si

OI

∂OI

∂Si
φi dBi +

N∑
i=1

1
OI

∂OI

∂φ2
i

ςi(φi) dBφi + 1
OI

∂OI

∂ρ
σ (ρ) dBρ.

(9)

The correlation trading strategy aims to short the index straddle in order to ex-
ploit the correlation risk premium, while hedging the exposure to stock return
shocks dBi and to individual volatility shocks dBφi .

14 We first hedge the individ-
ual variance risk. When shorting index straddles worth 100% of initial wealth,
the portfolio weight yi in individual straddle i is then obtained by solving

− 1
OI

∂OI

∂φ2
i

ςi(φi) + yi
1
Oi

∂Oi

∂φ2
i

ςi(φi) = 0. (10)

These weights are the same across stocks if we assume that the parameters of
the variance processes are common across stocks.15

Delta-hedging for each return shock dBi, the portfolio weight zi for each stock
satisfies

− Si

OI

∂OI

∂Si
φi + yi

Si

Oi

∂Oi

∂Si
φi + ziφi = 0, (11)

which will again be the same across all stocks so that delta-hedging can be
implemented with the stock market index.

The resulting strategy thus shorts index straddles worth all initial wealth
and invests a fraction yi of initial wealth in each individual straddle and zi
of initial wealth in each individual stock, the remainder being invested in the
risk-free asset so that the portfolio weights sum to 100%. This strategy only
has (negative) exposure to correlation shocks and thus collects the correlation
risk premium if correlation risk is priced. The simplest way to implement the
strategy is to use Black–Scholes deltas and vegas for ∂Oi/∂Si and ∂Oi/∂φ2

i ,
evaluated at the implied volatility of the options in the straddle.

The trading strategy resembles a so-called “dispersion trade,” which sells
index options and buys individual options. However, our strategy also takes po-
sitions in equity to hedge stock market risk. Furthermore, the portfolio weights
yi and zi vary over time with ρ(t), since the delta and vega of the index strad-
dle depend on ρ. We calculate these numerically for different levels of ρ, using

14 Note that while dBρ does not enter equation (8) directly, dBρ may still impact individual
straddle returns through correlation between dBρ and dBi or dBφi . However, as we hedge exposure
to both dBi and dBφi , this has no effect on the analysis.

15 Our correlation strategy could be refined by incorporating the apparent mispricing of indi-
vidual options as documented in Goyal and Saretto (2007) by overweighting and underweighting
specific individual straddles.
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Table II
Summary Statistics for the Correlation Trading Strategy, Underlying

S&P100 Index and Other Option-Based Trading Strategies
The table reports summary statistics for the correlation trading strategy analyzed in Section IV.B.
All results are based on non-overlapping monthly returns on options and the equity index for our
1/1996 to 12/2003 sample period. The correlation trading strategy is constructed using the equity
index, index straddles, and individual straddles. The underlying index is the S&P100. The index
put is an equally weighted portfolio of 1-month index put options with Black–Scholes deltas ranging
from −0.8 to −0.2. All statistics are monthly, except the Sharpe ratios, which are annualized.

Strategy Corr. Strategy S&P100 Index Short Index Straddle Short Index Put

Excess Return 0.1037 0.0068 0.1187 0.3178
Standard Dev. 0.4904 0.0574 0.6397 1.7419
Skewness −0.2784 −0.0581 −1.0837 −3.2627
Kurtosis 3.1529 4.0644 4.4110 16.6672
Ann. Sharpe 0.7325 0.4134 0.6429 0.6371
CAPM α 0.1059 0.1107 0.1630
t-stat (1.96) (1.47) (1.79)
CAPM β 0.0282 0.0557 15.8347
t-stat (0.02) (0.03) (5.46)

1-month average lagged historical correlations as an estimate for ρ at each
point in time. For each pair of stocks, we calculate the historical correlation
at time t over a 1-month window, imposing the same requirements as for the
calculation of realized variances. The historical pairwise correlations can then
be aggregated into a cross-sectional weighted average across all pairs of stocks,
using the appropriate weights from the S&P100 index.

B. Empirical Results

Implementing the correlation trading strategy empirically, we find that its
portfolio weight in individual straddles according to equation (10), aggregated
across all index components, equals on average 101.12% of initial wealth.
By construction the strategy also sells 100% of initial wealth worth of index
straddles, while the fraction invested in the stock index (from equation (11))
is −32.54% of initial wealth. The remaining 131.42% is invested in the risk-
less asset. Shorting 100% of index straddles and buying 101.12% of individual
straddles corresponds on average to buying 0.58 individual straddles (aggre-
gated across all stocks) per shorted index straddle, when normalizing the initial
value of all underlying assets (the index as well as its components) to one.

Table II reports the first four moments for the trading strategy return in
excess of the risk-free rate, estimated from monthly non-overlapping returns of
holding options to their maturity date. The excess return is 10.37% per month
and the annualized Sharpe ratio is 0.73. Compared to the annualized Sharpe
ratio for the S&P100 index itself (0.41 over the sample period), the Sharpe
ratio on the trading strategy is 77% higher. Although theoretically speaking
the trading strategy is hedged against return and volatility shocks and only
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exposed to correlation shocks, the hedge is expected to be imperfect, since the
trading strategy is model-based and the parameters are not chosen to minimize
in-sample hedging errors. Moreover, the theoretical hedge requires (costly) con-
tinuous rebalancing. It is therefore important to analyze the excess returns in
more detail, as Sharpe ratios may not fully reveal the risk of a strategy based
on derivatives (Ingersoll et al. (2007)). We do this in several different ways.

First, we estimate the CAPM beta and alpha of the strategy. The CAPM beta
is 0.028 (t-statistic of 0.02) and the CAPM alpha is 10.59% per month (t-statistic
of 1.96). The beta estimate shows that the trading strategy successfully hedges
market risk, even though rebalancing is done only at a monthly frequency. The
zero beta is especially noteworthy in light of the extreme betas of alternative
derivatives-based trading strategies. For example, an equally weighted portfo-
lio of 1-month index put options with Black–Scholes deltas ranging from −0.8
to −0.2 has a CAPM beta of −15.83. The CAPM alpha generated by the cor-
relation trading strategy is highly significant economically and indicates that
the high return on the trading strategy cannot be justified by exposure to stock
market risk. The t-statistic of 1.96 reflects the relatively short sample.

In the Fama–French model (Fama and French (1993)) and the four-factor
model that adds momentum (Jegadeesh and Titman (1993)), the loadings on
any of the factors are insignificant and the strategy has similar alphas as for
the CAPM (10.59% and 10.63% with t-statistics of 1.93 and 1.82, respectively).
Finally, we also control for systematic liquidity risk. Pastor and Stambaugh
(2003) construct equity portfolios on the basis of exposure to a systematic liquid-
ity risk measure. We use the return difference between high and low liquidity-
risk portfolios as a liquidity risk factor. These data are available at a monthly
frequency covering calendar months, while our analysis uses monthly returns
between option expiration dates. Maximizing the overlap between these stag-
gered time series, we find that the exposure of the trading strategy to liquidity
risk is positive but insignificant. Correcting the trading strategy return for
market risk, the Fama–French factors, momentum, and the liquidity risk fac-
tor gives an alpha of 10.83% per month with a t-statistic of 1.91.

Second, to put the higher moments into perspective, we compare with the
summary statistics for two strategies that have been analyzed extensively in
the recent literature on index options, namely, writing 1-month index strad-
dles and writing 1-month index puts. The index straddle allows the investor
to exploit the market variance risk premium. Recent work has argued that this
risk premium is very large and that investors can benefit by selling index vari-
ance (e.g., Coval and Shumway (2001) and Bondarenko (2004)). The attractive-
ness of selling index puts has also been widely documented (e.g., Bondarenko
(2003b)). We find that the Sharpe ratio of our correlation trading strategy ex-
ceeds those for the alternative strategies by roughly 15%. More importantly,
selling correlation risk involves substantially less negative skewness and kur-
tosis than selling market variance. The difference with the short index put
position is even more pronounced. While the correlation strategy has skewness
and kurtosis of −0.28 and 3.15, the third and fourth moments for the short
put strategy are −3.26 and 16.67, respectively. Finally, it can be noted that the
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correlation trading strategy return has less kurtosis in our sample than the
underlying index return itself.

The risk-adjusted excess returns for the alternative strategies are also inter-
esting. While the CAPM alpha for the index straddle is similar in magnitude
to the alpha for the correlation trading strategy and is somewhat higher for
the index put, the estimates are noisier and the alphas are insignificant with
a t-statistic of 1.47 for the straddle and 1.79 for the index put. This finding is
robust to correcting for additional risk factors (size, value, momentum, and/or
liquidity risk). Intuitively, it is straightforward to understand the difference be-
tween the results for the index straddle and the correlation strategy. By adding
individual straddles to the index straddle the correlation strategy hedges out
the individual variance risk. Since individual variance risk has a negligible risk
premium, both strategies have similar alphas, but the correlation strategy has
lower risk leading to a higher t-statistic for its alpha. Further, by shorting in-
dex straddles and buying individual straddles, part of the gamma of the option
position is neutralized, which explains why the correlation strategy has lower
skewness and kurtosis than the short index straddle.

The analysis of alphas and Sharpe ratios above neglects the considerable de-
gree of skewness and kurtosis often exhibited by option strategies. We therefore
consider the portfolio choice problem of a CRRA investor, because CRRA pref-
erences penalize for negative skewness and high kurtosis (in contrast to mean-
variance preferences). Specifically, we estimate the optimal portfolio weights
in the derivatives-based trading strategies for a CRRA investor with a 1-month
horizon, who can also invest in the underlying equity index and in the risk-free
asset. Based on these portfolio weights, we also report the certainty equiv-
alent wealth that this investor, when already investing in the market index
and the riskless asset, is willing to pay in order to gain access to the correlation
trading strategy. Table III reports the results, starting with the certainty equiv-
alents for the two alternative strategies, namely, the short index straddle and
the short index put. The alternative strategies generate certainty equivalent
wealth gains of 1.29% and 0.77% per month, respectively, for an investor with
γ = 1, illustrating the attractiveness of these strategies. For this coefficient of
risk aversion, the certainty equivalent for the correlation trading strategy is
36% higher than for the index straddle and 129% higher than for the index
put. For any level of risk aversion considered in Table III, we find certainty
equivalents for the correlation strategy that exceed the certainty equivalents
for the short index straddle by at least 26% and for the short index put by at
least 49%. While the derivatives weights are statistically insignificant for both
alternative strategies (t-statistics between 1.28 and 1.68), the portfolio weights
for the correlation strategy are substantially larger and (marginally) statis-
tically significant, with t-statistics between 1.88 and 1.99 (depending on risk
aversion). For example, an investor with γ = 2 invests 18.85% of his wealth in
the correlation strategy. Given that the S&P 100 index options are defined on
$100 times the index value, an investor with $100,000 of financial wealth would
sell 5.89 index straddles to implement the correlation strategy (on average over
the 1996 to 2003 sample period).



The Price of Correlation Risk 1395

Table III
Correlation Trading Strategy: Portfolio Weights and Certainty

Equivalents for a CRRA Investor
The table reports the optimal empirical portfolio weights (and t-statistics) of a CRRA investor in
derivatives-based trading strategies obtained by maximizing in-sample expected utility. The in-
vestor also invests in the underlying equity index and in the risk-free asset (these weights are not
reported in the table). The monthly certainty equivalent is the percentage of initial wealth that a
CRRA investor demands as compensation for not being able to invest in a particular derivatives-
based strategy and instead only investing in the equity index and the risk-free asset. Three deriva-
tive strategies are considered: a short position in the index straddle, a short position in the index
put, and the correlation trading strategy. The certainty equivalents are estimated using the op-
timal CRRA portfolio weights over the 1/1996 to 12/2003 sample period, for different levels of
risk aversion γ . The value of γ = 1.8 generates (approximately) a 100% equity index weight when
derivatives are not available.

Risk Aversion γ 1 2 5 10 20 1.8

Short Index Straddle
Portfolio weight 0.2113 0.1182 0.0502 0.0255 0.0129 0.1298
t-stat (1.68) (1.62) (1.58) (1.55) (1.55) (1.63)
Cert. Equiv. 1.2910% 0.7240% 0.3079% 0.1569% 0.0792% 0.7948%

Short Index Put
Portfolio weight 0.1208 0.0772 0.0353 0.0184 0.0094 0.0836
t-stat (1.28) (1.31) (1.29) (1.29) (1.29) (1.31)
Cert. Equiv. 0.7659% 0.5249% 0.2483% 0.1308% 0.0671% 0.5644%

Correlation Strategy
Portfolio weight 0.3475 0.1885 0.0782 0.0395 0.0199 0.2078
t-stat (1.99) (1.92) (1.89) (1.88) (1.88) (1.93)
Cert. Equiv. 1.7558% 0.9477% 0.3934% 0.1988% 0.0999% 1.0451%

The final column (γ = 1.8) of Table III is of particular interest. It considers the
investor who optimally holds the market (equity weight of approximately 100%)
when derivatives are not available. This investor’s optimal portfolio weight in
the correlation strategy and the corresponding gain in certainty equivalent
wealth provide quantitative measures of the extent to which the observed risk-
return trade-off of the strategy could arise in an equilibrium with a CRRA
representative investor (if the optimal weight is zero), or instead, of whether
the correlation risk premium represents a “good deal” (Santa-Clara and Saretto
(2007)). The investor stands to gain 1.05% of initial wealth per month from the
correlation strategy (31% and 85% higher than for the index straddle and put,
respectively), based on an optimal correlation-strategy weight of 21% of initial
wealth (t-statistic of 1.93) and a positive (but insignificant) equity weight. It is
clear that the risk-return trade-off of the correlation trading strategy is a good
deal for a γ = 1.8 investor and could not arise in a simple no-trade equilibrium
with this CRRA investor as representative agent.

Overall, the results for the correlation trading strategy indicate that the com-
pensation for bearing correlation risk is substantial. The risk-return trade-off
is considerably more generous than what can be obtained with short positions
in index puts or in market variance.
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V. The Cross-section of Individual and Index Option Returns

We now examine whether a correlation risk factor can account for cross-
sectional variation in index and individual option returns. A cross-section of
index and individual options is an ideal testing ground for this hypothesis,
since returns on index options are driven by index variance shocks and thus by
correlation shocks, while individual option returns are likely to be much less
dependent on correlation shocks. We use the return on the trading strategy
developed above as a correlation risk factor to explain the cross-section of ex-
pected index and individual option returns. Our test procedure is identical to
standard procedures used in asset pricing to test for the presence of priced risk
factors, and avoids the need for specific parametric modeling assumptions that
are otherwise needed when testing option pricing models. Rather than devel-
oping a specific model of priced correlation risk, we test a generic prediction
shared by all option pricing models with priced correlation risk, namely, that
differences in exposure to correlation risk justify differences in expected re-
turns. Simultaneously, we also test whether individual variance risk is priced,
complementing earlier analyses in the paper.

Our cross-section contains 24 short-maturity options and is constructed as
follows. We include both calls and puts and consider three different moneyness
ranges, with deltas ranging from −0.8 to −0.2 for puts and from 0.2 to 0.8
for calls.16 This results in six index options and six (portfolios of ) individual
options. To obtain a larger cross-section, we further divide each individual op-
tion portfolio into three volatility categories by sorting options on the implied
volatility of their underlying asset, resulting in 18 portfolios of stock options.
Sorting individual options on volatility to construct a cross-section of option
returns is natural since the volatility risk premium is in many option-pricing
models a function of the volatility level. We calculate non-overlapping monthly
option returns as holding-period returns, that is, the return at time t + τ on
an option written at t is given by the option payoff at maturity (t + τ ) divided
by the option price at t. Within each delta-volatility portfolio, we average the
individual option returns cross-sectionally using the index weights for each day.

We use the standard two-step procedure for cross-sectional asset pricing,
estimating first the factor loadings for all assets and then regressing aver-
age returns cross-sectionally on these loadings to obtain factor risk premia.
The standard errors for the cross-sectional regression are calculated with the
methodology of Shanken (1992) to correct for the estimation error in the first-
step betas. We start by testing the CAPM, with the excess return on the market
(proxied by the S&P100) as a factor. The S&P100 is arguably a narrow defini-
tion of the market, but natural for our setting as it is the underlying asset for
the index options we study.

16 We categorize options according to Black–Scholes deltas rather than strike-to-spot ratios to
ensure that the individual and index options are comparable in terms of economic moneyness. The
strike-to-spot ratio of an index option cannot easily be compared with the one of individual options,
as the underlying assets obviously have very different volatilities, for example.
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A. CAPM Results

For index options, the CAPM betas range from −17 to 22 and are all highly
significant. The betas for individual options are somewhat smaller (ranging
from −16 to 15), but also very significant. Consistent with existing empirical
work, a one-factor pricing model like the CAPM generates very large mispricing
for index options, with time-series alphas of up to −31% per month and cross-
sectional alphas of up to −30% per month. All alphas are negative for index
options and average −17% per month. While the alphas are all economically
significant, options returns are quite noisy resulting in only two significant
time-series alphas (out of six) and three significant cross-sectional alphas.

For individual options, the results are quite different. No time-series or cross-
sectional alpha is significant, even though the formation of portfolios (with
averaging of individual option returns across more than 30 stocks) would be
expected to lead to more precise estimates for individual options than for in-
dex options. Economically speaking, the contrast between index and individual
options is clear: While the average index-option alpha is −17% per month, the
average individual-option alpha is much smaller (−3.55%).

In summary, unlike for index options, the CAPM does quite well for individual
options and we find no statistical evidence against it. This is consistent with
our earlier findings of an insignificant difference between average realized and
average risk-neutral variance for 98 out of the 127 stocks (Section III.A) and
of an insignificant variance risk premium in the cross-section of individual
variance swap returns (Section III.B).17

B. Results for Correlation and Individual Variance Risk Factors

We now add the correlation and individual variance risk factors to the CAPM
and estimate a three-factor model. The return on the correlation trading strat-
egy is taken as the correlation risk factor. For the individual variance risk factor,
we use the return on the index-weighted portfolio of individual straddles.

In the first-step time-series regressions of option returns, we find very sim-
ilar market betas as for the CAPM. All index option returns exhibit large and
significantly negative loadings on the correlation risk factor. The correlation
betas range from −0.36 (ITM index call) to −1.61 (OTM index call), with an av-
erage of −0.96. All index options have correlation betas with t-statistics above
5.35 in absolute value. Individual options have smaller correlation loadings,
with an average of −0.24. Only 6 out of 18 individual-option portfolio returns
have significant correlation betas. In contrast, index and individual options
exhibit similar sensitivities to individual variance risk, with loadings between
0.42 and 1.89 (average of 1.07) for index options and between 0.07 and 1.63 for
individual options (average of 0.73). All but three are statistically significant.

17 Bollen and Whaley (2004) present simulated returns of a delta-hedged trading strategy that
shorts options (on the S&P500 and on 20 individual stocks). Unlike for index options, they find
small abnormal returns for stock options, in line with our results for a larger sample (all stocks in
the index) and using a different methodology.
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Table IV
The Cross-section of Index and Individual Option Returns

The top panel (Three-Factor Model) of the table reports estimates for the risk premia on market
risk, correlation risk, and individual variance risk, obtained from a cross-sectional regression of the
average monthly excess returns on 24 index and individual options on their exposures to market
risk, correlation risk, and individual variance risk. The exposures are estimated in a first step,
regressing the time series of each excess option return on the market (S&P100) excess return, on
the correlation trading strategy excess return (Table II), and on the excess return on a portfolio
of individual straddles (mimicking individual variance risk). The bottom panel (Two-Factor Model
Applied to CAPM Residuals) of the table reports estimates for the risk premia on correlation risk
and individual variance risk, obtained from a cross-sectional regression of the average monthly
excess returns on 24 index and individual options on their exposures to correlation risk and indi-
vidual variance risk. The exposures are estimated in a first step, regressing the time series of each
excess option return on the excess return on the correlation trading strategy and on the excess
return on a portfolio of individual straddles. The option returns in the Two-Factor Model are all in
excess of the CAPM-predicted return, using the S&P100 index return as market factor. The table
reports t-statistics as in Shanken (1992) and the cross-sectional R2.

Three-Factor Model

Market Risk Premium 0.0120
(t-stat) (1.87)
Correlation Risk Premium 0.1751
(t-stat) (2.56)
Individual Variance Risk Premium 0.0078
(t-stat) (0.16)
Cross-sectional R2 89.2%

Two-Factor Model Applied to CAPM Residuals

Correlation Risk Premium 0.1726
(t-stat) (2.56)
Individual Variance Risk Premium 0.0072
(t-stat) (0.15)
Cross-sectional R2 70.4%

For index options, the three-factor model generates time-series alphas that
are all statistically insignificant and that have a mean of −1.78% and a mean
absolute value of 4.43%. The CAPM generates negative alphas for all index
options with an average of −17.15%. Accounting for exposure to correlation
risk and individual variance risk leads to a notable reduction in mispricing and
index options no longer seem significantly “overpriced.” The improvement for
individual options is small, as the CAPM already performs quite well (the mean
absolute alpha goes from 5.97% to 5.03%).

Table IV presents the results for the cross-sectional regression of average
index and individual option returns on their factor loadings. The risk premium
for the correlation factor is estimated to be 17.5% per month (t-statistic of 2.56).
While this is higher than the average return on the trading strategy (10.37%),
the difference between the two estimates of the correlation risk premium is
not statistically significant. In contrast, the price of individual variance risk
is small and statistically insignificant. Note that the positive risk premium
for the correlation factor corresponds to a negative price of correlation risk,
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since the trading strategy sells correlation and pays off well when correlations
are low. Given that the correlation factor betas for index options are always
negative, the positive estimate in Table IV leads to negative excess returns
for index options relative to the CAPM, that is, consistent with the definition
in Section I, the price of correlation risk is negative in the sense that assets
with payoffs that covary positively with correlation (e.g., index options) earn
negative excess returns.

As a robustness check, we now apply the correlation and individual variance
risk factors to CAPM residuals, rather than regressing option returns simulta-
neously on the market, correlation, and individual variance risk factors. Given
the estimated factor loadings, we obtain the correlation and individual variance
risk premia from the cross-section of average CAPM excess returns. This alter-
native analysis of priced correlation risk is conservative in the sense that any
correlation between the market return and the correlation risk factor is now au-
tomatically attributed to the market return (and its associated risk premium).
We find identical results for the factor loadings on correlation and individual
variance risk. The point estimates and t-statistics for the factor risk premia in
Table IV are also very similar to the results for the three-factor model. The high
cross-sectional R2 of 70.4% is remarkable, given that the cross-section concerns
CAPM residuals and that the model imposes linearity.

In conclusion, we find that individual variance risk is not priced in the
cross-section of index and individual options, consistent with the results in
Sections III.A and III.B. We also obtain strong evidence that exposure to cor-
relation risk accounts for a substantial part of the cross-sectional variation in
average excess returns that cannot be explained by standard market risk.

VI. The Impact of Transaction Costs and Margins

Our evidence points to a correlation risk premium that is both economically
and statistically significant. Understanding the source and size of this risk
premium is important. While unreported results indicate that marketwide cor-
relations predict market variance, so that these correlations18 may be a priced
state variable in Merton’s ICAPM (in particular the extension in Chen (2003)),
a general equilibrium model with priced correlation risk is needed to shed more
light on the size of the correlation risk premium. Since developing such a gen-
eral equilibrium model is beyond the scope of this paper, we instead analyze
the impact of realistic trading frictions on the feasibility and profitability of the
correlation trading strategy to explore whether limits to arbitrage may prevent
investors from exploiting this correlation risk premium fully. In a recent pa-
per, Santa-Clara and Saretto (2007) study the impact of transaction costs and
margin requirements on the execution and profitability of index-option trad-
ing strategies and find that limits to arbitrage in the form of realistic trading
frictions severely impact the risk-return trade-off of these strategies.

18 An interesting related question is why individual variance risk is not priced, which is also
related to the pricing of idiosyncratic risk, analyzed by Ang et al. (2006) in the cross-section of
stock returns and in the time-series sense in Goyal and Santa-Clara (2003).
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It is interesting to apply their analysis to our setting for the following reasons.
First, we found in Section IV that our correlation trading strategy outperforms
two standard trading strategies based on index options when ignoring trading
frictions. Second, the quantitative impact of trading frictions may be different,
because our strategy involves not only index options, but also individual op-
tions. For comparison reasons, we also report the impact of frictions on the two
alternative index-option trading strategies we consider, since the sample period
as well as the type of index options (S&P500 versus S&P100) are different from
the analysis in Santa-Clara and Saretto (2007).

We first account for transaction costs in the form of bid-ask spreads by using
closing bid and ask quotes rather than mid quotes. As the correlation trading
strategy sells index options and buys individual options, we calculate bid-to-
maturity returns for index options and ask-to-maturity returns for individual
options. Bid-ask spreads lower the excess return on the trading strategy by
roughly 50%, specifically, from 10.4% (raw monthly excess return) and 10.6%
(CAPM alpha) to 5.3% and 5.5%, respectively. The CAPM alpha is no longer
statistically significant, with a t-statistic of 0.77. The annualized Sharpe ratio
is also substantially lower when accounting for bid-ask spreads and drops from
0.73 in Table II to 0.41, which is very similar to the Sharpe ratio of the equity
index in the absence of trading frictions. The impact of transaction costs on
the alternative index-option trading strategies is less pronounced. For example,
the raw excess return on the index straddle shrinks by only 2%, consistent with
the findings of Santa-Clara and Saretto (2007) (taking into account that we hold
options to maturity, thus avoiding roundtrip transaction costs on options). After
transaction costs, the Sharpe ratios of the index straddle and put now exceed
the Sharpe ratio of the correlation strategy (0.52 and 0.58 versus 0.41). The
impact of transaction costs on our strategy is larger than for the two alternative
index-option strategies because of the larger bid-ask spreads for individual
options.

Table V reports the optimal portfolio allocation to the correlation trading
strategy and to the two alternative index-option trading strategies, as well as
the associated certainty equivalent wealth gains, for a CRRA investor facing
transaction costs in the form of bid-ask spreads. As in Table III, the investor
can also invest in the risk-free asset and in the underlying equity index. The
transaction costs for the riskless asset and the equity index are expected to be
an order of magnitude smaller than for the options strategies and for simplicity
are assumed to be zero.

Not surprisingly, transaction costs have a major impact on the optimal allo-
cation by CRRA investors in the correlation strategy. The portfolio shares are
roughly 57% of the optimal weights without frictions (Table III) and are now
statistically insignificant. However, they remain economically quite large for
low γ . The point estimate for the certainty equivalent shows that the log in-
vestor still gains 0.47% of wealth per month from having access to the trading
strategy, but there is no statistical evidence that the gain is significantly differ-
ent from zero. Furthermore, since this certainty equivalent was 1.76% without
frictions, it is clear that the economic impact of bid-ask spreads is substantial.
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Table V
Correlation Trading Strategy with Transaction Costs: Portfolio

Weights and Certainty Equivalents for a CRRA Investor
The table reports the optimal empirical portfolio weights (and t-statistics) of a CRRA investor
in derivatives-based trading strategies, accounting for transaction costs in the form of bid-ask
spreads and obtained by maximizing in-sample expected utility. The investment opportunity set
also includes the underlying equity index and the risk-free asset (these weights are not reported
in the table). The monthly certainty equivalent is the percentage of initial wealth that a CRRA
investor demands as compensation for not being able to invest in a particular derivatives-based
strategy and instead only investing in the equity index and the risk-free asset. Three derivative
strategies are considered: a short position in the index straddle, a short position in the index put, and
the correlation trading strategy. The certainty equivalents are estimated using the optimal CRRA
portfolio weights over the 1/1996 to 12/2003 sample period, for different levels of risk aversion
γ . The value of γ = 1.8 generates (approximately) a 100% equity index weight when derivatives
are not available. To account for transaction costs, we use closing bid and ask quotes rather than
mid quotes. For the short index straddle and short index put, we use bid-to-maturity returns. For
the correlation trading strategy, which sells index options and buys individual options, we use
bid-to-maturity returns for index options and ask-to-maturity returns for individual options.

Risk Aversion γ 1 2 5 10 20 1.8

Short Index Straddle
Portfolio weight 0.1612 0.0901 0.0383 0.0195 0.0098 0.0990
t-stat (1.26) (1.24) (1.22) (1.21) (1.21) (1.24)
Cert. Equiv. 0.7545% 0.4281% 0.1834% 0.0937% 0.0473% 0.4694%

Short Index Put
Portfolio weight 0.0896 0.0581 0.0267 0.0139 0.0071 0.0628
t-stat (0.92) (0.99) (1.00) (1.00) (1.00) (0.99)
Cert. Equiv. 0.4115% 0.2971% 0.1441% 0.0765% 0.0394% 0.3178%

Correlation Strategy
Portfolio weight 0.1976 0.1068 0.0445 0.0225 0.0113 0.1178
t-stat (0.97) (0.98) (0.98) (0.98) (0.98) (0.98)
Cert. Equiv. 0.4698% 0.2597% 0.1096% 0.0557% 0.0281% 0.2856%

As discussed above, the impact of transaction costs on the alternative index-
option strategies is smaller. The optimal portfolio weights are only 25% smaller
and the certainty equivalents are reduced by roughly 40% for index straddles
and by approximately 60% for the index put portfolio. The certainty equivalent
for the index straddle is now larger than for the correlation trade. However,
for the index straddle and put strategies the associated portfolio weights are
statistically insignificant (as before).

Another potentially important trading friction for options concerns margin
requirements, as shown by Santa-Clara and Saretto (2007) for strategies based
on index options. Our trading strategy shorts index options as well, but is si-
multaneously long individual options and also has a large component invested
in the riskless asset, justifying an additional analysis of the effect of margins on
the strategy’s feasibility. We first calculate the required initial margin for the
strategy based on its short position in index options and using the (stringent)
CBOE margin rules for options described in Santa-Clara and Saretto (2007,
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Table VI
Margin Requirements

The table reports the initial margin requirement, the maximum margin requirement, and the total
holdings of the riskless asset for the portfolio choice problem of a CRRA investor having access to
the riskless asset, the underlying equity index, and the correlation trading strategy. For each level
of risk aversion, the margin requirements and riskless asset holdings reflect the optimal portfolio
weights reported in Table III (without transaction costs) and in Table V (with transaction costs
due to bid-ask spreads). The initial margin is based on the correlation strategy’s short position
in index options using the CBOE margin rules for options described in Santa-Clara and Saretto
(2007, p. 12). We also report the maximum margin over the sample period, obtained by calculating
for each 1-month period in our sample the largest margin requirement that occurs over the life
of the trading strategy, using the description of margin updates in Santa-Clara and Saretto. The
risk-free weight is the (total) portfolio weight allocated by the CRRA investor to the riskless asset,
obtained as the sum of the direct holdings of the risk-free asset and of the indirect holdings through
the correlation trading strategy (as reported in Section IV.B, the correlation strategy itself holds
131.42% in the riskless asset).

Risk Aversion γ 1 2 5 10 20 1.8

Correlation Strategy without Transaction Costs
Initial margin 2.3757 1.2887 0.5346 0.2700 0.1360 1.4207
Max. margin 2.8215 1.5305 0.6349 0.3207 0.1616 1.6872
Riskfree weight 0.2134 0.4857 0.7661 0.8785 0.9382 0.4434

Correlation Strategy with Transaction Costs
Initial margin 1.3509 0.7302 0.3042 0.1538 0.0773 0.7999
Max. margin 1.6044 0.8672 0.3613 0.1827 0.0918 0.9500
Riskfree weight −0.2825 0.2963 0.7043 0.8499 0.9244 0.2256

p. 12).19 The initial margin can then be compared to the total risk-free in-
vestment held by the investor to see whether the initiation of the strategy is
feasible. We also calculate for each 1-month period in our sample the largest
margin requirement that occurs over the life of the trading strategy, using the
description of margin updates in Santa-Clara and Saretto (2007). This gives
the maximum margin over the sample period, which again can be compared
to the holdings of the risk-free asset to check whether the position can be
maintained.

Finally, we calculate the (total) portfolio weight allocated by the CRRA in-
vestor to the riskless asset, obtained as the sum of the direct holdings of the
risk-free asset and of the indirect holdings through the correlation trading strat-
egy (as reported in Section IV.B, the correlation strategy holds 131.42% in the
riskless asset in case of a 100% portfolio weight for the strategy). We conduct
the analysis with and without transaction costs in order to isolate the effect of
both types of trading frictions.

The main finding in Table VI is that the optimal position in the correlation
trading strategy is feasible for highly risk-averse investors, but not for investors

19 We conservatively do not allow for netting out of short positions in index options against long
positions in individual options for margin purposes, as this would only be possible for market-maker
accounts.
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with γ ≤ 2. Importantly, it is precisely this relatively risk-tolerant investor
who stands to gain most from the strategy and for whom the optimal portfolio
weight is economically significant when ignoring margin requirements. This
conclusion obtains whether we incorporate transaction costs or not, indicating
the relevance of margin requirements. The trading strategy is feasible for the
γ = 5 investor precisely because her optimal weight in the strategy is small.

In summary, the analysis of trading frictions reveals that the correlation risk
premium cannot be captured by investors who are subject to realistic trans-
action costs and margin requirements. Limits to arbitrage could therefore ex-
plain the economic presence of a correlation risk premium that may otherwise,
that is, when ignoring frictions, seem very large. While studying the equilib-
rium price of correlation risk in a general equilibrium model is an interesting
topic for future research, the results in this section suggest that our finding
of a large correlation risk premium may also be consistent with a hypothesis
of index-option mispricing. According to this hypothesis, the correlation risk
premium need not (only) be the equilibrium compensation for correlation risk,
but may also reflect inefficiencies in the market for index options leading to
“overpriced” index options, which cannot be arbitraged away in the presence of
realistic market frictions.

VII. Conclusion

We show empirically that correlation risk is priced in the sense that as-
sets that pay off well when marketwide correlations are higher than expected
earn negative excess returns. This result is consistent with increases in mar-
ketwide correlations leading to a deterioration of investment opportunities
in the form of smaller diversification benefits. The negative excess return
on correlation-sensitive assets can therefore be interpreted as an insurance
premium.

We provide evidence of a large correlation risk premium in a number of dif-
ferent ways. First, while index options reflect a large negative variance risk
premium, we find no significant negative premium on variance risk in indi-
vidual options on all index components. Second, a trading strategy that sells
correlation risk by selling index options and buying individual options earns
excess returns of 10% per month and has a large Sharpe ratio. This strategy has
more attractive risk-return properties (especially higher moments) than other
option-based strategies. Third, the return on this correlation trading strategy
explains 70% of the cross-sectional variation in index and individual option
returns that is not accounted for by market risk.

As a second contribution, we demonstrate that priced correlation risk con-
stitutes the missing link between unpriced individual variance risk and priced
market variance risk, and enables us to offer a risk-based explanation for the
discrepancy between index and individual option returns. Index options are
expensive, unlike individual options, because they allow investors to hedge
against positive marketwide correlation shocks and the ensuing loss in diver-
sification benefits.



1404 The Journal of Finance R©

When introducing realistic market frictions in the form of transaction costs
and margin requirements, we find that the correlation trading strategy can-
not be exploited by investors facing these frictions. This provides a poten-
tial limits-to-arbitrage interpretation for our finding of a large correlation
risk premium. Simultaneously, it should be noted that the market makers
who are active in markets for both index and individual options can be ex-
pected to earn the correlation risk premium, since end-users of options have
been shown to be net long index options and net short individual options
(Garleanu et al. (2005)) and since market-makers are only margined on their net
positions.

Correlation risk is relevant in many areas of financial economics. Subsequent
to our work, Buraschi, Porchia, and Trojani (2006) study the effect of correlation
risk on dynamic portfolio choice and Krishnan, Petkova, and Ritchken (2006)
show that correlation risk is priced in the cross-section of stock returns. Another
interesting application concerns the pricing of basket credit derivatives, such
as collateralized debt obligations.
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