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1 Introduction

Early studies of thermodynamics in de Sitter space revealed that the cosmological horizon

surrounding a static observer has thermodynamic properties very similar to those of a black

hole [1]. The cosmological horizon has a temperature proportional to the surface gravity,

an entropy proportional to its area and also obeys similar thermodynamic relations. In

contrast, the microscopic interpretation of these properties are less clear. In particular, it

is has been debated if and how a finite-dimensional Hilbert space can be implemented in

de Sitter space, see e.g [2–9].

Nonetheless, in spite of the absence of a fully understood microscopic description of

de Sitter space we can still make progress just using the semi-classical approximation. In

black hole physics, it has long been appreciated that the finiteness of black hole entropy

places constraints on the process of black hole evaporation even in the semi-classical regime.

Famously, following Hawking’s computation the (entanglement) entropy of an evaporating

black hole naively seems to grow larger than the decreasing Bekenstein-Hawking entropy

of the black hole. This conflicts the reasonable assumption that black hole evaporation

can be a unitary process in which an initially pure state with vanishing entanglement

entropy cannot evolve towards a mixed state with non-zero entropy. Instead, Page showed

that unitarity implies that the entanglement entropy of the radiation initially grows but

decreases when roughly half of the black hole has evaporated [10, 11]. This apparent
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tension between unitarity and the thermal nature of Hawking radiation is known as the

information paradox.

Only recently, it has been found how this paradox might be resolved within semi-

classical gravity. In a series of breakthroughs [12–18] following the increasing understanding

of entanglement entropy in holography, it has been found that the fine-grained entropy of

a non-gravitating region entangled with a gravitational system can receive contributions

from a disjoint (island) region that lies in the gravitational system.1 When computing the

fine-grained entropy using the replica trick, the contribution of the island appears as a new

saddle point to the Euclidean gravitational path integral that was previously not taken

into account. When the entanglement between the non-gravitating and gravitating region

becomes large, this new saddle point gives the dominant contribution (giving the lowest

entropy). By applying the island formula to the Hawking radiation of an evaporating black

hole, the fine-grained entropy is found to follow the Page curve, initially increasing in accord

with Hawking’s computation and later decreasing when the new saddle point dominates.

These results provide compelling evidence that black hole evaporation is a unitary process,

which ensures that any information thrown into a black hole can eventually be recovered.

By now, the island formula has been applied to many different black holes in different

setups [21–46] and these developments have been reviewed in [47–49].

Given the remarkable success of semi-classical physics in resolving the information

paradox, one might wonder whether these developments can also shed light on the nature of

cosmological horizons. In particular, we would like to understand if islands also contribute

to fine-grained entropy in de Sitter space allowing a static observer to decode information

thrown through the horizon. An additional complication is that in de Sitter space there is

no asymptotic non-gravitating region where an observer can collect radiation in a subsystem

to which the island formula can be applied. To evade this issue one can consider a set-up

in which de Sitter space is entangled with a disjoint and non-gravitating universe or define

a region at future infinity where the island formula can be applied [30, 31, 33]. The latter

approach seems especially suitable to study inflationary physics. However, it is unclear if

these approaches shed light on the experience of a static observer.

To explore if a static observer can decode information by performing measurements

on the collected Hawking radiation, we therefore focus on the situation where they collect

radiation inside of their static patch which breaks the thermal equilibrium studied so

far when searching for islands [30, 31, 33, 50, 51].2 To have analytical control over the

backreacted geometry, we study this problem in the context of two-dimensional Jackiw-

Teitelboim (JT) gravity on a de Sitter background. This has the additional advantage

that analytical expressions for the entanglement entropy are known. Our description of

an observer that collects radiation crucially relies on a non-equilibrium state first studied

in [52] that contains only incoming radiation, but no outgoing radiation leading to a pileup

1Subtleties with respect to how the non-gravitational region is coupled (as an external bath or as part

of the spacetime) have been pointed out in [19]. In [20] the situation was considered where the “reservoir”

in which radiation is collected is gravitating.
2In particular, in [50] the entanglement entropy of radiation in the entire static patch was considered

without requiring radiation to be collected in a compact system.
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of positive energy. We analytically solve for the backreacted geometry and identify a

region where gravity is weak, allowing us to use the island formula to compute the fine-

grained entropy of the collected radiation. The entropy follows a Page curve, showing that

information behind the de Sitter horizon can in principle be recovered. However, precisely

when the island first appears to a static observer (at a time parametrically smaller than

the Page time) backreaction already leads to the formation of a singularity outside of their

static patch. The observer’s curiosity therefore comes at a price and after the island appears

their fate is sealed. Their worldline eventually reaches a singularity where it terminates.

The rest of this paper is organized as follows. In section 2, we first review some

well-known facts about JT gravity on a de Sitter background. We consider two different

two-dimensional models that arise as distinct reductions from a higher-dimensional theory.

After that, we construct the non-equilibrium state of interest and study the backreacted

geometry. In section 3 we compute the thermodynamic entropy of the radiation and cos-

mological horizon and use the island formula to compute the fine-grained entropy. After

that, we use a quantum singularity theorem in section 4 to prove that a singularity forms

in this state and discuss our results in section 5.

2 JT gravity in de Sitter space

Jackiw-Teitelboim (JT) gravity is a two-dimensional dilaton theory of gravity that can

be obtained as a dimensional reduction of a higher-dimensional theory. In this section,

we review some known aspects of JT gravity on a de Sitter background and consider two

different models that have a distinct higher-dimensional origin. By coupling to a two-

dimensional conformal matter sector we construct solutions in different vacuum states and

study their corresponding backreacted geometry in detail.

2.1 Vacuum solutions and coordinate systems

The action of JT gravity coupled to a matter CFT on a de Sitter background with length

scale ℓ is given by [53, 54]

I =
Φ0

2π

(∫

d2x
√−gR − 2

∫

dx
√

|h|K
)

+
1

2π

(∫

d2x
√−g Φ

(

R − 2

ℓ2

)

− 2

∫

dx
√

|h| ΦK

)

+ ICFT .

(2.1)

The first line multiplied by the constant Φ0 is a topological term and the second line

contains the dynamical part of the dilaton Φ. We will denote their sum by ΦH = Φ0 + Φ.

The equations of motion for the dilaton and the metric respectively are given by

R − 2/ℓ2 = 0 ,

Φgab − ℓ2∇a∇bΦ + ℓ2gab�Φ = πℓ2 〈Tab〉 .
(2.2)

〈Tab〉 is the quantum-corrected stress tensor of conformal matter coupled to the JT action.

In the large c limit, the one-loop corrections are dominated by the conformal anomaly.
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The JT action can be obtained by performing a reduction of a higher-dimensional the-

ory. Explicitly, we will consider two distinct models. First, we start with three-dimensional

de Sitter space in static coordinates

ds2 =
(

1 − r2/ℓ2
)

dt2 +
(

1 − r2/ℓ2
)−1

dr2 + r2dφ2 . (2.3)

We can perform a Kaluza-Klein reduction over the S1 parametrized by φ (with the Kaluza-

Klein photon set to zero) to obtain the JT action with Φ0 = 0 [50]. The dilaton is then

identified as the radial direction in the three-dimensional theory:

Φ =
π

4G3
r . (2.4)

It then follows that the vacuum equations of motion (Tab = 0) are solved by

Φ =
Φs

24
cos θ , (2.5)

where we introduced the coordinate r = ℓ cos θ in which the two-dimensional static line

element becomes

ds2 = − sin2 θdt2 + ℓ2dθ2 . (2.6)

The constant Φs is defined with a factor of 1/24 for later convenience. The three-dimensional

de Sitter entropy is given by the dilaton evaluated on the horizon.

S3d = 2ΦH |θ=0 =
Φs

12
. (2.7)

In the three-dimensional origin of this model cos θ ≥ 0 and imposing this on the two-

dimensional theory we obtain a model in which Φ ≥ 0. Doing so, spatial sections of the

Penrose diagram only describe a semicircle which requires us to specify boundary conditions

at the poles. We can equivalently think of this model as a Z2 orbifold of two-dimensional

de Sitter space. We refer to this model as a “half reduction” in figure 1. A similar partial

reduction to JT gravity from a three-dimensional AdS geometry has been considered in [55]

and more recently in [56].

Second, we also consider a “full reduction” (see figure 1) where we do not impose the

dilaton to take positive values. This model is more naturally obtained when we consider

a spherical compactification of a Nariai black hole in four-dimensional de Sitter space,

whose near-horizon geometry is dS2 × S2, close to the situation in which the black hole

and cosmological horizon coincide. The combination ΦH = Φ0 + Φ measures the area of

the transverse sphere and the regions where Φ → −∞ are interpreted as the black hole

singularity. Because the geometry now contains both a black hole and cosmological horizon,

the entropy in a single static patch is given by the sum of the horizons located at θ = (0, π).

Adding both contributions the dynamical part of the dilaton vanishes and the entropy as

seen from one static patch is given just by the topological part of the action. In Euclidean

signature we have

S4d =
Φ0

2π

(∫

d2x
√

gR − 2

∫

dx
√

|h|K
)

= 4Φ0 . (2.8)
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Figure 1. Left: constant time slice of de Sitter space in static coordinates. The polar angle θ

runs from −π/2 to +π/2 and the azimuthal angle φ = φ + 2π. Right: to obtain a two-dimensional

dilaton gravity model we perform a reduction over the S1 parametrized by φ. We consider both

a “half reduction” where we restrict θ to run from −π/2 to +π/2 and a “full reduction” where

θ = θ + 2π. The circumference of the orange S1 indicates the size of the dilaton, which becomes

negative in the red dotted region in the full reduction.

Figure 2. Penrose diagram of two-dimensional de Sitter space obtained as a half reduction where

we restrict Φ ≥ 0 and impose reflecting boundary conditions at Φ = 0. The static coordinates (2.6)

cover the two static patches shaded in blue and the coordinates x± (see (2.15)) cover both the blue

and orange shaded regions.

Because the sum of the cosmological and black hole entropy of the Nariai geometry is given

by 2/3 of the entropy of empty four-dimensional de Sitter space, we can identify 2Φ0 as

1/3 of the entropy of four-dimensional de Sitter space. It is important to keep in mind

that while Φ0 is proportional to the entropy, Φ measures the deviation away from the exact

Nariai limit. The two-dimensional model is only valid close to this limit and for that reason

Φ0 ≫ Φs and Φ0 ≫ 1. The Penrose diagram of the half and full reduction are given in

figure 2 and 3 respectively.
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Figure 3. Penrose diagram of two-dimensional de Sitter space obtained as a full reduction in the

near-horizon limit of a Nariai black hole in four dimensions. The static coordinates (2.6) cover

the two static patches shaded in blue and the coordinates x± (see (2.15)) cover both the blue and

orange shaded regions. The white regions are the black hole interior and the places where Φ → −∞
are its singularities. The left and right vertical lines of the diagram are identified.

If we now include conformal matter, we will need to specify a quantum state to evaluate

the vacuum expectation value of the stress tensor and to obtain the corrected solution to

the equations of motion. In two dimensions, different vacuum states of a conformal matter

sector and their respective stress tensors can be easily constructed in the following way.

First, consider a set of null coordinates x± and expand the field operator in a complete set of

left and right-moving modes that are positive frequency with respect to these coordinates.

Expressed in terms of these coordinates, the diagonal components of the stress tensor vanish

(because we are considering a vacuum state) and the off-diagonal component is fixed by the

state-independent conformal anomaly. On a de Sitter background this takes the form [57]

〈T a
a〉 =

c

12πℓ2
. (2.9)

The conformal anomaly can be obtained explicitly by computing the one-loop effective

action which gives rise to a Polyakov term [58]. Here c is the central charge of the CFT. By

taking c ≫ 1 loop corrections involving e.g. the dilaton are suppressed compared to those

involving the conformal matter [58]. However, for the latter effects to not dominate over

the classical contribution we have to take Φs ≫ c. We stress that the CFT is intrinsically

two-dimensional as in that it does not have a (known) higher-dimensional counterpart.

After having fixed a vacuum state, we can express the stress tensor in a different set

of null coordinates y±(x±) using the anomalous transformation law

〈T±±(y±)〉 = (x±′
)2〈T±±(x±)〉 − c

24π
{x±, y±} , (2.10)

where the second term is the Schwarzian derivative

{x±, y±} =
x±′′′

x±′
− 3

2

(

x±′′

x±′

)2

, (2.11)

and the prime denotes a derivative with respect to y±.
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To give an example of this procedure, we explicitly consider two different vacuum

states that will be of importance later on. First, let us define two different sets of null

coordinates. To define the so-called static vacuum, the state natural for a static observer,

we define null coordinates as

σ± = t ± r∗ , (2.12)

where r∗ is a tortoise coordinate defined as

r∗ =

∫ r

0
dr′

(

1 − r′2/ℓ2
)−1

= ℓ arctanh(r/ℓ) . (2.13)

The metric in these coordinates is

ds2 = −sech2

(

σ+ − σ−

2ℓ

)

dσ+dσ− , (2.14)

which only covers the static patch.

A different set of coordinates that can be used to define the Bunch-Davies or Hartle-

Hawking vacuum are the affine parameters for the past and future horizon. With respect

to the static coordinates defined previously these are given by

x+ = +ℓe+σ+/ℓ = +ℓe+t/ℓ

√

ℓ − r

ℓ + r
,

x− = −ℓe−σ−/ℓ = −ℓe−t/ℓ

√

ℓ − r

ℓ + r
.

(2.15)

In this coordinate system the metric reads

ds2 = − 4ℓ4

(ℓ2 − x+x−)2
dx+dx− . (2.16)

These different coordinates and the part of the global Penrose diagram of two-dimensional

de Sitter space they cover are indicated in figure 3. The static vacuum can now be defined

by expanding the field operator in modes that are positive frequency with respect to σ±

and per definition the vacuum expectation value of the diagonal components of the stress

tensor vanish.

〈T±±(σ±)〉S = 0 . (2.17)

Clearly, the static observer does not see any radiation in this state. Using (2.10), we find

that when expressed in the x± coordinates the static vacuum is singular.

〈T±±(x±)〉S = − c

48π(x±)2 . (2.18)

The singularities at the future and past horizon are similar to the singularities in the

Rindler vacuum in flat space or the Boulware vacuum for a black hole3 and they signal

that formally an infinite amount of energy is required to prepare this state.

3In fact, because in two dimensions every metric is conformally flat, vacuum states in different spacetimes

are simply related by a conformal transformation [57]. The Rindler vacuum is conformally related to the

static vacuum and the Minkowski vacuum is conformally related to the Bunch-Davies vacuum.
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Following the same procedure as before, the Bunch-Davies state is defined by expanding

the field operator in modes that are positive frequency with respect to the x± coordinates

and the diagonal components of the vacuum expectation value of the stress tensor are

〈T±±(x±)〉BD = 0 . (2.19)

In contrast with the static vacuum, in these coordinates this state is regular at the past

and future horizon. Also, transforming this expression in static coordinates we find

〈T±±(σ±)〉BD =
c

48πℓ2
. (2.20)

The non-zero value shows that a static observer measures a flux of both left and right-

moving radiation at an inverse temperature β = 2πℓ. Because there is an equal amount

of left-moving and right-moving radiation, the Bunch-Davies state is a thermal equilib-

rium state.

Having discussed these two vacua, it is now straightforward to define a non-equilibrium

vacuum state where the left and right-moving flux do not have the same temperatures.

Such a state breaks the thermal equilibrium and is appropriate to describe the situation

where radiation emitted by the cosmological horizon is collected inside the static patch, but

no or less radiation escapes it by means of an observer. This leads to a pileup of positive

energy inside the static patch that a static observer can access and shrinks the cosmological

horizon [52]. The general expression for the stress tensor expressed in σ± coordinates is

〈T±±(σ±)〉 =
πc

12β2
±

, (2.21)

where β± are the different inverse temperatures of radiation at a constant σ± slice at the

center of the static patch.

We are now interested in the situation where radiation is emitted from the past cos-

mological horizon into the static patch and less (or no) radiation is leaving it. Focusing

on the “right” static patch in figure 3 this is achieved by setting β− = 2πℓ and taking

0 ≤ β−1
+ < (2πℓ)−1. This leads to a state that is singular at the past cosmological horizon

x+ = 0. As mentioned before, this singularity is not unexpected and simply reflects the

infinite total flux present in this state, similar to the singularity in the Unruh vacuum of

a black hole. In a more sophisticated treatment, which we will not pursue here, one could

start out in the Bunch-Davies state and slowly allow an observer to collect radiation such

that the total flux remains finite.

Before we discuss backreaction, we stress some differences between the entanglement

structure of the Bunch-Davies and the static vacuum. The (pure) Bunch-Davies state can

be written as a maximally entangled (thermofield double) state between the two static

patches surrounding the North and South pole. The density matrix is given by [3]

ρ =
1

Z

∑

i,j

e−
1

2
β(ωi+ωj) |ωi〉L |ωi〉R 〈ωj |L 〈ωj |R , (2.22)

where Z is a normalization factor, β the inverse de Sitter temperature, and L, R denote

the different static patches. Tracing out one of the static patches we obtain a state with a

– 8 –
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thermal reduced density matrix

ρR = trL ρ =
1

Z

∑

i

e−βωi |ωi〉R 〈ωi|R , (2.23)

at an inverse temperature β = 2πℓ. This state is maximally entangled with the static patch

we traced out and because of the precise entanglement structure regular everywhere.4 In

contrast, the static vacuum is obtained by taking β → ∞ which results in a (pure) state

that factorizes. As a result, this state exhibits no entanglement between the poles leading

to singularities at both the past and future cosmological horizon.

This relates to the non-equilibrium state we are interested in as follows. While matter

moving in the x+ direction (right-moving radiation) is in the Bunch-Davies state, mat-

ter moving in the x− direction (left-moving radiation) interpolates between the static and

Bunch-Davies vacuum depending on the temperature we specify. The right-moving radi-

ation is purified by including the region beyond the future cosmological horizon, but the

left-moving sector is already pure in one static patch when β+ → ∞. If β−1
+ > 0 we need

to include the region beyond the past cosmological horizon to obtain a pure state. These

observations will be important later on when we compute the fine-grained entropy.

2.2 Backreacted solution

Now that we have constructed a set of non-equilibrium states with different left and right-

moving temperatures we are interested in studying their backreaction. Before doing so,

we first briefly treat the more conventional case of the Bunch-Davies vacuum. Taking

β± = 2πℓ we find that the equations of motion (2.2) are solved by (for both the half and

full reduction)

Φ(t, r) =
1

24

(

c + Φs
r

ℓ

)

. (2.24)

We see that the solution is still static and adding conformal matter only shifts the vacuum

solution by c/24. As explained before, we work in a regime where 1 ≪ c ≪ Φs ≪ Φ0.

In a non-equilibrium state with β− = 2πℓ the diagonal components of the stress tensor

expressed in x± coordinates are given by

〈T++(x+)〉 = − c

48π(x+)2

(

1 − t2
+

)

,

〈T−−(x−)〉 = 0 .

(2.25)

Here t± = 2πℓ/β± is the rescaled temperature. In this state, the equations of motion are

solved by

Φ(x+, x−) =
c

48

[

1 +
2Φs

cℓ
r + t2

+ −
(

1 − t2
+

) r

ℓ
log(x+/ℓ)

]

, (2.26)

where we used
r

ℓ
=

ℓ2 + x+x−

ℓ2 − x+x−
. (2.27)

4Per definition of the reduced density matrix, the vacuum expectation value of any local operator eval-

uated in the static patch can be computed as 〈O〉 = trL(OρR). Contrary to some claims in the litera-

ture [59, 60], this does not break the isometries of the state under consideration. This will be explained

more in detail in [61].
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We recognize the term proportional to Φs in (2.26) as the vacuum solution. The logarithmic

term causes the solution to no longer be static, which is a direct consequence of breaking

the thermal equilibrium of the Bunch-Davies state. An interesting aspect of this solution

is that the dilaton not only diverges at x+x− = ℓ2 as in the Bunch-Davies state, but also

at x+ → 0 and x+ → ∞. From a four-dimensional perspective, this can be intuitively

understood as follows. Increasing the positive energy inside the static patch causes the

black hole horizon to grow and the cosmological horizon to shrink. Hence, in the far past

the size of the S2 measured on the cosmological horizon x+ = 0 was large which is reflected

by the diverging dilaton. In contrast, in the far future it is the S2 on the black hole horizon

that becomes large and the dilaton therefore diverges at x+ → ∞. The time t = 0 is now

special in the sense that the size of the dilaton on both horizons is approximately equal to

the size it has in the Bunch-Davies state. Because the dilaton is inversely proportional to

the gravitational coupling we find that gravity is weak on both horizons. We will leverage

this feature later on to compute the fine-grained entropy.

After including backreaction, the location of the horizons can be deduced from the

behaviour of the dilaton. In higher dimensions, we can define two expansion scalars θ±

whose values characterize the behaviour of null congruences (see e.g. [62]). In JT gravity,

the analogous quantities are the null derivatives of the dilaton: ∂±Φ. Using the explicit

solution (2.26) we can classify the different regions in which the expansion scalars have

distinct behaviour in terms of the following three curves.

γ : x+ = ℓ exp

(

2Φs

c(1 − t2
+)

)

,

δ± : x− =
ℓ2

x+(1 − t2
+)

[

(1 − t2
+) log(x+/ℓ) − 2Φs

c

±
√

(1 − t2
+)2 + c−2

(

2Φs − c(1 − t2
+) log(x+/ℓ)

)2
]

.

(2.28)

The apparent horizon (the outermost surface with ∂+Φ = 0 and ∂−Φ < 0) is given by the

portion of the curve δ− with x+ > x+
γ . The location where ∂+Φ = ∂−Φ = 0 is given by

(x+, x−) = (x+
γ , −ℓ2/x+

γ ) which is the pole. As measured by an observer at the pole, a

trapped region (∂±Φ < 0) develops after a static time

ttrap =
2Φsℓ

c(1 − t2
+)

. (2.29)

The backreacted geometry is showed in figure 4. As required, for t+ = 1 the trapped

timescale blows up since the corresponding Bunch-Davies state is static.

3 Thermodynamics and fine-grained entropy

Having discussed the backreacted geometry in a non-equilibrium state where (some amount

of) radiation is collected inside the static patch, we now come back to our original question.

What are the implications of the finiteness of the de Sitter entropy for a static observer?

Can an observer decode information by performing measurements on the radiation collected

– 10 –
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Figure 4. Part of the Penrose diagram covered by x± coordinates in the non-equilibrium

state (2.25) with t+ = 0. The red line indicates the stress tensor singularity at x+ = 0. The

region shaded gray is a trapped region.

inside the static patch? If so, the fine-grained entropy of the radiation should follow a Page

curve, initially increasing when the size of the subsystem grows, but decreasing after the

Page time.

Using the island formula, we compute the fine-grained entropy of radiation collected

in the static patch in the two different models discussed in the previous section: the full

and half reduction. For the island formula to be valid, we have to apply it to a region

where gravity is weak which corresponds to large Φ. Before computing the fine-grained

entropy, we first set expectations by using thermodynamics to estimate the behaviour of

the entropy and the Page time. After that, we reproduce those features using the island

formula. We find that in the full reduction, an island forms at a time tIsland ≃ Φsℓ/c which

is parametrically smaller than the Page time tPage ≃ Φ0ℓ/c in a regime of semi-classical

control (precise expressions will be given later on). This results in a Page curve for the

Hawking radiation and allows for information recovery. In the half reduction on the other

hand, Φ0 = 0 and there is no hierarchy between the time the island forms and the time

when the horizon entropy would have been depleted. As a result information recovery does

not seem possible in this setup.

3.1 Thermodynamics

Let us consider a conformal matter sector that consists of a gas of c different bosonic

species. The free energy of such a theory on a line of length L can be easily computed

using standard methods of statistical physics, see e.g. [63], and is given by

F = − cπ

12β2
L . (3.1)
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From the free energy all other thermodynamic quantities can be computed, such as the

energy density E and entropy density Sr.

E = L−1∂β(βF ) =
cπ

12β2
,

Sr = L−1β2∂βF =
cπ

6β
.

(3.2)

We are interested in the energy and entropy that is collected inside of the static patch,

which corresponds to the difference in the right-moving and left-moving contribution. Thus,

in the non-equilibrium state with t− = 1 the net energy and entropy density are given by

E =
c

48πℓ2
(1 − t2

+) ,

Sr =
c

12ℓ
(1 − t+) .

(3.3)

As expected, in the Bunch-Davies state (t+ = 1) no net entropy nor energy is collected in

the static patch which is the property that makes it an equilibrium state. This contrasts

the analysis of [50] where the entanglement of the entire static patch with its complement

was studied, rather than an observer who collects large amounts of radiation.

Integrating the entropy density we find that away from the thermal equilibrium the

entropy grows linearly as a function of static time

Sr =
c

12ℓ
(1 − t+)t . (3.4)

By setting the integration constant to zero, we implicitly impose that t = 0 is the time

when an observer starts collecting radiation in the static patch. Of course, in the way we

have set up the state (2.25) there is also a net flux of energy before this time. However,

t = 0 is special in the sense that at that time the entropy of the cosmological horizon is

approximately equal to the entropy in the Bunch-Davies state.

In addition to the increasing radiation entropy, the horizon carries a gravitational en-

tropy proportional to the area which shrinks due to the backreaction of positive energy

piling up in the static patch. At t = 0, the gravitational entropy measured by the cosmo-

logical horizon is given by 2ΦH(t = 0). Expressed in terms of coordinates natural for an

observer at the pole, the horizon entropy is

SH = 2ΦH(t) = 2Φ0 +
c

24

(

1 + t2
+ +

2Φs

c

)

− c

24ℓ
(1 − t2

+)t . (3.5)

Here we evaluated the dilaton on the future cosmological horizon and used x+ = ℓet/ℓ. The

time it takes to deplete the horizon entropy entirely is given by

tend =
48ℓ

c(1 − t2
+)

ΦH(t = 0) . (3.6)

Comparing the horizon entropy to the radiation entropy we find that, from a thermody-

namic perspective, the Page time is given by

tPage =
48ℓ

c(3 − 2t+ − t2
+)

ΦH(t = 0) =
1 − t2

+

3 − 2t+ − t2
+

tend . (3.7)

Of course, this expression is only valid away from t+ = 1 since there is no net radiation

collected in the Bunch-Davies state.
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Figure 5. Using the formula for the fine-grained entropy, we compute the entropy S(R) of a

weakly-gravitating region R = [A, A′] which contains radiation emanating from the past horizon.

Because the radiation is entangled with the region beyond the future horizon, we allow for a possible

island I that contributes to S(R).

3.2 Fine-grained entropy

We will now compute the fine-grained entropy of radiation collected in a region R where

gravity is weak. The fine-grained entropy of this region according to the island formula is

given by

S(R) = min extI [2ΦH(∂I) + SvN(R ∪ I)] . (3.8)

Here we are instructed to extremize the location of the endpoint of the island ∂I and

minimize the entropy over all possible islands. Because we want our global state to be

pure, we only consider the non-equilibrium state with t+ = 0. As we discussed in the

previous section, doing so allows us to ignore the region beyond the past cosmological

horizon to obtain a pure state. This is necessary because the dilaton diverges at the past

horizon, obstructing a continuation beyond it within two-dimensional JT gravity. We will

now assess the possible contribution of islands in the two models we discussed: the full and

half reduction.

Full reduction. In the full reduction we found that Φ → ∞ in the limit x+ → ∞. We

can therefore define an interval R in a weakly gravitating region by considering an anchor

curve parametrized by

x± = ±r̂e±t/ℓ . (3.9)

We take r̂/ℓ sufficiently large such that the dilaton obeys Φ ≫ 1 in R and gravity is

weak. The endpoints A and A′ of the interval R are now defined to lie at the anchor curve

and x+
A′/ℓ = −x−

A′/ℓ → ∞ respectively. This way, we have defined a region where the

fine-grained entropy emitted by the cosmological horizon can be computed in a controlled

manner, see figure 5.
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To compute the von Neumann entropy SvN(R) we make us of standard CFT results.

Writing the metric in conformal gauge

ds2 = −Ω−2dy+dy− , (3.10)

the von Neumann entropy of a CFT on an interval [y1, y2] in its vacuum state is given

by [21, 64]

SvN(y1, y2) =
c

12
log

[

(y+
1 − y+

2 )2

ǫ2Ω(y1)Ω(y2)

]

+
c

12
log

[

(y−

1 − y−

2 )2

ǫ2Ω(y1)Ω(y2)

]

, (3.11)

which is a sum of the entropy of left-movers and right-movers. Here ǫ is a regulator that will

not play an important role since we’ll be comparing contributions from different saddles of

the generalized entropy. When t+ = 0 the y±(x±) coordinates that define the vacuum are

related to x± as

y−(x−) = x− and y+(x+) = ℓ log(x+/ℓ) . (3.12)

In the y± coordinates the metric becomes

ds2 = − 4ℓ3x+

(ℓ2 − x+x−)2
dy+dy− , (3.13)

from which we can read off the conformal factor

Ω−2 =
4ℓ3x+

(ℓ2 − x+x−)2
. (3.14)

Then, in this state the von Neumann entropy is given by

SvN(R) =
c

12
log

[

4ℓ3(x+
Ax+

A′)1/2(x−

A − x−

A′)2

ǫ2(ℓ2 − x+
Ax−

A)(ℓ2 − x+
A′x

−

A′)

]

+
c

12
log

[

4ℓ5(x+
Ax+

A′)1/2 log(x+
A′/x+

A)2

ǫ2(ℓ2 − x+
Ax−

A)(ℓ2 − x+
A′x

−

A′)

]

.

(3.15)

We now express the von Neumann entropy in static coordinates using

x± = ±ℓe±t/ℓ

√

ℓ − r

ℓ + r
, (3.16)

and take a derivative with respect to t in order to remove unimportant additional constants.

In the limit x+
A′ = −x−

A′ → ∞ we then find

SvN(R) =
c

12ℓ
t + . . . , (3.17)

where the dots denote unimportant time-independent contributions. This expression agrees

with the thermodynamic entropy (setting t+ = 0) and grows without bound.

Of course, according to the island formula we should allow for a possible island in

which case the fine-grained entropy is given by

S(R) = min extI [2ΦH(∂I) + SvN(R ∪ I)] . (3.18)
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To find the location of the endpoint ∂I of the island we need to extremize S(R). In a pure

state, the von Neumann entropy of the region R ∪ I is given by the entropy on [∂I, A]

which takes the form

SvN(R ∪ I) =
c

12
log

[

4ℓ3(x+
∂Ix+

A)1/2(x−

∂I − x−

A)2

ǫ2(ℓ2 − x+
∂Ix−

∂I)(ℓ2 − x+
Ax−

A)

]

+
c

12
log

[

4ℓ5(x+
∂Ix+

A)1/2 log(x+
A/x+

∂I)2

ǫ2(ℓ2 − x+
∂Ix−

∂I)(ℓ2 − x+
Ax−

A)

]

.

(3.19)

For a vanishing island we reproduce (3.17). To find an analytical expression for the ex-

tremum ∂±S(R) = 0, we will assume that the second term in SvN(R ∪ I) is negligible. We

expect this approximation to be reasonable because that term captures the contribution

of modes moving in the x− direction which are in the static vacuum that exhibits no su-

perhorizon entanglement. We confirm numerically in appendix A that corrections to this

approximation are small.

Extremizing the fine-grained entropy this way we find the following solution for a

non-trivial island.

(x+
∂I , x−

∂I) =



− 2ℓ2

x−

AW0

[

f(x−

A)
] , 0



 . (3.20)

Here W0[x] is the principal branch of the Lambert W function and

f(x−) = −2ℓe−1−2Φs/c

x−
. (3.21)

Expressing x−

A at the pole as x−

A = −ℓe−tA/ℓ we find that for tA/ℓ ≫ 1

log(x+
∂I/ℓ) = tA/ℓ + . . . , (3.22)

where the dots denote logarithmic corrections. In the approximation we used, we find

x−

∂I = 0. We have verified numerically that without making this approximation the island

sits close to but slightly behind the cosmological horizon, i.e. x−

∂I > 0.

Comparing the trivial and non-trivial island we find that initially the trivial island

gives the lowest entropy, but as the cosmological horizon decreases the non-trivial island

eventually becomes dominant. We show the behaviour of S(R), which follows a Page curve,

as a function of static time in figure 6. The decreasing entropy of the non-trivial island

closely follows the decrease of the thermodynamics horizon entropy computed in (3.5) and

the increasing entropy of the trivial island follows (3.17). As such, the Page time is easily

computed to be

tPage =
16ℓ

c
ΦH(t = 0) . (3.23)

After the Page time, information behind the future cosmological horizon can be decoded

by performing measurements on the subsystem containing the collected radiation [65].

However, as we show in section 4 the collected radiation will eventually backreact strongly

leading to the formation of a singularity.
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Figure 6. The fine-grained entropy S(R) in the non-equilibrium state in the full reduction. The

solid blue line corresponds to the entropy evaluated on the trivial island (3.17) and the decreasing

orange line to the entropy evaluated on the non-trivial island (3.20). The fine-grained entropy is

given by the minimum of both contributions indicated by the red dotted line. To produce the figure

we took ℓ = 1, Φs = 50, Φ0 = 100, c = 10, r̂/ℓ = 103.

Figure 7. Using the formula for the fine-grained entropy, we compute the entropy S(R) of the

region R = [A, A′] defined by the gray anchor curve which contains radiation emanating from the

past horizon. Gravity is weak in the region R. Because the radiation is entangled with the region

beyond the future horizon, we allow for the possibility that an island I contributes to S(R).

Half reduction. We now consider the half reduction and define a region R by picking

an anchor curve that lies very close to the pole of de Sitter, see figure 7. In the state with

t+ = 0, at the pole the dilaton takes the value

Φ =
c

48
, (3.24)

so when c ≫ 1 gravitational effects are small. In this state, all radiation emanating from the

past horizon is collected in the region around the pole such that no left-moving radiation is

present. The computation of the fine-grained entropy now closely parallels the computation

in the full reduction. The von Neumann entropy of the region R is given by (3.15) with

x+
A′ = −x−

A′ = ℓ and the location of the island coincides with that of the full reduction.

Note however that in the limit x−

A → −∞ the location of the island plateaus to a fixed
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location.

lim
x−

A
→−∞

x+
∂I = ℓe1+2Φs/c . (3.25)

This implies that with respect to a static observer at the pole, the island is only spacelike

separated when t & 2Φsℓ/c and the island can only contribute after this time. Because

Φ0 = 0 in the half reduction, there is no parametric separation between the time the island

forms and the Page time. The consequence of this is that when the island forms, Φ ≃ 0

at the location of the island signalling strong coupling. For this reason, it does not seem

possible in this model to recover information in a controlled manner by absorbing Hawking

radiation.

Scrambling time. Before we close this section and discuss the fate of an observer that

collects and decodes radiation, we briefly mention how long it takes to recover a small

amount of information that is thrown through the cosmological horizon after the Page

time in the full reduction. For black holes, this is the so-called scrambling time [65–67]

which is given by t∗ ≃ β
2π log(SBH) saturating the chaos bound [68]. SBH is the black hole

entropy and β its inverse temperature.

To determine the minimal recovery time in the present context, we compute the time

difference between a future-directed light ray emitted from the pole that precisely hits the

island when it crosses the horizon and a past-directed lightray emitted from the point A

in R, see figure 5. This difference gives the amount of time it takes for the information to

be transferred from the entanglement wedge of the island to the entanglement wedge of R

and therefore determines the minimal recovery time. Using the expression for the location

of the island we find that around the Page time this time is given by

t∗ = ℓ log(SH) , (3.26)

up to subleading corections. Here SH is the horizon entropy given by (3.5). As for black

holes, this expression coincides with the scrambling time in de Sitter space which has been

studied in [50, 69–75].

4 Fate of the observer

In the previous section, we showed that the fine-grained entropy of radiation collected in

a static patch follows a Page curve which is consistent with the idea that a static observer

in de Sitter space should be able to recover information that has fallen through their

cosmological horizon. However, because the static patch has finite volume beackreaction

eventually has to become large and it is not guaranteed that an observer will survive this

experiment.

4.1 Quantum singularity theorem

In the state with t+ = 0 a non-trivial island appears after a time t ≃ 2Φsℓ/c, as measured

from the pole, showing entanglement between the collected radiation and the region beyond

the future cosmological horizon. Interestingly, this is of the same order as the timescale
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ttrap (see (2.29)) after which a trapped region develops. This might suggest the formation

of a singularity, but Penrose’s classical singularity theorem [76] does not apply here because

the stress tensor (2.25) violates the Null Energy Condition for t2
+ < 1.

Instead, we can use a quantum singularity theorem proposed and proven in [77] which

assumes the Generalized Second Law (GSL).5 Given a Cauchy surface Σ in a semi-classical

region, we define a codimension-two surface P that splits Σ in an interior part Σin and an

exterior part Σout. The generalized entropy at P is now defined as

S(P ) =
Area(P )

4GN
+ SvN(Σout) . (4.1)

The first term is a Bekenstein-Hawking like term and the second term is the von Neumann

entropy of the region Σout.
6

The GSL now states that S(P ) evaluated on future causal horizons is non-decreasing

with time. The generalized entropy is only required to increase on future causal horizons

and, in analogy with classically trapped regions, there can be quantum trapped regions

where both null derivatives of the generalized entropy are negative. When Σ is a non-

compact Cauchy surface in a globally hyperbolic spacetime, it follows [77] that when a

quantum trapped region forms the spacetime is geodesically incomplete. Just like Penrose’s

classical singularity theorem this implies the formation of a singularity. We now use this

result to determine the fate of the observer.

Using (2.26) and (3.11) the generalized entropy in the t+ = 0 state is given by

S(P ) = 2ΦH(P ) +
c

12
log

[

4ℓ3(x+
P x+

P ′)1/2(x−

P − x−

P ′)2

ǫ2(ℓ2 − x+
P x−

P )(ℓ2 − x+
P ′x

−

P ′)

]

+
c

12
log

[

4ℓ5(x+
P x+

P ′)1/2 log(x+
P ′/x+

P )2

ǫ2(ℓ2 − x+
P x−

P )(ℓ2 − x+
P ′x

−

P ′)

]

.

(4.2)

Taking derivatives with respect to x± we can express the different regions in terms of three

curves. In the limit x+
P ′ = −x−

P ′ → ∞ we have

ζ : x−

P =
ℓ2

x+
P

(

1 +
Φs

c
− 1

2
log(x+

P /ℓ)

)

,

η± : x−

P =
ℓ2

x+
P





2Φs

c
− log(x+

P /ℓ) ±
√

1 +

(

2Φs

c
− log(x+

P /ℓ)

)2


 .

(4.3)

We now find that a quantum trapped region forms after x+ > x+
trap = ℓe2Φs/c in the region

x− > x−
η+

and x− > x−

ζ , see figure 8. The conclusion is that from the perspective of an

observer at the pole a singularity will form after t > ttrap = 2Φsℓ/c. Notice that the time

when a quantum trapped region forms coincides with the formation of a classically trapped

5There exist other quantum singularity theorems that don’t assume the GSL [78].
6This of course resembles the island formula, which can be thought of as the generalized entropy for

disconnected regions evaluated on a quantum extremal surface.
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Figure 8. To compute the generalized entropy S(P ) we define a Cauchy surface Σ and consider a

point P that splits it into a region Σin and Σout. Taking null derivatives of the generalized entropy

we find a quantum trapped region (shaded gray) where the generalized entropy decreases in both

null directions. The quantum trapped region develops much later than a scrambling time, but much

earlier than the Page time: t∗ ≪ ttrap ≪ tPage.

region. Thus, after this time it is guaranteed that the worldline of an observer will hit a

singularity at future infinity.7

4.2 No-cloning paradox

The formation of a singularity is important to avoid the paradoxical situation where a

bit of information is thrown through the horizon, after which an observer could decode it

performing measurements on the Hawking radiation and then jump through the horizon

to see the same bit of information twice. This would violate the quantum no-cloning

theorem. In the present context, this is avoided the same way as for a black hole [65, 79].

To decode some information from the radiation takes a Page time, after which a new

bit thrown through the horizon only takes a scrambling time to decode. In a regime of

control tPage ≫ ttrap any light ray that travels through the horizon after the Page time will

terminate at a singularity. As a consequence, any observer that decodes a bit of information

and tries to see its copy by jumping after it through the horizon will only have a short time

to do so before it hits the singularity. Given the scrambling time t∗ = ℓ log(SH) it turns

out that this time is subplanckian, outside the regime of semi-classical control.

5 Discussion

In this paper, we studied information recovery in the static patch of de Sitter space by

employing the island formula in two different two-dimensional JT gravity models with a

known higher dimensional pedigree. We put particular emphasis on the role of a static

7If an observer would jump through the horizon at x
+ → ∞ in the Penrose diagram and thus enter

a region beyond the regime of validity of our two-dimensional model, that observer would encounter the

singularity of the black hole.
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observer, who only has access to a finite region of spacetime. As we explained, in order

for a static observer to decode any information by performing measurements on collected

radiation it is necessary to take into account backreaction. Positive energy collected in the

static patch backreacts on the cosmological horizon, breaking the thermal equilibrium of

the Bunch-Davies state typically considered. Our analysis crucially relied on a quantum

state, first studied in [52], that describes the situation in which Hawking radiation ema-

nating from the cosmological horizon is collected, but no radiation is passing the future

cosmological horizon.

Using JT gravity, we solved for the backreacted geometry in this non-equilibrium state

and used thermodynamics to compare the entropy of the radiation with the gravitational

entropy of the horizon, showing that the radiation entropy naively seems to grow without

bound. However, by using the island formula we found that in the JT gravity model we

referred to as the full reduction an island forms at a time parametrically smaller than the

Page time. In the other JT model we studied (the half reduction), we found that no island

contributes to the entropy in a regime of semi-classical control. This can be traced back

to the absence of a large topological term in this model. Taking the island in the full

reduction into account, the fine-grained entropy of the radiation follows a Page curve. Of

course, backreaction should eventually become large in our state since there is a continuous

flux of energy being radiated in the finite static patch. We found that at the time the

island appears, a quantum trapped region forms outside of the event horizon signalling the

formation of a singularity. A static observer is guaranteed to hit this singularity, paying a

large price for their curiosity. We argued that the formation of a singularity is required in

order to avoid a quantum no-cloning paradox. Although the singularity forms outside of the

event horizon, it seems appropriate to interpret the large backreaction caused by collecting

too much radiation as collapsing the static patch. In the region 0 < r < ℓ the value of the

dilaton indeed becomes large and negative for large t, signalling strong coupling.

Our results give an interpretation to the de Sitter entropy as the entropy associated to

the horizon of a single static observer. By singling out a particular observer, the quantum

state we used spontaneously breaks the isometry group of de Sitter space down to those

that are preserved by a single static patch. In future work, it would be interesting to better

understand what the implications are of our results for different observers related by an

isometry. This is particularly relevant when we want to consider an inflationary setup

where a meta-observer performs measurements on (a non-gravitational region glued to) I+

which (approximately) realizes all de Sitter isometries. Interestingly it has previously been

suggested that, similar to the contribution of islands in black hole physics around the Page

time, inflationary physics might receive corrections at long time scales [80]. Although this

is a tantalizing possibility, the precise role that islands play in inflationary setups has been

a subject of debate [30, 31]. Another possible avenue of future research would be to apply

the approach developed in this work to a setup that includes an inflaton, see e.g. [81].

Furthermore, our results support a notion of holography best articulated along the lines

of complementarity which applied to our setup would suggests that gravitational physics

in a static patch is holographically dual to a system living at the (stretched) cosmological

horizon, which has a finite Hilbert space [82, 83]. For this comparison to hold we find that
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it is essential that a singularity forms, associated to the trapped region which comes into

play due to backreaction, in order to avoid cloning paradoxes and preserve unitarity.

In addition, it would be interesting to relate the single static observer we considered in

this paper to two observers on opposite poles of de Sitter space inserting shockwaves. Doing

so, brings opposite poles into causal contact [70, 84] allowing the exchange of information.

An observer that acts with a shockwave on the maximally entangled Bunch-Davies state

can exchange information between poles already in a scrambling time [61] and not the

longer Page time.

Finally, we would like to remark that in this paper we have purely focused on semi-

classical gravity in de Sitter space leading to a controlled setup in which information

recovery is possible. However, it has been suggested that in string theory the lifetime

of an (approximate) de Sitter phase could be much shorter, see e.g. [60, 85–90]. Our semi-

classical approach does not seem to capture such effects and it would be interesting to

understand if and how they could manifest themselves. We hope to come back to these

questions in future work.
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A Numerical island

In this appendix we numerically compute the fine-grained entropy in the full reduction

to obtain location of the island without making any approximation. We compare this to

the approximate solution (3.20), analytically found by dropping the contribution of modes

moving in the x− direction, and confirm that this approximation is good.

To confirm that the approximate island given by

(x+
∂I , x−

∂I) =



− 2ℓ2

x−

AW0

[

f(x−

A)
] , 0



 , (A.1)

with

f(x−) = −2ℓe−1−2Φs/c

x−
, (A.2)

is a good approximation to the true extremum, we first evaluate the full expression for

∂±S(R) (see (3.18)) on the approximate island. As we show in figure 9, the error made in

S+(R) quickly converges to zero after a time t ≃ 2Φsℓ/c, so x−

∂I = 0 is a good approxima-

tion. The error in ∂−S(R) on the other hand becomes large so we have to check in more

detail that the true extremum is well approximated by (3.18). Solving ∂−S(R) evaluated
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Figure 9. ∂±S(R) evaluated on the approximate island. To produce the figures we took ℓ =

1, Φs = 50, Φ0 = 100, c = 10, r̂/ℓ = 103.
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Figure 10. Comparison of the approximate island and the “true” island found by solving ∂−S(R)

at x−

∂I
= 0. To produce the figures we took ℓ = 1, Φs = 50, Φ0 = 100, c = 10, r̂/ℓ = 103.

on x−

∂I = 0 for x+ we find the “true” extremum and compare this with the approximate is-

land. It turns out that again after a time t ≃ 2Φsℓ/c both solutions converge, see figure 10,

confirming the validity of our approximation.
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