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The Price of Immediacy

George C. Chacko, Jakub W. Jurek, and Erik Sta¤ord�

Abstract

This paper develops a new model of transaction costs, arising as the rents that a monopolistic
market maker is able to extract from impatient investors. The mechanism for trade is a limit
order, and immediacy is supplied when the limit order is executed. We show that limit orders are
American options and their value represents the cost of transacting. The limit prices inducing
immediate execution of the order are functionally equivalent to bid and ask prices, and can
be solved for various transaction sizes to characterize the market maker�s entire supply curve.
We �nd considerable empirical support for the model�s predictions in the cross-section of NYSE
�rms. The model produces unbiased, out-of-sample forecasts of abnormal returns for �rms being
added to the S&P 500 index.
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1 Introduction

Capital market transactions essentially bundle a primary transaction for the underlying

security with a secondary transaction for immediacy. In this view, the price of immediacy explains

the wedge between transaction prices and fundamental value, and therefore represents a cost of

transacting. Despite widespread interest among investors and corporations alike, a useful charac-

terization of transaction prices has been elusive. This paper addresses this challenge by developing

a parsimonious model of the market for immediacy in capital market transactions, which yields an

analytically tractable quantity structure of immediacy prices.

An inherent friction that limits liquidity in capital markets is the asynchronous arrival of

buyers and sellers, each demanding relatively quick transactions. Grossman and Miller (1988) argue

that the demand for immediacy in capital markets is both urgent and sustained, creating a role

for an intermediary, or market maker, who supplies immediacy by standing ready to transact when

order imbalances arise (Demsetz (1968)).1 In this setting, the price of immediacy is determined by

two factors: the costs of market making, and the amount of competition among market makers.

Many models assume perfect competition in market making, allowing the price of immediacy to be

determined as the marginal cost of supplying immediacy. There is a large literature exploring the

nature of these costs, focusing on the market maker�s cost of holding inventory (see for example,

Garman (1976), Stoll (1978), Amihud and Mendelson (1980), and Ho and Stoll (1981), and the

costs of adverse selection in market making, which arise when investors have access to information

that is not yet re�ected in the price.2

Abstracting from the costs of market making, we instead relax the assumption of perfect

competition. Speci�cally, we study how the asynchronous arrivals of buyers and sellers grants the

market maker transitory pricing power with respect to investors demanding immediate execution.

In this sense, our framework is similar to the market structure in the search-based model of Du¢ e,

Gârleanu, and Pedersen (2005), where all agents are symmetrically informed and market makers

have no inventory risk because of perfect inter-dealer markets. This makes market making costless.

However, because investors must search for viable trading counterparties, the market maker is able

to extract some of the di¤erence between investors�reservation values and fundamental value in

exchange for providing immediacy, giving rise to a bid-ask spread. We specialize to the case where

a single market maker is continually present and the investor is impatient. This setup e¤ectively

creates a market for immediacy operating around the determination of fundamental value, which

is assumed to occur in a separate market.

Both the costly market making literature and the search literature focus on developing

equilibrium models. In contrast, we develop a partial equilibrium model of a transaction in the

market for immediacy, which results in explicit formulas for the price of immediacy. We study an
1Empirical evidence on order submission strategies generally supports this view (e.g. Bacidore, Battalio, and

Jennings (2001); Werner (2003); He, Odders-White, and Ready (2006)).
2Bagehot (1971) was one of the �rst to consider the role of information in determining transaction costs in a

capital market setting. Copeland and Galai (1983), Glosten and Milgrom (1985), and Kyle (1985) are important
early models of the information component of transaction costs. See O�Hara (2004) for an overview of these models.
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impatient investor seeking to transact Q units of a security. The investor trades via a stylized limit

order, and in the spirit of individual portfolio choice problems, we assume that the fundamental

value process and the arrival of other investors are una¤ected by the individual�s trading decisions.

Similar to Du¢ e, Gârleanu, and Pedersen (2005), we assume imperfect competition in market

making. In particular, we allow a single market maker to have exclusive rights to be continually

present in the market for the security. The privileged position of the market maker, combined with

the asynchronous arrival of immediacy demanding buyers and sellers, gives him some pricing power

in setting transaction prices (or immediacy prices). The degree of pricing power is determined

by the intensity of opposing order arrivals, and collapses to zero, as in perfect competition, when

arrival rates are in�nite.

To develop an analytical model of transaction prices, we exploit the fact that a request to

transact via a limit order is essentially equivalent to writing an American option.3 For example,

consider a seller placing a limit order. The seller can be viewed as o¤ering the right to buy at a

speci�c price at some point prior to an expiration date. This is e¤ectively an American call option,

requiring delivery of the underlying block of shares upon execution. Similarly, a request to buy is

like an American put option. To ensure immediate execution, the initiator of a transaction o¤er (the

option writer) must o¤er a price at which it is currently optimal for the receiver of the transaction

o¤er (the option owner) to exercise the option early. The strike prices, where immediate exercise

is optimal, represent immediately transactable prices, and therefore are functionally equivalent to

the prices bid and asked by the market maker.

The resulting formula for the price of immediacy is simple and intuitive, and can be simpli-

�ed even further when the arrival rate of order �ow is large relative to the riskfree rate. Figure 1

illustrates how the price of immediacy re�ects the wedge between transaction prices and fundamen-

tal value for various transaction sizes. The approximate formula for the percentage transaction cost

is simply the product of volatility and the square root of excess demand, p(Q) � �
q

Q
2� , where � is

the volatility of fundamental value, Q is the transaction size, and � is the arrival rate of opposing

order �ow. The model predicts that bid-ask spreads are increasing in the volatility of fundamental

value, and in the size of order imbalances,
�
Q
�

�
. Larger transactions e¤ectively require the imme-

diacy demander to write longer maturity options, which translates into greater transaction costs.

Additionally, when order �ow arrives at an in�nite rate, the monopolist market maker�s pricing

power collapses, and the price of immediacy is zero for all quantities. Finally, the model predicts

that the price of immediacy is a concave function of the transaction size, which empirical evidence

strongly supports.

An attractive feature of the model is that it delivers a formula for immediacy prices as a

function of variables that can be estimated relatively easily, allowing us to test its performance in

a variety of settings. In the �rst application, we use the model to predict the discount charged

to the Amaranth Advisors hedge fund during the forced liquidation of its portfolio. We �nd that

3The notion that limit orders can be viewed as contingent claims is not new (see Copeland and Galai (1983) for
a speci�c option-based model of prices bid and asked by a market maker; and Harris (2003) for general examples).
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our model�s estimate of a 35% charge for immediacy compares favorably with the $1.4 billion loss

incurred by the fund, which represented a 30% discount relative to the previous day�s closing NAV.

In the second application, we use trade and quote (TAQ) data to �t our model to the quantity

cross-section of transaction sizes for NYSE �rms. This calibration exercise demonstrates how the

model can be used to estimate the entire, generally unobserved, quantity structure of transaction

costs for individual securities, including very large transactions like corporate issues and takeovers.

To evaluate the performance of the calibration procedure, we then use the calibrated quantity

structure of immediacy prices to predict the price reactions for a sample of �rms when they are

added to the S&P 500 index. The out-of-sample nature of this test is underscored by the fact that,

on average, the volume of shares bought by indexers during the inclusion event is over 300 times

bigger than the largest transaction used to calibrate the model. We �nd that the limit order model

produces unbiased estimates of price impact in this situation, and is able to explain roughly three

times more of the cross-sectional variation than other models previously reported in the literature.

The remainder of the paper is organized as follows. Section 2 describes the model. Section 3

discusses the properties of the quantity structure of immediacy prices. Section 4 explores the limit

order placement of a patient trader. Section 5 proposes two methods for implementing the model

and empirically evaluates the model�s performance. Finally, Section 6 concludes the paper.

2 The Pricing of Limit Orders

A common feature of transaction o¤ers across many markets is that they pre-specify price

and quantity, and remain available for some potentially unknown amount of time. In �nancial

markets, these o¤ers are referred to as limit orders. So long as the value of the underlying asset can

change over the life of the o¤er, viewing o¤ers of this type as options is reasonable. The value of

this option is naturally interpretable as a cost of transacting, since it represents the value foregone

to obtain the desired execution terms. In particular, a limit order to sell (buy) Q shares at price

K, gives arriving buyers (sellers) the right to purchase (sell) at a pre-speci�ed limit price at some

point prior to the expiration date of the limit order, and is therefore like an American call (put)

option, with the Q-share block of the security acting as the underlying. By placing a limit order,

the trade initiator can be viewed as surrendering an American call (put) option on the desired

quantity of the underlying to the remaining market participants. Although the o¤er is potentially

available to many counterparties, it is extinguished as soon as anyone exercises it or upon maturity.

The option writer receives liquidity when the limit order is exercised. From the perspective of

someone evaluating whether or not to exercise the option, the important considerations are their

own liquidity demands and the potential for competition from other market participants.

The value of the limit order and its optimal exercise policy depend crucially on three factors:

(1) the mechanism governing trading (market structure); (2) the arrival rate of shares eligible for

execution against the order (market competition); and (3) the evolution of the fundamental value

of the underlying security or basket of securities. Because these factors are likely to have complex
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dynamics in reality, our model is best interpreted as a reduced-form characterization of transaction

costs.

The challenge is to specify a suitable market structure that allows the demand and supply

of immediacy to be isolated. Generally, each party to a trade is both demanding and supplying

immediacy to some extent. To simplify, we assume that the limit order writer (the trade initiator) is

impatient and demands immediate execution. In order to have the limit order �lled instantaneously,

he must write an option that is su¢ ciently deep in-the-money to make immediate exercise optimal.

Although the option is available to both the market maker and opposing order �ow, only the

market maker can be relied upon to supply immediacy at any given time because order �ow arrives

stochastically. For the market maker, the threat of losing the order to opposing order �ow acts like

a stochastic dividend on the underlying block of shares, creating an incentive for the market maker

to exercise the option early.

An attractive feature of this setup is that limit prices for which immediate exercise is

optimal represent instantaneously transactable prices, and therefore are functionally equivalent to

the prices bid and asked by a market maker. This allows us to characterize the generally unobserved

bid and ask prices for large quantities (i.e. larger than the quantity posted at the best bid and ask).

Moreover, the option-based model of transaction prices inherits the properties of ordinary options.

The two drivers of transaction costs for any given quantity are the fundamental volatility and the

e¤ective option maturity, which is determined by the order �ow arrival rate. A quantity structure

of instantaneously transactable prices arises because larger trade sizes require the trade initiator

to write options with longer e¤ective maturities.

2.1 A Simple Model of Transaction Costs

Our model of transaction costs adopts a partial equilibrium framework similar in spirit to

the one used for studying individual portfolio choice (Merton (1969, 1971)), in which the process for

the asset�s fundamental value is speci�ed exogenously. We then focus on characterizing the determi-

nants of the wedge between transaction prices and fundamental value, or equivalently, transaction

costs. The separation of the determinants of fundamental value and liquidity costs present in our

model is consistent with the conclusions of Cochrane�s (2005) survey of the liquidity literature, in

which he suggests that liquidity be interpreted �as an additional feature above and beyond the

usual picture of returns driven by the macroeconomic state variables familiar from the frictionless

view.�By providing a theoretical model of the level of transaction prices we naturally complement

the existing literature examining the e¤ects of liquidity risk on the determination of expected rates

of return (Pastor and Stambaugh (2003), Acharya and Pedersen (2005)).

The market for a security is composed of two symmetrically-informed agent types: investors

and a market maker. The pro�t maximizing market maker acts as an intermediary, facilitat-

ing trades between asynchronously arriving investors, e¤ectively creating a market for immediacy.

However, unlike the individual investors, the market maker is assumed to additionally have con-

tinuous access to an inter-dealer market as in Du¢ e, Gârleanu, and Pedersen (2005), in which he
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can instantaneously hedge his inventory risk. Trading in the inter-dealer market is frictionless and

takes place at fundamental value, Vt, which is observable by all participants. The dynamics for

fundamental value are described by a di¤usion-type stochastic process:

dVt
Vt

= �dt+ �dZt (1)

where � and �2 are the instantaneous expected return and variance of the fundamental value, and

dZt is a standard Gauss-Wiener process.4 The price formation process giving rise to fundamental

value, Vt, pins down the price of risk, V , for exposure to the shocks dZt, and implies a pricing

kernel of the form:
d�t
�t

= �rdt� V dZt (2)

where r is the instantaneous riskless rate and V =
��r
� . If markets are incomplete, this pricing

kernel will not be the unique kernel of the economy, but it will be the unique kernel in the span of

dZt, allowing us to price any asset whose value is exposed only to innovations in dZt.

The inability of individual investors to participate in the market for fundamental value

creates the scope for the market maker to provide liquidity services to the public and collect

compensation in the form of a bid-ask spread. Although investors do not have access to the inter-

dealer market, they can still trade with each other at fundamental value when opposing orders are

present. Only in the absence of opposing order �ow are they forced to submit limit orders to the

market maker, who will buy (sell) the security at some discount (premium).5 Providing a useful

characterization of the wedge between fundamental value and the prices at which the market maker

is willing to transact Q units of a security is the central goal of our investigation. To determine

this wedge we �rst provide a more detailed speci�cation of the mechanism by which limit orders

are exercised.

De�nition 1 (Trading Mechanism) A limit order, Li(Q;K), speci�es a quantity, price, and

direction of trade (i.e. buy or sell, i 2 fB;Sg).

1. Limit orders can be exercised at any time by the market maker prior to the occurrence of

an opposing Q-share order imbalance. Upon the occurrence of an opposing Q-share order

imbalance, the limit order transacts with the order imbalance at the (then current) fundamental

value, voiding the market maker�s claim on the trade.

2. The instantaneous probability of observing a Q-share buy (sell) imbalance during the next

instant is given by �B(Q)dt (�S(Q)dt). Given this assumption, the expected time to the

4Although the process for fundamental value is speci�ed exogenously it can be naturally interpreted as the outcome
of a rational expectations equilibrium arising in the inter-dealer market (Wang (1993), He and Wang (1995)).

5We require agents to submit limit orders, as opposed to market orders, to prevent the market maker from
exploiting his instantaneous pricing power and �lling sell (buy) market orders at a zero (in�nite) price. In practice,
this form of exploitation is precluded by legal restrictions and reputational considerations.
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completion of a Q-share limit order to sell (buy) is distributed exponentially with mean 1
�B(Q)�

1
�S(Q)

�
.6

To preserve tractability and abstract from modeling the evolution of the limit order book, we

focus on the special case in which all limit order traders have zero patience and only place orders that

are immediately exercisable by a pro�t maximizing market maker.7 In order to obtain immediacy,

an impatient limit order trader must set the limit price, K, such that the option embedded in the

order is su¢ ciently in-the-money to make immediate exercise optimal. In general, the schedule of

limit prices guaranteeing immediacy will depend on the factors determining the value of the option:

the riskless rate, r; the volatility of the underlying, �; and the arrival rate of opposing order �ow,

�i(�), which itself is a function of the order quantity, Q. We will denote the schedules of immediacy
prices for Q-share sell and buy limit orders by, KB(Q;� = 0) and KA(Q;� = 0), respectively, with

the spreads between fundamental value and these prices having the interpretation of the price of

immediacy.8 These schedules represent prices at which transactions can take place instantaneously

and are functionally equivalent to bid and ask prices.

Proposition 1 The strike price at which it is optimal to immediately exercise a sell (buy) limit
order for Q shares determines the e¤ective bid (ask) price for Q shares.

In our baseline speci�cation we assume that limit orders are not subject to cancellation

by the limit order writer. This implies that the limit order option is perpetual, albeit subject

to a stochastic liquidating dividend in the form of order execution by arriving order �ow. The

main virtues of the perpetual limit order feature are its analytical tractability and the fact that it

provides an upper bound to immediacy costs. Since the value of the American option implicit in

the limit order is monotonically increasing in time, a limit order writer forced to trade in perpetual

limit orders is e¤ectively surrendering options with the highest possible time value. Consequently,

immediacy costs are maximized. In an appendix, we relax this assumption and consider limit orders

subject to random cancelation by the limit order writer, as well as �nite duration limit orders. We

�nd that, as long as the expected lifetime of the limit order is non-zero, the qualitative predictions

of the model are unaltered.9

The presence of the liquidating dividend is crucial in that it makes an early exercise strat-

egy for the monopolist market maker optimal and facilitates the interpretation of option exercise

6The � parameters can alternatively be interpreted as search intensities for eligible counterparties, in the spirit of
Du¢ e, Gârleanu and Pedersen (2005) or Vayanos and Wang (2002).

7Grossman and Miller (1988) argue that there is high demand for immediacy in capital markets. Empirical
evidence supports this view. Bacidore, Battalio, and Jennings (2001) and Werner (2003) report that between 37-
47% of all orders submitted on the NYSE are liquidity demanding orders, comprised of market orders or marketable
limit orders.

8The investor�s patience level, � = 0, is included to emphasize that immediacy is being demanded.
9 In the degenerate case, when the limit order writer can credibly threaten to cancel the order instantaneously,

all transactions take place at fundamental value. The credibility of such threats can be eliminated through the
introduction of a small, �xed cost of order submission, which would render strategies with instantaneous cancelation
in�nitely costly.
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as liquidity provision. The particular structure of the dividend process, controlled by a Poisson

random variable with a quantity-dependent arrival intensity, is chosen for analytical tractability.

In particular, the memoryless feature of the inter-arrival process preserves the time-stationary fea-

ture of the perpetual option valuation problem. This allows us to intuit that the optimal exercise

boundary will be a barrier rule, which optimally trades o¤ the preservation of the time-value of the

option with the adverse consequences of the dividend.

2.2 Model Solution

Given the earlier assumptions, the value of the Q-share limit order with a strike price K,

L(Vt; Q;K; t), can be shown to satisfy the following ordinary di¤erential equation (ODE):

LF � (rFQ;t) +
1

2
LFF � (�FQ;t)2 � (r + �i(Q)) � L = 0 (3)

where subscripts are used to denote partial derivatives and FQ;t = Q �Vt represents the fundamental
value of the underlying block of shares. This ODE is solved subject to three boundary conditions.

The �rst boundary condition is determined by the asymptotic behavior of the value of limit order

as a function of FQ;t, and the second pair of conditions arises from the value matching and smooth

pasting at the optimal early exercise threshold. The equidimensional structure of the ODE suggests

that the solution will be a linear combination of power functions in FQ;t with exponents given by:

��(�
i) =

�
1

2
� r

�2

�
�

s�
1

2
� r

�2

�2
+
2(r + �i(Q))

�2
(4)

Economic intuition allows us to exclude one of the two roots in both the case of a sell limit

order and a buy limit order. In particular, since the value of a sell (buy) limit order is increasing

(decreasing) in FQ;t we can exclude the negative (positive) root. Finally, to pin down the value of

the constant of integration we make use of the fact that the optimal exercise rule for the option is a

barrier rule. Consequently, the value of the limit order at optimal exercise is given by Q � (V �t �K)
for a sell limit order and Q � (K � V ��t ), where V �t and V ��t are the optimal exercise thresholds for

sell and buy limit orders, respectively. The expressions for the values of the limit orders and the

associated optimal exercise thresholds are collected in the following proposition.

Proposition 2 The value of a Q-share sell limit order is given by:

LS(Vt; Q;K; t) =
QK

�+(�
B)� 1

�
 
�+(�

B)� 1
�+(�

B)
� Vt
K

!�+(�B)
Vt < V

�
t (5)

and it is optimal for the market maker to exercise the implicit call option whenever fundamental

value reaches the threshold V �t = K �
�

�+(�
B)

�+(�
B)�1

�
from below. The value of Q-share buy limit order
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is given by:

LB(Vt; Q;K; t) =
QK

1� ��(�S)
�
 
��(�

S)� 1
��(�

S)
� Vt
K

!��(�S)
Vt > V

��
t (6)

and it is optimal for the market maker to exercise the implicit put option whenever fundamental

value reaches the threshold V ��t = K �
�

��(�
S)

��(�
S)�1

�
from above.

In order to induce immediate exercise of a sell (buy) limit order, the limit price (i.e. the

option strike price) has to be set such that the prevailing fundamental value, Vt, is exactly equal

to V �t (V
��
t ), making it optimal for the market maker to exercise the order instantaneously. To do

this, the limit order writer selects a limit price, K�, which renders the time-value of the embedded

option equal to zero at prevailing fundamental value, Vt. The distance, Vt � K�, represents the

value of the immediately exercisable option, and has the interpretation of the price of immediacy

for a one-share transaction.

The strike prices for immediately executable buy (sell) transactions as a function of order

quantity yield the quantity structure of immediacy prices. The analytical expressions for the im-

mediacy prices depend on the order quantity, Q, through �+(�
B) and ��(�

S) and are summarized

below.

Proposition 3 The bid, KB(Q;� = 0), and ask, KA(Q;� = 0), prices are given by:

KB(Q;� = 0) = Vt �
 
�+(�

B)� 1
�+(�

B)

!
(7)

KA(Q;� = 0) = Vt �
 
��(�

S)� 1
��(�

S)

!
(8)

and imply that the percentage immediacy costs for sales and purchases are given by:

KB(Q;� = 0)� Vt
Vt

= � 1

�+(�
B)

(9)

KA(Q;� = 0)� Vt
Vt

= � 1

��(�
S)

(10)

The expressions for the proportional transaction costs can be further simpli�ed by noting

that under empirically plausible calibrations, the order arrival rates, �i(Q), will be signi�cantly

larger than the riskless rate. This allows us to derive some simple approximations for ��(�) and
the percentage immediacy costs. In particular, whenever �i(Q)� r we have:10

��(�
i) � �

q
2�i(Q)

�
(11)

10The proposed approximation underestimates (overestimates) the premia (discounts) at which assets can be bought
(sold). The magnitude of this error is extremely small for plausible parameter values.
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Consequently, the percentage immediacy costs predicted by our model are (approximately) propor-

tional to (�i(Q))�
1
2 �the square root of the expected waiting time for the arrival of an opposing

Q-share imbalance �and converge to zero as the arrival rates of opposing �ow tend to in�nity, as

would be the case in a perfect capital market. The degree of non-linearity in the percentage imme-

diacy costs is determined by the relationship governing the scaling of the order arrival intensity rate

as a function of order quantity. For example, if the arrival rate of Q-share imbalances is Qn times

smaller than the arrival rate of single share imbalances, the percentage immediacy costs predicted

by our model will be proportional to Q
n
2 . In the remainder of the paper, we specialize to the case

where the expected waiting time for the completion of a Q-share order is precisely Q times larger

than the corresponding waiting time for a one-share order (�i(Q) = �i(1) �Q�1). This implies that
the percentage immediacy premium implied by the ask prices will be concave in the order quantity

and (approximately) proportional to
p
Q.

2.3 Discussion

Before turning to a characterization of the comparative statics of our model and its predic-

tions under empirically calibrated parameter values, it is worthwhile to brie�y re-iterate the two

key modeling assumptions that allowed us to obtain a nonlinear quantity structure of transaction

prices. First, the limit order must be interpretable as an option. This requires that the limit order

have a �xed strike price and have the potential to remain outstanding for some non-zero length

of time, allowing fundamental value to change. Second, the market must be structured such that

the market maker has an instantaneous monopoly on the supply of immediacy, and is only forced

to compete with order �ow when it is present. Unlike a classical monopolist familiar from deter-

ministic settings, in our stochastic setting, the market maker is perceived as a monopolist only by

counterparties demanding immediacy. This can be seen more clearly by considering the (expected)

number of trading counterparties, C, available to an agent interested in transacting Q shares in the

next � units of time. This patient agent can transact either with the market maker, who is always

standing by, or the oncoming order �ow, which appears randomly with a probability depending on

the arrival rate of Q-share imbalances. Consequently, the number of trading parties perceived by

the patient trader is given by:

E[C] = 1 +
�
1� e��i(Q)��

�
= 2� e��i(Q)�� (12)

As the agent becomes in�nitely patient (� ! 1), he perceives the market as being comprised
of two trading counterparties, the market maker and oncoming order �ow. As a result of the

competition between these two counterparties, the agent is assured of transacting at fundamental

value.11 On the other hand, if the agent demands immediacy (� = 0), he perceives only one trading

counterparty: a monopolistic market maker. More formally, the market maker can be thought of

11Notice that the same result would arise in a model in which two market makers were granted the right to be
perpetually present in the market.
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as having a probabilistic monopoly, since as � ! 0 the expected number of trading counterparties

converges to one in probability.

Under these two assumptions, the market maker is e¤ectively granted ownership of the

option embedded in the limit order, and has to decide when and if to exercise the option, thereby

delivering liquidity to the limit order writer. The incentive for the early exercise of this option by

the market maker arises as a consequence of the presence of the opposing order �ow, which acts

like a stochastic liquidating dividend. To facilitate tractability and generate intuition, our baseline

speci�cation in Section 2.1 considered a perpetual American option with a Poisson liquidating

dividend. This structure for the liquidating dividend implicitly assumes that limit orders are only

subject to one-shot execution �there is no possibility for a limit order to be �lled by a sequence

of partial �lls. Although this execution mechanism is simpli�ed, it does have the added attraction

that the mean inter-arrival time of opposing orders can be readily calibrated from empirical signed

order �ow data.

In an appendix, we show how to generalize our model to �nite-lived limit orders, as well

as, how to incorporate the possibility of order cancellation by the limit order writer. While these

extensions can be accomplished in closed-form, similar modi�cations to the liquidating divided can

only be accomplished at the expense of analytical tractability. Numerical simulations, using the

Longsta¤ and Schwartz (2001) least squares methodology, show that the pricing of limit orders

under a more sophisticated order �ow process allowing for partial �lls, yields results which are

qualitatively indistinguishable from those obtained under the analytical model.12

3 The Quantity Structure of Immediacy Prices

Inelastic demand for immediacy is the limiting case, when patience goes to zero. The

model imposes this condition to identify a quantity structure of instantaneously transactable prices�

immediacy prices. In the model, the two primary drivers of the prices charged by the market maker

are the volatility of fundamental value and the time rate of arrivals of opposing order �ow. Matching

intuition, the model predicts that bid-ask spreads are increasing in fundamental volatility and that

there are economies of scale in transactions.

To illustrate the above results graphically, we exploit our auxiliary assumption that the

expected waiting time for the completion of an order scales linearly in the order quantity, Q:13

Using this assumption, Figure 2 graphs the schedule of percentage immediacy prices, (9) and (10),

as a function of order quantity. In particular, we assume the annual volatility of fundamental value

12The numerical simulation modi�es the de�nition of a limit order to allow partial execution by order �ow and
replaces the speci�cation for the market order �ow process. Under the augmented speci�cation used for the numerical
simulation the random maturity of the �nite-lived limit order option is determined by the joint dynamics of order
imbalance and fundamental value. These dynamics imply a time-varying instantaneous survival probability for the
limit order and lead to a distribution of the times to completion that is not analytically tractable. In turn, it is not
possible to obtain a closed-form expression for the value of the limit order option or its optimal early exercise rule, a
feature which is shared by most American-type options.
13We verify the validity of this assumption empirically in the cross-section of NYSE �rms in Section 5.

10



is 15% or 35%, the riskfree rate of interest is 5% per year, and that orders arrive at a rate of one

share per second. Figure 2 shows that immediacy prices are nonlinear functions of the transaction

size. Using the above de�nition of the cost of transacting, these costs are increasing and concave in

transaction size. This is in contrast to most information-based models of liquidity, which typically

produce constant marginal costs, or linear price functions of quantity (for example, Kyle (1985)).

In Section 5, we evaluate models on the basis of these predictions.

3.1 E¤ect of Order Flow Arrival Rates

Demsetz (1968) argues that it is reasonable to expect scale economies in transactions. As

order �ow arrival rates for a security increase, the waiting times for transaction execution in that

security decrease. In the limiting case of in�nite arrival rates, waiting times go to zero. In the more

typical case of �nite arrivals, the waiting time of a transaction can make up a signi�cant portion of

the total transaction cost. When investors demand immediacy, the waiting time can be transferred

to the market maker (or marginal supplier of liquidity) who specializes in providing this service,

but the waiting time cannot be eliminated.

The key friction in the model is that order �ow arrivals are �nite, which gives rise to

a positive waiting time for transaction execution. In the model, there is a direct mapping of

waiting times to option maturity. The time rate of arrivals of opposing order �ow determines the

expected waiting time of any given order. This intuition is formally captured in expressions (9)

and (10). First and foremost, as the arrival rate of order �ow eligible for execution against the

outstanding limit order, �i, increases, the market maker faces more competition from order �ow and

the percentage immediacy costs decline. In the perfectly liquid market, �i !1, the market maker
possesses no pricing power and the costs of immediacy collapse to zero. Conversely, as competition

from exogenous order �ow declines, �i ! 0, the market for immediacy becomes progressively less

competitive (more illiquid), allowing the monopolist market maker to charge a wider bid-ask spread

to counterparties seeking immediacy. When trading by other market participants ceases altogether,

�i = 0, the market maker is the sole provider of immediacy through time, not just instantaneously,

and the asset market breaks down completely. The value of the sell limit order converges to the

value of the underlying, Vt, implying that, in order to obtain immediacy, the seller must part with

the asset at a zero price. Intuitively, in this scenario, the market is a pure monopoly in which

the market maker captures the entire surplus. On the other hand, buy transactions still remain

possible, but only at signi�cant premia to fundamental value. In the limiting case when �i = 0,

the smallest percentage premium to fundamental value guaranteeing immediate execution is given

by �2

2r .

Figure 3 displays the immediacy prices for �xed transaction sizes as a function of the

order arrival rate. In general, immediacy prices do not equal fundamental value. As order �ow

arrival rates increase, expected waiting times shrink, and the bid and ask prices converge towards

fundamental value. The increase in e¢ ciency is largest when arrival rates begin low and increase.

The �gure shows a changing rate of convergence in immediacy prices towards fundamental value�
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initially very fast at low arrival rates, then becoming more gradual as arrival rates increase.

3.2 E¤ect of Fundamental Volatility

In our model, immediacy prices o¤ered by the market maker deviate farther from funda-

mental value as the volatility of fundamental value increases, for any given quantity (an illustration

is presented in Figure 2). This is a direct consequence of the option-based approach. Option values

are increasing in volatility, and this property �ows through to the strike price at which immediate

exercise is optimal. The more valuable the option, the larger the distance must be between the

strike price and fundamental value for the market maker to exercise immediately. In particular,

in the limit as � ! 1, the value of a Q-share sell limit order with a limit price of K approaches

Q times the fundamental value. A similar buy limit order approaches Q times the limit price.

Because immediate exercise requires that the limit order writer give the market maker an option

that is in-the-money, the percentage immediacy cost for sell orders goes to 100%. Buy limit orders,

on the other hand, are never executed. Conversely, in the absence of any price risk, i.e. when the

volatility of fundamental value is zero (� = 0), the options implicit in the order �ow have no value,

so no premium is required to induce the market maker to exercise immediately.

3.3 Liquidity Events

The analytical model presented in Section 2 allows us to examine how shocks to the arrival

rate of buy/sell orders and the fundamental value of the underlying may compound during a

liquidity crisis to a¤ect immediacy prices. The arrival rate of buy (sell) orders will determine the

expected maturity of the options written by a seller (buyer) demanding immediacy. Therefore,

from the seller�s (buyer�s) perspective, a liquidity crisis is likely to involve a signi�cant decrease in

the current rate of buy (sell) order arrivals, relative to the equilibrium rate. This asymmetry in

arrival rates may become more severe if the current rate of sell order arrivals also increases. This

captures the notion that a liquidity crisis involves some sort of order imbalance. As a consequence

of a temporary order imbalance a signi�cant asymmetry in buy and sell immediacy prices may

emerge at all quantities, causing the midpoint of the bid-ask spread to become a biased estimator

of the fundamental value.

Figure 4 displays the e¤ects of an order imbalance on the quantity structure of immediacy

prices. In particular, the �gure assumes that the current rate of sell order arrivals increases �vefold,

while the current rate of buy order arrivals falls by this factor. This represents a major �running

for the exit�in the security. Immediacy prices for buyers become much more elastic, such that an

investor wishing to buy can now immediately transact very large quantities at a price much closer

to fundamental value. However, investors wishing to sell immediately must pay a large premium,

even for relatively small quantities. In other words, the immediacy prices facing sellers are now less

elastic at all quantities.

Figure 4 also displays immediacy prices in the case when an order imbalance coincides with
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an increase in fundamental volatility. The increased volatility o¤sets the reduced waiting time for

buy orders, attenuating the increased elasticity of immediacy ask prices slightly. On the other

hand, the higher volatility further increases the premium for immediacy for sellers, making prices

even less elastic at all quantities.

4 Robustness and Extensions

The market structure considered in this paper is highly stylized and a number of restrictive

assumptions were required to arrive at our analytical predictions for transaction prices. First, the

market maker is given monopoly in the right to �hang around,�while other market participants

must take an action and move on. The only competition the market marker faces with respect

to current demand is from o¤setting future orders, which arrive stochastically and play the role

of a liquidating dividend. Consequently, while there is competition in the supply of immediacy

through time, instantaneously the market maker is a monopolist. Second, we restrict our attention

to the case of traders demanding immediate execution, which allowed us to skirt the di¢ cult task

of modeling the evolution of the limit order book. Although the assumption of inelastic demand is

crucial in allowing us to trace out the market marker�s supply function for immediacy-demanding

transactions, it conceals the importance of patience in determining transaction prices. Finally, our

model abstracts away from issues regarding the costs of market making and asymmetric information,

which have been at the center of the microstructure literature.

Relaxing these assumptions is likely to bring the model closer in line with the true richness

of the problem faced by market makers and traders in the real world. In this section, we examine

the robustness of our model�s predictions with respect to such extensions, and suggest directions

for future research.

4.1 Search and Pricing Power in Market Making

The assumption of a monopolistic market maker, who enjoys the privileged position of

being a continuously available trading counterparty, plays a central role in our model. It grants

ownership of the option implicit in a limit order to the market maker, and allows us to solve for its

value under the optimal exercise rule. The introduction of a competitive market making function

would alter the pricing of a limit order through its early exercise rule. In particular, an individual

placing a limit order in this market structure could expect their limit order to be exercised either

by opposing order �ow, as before, or by the market maker any time the intrinsic value of the option

exceeds the marginal cost of the market maker�s adjustment to inventory. The introduction of a

competitive market making function would therefore modify the early exercise boundary to read

Vt�K�(Q) = mc(Q), necessitating an explicit characterization of the market maker�s cost function,

as is commonly required in traditional models of market microstructure. Conversely, if the market

maker is a monopolist, we can determine the price of immediacy through the optimal exercise policy

of the limit order, with no knowledge of the market maker�s cost function.
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Sidestepping the di¢ cult problem of characterizing the cost of market making in terms of

unobservable variables like information asymmetries and individual preferences, requires an alter-

native friction to generate transaction costs. We assume imperfect competition in market making,

consistent with the notion that supplying immediacy is sometimes pro�table. This brings our model

much closer in spirit to the search literature. In search models, transaction prices are determined

through bilateral bargaining, which makes the markets they describe inherently uncompetitive.

Generally, each party to a trade is both demanding and supplying immediacy to some degree. The

relative market power of each party is speci�ed exogenously through bargaining parameters, which

determine the division of surplus between two willing trading counterparties. We specialize to the

situation where a single market maker continuously supplies immediacy to investors with inelastic

immediacy demands.14

Our decision to examine the price of immediacy in partial equilibrium yields two advantages

over the more general frameworks employed in search models. First, we are able to consider the

pricing of an asset with a stochastic fundamental value, whereas search models examine transaction

prices around a deterministic fundamental value. The time-varying fundamental value gives the

o¤er to transact an option-like property. Second, our speci�cation can be readily calibrated using

empirical data and is the �rst to deliver a usable quantity structure of immediacy prices. Of course,

it is important to keep in mind that our model only studies price determination in a single, stylized

transaction, with no regard for patience or the potential for interactions between the determination

of fundamental value and transaction prices (O�Hara (2003)). Consequently, we view our model as

describing the nanostructure of a market transaction, which may be an important component of

extensions of search models to settings with stochastic variation in fundamental value.

4.2 Patience

In this section, we relax the assumption that each trader demands immediate execution, and

o¤er a reduced form examination of the e¤ect of patience on limit price selection. Speci�cally, we

propose an intuitive parametrization for the agent�s patience level, which nests the special case of

zero patience considered earlier. Of course, in equilibrium, the magnitude of the patience parameter

depends on myriad factors including the trader�s utility function, the opportunity cost of delaying

order execution, and actions of other market participants. Rather than explicitly model each of

these factors, we continue in the partial equilibrium spirit of our earlier analysis, and specify the

patience parameter exogenously. We show that the limit buy (sell) prices selected by traders are

monotonically decreasing (increasing) functions of their patience, and depend on properties of the

underlying (order arrival rates, drift, volatility, etc.), as well as the trader�s decision horizon (i.e.

frequency with which limit prices are reset). Formally, in a model with a limit order book, these

buy (sell) orders would be below the prevailing ask (bid) prices. However, because there is no

14Since our model features a single market maker who is continuously present in the market, it is most similar to
the case of the Du¢ e, Garleanu and Pedersen (2005) search model with a �fast monopolistic market maker�discussed
in Theorem 3.3.
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limit order book in our model, the limit prices selected by patient traders are better thought of as

reservation values at which they would be willing to place an immediacy demanding limit order.15

To examine the impact of patience on limit price (reservation value) selection, we parame-

terize traders by the probability, �, that their order fails to be executed within � units of time.

Traders with zero patience, who demand immediate execution, are characterized by � = 0, and

traders with in�nite patience, who do not mind seeing their order go unexecuted, have an � = 1.

Consequently, we refer to the value of � as the patience level. The value of � has the interpreta-

tion of a decision horizon, and represents the horizon at which it becomes optimal for a trader to

recompute their reservation value (Merton (1987)).

The reservation buy price, K�
A(Q;�; �), of a trader with a decision horizon, � , and patience

level, �, is set such that the probability of observing the market ask price reaching K�(Q;�; �)

or lower within � units of time is exactly 1 � �. Intuitively, the more patient the trader (i.e. the
larger the value of �), the further the reservation buy price will be below the prevailing ask value,

KA(Q;� = 0), guaranteeing immediate execution.16 Using the notation introduced earlier in the

paper, we know that the market maker will exercise a buy limit order with limit price, K�
A(Q;�; �),

at time h; if and only if,

Vh = K
�
A(Q;�; �) �
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To determine the reservation buy price we make use of the probability distribution function of the

running minimum of a geometric Brownian motion. Speci�cally, the above condition requires that
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Using the distribution of the running minimum of a GBM this condition can be rewritten as,
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15Given our model assumptions, if we allowed the patient trader�s order to be the sole outstanding order in the
limit order book, it would also be subject to execution by oncoming order �ow. In reality, however, because orders
submitted by patient traders are likely to be away from the prevailing market prices, they are unlikely to be the �rst
to be executed by oncoming market orders. Consequently, we view it as a better approximation to interpret the limit
prices selected by patient traders as their reservation values, rather than the prices of actual submitted orders.
16The analysis of the reservation sell price is symmetric.
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where � is the drift in fundamental value and:
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This implicit characterization of buy reservation values, K�
A(Q;�; �), nests our earlier so-

lution for immediacy demanding trades. To see this, note that traders demanding no uncertainty

about execution (� = 0) are characterized by a reservation value, K�
A(Q;�; �); equal to the price

guaranteeing immediate execution, KA(Q;� = 0). In other words, the only way to be certain of

executing a buy transaction is to transact immediately at the prevailing ask price, regardless of the

decision horizon.

In Figure 5, we illustrate the impact of patience on the trader�s reservation value for the

case of two decision horizons. In both cases, we �x the riskless rate and the drift of the underlying

asset at 5% and 12% per annum, respectively. Consistent with intuition, the �gure indicates that

investors who are more patient, and thus more willing to absorb uncertainty about execution (larger

value of �) or having longer decision horizons (larger �), can obtain meaningful savings relative to

impatient traders. For example, consider a trader demanding a 50% probability of having a ten

thousand share buy order executed within 100 (1000) seconds, given an arrival rate of 100 shares

per second, when the underlying has a annualized volatility of 25%. While the reservation value

of the trader with a 100 second horizon is roughly equal to the prevailing fundamental value, the

reservation value of the trader with a 1000 second horizon is 15 bps below it. By comparison, a trader

demanding immediate execution would have to submit an order that is 7 bps above fundamental

value.

5 Applications

This section considers two types of applications for the model introduced in Section 2,

and examines the resulting model-based predictions for the price of immediacy in capital market

transactions. In the �rst application, we test our model using a real-world scenario in which the

impatient demand for a large transaction by a non-information motivated trader was met with

very little competition in the supply of liquidity. Under these circumstances, the model�s extreme

assumptions are likely to be valid, allowing us to apply it very literally. We therefore estimate the

parameters of the fundamental value and order �ow processes from observable data and then plug

these estimates into the model to determine the cost for this rare, but important type of transaction.

This application also highlights the potential for our model to be used as a stress-testing platform

for deriving liquidity-adjusted estimates of portfolio losses in cases of market stress. In the second

application, we consider the possibility that there may be more competition �perhaps in the form
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of latent liquidity supply � than the model assumes. In this situation, it is more appropriate

to calibrate, or imply out, the order �ow arrival rate parameter using the transaction-level data

generated under ordinary conditions, and then evaluate how the model forecasts out-of-sample

transactions.

5.1 The Forced Liquidation of Amaranth�s Energy Position

As a �rst example, we examine the collapse of the Amaranth Advisors hedge fund in Sep-

tember 2006. After sustaining massive losses on its positions in natural gas contracts, the fund

was forced to liquidate its energy book to two �nancial institutions at a discount of roughly 30%.

Because this asset sale was both rapid and non-informational, it represents an ideal scenario in

which to test our model�s prediction regarding the price of immediacy.

The Amaranth crisis stemmed from a series of calendar trades on natural gas contracts put

on by the �rm. In the US, there is insu¢ cient storage capacity for natural gas to meet peak winter

heating demand. As a result, the natural gas futures market for summer/fall gas contracts and

winter gas contracts is typically in contango, where prices of summer and fall natural gas contracts

typically trade at a discount relative to the winter contracts. The market therefore provides a return

for purchasing and storing natural gas in the summer and fall and delivering it in the winter. This,

in turn, incents storage operators to store more natural gas and sell it in the winter. However,

the spread between the summer/fall futures prices and winter futures prices is extremely volatile,

so the storage operator takes a substantial risk.17 Hedge funds, such as Amaranth, typically sold

summer/fall contracts and bought winter contracts, thus allowing the storage operators to hedge

their risk. Essentially, what Amaranth and other energy funds did was to provide liquidity for

longer dated contracts, allowing storage operators to manage longer-dated risks better.

During the weeks of September 11, 2006 and September 18, 2006 the spread between sum-

mer/fall contracts and winter contracts for delivery in 2007 through 2011 narrowed considerably.

On some of these days the decrease in the spread represented a multiple standard deviation event

relative to how these spreads had moved in the past. Because Amaranth was essentially long these

spreads (selling fall/summer contracts and buying winter contracts), they su¤ered substantial losses.

Moreover, Amaranth was also long winter contracts, which were hedged with short spring contracts

�again for delivery in 2007 through 2011 �and these spreads decreased substantially too (Burton

and Strasburg (2006), Davis (2006)). The fund lost approximately $560 million on September 14th

alone, and it lost about 35% during the week of September 11th (Burton and Strasburg (2006),

White (2006)).18 Using this information and the decrease in the calendar spreads during these two

17 In fact, the business of storage can be viewed in real option terms. The value of the storage facilities is essentially
equal to the value of an option on the calendar spread on natural gas. As the near-term contracts cheapen and the
longer-term contracts become more expensive, the value of storage operators�facilities become more valuable as these
operators can buy the near-term contracts and sell the longer-delivery contracts and realize the value di¤erence via
storing natural gas.
18Trincal (2006) estimates that the fund was worth $9.2 billion at the end of August, so a 35% loss would be

approximately $3.2 billion.
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time periods,19 we can follow the simple procedure laid out in Till (2006) to infer that Amaranth

held approximately 100; 000 total contracts (these contracts were accumulated through trading on

the NYMEX and the ICE). On September 20th, all of the energy positions of Amaranth were

transferred to JP Morgan Chase and Citadel Investment Group in an overnight transaction forced

by the fund�s brokers.

To determine the model predicted discount for this liquidating transaction, we need to

estimate three parameters re�ecting market conditions on September 19, 2006: the riskless rate,

r; the volatility of fundamental value, �; and the buy order �ow arrival rate, �B. We estimate the

riskless rate to be 4:72% using the yield on 30-day Treasury bills. The volatility of fundamental

value to is estimated to be 95%, which is the implied volatility of one-month, at-the-money natural

gas options. Finally, we estimate the daily buy order arrival rate to be 1,000 based on daily trading

volume on NYMEX and ICE. With these parameter estimates, the model predicted transaction

cost for selling 100,000 contracts is a staggering 34:8%. In reality, the liquidating transaction

resulted in a loss of $1:4 billion relative to the market value of these positions at the end of day

September 19th (see Till (2006)), representing an actual discount of 30%.

5.2 Calibrating the Quantity Structure of Immediacy Prices

An alternative approach to using the model is to calibrate the parameters to �t an observed

relation between transaction costs and transaction sizes. In this method, the model is used as

a device for inferring one of the underlying parameters, in the same spirit that the Black-Scholes

formula is used to �back out�implied volatility. Given the ease of obtaining accurate proxies for the

riskless rate of interest and the volatility of fundamental value, typically the parameter of interest

will be the order arrival rate, �i. By using empirical transaction data to infer the order arrival rate,

we implicitly relax the model�s assumption of the existence of a single, privileged market marker,

which is unlikely to hold in �normal�times. To imply out the order arrival rate one simply matches

the model-predicted immediacy cost to a particular data point, or cross-section of points, for which

one has an ample number of observations, e.g. the cross-section of the most frequently observed

order quantities. Then, �xing the fundamental volatility from the daily return series, one can solve

for the implied order arrival rate and use the analytical structure of the model to generate the

entire, unobserved quantity structure of immediacy prices.

5.2.1 Transaction Costs for NYSE Firms

In this section, we illustrate how our model can be used to generate estimates of transaction

costs �as a function of order quantity �for publicly traded securities. To calibrate the model we

use transaction-level trade and quote data (TAQ) for NYSE �rms in 2004, as well as daily data on

19During the week of September 11th, winter-spring spread decreased by $31,000 per contract (the contract multi-
plier for natural gas contracts on the NYMEX is 10,000 mmBtu), while on September 14th the spread decreased by
$6,000 per contract. The summer/fall-winter spread decreased by $49,000 per contract during the week of September
11th and by $4,000 per contract on September 14th.
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stock returns and US Treasury bond yields. We proxy the volatility of a �rm�s fundamental value

using the standard deviation of its daily stock returns over the year, and use the yield on one-

month Treasury bonds as a measure of the prevailing risk free rate of interest. Using the quantity

cross-section of the realized percentage transaction costs, we then imply out the order arrival rate,

e¤ectively producing a transaction cost function for use at the end of the year.

In order to measure the percentage realized transaction costs, we �rst need to specify a

measure of fundamental value. Here, we take the standard approach in the microstructure literature,

and use the midpoint of the prevailing, best bid and ask quotes as our proxy for fundamental

value, V̂t. We then de�ne the proportional transaction cost as p(Q) = Pt�V̂t
V̂t

, where Pt is the

observed transaction price. This procedure is similar in spirit to the Lee and Ready (1991) tick-

signing algorithm, which is used to classify data into buyer- or seller-initiated transactions. In

this classi�cation scheme, trades occurring at prices above (below) the prevailing midquote are

considered to be buyer-initiated (seller-initiated). At the end of this procedure, we have two datasets

for each �rm containing transaction quantity-cost pairs, one for buyer-initiated transactions and

one for seller-initiated transactions. Finally, to attenuate the e¤ect of noise, we require each unique

transaction quantity bucket to contain at least 20 observations, and calibrate our model to the

sample mean of the proportional transaction cost within each quantity bucket. By maximizing a

model �t criterion, we can then imply out the buy and sell order �ow arrival rates that are most

consistent with the structural model.

To ensure that we choose a plausible speci�cation for the scaling order of the waiting

times in quantity, we �rst examine this relation empirically in the cross-section of NYSE listed

�rms. Speci�cally, we use signed transaction data for 2004 to estimate the mean waiting times for

cumulative �ows of Q shares, E[� i(Q)], and examine their scaling order with respect to quantity

by estimating the following non-linear least squares regression,

E[� i(Q)] = �0 + �1 �Qn: (18)

Using our sample of 1; 488 �rms, we �nd that the cross-sectional mean estimate of n is 0:9805

(0:9785) for buys (sells). When we restrict our attention to �rms with concave arrival time scaling,

the mean estimate of n is 0:9788 (0:9766) for buys (sells), suggesting very minute deviations from

linearity. The main concern, however, are �rms with convex arrival time scaling which is su¢ ciently

extreme (n > 2) to o¤set the concavity of the square root function appearing in our approximation

to the price of immediacy, (11). Overall, we �nd that no �rm delivers a point estimate for n in

excess of two, and even when �rms do exhibit convex scaling, departures from linearity are similarly

small, with a mean n estimate of 1:0047 for buys and 1:0099 for sells. In fact, less than 7% of the

�rms in the sample exhibit statistically signi�cant and convex scaling in waiting times. Moreover,

because the entire trading record is used repeatedly to construct the mean interarrival times at

various quantity sizes, the strength and frequency of the rejection of linearity is already likely to

be overstated.
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To calibrate the order �ow arrival rates we use a simple linear model based on the ap-

proximate formula (11), combined with the auxiliary assumption of a constant arrival rate. Under

the constant arrival rate assumption, the waiting times scale linearly in the transaction quantity,
1

�i(Q)
= 1

�i(1)
�Q, which enables us to re-write the percentage transaction cost as,

p(Q) � � �
s

Q

2�i(1)
: (19)

Within each quantity category, we calculate the average transaction cost, p(Q), and the average

dollar transaction value, Q, based on the median stock price over the period. Because we measure

transaction quantities in terms of dollars, the value of the order arrival rate implied from our model

will be in terms of dollars per unit time. This convention allows us to interpret the measured values

as a fraction of market capitalization, giving them the �avor of a scale-free turnover metric.

For each �rm with at least 10 quantity categories, we estimate the following speci�cation:

p(Q) = �0 + �1 �
q
Q: (20)

The regressions are estimated using ordinary least squares (OLS) as well as a weighted-least squares

procedure (GLS) that weights observations by the total value of transactions within each quantity

category. The order �ow arrival rates are recovered through the equation: �̂
i
= �2

2�̂
2
1

: Formally, the

model does not suggest the intercept, but any �xed cost warrants its inclusion.

Figure 6 displays the average quantity structure of immediacy prices for NYSE �rms by

size quintile. In addition, the table below the �gure summarizes a variety of characteristics of the

underlying �rms. Consistent with intuition, small �rms have higher volatility and lower implied

order �ow arrival rates than large �rms. This translates into considerably larger immediacy prices

for small �rms. Our estimates of the �xed cost of transactions are meaningfully di¤erent across

the size quintiles, and range from 18bps for the smallest �rms to 2bps for the largest �rms. Figure

6a illustrates that this relation holds across dollar transaction sizes. On average, the price of

immediacy is about 10 times larger for a �rm in the smallest quintile of NYSE �rms than for a

�rm in the largest quintile. Overall, our calibrated order arrival rates imply annual turnovers of

about 20 times market capitalization. We also display the quantity structure of immediacy prices

as functions of the fraction of shares outstanding (Figure 6b). The calibrated model generates

interesting predictions for more extreme capital market transactions. For example, a cash tender

o¤er can be thought of as a demand for the instantaneous acquisition of all the shares outstanding

of the target company. The liquidity component of such a transaction is predicted to be 7.5% on

average for a small �rm and 4.3% for a large �rm. While actual takeover premia tend to be larger

than these estimates, it is intriguing to consider that a substantial portion of takeover premia may

represent a premium for immediacy.

Finally, our model predicts that immediacy prices are concave in quantity. We evaluate this
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prediction by comparing the explanatory power of our limit order model (square root model) to a

linear model, suggested by a traditional microstructure framework. A summary of this analysis is

reported in Table 1. Speci�cally, we report the average R2 by size decile for both the square root

and linear models, as well as the fraction of times that the square root model produces a larger

R2. Overall, the square root model �beats�the linear model 86% of the time using the order �ow

arrival rates estimated via OLS and 82% of the time using the GLS estimates. This suggests that

the relation between immediacy price and transaction size is indeed concave, even for moderate

transaction sizes observed on a daily basis. The improvement of the square root model over the

linear model is largest for the biggest �rms.

5.2.2 Estimating the Liquidity Component of S&P 500 Index Inclusions

The real test of any model requires analyzing how it performs out-of-sample. Consequently,

to evaluate the joint e¤ectiveness of the previously described calibration procedure and our model,

we apply the procedure to a sample of �rms that are being included in the S&P 500 index and

examine how the model�s predicted transaction costs compare to the actual realized abnormal

returns around the inclusion. To get a sense a how extreme this test is, it is worth noting that

�on average �the inclusion represents a transaction for 10% of shares outstanding, whereas the

maximum transaction size in the TAQ data used to calibrate the model averages only 0.0033% of

shares outstanding.

Index inclusions are widely recognized as large liquidity events. Harris and Gurel (1986)

and Shleifer (1986) estimate abnormal returns for �rms added to the S&P 500 index to be three

percent on the inclusion day.20 Both papers argue that inclusions to the S&P 500 index convey

little new information about future return distributions, but cause outward shifts in excess demand

by investment strategies that track the S&P 500. Harris and Gurel interpret their �ndings as

supportive of price pressure (Scholes (1972)) because they �nd nearly complete price reversal over

a two-week interval. On the other hand, Shleifer views his results as evidence of downward sloping

long-run demand curves for securities because he �nds little price reversal. Recently, Wurgler

and Zhuravskaya (2002) test the downward sloping demand curve hypothesis by classifying �rms

added to the S&P index on the basis of whether they have close substitutes. Consistent with the

hypothesis that excess demand curves slope downward, the inclusion e¤ect is greater for �rms that

lack close substitutes, where it is riskier for arbitrageurs to keep demand curves elastic.

Given the extreme size of the transactions associated with index inclusions, explaining the

cross-section of abnormal returns around the event poses a signi�cant challenge, particularly for

a structural model. For example, Wurgler and Zhuravskaya (2002) carry out a cross-sectional

regression of abnormal returns around index inclusions on the level of arbitrage risk, proxied by

residual variance from a market model regression. Although the level of arbitrage risk is highly

statistically signi�cant, it delivers an R2 of only about 0.04. Moreover, their regression model lacks

20More recent inclusions are associated with larger abnormal returns. For our sample covering 1994 through 2004,
the average cumulative abnormal return from announcement to inclusion is 7%.
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the structure to predict the ex ante liquidity cost of the index inclusion for individual �rms.

We collect a sample of �rms added to the S&P 500 index between 1994 and 2004, requiring

that TAQ data are available. This results in a sample of 255 �rms. For each event �rm, we calculate

abnormal returns as the residuals from a one-factor market model. The market model parameters

are estimated over a 150-day window ending 21 days prior to the announcement date using the

value-weighted CRSP index as a proxy for market returns. The individual �rm abnormal stock

returns are cumulated (CARs) from the announcement date to the inclusion date. To estimate the

quantity of shares that need to be purchased by funds indexed to the S&P 500, we use information

obtained from the 2005 Annual Survey of S&P Indexed Assets issued by Standard & Poor�s, which

reports annual estimates of the total value of capital indexed to the S&P 500. Over our sample

period, the total value of indexed capital corresponds to roughly 10% of the market capitalization of

the �rms in the index. In addition, from CRSP we collect the market value of the stocks comprising

the S&P 500 index and the shares outstanding for the newly added �rms at the end of the month

prior to the announcement. Finally, we calibrate the model parameters for each sample �rm using

the procedure described in the previous section with data from the year prior to the announcement.

The analysis involves running cross-sectional regressions of CARs on the variables predicted

by our model to explain the cross-section of price impacts. In particular, the model predicts that

CARs should be positively related to both volatility and the square root of the ratio of transaction

size and the calibrated order �ow arrival rate,
q

Q
� . More precisely, the model predicts that CARs

should be proportional to the interaction of these two terms.

Table 2 reports the results from our cross-sectional regressions. As the model predicts,

both volatility and the square root term are individually statistically signi�cant (speci�cations 1,

2, and 6). Both variables remain statistically signi�cant in multiple regressions (speci�cations 3

and 7). When the interaction term is used as the single explanatory variable the adjusted R2

increases to 0.11, which represents a signi�cant improvement relative to the R2 of 0.04 reported by

Wurgler and Zhuravskaya (2002).21 Furthermore, in regressions that include both the interaction

term and the individual terms, only the interaction term is signi�cant, suggesting that the speci�c

form recommended by the model is better than an ad hoc speci�cation. Finally, our results hold

independent of whether the order �ow arrival rates are calibrated using the OLS or GLS procedure.

The �nal analysis involves regressing the CARs on the model-predicted price impact, p(Q);

CARi = 0 + 1 � E[p(Q)] (21)

Although qualitatively similar to the previous analysis, here the expected price impact is properly

scaled according to (11) and includes the intercept, E[p(Q)] = �̂0 + � �
q

Q

2�̂
. Consequently, if

the model is an unbiased predictor of the liquidity component of the event abnormal returns, the

21 In unreported analysis (available upon request), we �nd that total volatility has more explanatory power than
residual volatility (R2 of 0.06 and 0.04, respectively). Residual volatility is not statistically signi�cant when total
volatility or our estimate of price impact are included in the regression, while the variables suggested by the model
retain statistical signi�cance.
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slope coe¢ cient, 1, should be precisely equal to one. Under this speci�cation, the intercept, 0,

can be interpreted as a measure of the average information (or other) e¤ect associated with the

event. The results from this regression for a few model speci�cations are displayed in Table 3.

The estimates of the slope coe¢ cients for the limit order model are roughly equal to 1.2, and are

not statistically distinguishable from one at conventional signi�cance levels. For comparison, we

include the results for a linear model of transaction costs. Here, the slope coe¢ cients are roughly

zero and the R2s are minuscule relative to those from the limit order model.

It is particularly encouraging that the improvement of the limit order model over the linear

model is so extreme in this setting, in contrast to the modest improvement it delivered in the earlier

calibration exercise using all NYSE �rms. Because transactions associated with index inclusions are

over 300 times larger than the maximum transaction size included in the calibration, we take this

as evidence that the limit order model performs well out-of-sample. This presents strong evidence

in favor of the concave price impact speci�cations, and con�rms that the model is able to deliver

unbiased predictions in situations in which data are limited, and therefore a model is most needed.

6 Conclusion

This paper views the wedge between fundamental value and capital market transaction

prices as emerging from an imperfect market for immediacy. In a setting with stochastic arrivals of

buyers and sellers, we grant the market maker the privilege of being the sole trading counterparty

for investors with inelastic demands for immediacy, enabling him to extract rents from impatient

order �ow. The magnitude of these rents depends on the competition implicit in opposing order

�ow and de�nes the price of immediacy.

The mechanism for trade in our model is a limit order, and immediacy is supplied when the

limit order is executed by either the market maker or opposing order �ow. We view limit orders

as options, and their value as a measure of the cost of transacting. Because of his unique position,

the market maker is the e¤ective owner of the option embedded in a limit order, and must decide

when and if to exercise this option. The incentive for exercising a limit order option early arises

through competition for the order with the opposing order �ow, which from the market maker�s

perspective acts like a stochastic liquidating dividend. In this setting, limit prices that induce

immediate exercise of the American-type limit orders, determine the price of immediacy at various

quantities and are functionally equivalent to bid and ask prices.

The option-based model of immediacy proposes that immediacy prices are determined by

the product of the fundamental volatility of the security and the square root of a scaled measure

of instantaneous excess demand, i.e. the ratio of order quantity to the share arrival rate. Larger

transactions e¤ectively require writing options with longer maturity, and option values increase

with the square root of time to maturity. This simple formula can be readily calibrated using

empirical data, and used to generate the entire unobserved quantity structure of transaction costs.

Empirical analysis of stock market transactions for NYSE �rms supports the predictions of the
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model, con�rming that our model with full-information, but imperfect market making, is able to

describe a range of properties of real world transaction costs.

Two simple implications of our basic setup are that market makers are long volatility and

that they earn pro�ts in the presence of order imbalances. This seems to �t with common intu-

ition and empirical evidence on supplying liquidity. For example, in the price pressure hypothesis

proposed by Scholes (1972), uninformed shifts in excess demand can cause prices to temporarily

diverge from their information-e¢ cient values in order to compensate those that provide liquid-

ity. This should not occur with perfectly competitive market making in the absence of imperfect

information. Our model captures this notion of price pressure through imperfect competition. A

larger order �ow imbalance represents a weakening of competition for the monopoly market maker,

allowing him to extract larger rents. In other words, investors with common liquidity demands

are forced to write options with longer e¤ective maturities (i.e. more valuable options) when order

imbalances grow and/or become somewhat persistent. A consequence of this type of price pressure

is that supplying immediacy in these situations is pro�table.

An attractive feature of the limit order framework is that the model can be estimated as

a function of relatively observable variables. We propose a method for implementing the model

using forecasts of volatility and order �ow data. We also jointly test the model and the calibration

procedure by predicting the price reaction for �rms being added to the S&P 500 index. As the

model predicts, we �nd that volatility and the square root of the ratio of transaction size to order

�ow are signi�cant variables in explaining price reactions. Moreover, the model produces unbiased

forecasts of the price reaction in a setting where the average transaction size is over 300 times bigger

than the largest transaction used in the calibration. This compares very favorably to alternative

models, which produce highly biased estimates when used this far out-of-sample.

The practicality of the option-based framework suggests that it may be an interesting plat-

form for future theoretical and empirical research. In particular, the model could be used to

estimate the immediacy component of corporate transactions like security issuance, repurchases,

and takeovers. Finally, the model may be a useful step towards a new measure of liquidity risk.

The uncertainty over transactable prices, relative to fundamental value, produces a liquidity risk.

As such, the time series variation of the price of immediacy is a natural measure of this risk.

This suggests extending the baseline model to incorporate time-varying arrivals and investigating

commonality in the time dynamics of the resulting quantity structure of immediacy prices.
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A Finite Maturity Limit Orders

The baseline model of Section 2 is solved under the assumption that limit order writers never cancel a submitted
order. This feature allows us to treat the limit order option as a perpetual option, subject to a stochastic liquidating
dividend in the form of execution by the opposing order flow. However, since this assumption is clearly open to
challenge, we devote this appendix to showing that it can be relaxed considerably without any effect on the qualitative
features of the quantity structure of immediacy prices.

We begin our analysis by considering limit orders that are subject to random cancelation by the limit order
writer, and then turn our attention to limit orders with a finite maturity date. Although limit orders are de facto
unlikely to be canceled at randomly selected times, random cancelation will be observationally indistinguishable from
a deterministic cancelation rule, so long as the market maker cannot infer this rule. We therefore assume that a
limit order is canceled by the order writer at the N -th arrival time of a Poisson process with intensity η. Under this
auxiliary assumption, the order cancelation time, τ , will have an Erlang distribution with:

Pr{τ ∈ dt} =
ηN

(N − 1)!
tN−1e−ηtdt (1)

and the expectation and variance of the cancelation time, τ , will be given by:

E[τ ] =
N

η
V ar[τ ] =

N

η2
(2)

In the base case, when N = 1, the Erlang distribution collapses to an exponential distribution. In this case it is easy
to show that the value of the buy and sell limit orders continues to be given by the expressions provided in Section
2, but with slightly modified cancelation intensities.

Proposition A.1 The value of a sell (buy) limit order that is subject to cancelation by the limit order writer at the
first jump time of a Poisson process with intensity η, is equivalent to the value of a limit order that is not subject to
cancelation, but is subject to a stochastic liquidating dividend arriving at rate λ̃B(Q) (λ̃S(Q)), is given by:

λ̃S(Q) = λS(Q) + η (3)

λ̃B(Q) = λB(Q) + η (4)

A formal proof of this result can be found in Section C of the technical appendix.1

The simple isomorphism between limit orders that are not subject to cancelation by the limit order writer (i.e.
perpetual limit orders) and those that are, shows that the qualitative features of the quantity structure of transaction
prices will be unaffected by the introduction of the cancelation feature.

To establish that our results continue to hold in the case of finite duration limit orders (i.e. orders that will be
canceled at a future date T ), we exploit the randomization device of Carr (1998). This mathematical device takes
advantage of the scaling of the moments of an Erlang distributed random variable in the Poisson arrival intensity,
η, to synthesize a random variable with a pre-specified mean and zero variance. To see this, suppose we let η = N

T
,

and allow N → ∞. Asymptotically, the moments of the limit order cancelation time, τ , collapse to E[τ ] → T and
V ar[τ ] → 0. In other words, the limit order is canceled at time T with unit probability.

To determine the value of a limit order subject to cancelation at time T , it is therefore sufficient to determine
the value of the limit order subject to Erlang cancelation when η = N

T
, and N → ∞. Under the Erlang cancelation

scheme, the value of a limit order will depend on the fundamental value of the underlying, FQ,t; the arrival intensity
of the opposing order flow, λi(Q); and the number of periods left to the termination of the option, n. Given these
assumptions, the value of the limit order will be given by the solution to the following system of N (n = N . . . 1)
ordinary differential equations:

L
(n)
F · (rFQ,t) +

1

2
L

(n)
FF · (σFQ,t)

2 − r · L(n) = λi(Q) · (L(n) − 0) + η · (L(n) − L(n−1)) (5)

with L(0) = 0 (i.e. the limit order becomes worthless upon cancelation). The terms on the left hand side of the
equality represent the evolution of the limit order value in the absence of jumps, while the terms on the right hand
side represent the probability weighted losses from order exercise by oncoming order flow and the passage of time,
as measured by the jumps in the Poisson(η) variable. To solve this system of ODEs we proceed by backwards
recursion, starting with state n = 1. The solution is comprised of a sequence of state-dependent value functions and

1The technical appendix can be downloaded from the authors’ websites.
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the associated optimal early exercise thresholds. A characterization of the complete, recursive solution is given in the
following proposition.

Proposition A.2 The value of a sell limit order in state n is given by:

L(n,S) =

8<: α0,n · F
φ+(λB)

Q,t + α1,n · F
φ−(λB)

Q,t +
“

η
η+λB(Q)

”
· FQ,t −

“
η

r+η+λB(Q)

”
·QK Vt ≥ V ∗

n−1

β0,n · F
φ+(λB)

Q,t + L
(n,S)
p (Vt < V ∗

n−1) Vt < V ∗
n−1

(6)

where V ∗
n denotes the optimal early exercise threshold for state n and L

(n,S)
p (Vt < V ∗

n−1) is an analytical expression
related to the value function, L(n−1,S), in the continuation region for state n− 1. The values for (α0,n, α1,n, β0,n, V ∗

n )
can be determined by solving a system of equations described in the technical appendix. The corresponding solution
for a buy limit order can be found in Section C.

It is possible to show that the sequence of optimal exercise thresholds for a sell limit order, V ∗
n , is increasing

in n, reflecting the increasing time-value of the limit order option. Despite the complexity of the full solution,
the form of the value function characterizing the limit order option in an arbitrary state, n, is closely related to
the solution from Section 2. The recursive analytical solution, combined with numerical solution of the system of
equations parameterizing the coefficients of the value function and optimal exercise threshold, confirms that the
quantity structure of transaction prices (now indexed by state n) retains all the qualitative features examined in
Section 3.
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Table 1: Summary of Transaction Cost Calibration for NYSE Stocks by Size Decile (2004).

This table reports the average R2 from firm-level regressions of percentage transaction costs on dollar transaction
sizes for NYSE firms in 2004, grouped by market capitalization decile. The dependent variable, p, is the average
percentage transaction cost within a quantity category. The independent variable is either the average dollar
transaction size with in a quantity category, Q, (linear) or the square root of Q (square root). The quantity
categories are defined separately for each firm based on the unique transaction quantities in the 2004 TAQ data.
The regressions are estimated via ordinary least squares (OLS) and a weighted least squares procedure (GLS) that
weights observations by total dollar value rather than the number of transactions in each quantity category. The
fraction of times where the square root model produces a larger R2 than the linear model is also reported. The
regressions are estimated separately for buy and sell transactions. Buy transactions are identified as those with
a transaction price above the midpoint of prevailing bid and ask prices. The number of observations is denoted by N .

Buy Transactions
OLS GLS

Limit Order Fraction with Limit Order Fraction with
Size Model Square Root Model Square Root

Decile Linear (Square Root) > Linear Linear (Square Root) > Linear N
1 0.17 0.18 0.68 0.41 0.43 0.70 136
2 0.21 0.24 0.80 0.65 0.67 0.73 138
3 0.18 0.20 0.76 0.64 0.66 0.69 137
4 0.21 0.23 0.80 0.67 0.69 0.62 137
5 0.18 0.22 0.91 0.69 0.73 0.84 138
6 0.19 0.23 0.92 0.70 0.73 0.84 137
7 0.18 0.23 0.93 0.69 0.74 0.89 137
8 0.15 0.20 0.97 0.67 0.73 0.96 137
9 0.20 0.24 0.93 0.71 0.76 0.93 138
10 0.19 0.24 0.96 0.69 0.76 0.98 137

All NYSE 0.18 0.22 0.86 0.65 0.69 0.82 1385

Sell Transactions
OLS GLS

Limit Order Fraction with Limit Order Fraction with
Size Model Square Root Model Square Root

Decile Linear (Square Root) > Linear Linear (Square Root) > Linear N
1 0.26 0.27 0.68 0.50 0.51 0.69 137
2 0.32 0.34 0.79 0.71 0.72 0.72 137
3 0.30 0.34 0.76 0.75 0.77 0.70 138
4 0.31 0.35 0.81 0.76 0.78 0.63 137
5 0.31 0.36 0.90 0.79 0.81 0.83 138
6 0.31 0.36 0.92 0.78 0.80 0.84 138
7 0.28 0.34 0.93 0.77 0.81 0.89 137
8 0.22 0.29 0.97 0.72 0.78 0.96 138
9 0.27 0.33 0.93 0.77 0.82 0.93 137
10 0.23 0.30 0.96 0.74 0.80 0.98 138

All NYSE 0.28 0.32 0.86 0.73 0.76 0.82 1388



Table 2: Regressions Explaining Abnormal Returns Around S&P 500 Additions.

This table reports estimated coefficients from cross-sectional regressions of abnormal returns around S&P 500 index
inclusions. The dependent variable is the abnormal stock return cumulated from the announcement date to the
inclusion date. Abnormal returns are the residuals from a one-factor market model. Market model parameters are
estimated over a 150 day window ending 21 days prior to the announcement date using the value-weighted CRSP
index as a proxy for market returns. Volatility is the annualized standard deviation of stock returns. Order Flow
is the square root of the ratio of transaction value to calibrated buy order arrival rate,

√
Q/λ. The calibrated

buy order arrival rate, λ, is estimated via ordinary least squares (OLS) and a weighted least squares procedure
(GLS) that weights observations by total dollar value. The estimate of transaction size, Q, is the dollar value of
shares expected to be purchased by funds mimicking the S&P 500 index. The adjusted R-square is denoted as R2,
t-statistics are in parentheses, and the number of observations is denoted as N .

Variable [1] [2] [3] [4] [5] [6] [7] [8] [9]
Intercept 0.0325 0.0533 0.0173 0.0459 0.0409 0.0565 0.0188 0.0463 0.0414

(3.24) (7.63) (1.59) (7.38) (2.83) (7.78) (1.66) (7.02) (2.65)

Volatility 0.0799 0.0798 0.0204 0.0817 0.023
(4.13) (4.20) (0.66) (4.27) (0.67)

Order Flow (OLS) 0.0001 0.0001 0.0204
(3.11) (3.20) (0.66)

Volatility x 0.0003 0.0004
Order Flow (OLS) (5.69) (2.45)

Order Flow (GLS) 0.0001 0.0001 -0.0000
(2.31) (2.54) (-0.66)

Volatility x 0.0003 0.0004
Order Flow (GLS) (4.99) (2.08)

R2 0.060 0.033 0.093 0.110 0.111 0.017 0.079 0.086 0.091
N 255 255 255 255 255 255 255 255 255



Table 3: Regressions of Actual Event Reactions on Expected Event Reactions.

This table reports estimated coefficients from cross-sectional regressions of abnormal returns around S&P 500 index
inclusions. The dependent variable is the abnormal stock return cumulated from the announcement date to the
inclusion date. Abnormal returns are the residuals from a one-factor market model. Market model parameters are
estimated over a 150 day window ending 21 days prior to the announcement date using the value-weighted CRSP
index as a proxy for market returns. For the limit order model, E[Price Impact] = β0 + σ ·

√
Q/λ, is calculated for

each firm being included in the S&P 500 index.. The estimate of transaction size, Q, is the dollar value of shares
expected to be purchased by funds mimicking the S&P 500 index. The per second buy order arrival rate, λ, and
the intercept, β0, are calibrated for each firm from TAQ data over the year prior to the announcement date using
either an ordinary least squares (OLS) or weighted least squares (GLS) regression as in Table 1. The per second
volatility, σ, is the standard deviation of daily returns over the year prior to the announcement date, scaled by the
square root of trading seconds per day. For the linear model, E[Price Impact] = b0 + b1 · Q, where b0 and b1 are
calibrated for each firm from TAQ data over the year prior to the announcement date using either an ordinary least
squares (OLS) or weighted least squares (GLS) regression as in Table 1. The adjusted R-square is denoted as R2,
t-statistics are in parentheses, and the number of observations is denoted as N .

R2

Model Intercept E[Price Impact] [N ]
Limit Order Model calibrated via OLS 0.04 1.22 0.11

(6.77) (5.79) [255]

Limit Order Model calibrated via GLS 0.04 1.21 0.09
(6.40) (5.10) [255]

Linear Model calibrated via OLS 0.07 0.01 0.00
(2.31) (1.36) [255]

Linear Model calibrated via GLS 0.07 0.00 0.00
(2.61) (0.93) [255]



Figure 1: The price of immediacy. This figure illustrates the relationship between transaction prices and the
fundamental value in two capital markets. In a perfect capital market all transactions – independent of quantity
demanded – take place at the fundamental value, Vt. In an imperfect capital market, where the market maker
has pricing power, transaction prices, K∗(Q,λ), diverge from fundamental value and depend on the size of the
transaction, Q, relative to the share arrival rate, λ. The wedge between fundamental value and the transaction
price represents the price of immediacy.
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Figure 2: Quantity structure of immediacy prices. This figure illustrates the price of immediacy as a
function of order quantity. The price of immediacy is computed as the fraction of fundamental value which has
to be forgone to induce the market maker to execute a limit order instantaneously. It is plotted against the limit
order quantity assuming an arrival rate of one share per second (λi = 1), and an annualized riskless rate of 5%.
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Figure 3: Immediacy prices as a function of the order arrival rate. The figure depicts the price of
immediacy for a buy (sell) transaction for Q = 1,000 (Q = 10,000) shares as a function of the order arrival
rate. The x-axis plots the base 10 logarithm of the share arrival rate λS (λB) for sells (buys). The fundamental
volatility equals 35% per annum, and the riskless rate is fixed at 5% per annum
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Figure 4: Immediacy prices during liquidity events. The figure depicts the percentage cost of obtaining
immediacy for a buy (sell) transaction - as a function of the demanded quantity - during a liquidity event. In the
base case, buy and sell orders are assumed to arrive at a rate of one share per second; the riskless rate is fixed
at 5% and the volatility of fundamental value is 15%. In the order imbalance scenario, the intensity of sell (buy)
arrivals, λS (λB), increases (decreases) fivefold, but the volatility of fundamental value remains unchanged. In
the liquidity event, the change in the order arrival intensities is accompanied by an increase in the fundamental
volatility from 15% to 35%.
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Figure 5: Reservation values for patient traders. This figure graphs the reservation value of a patient trader
seeking to acquire 10,000 shares of a security with an order arrival rate of 100 shares per second, as a function
of the trader’s patience. The reservation value is expressed as a premium/discount relative to the prevailing
fundamental value, Vt. Patience, α, is parameterized by the probability of not being executed within the decision
horizon τ . The decision horizon is fixed at 100 (1000) seconds in the left (right) panel. Each plot considers two
values of the underlying’s volatility. The riskless rate and drift of the security are fixed at 5% and 12% per annum,
respectively.
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Figure 6: Calibrated Quantity Structure of Immediacy Prices for NYSE Stocks by Size Quintile.
This figure displays the price of immediacy as a function of transaction size for NYSE firms in 2004, grouped
by market capitalization quintile. Panel A presents immediacy prices as a function of dollar transaction size.
Panel B presents immediacy prices as a function of fraction of shares outstanding. For each NYSE firm, the
average percentage transaction cost within a quantity category is regressed on the square root of the average
dollar transaction size in that quantity category. The quantity categories are defined separately for each firm
based on the unique transaction quantities in the 2004 TAQ data. The regressions are estimated via a weighted
least squares procedure that weights observations by total dollar value. Market capitalization is equal to the
end-of-year total value of shares outstanding. Volatility is the standard deviation of daily stock returns. Lambda
represents the calibrated order flow arrival rate in $10,000 blocks per second.

Panel A: Immediacy prices as a function of dollar transaction size.
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3 1782 32.50 0.28 0.79 4 5 8 16
4 4020 36.71 0.25 2.24 3 4 5 9
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Panel B: Immediacy prices as a function of fraction of shares outstanding.
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3 1782 32.50 0.28 0.79 4 169 373 526
4 4020 36.71 0.25 2.24 3 127 279 394
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