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Abstract

The rise of algorithmic decision making led to ac-
tive researches on how to define and guarantee fair-
ness, mostly focusing on one-shot decision mak-
ing. In several important applications such as hir-
ing, however, decisions are made in multiple stage
with additional information at each stage. In such
cases, fairness issues remain poorly understood.

In this paper we study fairness in k-stage selection
problems where additional features are observed at
every stage. We first introduce two fairness no-
tions, local (per stage) and global (final stage) fair-
ness, that extend the classical fairness notions to
the k-stage setting. We propose a simple model
based on a probabilistic formulation and show that
the locally and globally fair selections that maxi-
mize precision can be computed via a linear pro-
gram. We then define the price of local fairness
to measure the loss of precision induced by local
constraints; and investigate theoretically and empir-
ically this quantity. In particular, our experiments
show that the price of local fairness is generally
smaller when the sensitive attribute is observed at
the first stage; but globally fair selections are more
locally fair when the sensitive attribute is observed
at the second stage—hence in both cases it is often
possible to have a selection that has a small price of
local fairness and is close to locally fair.

1 Introduction

The rise of algorithmic decision making in applications rang-
ing from hiring to crime prediction [Perry et al., 2013] has
raised critical concerns regarding potential unfairness to-
wards groups with certain traits, supported by recent em-
pirical evidences of discrimination [Lambrecht and Tucker,
2018; Larson ef al., 2016]. This led to a fast-growing body of
literature on what fairness in algorithmic decision making is
and how to guarantee it (see related works below).

The existing literature typically considers one-shot deci-
sion processes whereby, from a set of features observed about

*The full version of this paper is available at the following link:
https://hal.inria.fr/hal-0214507 1/document
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an individual—one of them being a ‘sensitive feature’ based
on which discrimination is defined—, one needs to decide
whether or not to “select” him/her (where select can mean
hire, grant a loan or parole, etc. depending on the context).
The problem in this setting is how to learn a decision rule
from past data that respects certain fairness constraints. In
many applications, however, decisions are made in multiple
stages. In hiring for instance, a subset of candidates is first
selected for interview based on resume (or high-level candi-
date’s information) and a final selection is then made from the
subset of interviewed candidates. In police practices, there
are often multiple stages of decisions with increasingly high
levels of investigation of the individuals not released at the
previous stage; as for instance in the famous stop-question-
and-frisk practice by the New-York City Police Department.

A distinctive specificity of the multistage setting, besides
the fact that decisions are made in multiple stages, is that in
many cases additional features get known at later stages for
the subset of individuals selected at earlier stages, but one
needs to make the early-stage selection without observing
those features. This raises a number of new questions that
are fundamental to fair multistage selection. First, given that
there are multiple layers of decisions, how should fairness be
defined? In particular, should it be defined at each individ-
ual stage, on the final decision, or otherwise? Second, given
that one has to make decisions with only partial information
at early stages, how to make an optimal selection? Finally,
given that the sensitive feature can be observed at different
stages, is it better to observe the sensitive feature at earlier or
later stages (for both fairness and utility)? This last question
intuitively relates to recurrent public debates such as “should
gender identification be removed from CVs?”.

In this paper, we study the k-stage selection problem, in
which there is a fixed limit (or budget) of candidates that can
be selected at each stage (as is natural in the applications dis-
cussed). To tackle the questions above, we propose a simple
model based on a probabilistic formulation in which we as-
sume perfect knowledge of the joint distribution of features at
all stages and of the conditional probability of being a desir-
able candidate conditioned on feature values. Based on this
model, we are then able to make the following contributions.

We introduce two meaningful notions of fairness for the k-
stage setting: local fairness (the selection is fair at each stage)
and global fairness (only the final selection needs to be fair).
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These definitions extend classical group fairness notions for
one-stage decision making (such as demographic parity or
equal opportunity) to the multistage setting and they apply
regardless of when the sensitive feature is observed (at first
stage or later). We show that local fairness implies global
fairness and we propose a linear formulation of the problem
that allows us to compute the selection algorithm that maxi-
mizes precision while satisfying (local or global) fairness and
per-stage budget constraints in expectation. As local fairness
is a more restrictive condition, the precision of the optimal
globally fair algorithm is naturally higher than for the locally
fair algorithm. To capture this gap, we define the price of lo-
cal fairness (PoL F’) as the ratio of the two and prove a simple
upper bound—showing that imposing local fairness cannot be
arbitrarily bad. We also define the notion of violation of lo-
cal fairness (VoL F) to capture how far from locally fair the
optimal globally fair algorithm is.

Finally, we conduct a numerical study in a two-stage set-
ting using three classical datasets. Our results show that the
PoLF can be large (up to 1.6 in some cases). This implies
that in some cases, enforcing local fairness constraints can
reduce the precision by 60% compared to a globally fair al-
gorithm. The VoL F' is also sometimes large (up to 0.6 in our
experiments), which means that imposing only a global fair-
ness constraint can be highly unfair at intermediate stages.
We finally compare what happens when the sensitive feature
is observed at the first stage or at the second stage. We find
that the PoLF' is generally higher when the sensitive feature
is observed at the second stage; while conversely the VoL F
is generally higher when the sensitive feature is observed at
the first stage. These results show that, in most cases, it is
possible to get at least approximate fairness at each stage and
precision close to globally-fair optimal together; either by im-
posing local fairness if the sensitive feature is observed at first
stage (where PoLF is small) or by hiding the sensitive fea-
ture at first stage and using a globally fair algorithm (which
is close to locally fair since VoL F' is then small).

Overall, our results provide intuitive answers towards bet-
ter understanding fairness in multistage selection. To that
end, we intentionally used the simplest model that captures
the main features of a multistage selection problem and how
an optimal selection algorithm is affected by the fairness no-
tion considered and the time at which the sensitive feature
is observed—rather than using a more practical but complex
model. We believe that it is a good abstraction to start with,
but we elaborate further on our model’s limitations in Sec-
tion 6. Due to space constraints, some details (proofs, addi-
tional formalization and experimental results) are omitted and
can be found in the appendices of the full version.

Related Works

As mentioned earlier, there have been many recent works
on defining fairness and constructing algorithms that respect
those definitions for the case of one-stage decision making
[Pedreshi er al., 2008; Dwork et al., 2012; Kleinberg et al.,
2017; Hardt et al., 2016; Zafar et al., 2017; Chouldechova,
2017; Corbett-Davies et al., 2017; Kilbertus et al., 2017;
Lipton et al., 2018]. Most of those works focus on classi-
fication and propose definitions of fairness based on equating
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some combinations of the classification outcome (true pos-
itives, true negatives, etc.). In this work, we focus on two
classical notions of fairness for the one-shot classification
setting: demographic parity (or disparate impact) and equal
opportunity (or disparate mistreatment) [Hardt er al., 2016;
Zafar et al., 2017]. There are also works on fairness in se-
quential learning [Joseph et al., 2016; Jabbari et al., 2017,
Heidari and Krause, 2018; Valera et al., 2018]. The model in
those papers is to sequentially consider each individual and
make decision for them, but there is no notion of refining se-
lection through multiple stages by getting additional features.

Closer to our work, a few papers investigate multistage
classification/selection without fairness considerations [Sena-
tor, 2005; Trapeznikov er al., 2012]. [Schumann et al., 2019]
model the interview decisions in hiring as a multi-armed ban-
dit problem and consider getting extra features at a cost for a
subset of candidates, but they do not have fairness constraints:
they propose an algorithm for their bandit problem and show
that it leads to higher diversity than other algorithms.

To the best of our knowledge, our paper is the first that pro-
poses concrete fairness notions for multistage selection and
algorithms to maximize utility under fairness constraints. The
only other papers discussing fairness in the context of two-
stage or composed decision making are [Bower et al., 2017,
Dwork and Ilvento, 2019], but they do not model additional
features becoming available at the second stage for the subs-
elected individuals, which is the key element of our analysis.

In recent work, [Kleinberg and Raghavan, 2018] consider
the problem of selecting a subset of candidates to interview
and show that under some condition, imposing diversity may
increase utility when there is implicit bias. Their model,
however, assumes no statistical knowledge of the features re-
vealed at second stage, and they only maximize the sum of
values of subsected candidates (effectively reducing to one-
stage). In contrast, we do not consider implicit bias but we
do model the second-stage process. Interestingly, our optimal
solution also introduces diversity at the first stage selection,
but for different reasons.

2 Multistage Selection Framework
2.1 Basic Setting and Notation

Assume that there are n candidates,! each described by d
features, and consider the following k-stage selection pro-
cess. At the first stage, we observe some of the features
Z1,...,xq, of the n candidates where d; < d. We then se-
lect ny of them that “pass” to the second stage. At the second
stage, we observe some extra features of these n; candidates
Tdy+1; - - -, Tdy (d1 < dg) that were not known at the previous
stage. Using the features of both stages, we do a selection,
from the n; that passed the first stage of ny < ny candidates
that pass to the next stage, and so on. At the last stage k, we
observe all d;, = d features of the nj;,_; candidates and select
nj, among those who passed the stage k£ — 1.

We assume that each candidate is endowed with a label
y € {0, 1}, which encodes whether the candidate is “good” or

"'We use the term candidates in a generic sense to refer to ele-
ments of the initial set that can be selected.
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“bad” according to the purpose of the selection, i.e., if y =1
we would like to have this candidate in our final selection, if
y = 0 we would prefer not. The label y is not known until the
end and is therefore not available to make the selection.

We assume that the decision maker knows the joint dis-
tribution of features and the conditional probability that ex-
presses the probability that the candidate is “good” given all
its features. We will denote by p,,.. », = P(z1,...,x4) the
probability to observe a specific realization of features and by
py=t, = P(y =1|azy,...,x4) the probability that a candi-
date is good (y = 1) given its features x; . .. x4.

2.2 Probabilistic Selection and Budget Constraints

In the following, we will consider a class of selection algo-
rithms that perform a probabilistic selection of candidates.
Such an algorithm takes as an input a list of probability values
pllizl 3 for all stages 7 € {1...k} and all possible combi-
nation of features. Then, for each candidate that passed stage
¢ — 1 and has features (z1 ... x4, ), the algorithm selects this
candidate for the next stage with probability p{’" ") | with
the convention that everyone passes stage 0. '

For each stage ¢, we define a binary predictor ¢; that is
equal to 1 if the candidate is selected at stage ¢ (by convention,
9o = 1 for all candidates). We assume that, on average, the
number of candidates that can be selected by the algorithm at
stage ¢ is at most a;n and exactly ayn for the last stage, with
1>a; > >ag Wedenoteby a_j, = (ag, - ,ap_1)T
the selection sizes of the first £—1 stages.

2.3 Performance Metric

We measure the performance of a given selection algo-
rithm in terms of precision. The precision is the fraction of
the selected candidates that indeed were “good” for selection:

= ”ljr}le Positive __ply=1lj=1),
rue Positive+False Positive
where the denominator is the number of selected candidates.
The choice of precision may seem arbitrary but it is in fact
a very natural metric when the size of the final selection is
fixed as in our setting. Indeed, maximizing precision is then
equivalent to maximizing most other meaningful metrics as
formalized in the next proposition.

precision =

Proposition 1. Assume that the selection size P(j = 1) is
fixed (to o). Then maximization of precision is equivalent to
maximization of true positive rate, true negative rate, accu-
racy and fi-score; and to minimization of false positive rate
and false negative rate.

Additionally, there are many realistic k-stage selection pro-
cesses for which precision can be used as a utility metric.

Example 1. A bank decides to whom it will give entrepreneur
loans. The procedure is in two stages: at first, n candidates
fill in an application form, and the first dy features of each
candidate are obtained. Some candidates are then invited for
an interview which brings additional features of those candi-
date that the bank can use for its final decision of selecting
ng candidates. If the profit of giving a loan to a trustworthy
candidate is c, and if a candidate that does not pay a loan
costs ¢y, then the average gain can be written as:

Upank = (cp +¢1) *n2- Ply=1g2 =1) —n2 - ¢.
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In this example, c,, ¢; and selection size no are fixed.
Hence, maximizing precision or utility is equivalent.

3 Fairness Notions in Multistage Setting

In this section, we propose new notions of fairness for the
multistage selection problem. We assume that there exists,
amongst all features that describe candidates, a sensitive fea-
ture x, that indicates whether or not a candidate belongs to a
sensitive group that should not be discriminated against.

The literature has introduced multiple definitions of fair-
ness for the single-stage setting (and it is worth mentioning
that in most of the cases those fairness criteria cannot be sat-
isfied simultaneously [Chouldechova, 2017]). The most rele-
vant notions in the context of selection problems are Demo-
graphic Parity (DP) and Equal Opportunity (EO). We first
recall the definition of these fairness criteria in the traditional
setting of single-stage selection. We then extend them to the
multistage setting by showing that there are essentially two
relevant notions of fairness: local and global fairness.

3.1 Classical Fairness Notions in Single-Stage

Let g be a binary predictor that decides which candidates be-
long to the selection. The first fairness definition, widely
known as demographic parity, states that the predictor ¢ is
fair if it is statistically independent from .

Definition 1 (Demographic Parity, DP). The binary predictor
1y satisfies DP with respect to x if § and x5 are independent:

P@ZH%ZO):P(@:H%:U- (D
DP does not take into account the actual label y. [Hardt ez
al., 2016; Zafar et al., 2017] argue that DP is not the most rel-
evant notion of fairness in cases where we have ground truth
on the quality of the candidates (which is our case since we
assume statistical knowledge of the probabilities of labels).
In such cases, one might want to be fair among the candi-
dates that are worth selecting, a metric called Equal Opportu-
nity [Hardt et al., 2016] (an equivalent notion called disparate
mistreatment is proposed in [Zafar er al., 2017]):

Definition 2 (Equal Opportunity, EO [Hardt et al., 2016)).
The binary predictor 3 satisfies EO with respect to x5 if §
and x5 are independent given that y = 1:

Pg=1lly=1lz,=0)=Plg=1y=1zs=1). (2)
In the remainder, we systematically consider DP and EO.

3.2 Local and Global Fairness in Multistage

Existing fairness notions apply to single-stage selection,
where we have only one binary predictor 3. In the case of k-
stage selection, we have k binary predictors § = (g1, . . ., Jk)-
In this section, we develop different notions of fairness that
extend existing notions to the k-stage selection setting.

We propose three definitions that we believe correspond
to three reasonable notions of fairness. The high-level idea
of each definition is depicted on Figure 1. For the sake of
brevity of exposition, we present the formal definitions for
the demographic parity criterion, the translation to EO (or to
any other fairness notion) being straightforward.
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Figure 1: Illustration of the different fairness definitions.

The first fairness notion, local fairness 1 (LF1), imposes
that the selection be fair at every stage with respect to the
set of candidates that reached that stage. In other words the
selection of each stage 7 is fair with respect to the population
that “passed” stage ¢+ — 1.

Definition 3 (Local Fairness 1, LF1). A k-stage selection al-
gorithm satisfies LF1 if (for the case of DP), Vi € {1, -+ ,k}:
P(§i=1l§i-1 = 1,2,=0) = P(§; =1|§i-1=1,z5=1).

The second fairness notion that we propose, local fairness

2 (LF2), prescribes that the selection should be fair at each
stage with respect to the initial set of candidates.

Definition 4 (Local Fairness 2, LF2). A k-stage selection al-
gorithm satisfies LF2 if (for the case of DP), Vi € {1, -+ ,k}:
P(Qz = 1|ws = O) = P(gz = 1|$s = 1)'

In the last definition, global fairness (GF), we allow the
predictor g; to be unfair at each stage before the last, but we

require the final decision ¢, to be fair with respect to the ini-
tial set of candidates.

Definition 5 (Global Fairness, GF). A k-stage selection
algorithm satisfies GF if (for the case of DP):
P(yk = 1|.Z‘5 = 0) = P(y/c = 1|J}5 = 1)'
Note that the above definitions can be adapted to EO by
conditioning on y = 1 in all formulas.

3.3 Equivalence between LF1 and LF2

In the following proposition, we show that both notions of
local fairness, LF1 and LF2 are equivalent. Therefore in the
rest of the paper, we will simply name a multistage selection
algorithm that satisfies LF1 (and thus LF2) as a being locally
fair (LF). An algorithm satisfying the global fairness defini-
tion will be called globally fair (GF).

Proposition 2 (Relations between fairness notions). For both
DP and EO:

1. A selection algorithm satisfies LF1 if and only if it satis-
fies LF2. We call such an algorithm locally fair (LF).

2. A locally fair selection algorithm is globally fair (GF).

4 Utility Maximization as a Linear Program

Our goal is to find the binary predictors (gq, ..., §x) corre-
sponding to stages from 1 to k, respectively, that maximize
precision while respecting budget and fairness constraints:

max Py =1y, =1)

155Uk 3
P(g; =1) < ay, i<k-1 3)
Pl =1) = oy,

](yla"'ayk) 07 ]St
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where functions f;(-) of the binary predictors correspond to
the fairness constraints we impose. For instance, for a glob-
ally fair algorithm (DP) we have only one fairness constraint:
f@, - 9%) = PGk = 1|lzs = 0) — P(Jx = l]zs = 1).
Using the assumption that the final stage size constraint is
P(gr = 1) = i we can write the precision as follows:

P(y=1lgr=1)= o Zp L eaDur. dep(J“ b,

Using the notation introduced in Section 2.2, the probability
P(g; = 1) that candidate passes stage @ is

P(j; =1) Z Dy Hp(JlJ 1) (5)
L

Hence, the constraints on the selectlon size P(y; = 1) < oy
fori < kand P(gr = 1) = ay, can be expressed using (5).

The fairness constraints can be developed in the same man-
ner, e.g., for the globally fair case (DP):

f@, - 9k) = PGk = 1|zs = 0) = P(r = l|zs = 1),

where Va € {0, 1},
1
%H] 1pﬁ(vj1|] ﬂid) pml ZLs=a...Tq

T;,i#S

- (6)

Z;é pxl...zsza...xd
T;,1FS

From (4), we see that the objective is not linear in the vari-
(J|J

P(gp=1lzs=a)=

ables py," .« d) due to the product of probabilities. Similarly,

we observe from (5) and (6) that the constraints are also not
linear in these variables. However, we can show that by us-

ing the change of variables p(”Z 1) = H; L p;{‘j xd) , it can

be made linear. This shows that 1t is possible to compute the

variables p{7 T?, that maximize precision (3) using a linear

program (LP) (see details in Appendix A of the full version),
which is key to applicability. It should be noted, however, that
the number of variables in (LP) grows exponentially with the
number of features.

To distinguish between the different notions of fairness, we
will denote by Uj p(a_, ay) and U p(c_g, o) the value
of the problem (LP)—i.e., the maximum utility—when the
fairness constraints correspond to local and global fairness,
respectively. Similarly, we will denote by U, (ac_g, avy;) the
optimal precision value when no fairness constraint are im-
posed (we call it the unfair case).

4.1 Solution Properties wrt Budget Constraints

The selection sizes may be related to some budget or to some
physical resources of our problem and are crucial parameters.
As we show in the next proposition, the optimal utility val-
ues are monotonic and concave as functions of budget sizes
aig,...,a—1. This property can be useful for budget opti-
mization and is illustrated as well on Figure 2.

Proposition 3 (Monotonicity and concavity). For U* €
{U}p, ULp, Uz, } and any fairness constraints that can be

expressed as linear homogeneous equations® (such as DP and
EO), we have that U* (oc_y, o) is

“See details in Lemma 1 in Appendix A of the full version.
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1. non-decreasing and concave with respect to o_j;;
2. non-increasing with respect to ay.

Note that U* can be concave or convex or none of the two
with respect to a;, depending on the problem’s parameters.

4.2 The Price of Local Fairness

We are now ready to define our central notion—the price of
local fairness—that represents the price to pay for being fair
at intermediate stages compared to a globally fair solution.

Definition 6 (Price of Local Fairness, PoLF'). Let
UéF (a —k> ak)
zF (a*kv ak)

It should be clear that the locally fair algorithm is more
constrained than the globally fair. Thus, we have:

PoLF(a_g,ap) =

Urpla_p,ar) SUGp(ag, ar) < U, (g, o).

This implies that the values of PoLF (a_g, o) are always
larger than or equal to 1. Using only the final selection size
a, it is also possible to compute an upper bound as follows.

Proposition 4 (PoLF bound). For all (a_y, av,), we have:
1 1
< < mi —_— = | .
1 < PoLF(a_j, ) < min (ak, Ply = 1)>

For instance, if the final stage selection size is o, = 0.3 (as
in our numerical examples), the globally fair algorithm can
outperform the locally fair one by a factor at most 3.33. While
this bound is probably loose, we will see in our numerical
example that the PoLF' can be as large as 1.6 on real data.

5 Empirical Analysis

In this section we implement® the optimization algorithms in
order to capture tendencies on real datasets and to provide
general insights. We consider the two-stage selection process,
since it is the most easily interpretable. Thus, av_;, = 1 and
ar = ag. In our experiments we use three datasets: Adult
[Dua and Graff, 2017], COMPAS [Larson et al., 2016] and
German Credit Data [Dua and Graff, 2017]. We adapt
these datasets to our two stage fair selection problem by leav-
ing 6 features, binarizing them (see details in Appendix D of
the full version) and artificially separating in two stages. We
estimate the statistics p,, .., and pgf}_“ from data. We then
use a linear solver for the linear program (LP) that gives us
the optimal utility U* (a1, a2) for the fair and unfair cases.

5.1 Analysis of the Price of Local Fairness

‘We consider three different scenarios: i) the sensitive attribute
x4 is observed at the first stage; ii) at the second stage; iii)
never used in the selection process. We distinguish these three
cases since it could happen that the use of the sensitive at-
tribute =4 in decision making is forbidden at some stages or
even at all (by law or other conventions). Our aim is to com-
pare how the price of local fairness behaves in every case.
Let us start with a simple example. We leave 5 features
from the Adult dataset: sex, age, education, relationship

3All codes are available at https://github.com/vitaly-emelianov/
multistage_fairness/

(sex, age, education)
sex (sensitive) at first stage

(age, education)
sex (sensitive) at second stage

0.5 0.5
(]
1
0.4 0.4 l'
I
I/
:'/./ —— unfair
0.3 0.3 —--~ globally fair
—-= locally fair
0.3 0.5 0.7 1.0 0.3 0.5 0.7 1.0
(o1 a1

Figure 2: Utility U™ (a1, a2 = 0.3) for Adult dataset (DP).

and native country and consider the attribute sex as sensitive.
Figure 2 then shows the values of U}, o 1py (01, 2) as
a function of «; for fixed oy = 0.3 when using the features
displayed on top of each subfigure at first stage and the rest at
second stage. We make two important observations from this
figure. First, the value of PoLF' can be significant. From Fig-
ure 2-(right), we see that for a; ~ 0.33, the value of PoLF'is
about 1.3, meaning that the globally fair algorithm achieves
30% larger value of precision than the locally fair. Second,
the gap between LF and GF algorithms is significantly larger
when the sensitive attribute x; is observed at the second stage.

To show that this behavior is significant we calculate the
values of Ut . 1y (a1, a2) for every possible combina-

tion X = {x1,...,2z5} of 5 features out of 6 as decision
variables (x1,x2 at first stage and x3, x4 at second stage),
with one sensitive attribute x4 = x5 that can be observed at
the first stage or at the second stage or not observed at all,
and for every possible (discretized) value of a; > 9. Due
to space constraints we present our results only for the DP
definition of fairness; we emphasize that the observations are
robust among the three datasets and the two fairness notions
(DP and EO) (see Appendix C for additional results). Fig-
ure 3 shows the empirical cumulative distribution functions
Fpo () of the values of PoLF obtained. We observe that
the price of local fairness is significantly lower when the sen-
sitive attribute x4 is revealed at the first stage compared to the
case where it is revealed later. This is consistent with the ob-
servation made on Figure 2. A possible interpretation is that
the LF algorithm has to make a conservative decision at the
first stage and therefore cannot perform well compared to the
GF algorithm that is able to compensate (when the sensitive
feature x4 is observed) for the unfair decisions that have been
made at the first stage. It is worth mentioning that we have
the same observation for a three-stage algorithm: the later we
reveal the sensitive attribute, the higher the values of PoLF
we obtain (see Appendix C.4).

5.2 Violation of Local Fairness

By definition, a globally fair algorithm can violate fair-
ness constraints at intermediate stages. For a given budget
constraints aq, ag, we define the violation of local fairness
(VoLF) as the absolute value of the fairness constraint vio-
lation at the first stage for the optimal globally fair algorithm.
For instance, for DP, this quantity equals:

VoLF(ay,as) = |P(g1 = l|zs = 0) — P(§1 = 1|zs = 1)].
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Figure 3: Empirical CDFs of PoLF for all datasets (DP, c.a = 0.3).
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Figure 4: Empirical CDFs of VoL F for all datasets (DP, a.z = 0.3).

Figure 4 shows the empirical cumulative distribution func-
tion of violation of fairness FVOL r(z) for every value of
oy € [ag; 1] and for every feature combination. We observe
that the later the sensitive feature x s is revealed (or even not
revealed), the more fair at intermediate stages the globally
fair algorithm is. One possible explanation is that an algo-
rithm that cannot observe the sensitive feature z, at the first
stage has to be more “cautious” at every stage to be able to
satisfy global fairness since the exact value of sensitive at-
tribute x, is not available. This observation is again robust
among different datasets and notions of fairness.

Finally, on Figure 5 we represent the joint distribution
of PoLF and VoLF. As mentioned before, the globally
fair algorithm is more unfair at the intermediate stages when
the sensitive feature x5 is observed from the beginning (left
panel), however the price of local fairness we pay in this case
is the smallest one. When the sensitive feature x, is observed
at the second stage (middle panel) the globally fair algorithm
is more locally fair compared to the previous case, but the
value of PoLF' is way larger. Finally, when x, is never ob-
served (right panel) the globally fair algorithm is the “most
locally fair” among all three settings. We finally observe that,
while most points have either PoLF' small (i.e., using a LF
algorithm does not lose much) or VoL F small (i.e., the GF al-
gorithm is almost locally fair), there exist some points—when
the sensitive feature is observed at the second stage—where
both PoLF and VoLF are large; i.e., imposing local fairness
even approximately comes at a significant cost.

6 Conclusion

In this work we tackle the problem of multistage selection
and the fairness issues it entails. We propose a stylized model
based on a probabilistic formulation of the k-stage selection
problem with constraints on the number of selected individ-
uals at each stage that should hold in expectation. We intro-
duce two different notions of fairness for the multistage set-
ting: local (under two equivalent variants) and global fairness.
Thanks to this framework, we show that maximizing preci-

x4 at first stage  x, at second stage x5 unobserved

0.6 0.6 0.6

0.4F 0.4 0.4

02f 0.2 0.2

9% 12 12 16 %% 12 12 16 %Yo 12 14 16
Figure 5: VoLF (y-axis) vs PoLF' (z-axis) for Adult dataset (DP,
az = 0.3).

sion under budget and fairness constraints can be done via
linear programming, which enables for efficient computation
as well as theoretical investigation. In particular, we analyze
theoretically and empirically how the utility of locally and
globally fair algorithms vary with selection budgets, and we
find that globally fair algorithms can lead to non-negligible
performance increases compared to locally fair ones.

One of the main findings of our work is that the stage at
which the sensitive attribute is revealed greatly affects the
difference between the performance of locally and globally
fair algorithms: hiding the sensitive feature at early stages
tends to make globally fair algorithm more fair at interme-
diate stages. While locally fair algorithms may be desirable,
our results show that local fairness does not come for free.
They also show that if a decision maker would like to encour-
age locally fair selection algorithms, there are essentially two
choices: either hide the sensitive feature at the first stage or
impose by rules the first stage to be fair.

Our model allows us to provide elegant insights into the
fairness questions related to multistage selection, yet it does a
number of simplifying assumptions that naturally restrict its
direct applicability. First, our model ignores the issue that the
selection probability at a stage depends on which candidates
got selected at the previous stages; i.e., it implicitly makes the
approximation that at each stage the number of candidates se-
lected for each feature combination is equal to its expectation.
In Appendix E of the full version, we show that this approx-
imation becomes exact as n tends to infinity. Second, we as-
sume perfect statistical knowledge of the joint distribution of
features and label values, without bias. Third, we consider
only discrete features and use a non-compact representation
of the selection probabilities—this allows us to solve the ex-
act selection problem by using an LP formulation. Relaxing
these assumptions, in particular using a more compact repre-
sentation of the selection algorithm (at the cost of a loss of
precision) is an interesting direction of future work.
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