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Abstract. Pricing contingent claims on power presents numerous chal-

lenges due to (1) the nonlinearity of power price processes, and (2) time-

dependent variations in prices. We propose and implement a model in which

the spot price of power is a function of two state variables: demand (load or

temperature) and fuel price. In this model, any power derivative price must

satisfy a PDE with boundary conditions that reflect capacity limits and the

non-linear relation between load and the spot price of power. Moreover, since

power is non-storable and demand is not a traded asset, the power derivative

price embeds a market price of risk. Using inverse problem techniques and

power forward prices from the PJM market, we solve for this market price of

risk function. During 1999-2001, the upward bias in the forward price was

as large as $50/MWh for some days in July. By 2005, the largest estimated

upward bias had fallen to $19/MWh. These large biases are plausibly due

to the extreme right skewness of power prices; this induces left skewness in

the payoff to short forward positions, and a large risk premium is required to

induce traders to sell power forwards. This risk premium suggests that the

power market is not fully integrated with the broader financial markets.

2



1 Introduction

Pricing contingent claims on power presents numerous difficulties. The price

process for power is highly non-standard, and is not well captured by price

process models commonly employed to price interest rate or equity deriva-

tives. Electricity “spot” prices exhibit extreme non-linearities. The volatility

of power prices displays extreme variations over relatively short time periods.

Furthermore, power prices exhibit substantial mean reversion and seasonal-

ity. No reduced form, low-dimension price process model can readily capture

these features. Finally, and perhaps most important, the non-storability of

power creates non-hedgeable risks. Thus, preference free pricing in the style

of Black-Scholes is not possible for power.

To address these problems, this article presents an equilibrium model to

price power contingent claims. This model utilizes an underlying demand

variable a fuel price as the state variables. The demand variable can be

output (referred to as “load”) or temperature. The price of power at the

maturity of the contingent claim is related to the state variables through a

terminal pricing function. This pricing function establishes the payoff of the

contingent claim, and thus provides one of the boundary conditions required

to value it. Given a specification of the dynamics of the state variables and

the relevant boundary conditions, conventional PDE solution methods can

be used to value the contingent claim.

Since the risks associated with the demand state variable are not hedge-

able, any valuation depends on the market price of risk associated with this

variable. We allow the market price of risk to be a function of load. Given
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this function, it is relatively straightforward to solve the “direct” problem of

valuing power forwards and options. However, since the market price of risk

function is not known, it must be inferred from market prices (analogously

to determining an implied volatility or volatility surface). We use inverse

problem methods to infer this function from observed forward prices. This

solution for the market price of risk function can then be used to price any

other power contingent claim not used to calibrate the risk price.

We implement this methodology to value power forward prices in the

Pennsylvania-New Jersey-Maryland (“PJM”) market. The results of this

analysis are striking. First, given terminal pricing function derived from

either generators’ bids into PJM or econometric estimates, we find that the

market price of risk for delivery during the summers of 1999-2005 is large,

and represents a substantial fraction of the quoted forward price of power.

In particular, this risk premium was as large as $50/MWh for delivery in

July 2000 (representing as much as 50 percent of the forward price), and

remained as high as $19/MWh (or nearly 30 percent of the forward price)

for delivery in July 2005. Second, this market price of risk function exhibits

large seasonalities. The market price of risk peaks in July and August, and

is substantially smaller during the remainder of the year.1

These results imply that the market price of risk function is key to pricing

power derivatives. Demand and cost fundamentals influence forward and

option prices, but the market price of risk is quantitatively very important

1Indeed, in some years there is downward bias in forward prices for deliveries during
shoulder months. Bessembinder-Lemon (2002) present a model in which prices can be
upward biased for deliveries in high demand periods and downward biased in low demand
periods.
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in determining the forward price of power, at least in the current immature

state of the wholesale power market. Ignoring this risk premium will have

serious effects when attempting to value power contingent claims, including

investments in power generation and transmission capacity.

In addition to pricing power derivatives, the approach advanced in this

article can be readily extended to price claims with payoffs that depend on

power volume (i.e., load sensitive claims) and weather. Indeed, the equilib-

rium approach provides a natural way of valuing and hedging power price,

load, and weather sensitive claims in single unified framework. More tradi-

tional approaches to derivative valuation cannot readily do so.

The remainder of this article is organized as follows. Section 2 presents an

equilibrium model of power derivatives pricing. We implement this model for

the PJM market; an appendix briefly describes the operation of this market.

Section 3 presents a method for estimating the seasonally time-varying mean

of the demand process required to solve the valuation PDE, and implements it

using PJM data. Section 4 analyzes the methods for estimating the terminal

pricing functions required to estimate boundary conditions used in solution of

the PDE. Section 5 employs inverse methods to solve for the market price of

risk function and presents evidence on the size of the market price of risk for

PJM. This section also discusses the implications of these findings. Section 6

shows how to integrate valuation of weather and power derivatives. Section

7 summarizes the article.
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2 An Equilibrium Pricing Approach

The traditional approach in derivatives pricing is to write down a stochastic

process for the price of the asset or commodity underlying the contingent

claim. This approach poses difficulties in the power market because of the

extreme non-linearities and seasonalities in the price of power. These features

make it impractical to write down a “reduced form” power price process that

is tractible and which captures the salient features of power price dynamics.

Figure 1 depicts hourly power prices for the PJM market for 2001-2003.

An examination of this figure illustrates the characteristics that any power

price dynamics model must solve. Linear diffusion models of the type under-

lying the Black-Scholes model clearly cannot capture the behavior depicted

in Figure 1; there is no tendency of prices to wander as a traditional random

walk model implies. Prices tend to vibrate around a particular level (ap-

proximately $20 per megawatt hour) but sometimes jump upwards, at times

reaching levels of $1000/MWh.

To address the inherent non-linearities in power prices illustrated in Fig-

ure 1, some researchers have proposed models that include a jump component

in power prices. This presents other difficulties. For example, a simple jump

model like that proposed by Merton (1973) is inadequate because in that

model the effect of a jump is permanent, whereas Figure 1 shows that jumps

in electricity prices reverse themselves rapidly.

Moreover, the traditional jump model implies that prices can either jump

up or down, whereas in electricity markets prices jump up and then decline

soon after. Barz and Johnson (1999) incorporate mean reversion and expo-
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nentially distributed (and hence positive) jumps to address these difficulties.

However, this model presumes that big shocks to power prices damp out

at the same rate as small price moves. This is implausible in some power

markets. Geman and Roncoroni (2006) present a model that eases this con-

straint, but in which, conditional on the price spiking upward beyond a

threshold level, (a) the magnitude of the succeeding down jump is indepen-

dent of the magnitude of the preceding up jump, and (b) the next jump is

necessarily a down jump (i.e., successive up jumps are precluded once the

price breaches the threshold). Moreover, in this model the intensity of the

jump process does not depend on whether a jump has recently occurred.

These are all problematic features. Barone-Adesi and Gigli (2002) address

the problem through a regime shifting model. However, this model does not

permit successive up jumps, and constraining down jumps to follow up jumps

makes the model non-Markovian. Villaplana (2004) eases the constraint by

specifying a price process that is the sum of two processes, one continuous,

the other with jumps, that exhibit different speeds of mean reversion. The

resulting price process is non-Markovian, which makes it difficult to use for

contingent claim valuation.

Estimation of jump-type models also poses difficulties. In particular, a

reasonable jump model should allow for seasonality in prices and a jump

intensity and magnitude that are also seasonal with large jumps more likely

when demand is high than when demand is low. Given the nature of demand

in the US, this implies that large jumps are most likely to occur during the

summer months. Moreover, changes in capacity and demand growth will

affect the jump intensity and magnitude. Estimating such a model on the
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limited time series data available presents extreme challenges. Geman and

Roncoroni (2006) allows such a feature, but most other models do not; fur-

thermore, due to the computational intensity of the problem, even Geman-

Roncoroni must specify the parameters of the non-homogeneous jump inten-

sity function based on a priori considerations instead estimating it from the

data. Fitting regime shifting models is also problematic, especially if they

are non-Markovian as is necessary to make them a realistic characterization

of power prices (Geman, 2005).

Even if jump models can accurately characterize the behavior of electricity

prices under the “true measure,” they pose acute difficulties as the basis for

the valuation of power contingent claims. Jump risk is not hedgeable, and

hence the power market is incomplete.2 A realistic jump model that allows

for multiple jump magnitudes (and preferably a continuum of jump sizes)

requires multiple market risk prices for valuation purposes; a continuum of

jump sizes necessitates a continuum of risk price functions to determine the

equivalent measure that is relevant for valuation purposes. Moreover, these

functions may be time varying. The high dimensionality of the resulting

valuation problem vastly complicates the pricing of power contingent claims.

Indeed, the more sophisticated the spot price model (with Geman-Roncoroni

being the richest), the more complicated the task of determining the market

price of risk functions.

There are also difficulties in applying jump models to the valuation of

volumetric sensitive claims. For example, a utility that wants to hedge its

2The market would be incomplete even if power prices were continuous (as is possible
in the model presented below) because power is non-storable. Non-storability makes it
impossible to hold a hedging “position” in spot power.
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revenues must model both the price process and the volume process. There

must be some linkage between these two processes. Grafting a volume pro-

cess to an already complex price process is problematic, especially when one

recognizes that there is likely to be a complex pattern of correlation between

load, jump intensity, and jump magnitude.

Relatedly, the relation between fuel prices and power prices is of particular

interest to practitioners. For instance, the “spark spread” between power and

fuel prices determines the profitability of operating a power plant. The rela-

tion between fuel and power prices is governed by the process of transforming

fuel inputs into power outputs. This process can generate state-dependent

correlations between input and output prices that is very difficult to capture

using exogenously specified power and fuel price processes.

To address these limitations of traditional derivative pricing approaches

in power market valuation, we propose instead an approach based on the

economics of power production and consumption. In this approach, power

prices are a function of two state variables. These two state variables cap-

ture the major drivers of electricity prices, are readily observed due to the

transparency of fundamentals in the power market, and result in a model of

sufficiently low dimension to be tractible.

The first state variable is a demand variable. To operationalize it, we

employ two alternative definitions. The first measure of the demand state

is load. The second is temperature. Since load and temperature are so

closely related, these interpretations are essentially equivalent. To simplify

the discussion, in what follows we use load as the demand variable. Later on

we discuss how use of weather as the state variable permits unified valuation
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and hedging of power price, power volume, and weather sensitive claims.

An analysis of the dynamics of load from many markets reveals that

this variable is very well behaved. Load is seasonal, with peaks in the

summer and winter for Eastern, Midwestern, and Southern power markets.

Moreover, load for each of the various National Electricity Reliability Coun-

cil (“NERC”) regions is nearly homoskedastic. There is little evidence of

GARCH-type behavior in load. Finally, load exhibits strong mean reversion.

That is, deviations of load from its seasonally-varying mean tend to reverse

fairly rapidly.

We treat load as a controlled process. Defining load as qt, note that

qt ≤ X, where X is physical capacity of the generating and transmission

system.3 If load exceeds this system capacity, the system may fail, impos-

ing substantial costs on power users. The operators of electric power systems

(such as the independent system operator in the PJM region we discuss later)

monitor load and intervene to reduce power usage when load approaches lev-

els that threaten the physical reliability of the system.4 Under certain techni-

3This characterization implicitly assumes that physical capacity is constant. Investment
in new capacity, planned maintenance, and random generation and transmission outages
cause variations in capacity. This framework is readily adapted to address this issue by
interpreting qt as capacity utilization and setting X = 1. Capacity utilization can vary in
response to changes in load and changes in capacity. This approach incorporates the effect
of outages, demand changes, and secular capacity growth on prices. The only obstacle
to implementation of this approach is that data on capacity availability is not readily
accessible. In ongoing research we are investigating treating capacity as a latent process,
and using Bayesian econometric techniques to extract information about the capacity
process from observed real time prices and load. The analysis of price-load relations in
section 3 implies that load variations explain most peak load price variations in PJM
prices, which suggests that at least over the short run ignoring capacity variation in this
market is not critical. This may not be true for all markets.

4See various PJM operating manuals available at www.pjm.com for information on
emergency procedures in PJM.
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cal conditions (which are assumed to hold herein), the arguments of Harrison

and Taksar (1983) imply that under these circumstances the controlled load

process will be a reflected Brownian motion.5 Formally, the load will solve

the following SDE:

dqt = αq(qt, t)qtdt + σqqtdut − dLu
t (1)

where Lu
t is the so-called “local time” of the load on the capacity boundary.6

The process Lu
t is increasing (i.e., dLu

t > 0) if and only if qt = X, with

dLt = 0 otherwise. That is, qt is reflected at X.

The dependence of the drift term αq(qt, t) on calendar time t reflects the

fact that output drift varies systematically both seasonally and within the

day. Moreover, the dependence of the drift on qt allows for mean reversion.

One specification that captures these features is:

αq(qt, t) = μ(t) + k[ln qt − θq(t)] (2)

In this expression, ln qt reverts to a time-varying mean θq(t). θq(t) can be

specified as a sum of sine terms to reflect seasonal, predictable variations in

electricity output. Alternatively, it can be represented as a function of calen-

dar time fitted using non-parametric econometric techniques. The parameter

k ≤ 0 measures the speed of mean reversion; the larger |k|, the more rapid

the reversal of load shocks. The function μ(t) = dθq(t)/dt represents the

portion of load drift that depends only on time (particularly time of day).

5The conditions are (1) there exists a “penalty function” h(q) that is convex in some
interval, but is infinite outside the interval, and (2) in the absence of any control, q would
evolve as the solution to dq = μdt+σdW . The penalty function can be interpreted as the
cost associated with large loads. If q > X, the system may fail, resulting in huge costs.
We thank Heber Farnsworth for making us aware of the Harrison-Taksar approach.

6This is an example of a Skorokhod Equation.
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For instance, given ln qt − θq(t), load tends to rise from around 3AM to 5PM

and then fall from 5PM to 3AM on summer days.

The load volatility σq in (1) is represented as a constant, but it can

depend on qt and t. There is some empirical evidence of slight seasonality in

the variance of qt.

The second state variable is a fuel price. For some regions of the country,

natural gas is the marginal fuel. In other regions, coal is the marginal fuel.

In some regions, natural gas is the marginal fuel sometimes and coal is the

marginal fuel at others. We abstract from these complications and specify

the process for the marginal fuel price. The process for the forward price of

the marginal fuel is:

dft,T

ft,T
= αf (ft,T , t) + σf(ft,T , t)dzt (3)

where ft,T is the price of fuel for delivery on date T as of t and dz is a

standard Brownian motion. Note that fT,T is the spot price of fuel on date

T .

The processes {qt, ft,T , t ≥ 0} solve (1) and (3) under the “true” prob-

ability measure P . To price power contingent claims, we need to find an

equivalent measure Q under which deflated prices for claims with payoffs

that depend on qt and ft,T are martingales. Since P and Q must share sets

of measure 0, qt must reflect at X under Q as it does under P . Therefore,

under Q, qt solves the SDE:

dqt = [αq(qt, t)− σqλ(qt, t)]qtdt + σqqtdu∗
t − dLu

t

In this expression λ(qt, t) is the market price of risk function and du∗
t is a

Q martingale. Since fuel is a traded asset, under the equivalent measure
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dft,T/ft,T = σfdz∗
t , where dz∗

t is a Q martingale. The change in the drift

functions is due to the change in measure.

Define the discount factor Yt = exp(− ∫ t
0 rsds) where rs is the (assumed

deterministic) interest rate at time s. (Later we assume that the interest rate

is a constant r.) Under Q, the evolution of a deflated power price contingent

claim C is:

YtCt = Y0C0 +
∫ t

0
CsdYs +

∫ t

0
YsdCs

In this expression, Cs indicates the value of the derivative at time s and Ys

denotes the value of one dollar received at time s as of time 0. Using Ito’s

lemma, this can be rewritten as:

YtCt = C0 +
∫ t

0
Ys(AC +

∂C

∂s
− rsCs)ds+

∫ t

0
[
∂C

∂q
du∗

s +
∂C

∂f
dz∗

s ]−
∫ t

0
Ys

∂C

∂q
dLu

s

where A is an operator such that:

AC =
∂C

∂qt
[αq(qt, t) − σqλ(qt, t)]qt

+ .5
∂2C

∂q2
t

σ2
qq

2
t + .5

∂2C

∂f2
t,T

σ2
ff

2
t,T +

∂2C

∂qt∂ft,T
σfσqρqfqtft,T . (4)

For the deflated price of the power contingent claim to be a Q martingale,

it must be the case that:

E[
∫ t

0
Ys(AC +

∂C

∂s
− rsCs)ds] = 0

and

E[
∫ t

0
Ys

∂C

∂q
dLu

s ] = 0

for all t. Since (1) Yt > 0, and (2) dLu
t > 0 only when qt = X, with a constant

interest rate r, we can rewrite these conditions as:

AC +
∂C

∂t
− rC = 0 (5)
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and
∂C

∂q
= 0 when qt = X (6)

It is obvious that (5) and (6) are sufficient to ensure that C is a martingale

under Q; it is possible to show that these conditions are necessary as well.

Expression (5) can be rewritten as the fundamental valuation PDE:7

rC =
∂C

∂t
+

∂C

∂qt
[αq(qt, t)− σqλ(qt, t)]qt

+ .5
∂2C

∂q2
t

σ2
qq

2
t + .5

∂2C

∂f2
t,T

σ2
ff

2
t,T +

∂2C

∂qt∂ft,T
σfσqρqfqtft,T (7)

For a forward contract, after changing the time variable to τ = T − t, the

relevant PDE is:

∂Ft,T

∂τ
=

∂Ft,T

∂qt
[αq(qt, t) − σqλ(qt, t)]qt

+ .5
∂2

t,T

∂q2
t

q2
t σ

2
q + .5

∂2
t,T

∂f2
t,T

σ2
ff

2
t,T +

∂2
t,T

∂qt∂ft,T
qtft,T σfσqρqf (8)

where Ft,T is the price at t for delivery of one unit of power at T > t.

Expression (6) is a boundary condition of the Neumann type. This bound-

ary condition is due to the reflecting barrier that is inherent in the physical

capacity constraints in the power market.8 The condition has an intuitive

interpretation. If load is at the upper boundary, it will fall almost certainly.

If the derivative of the contingent claim with respect to load is non-zero at

the boundary, arbitrage is possible. For instance, if the partial derivative

is positive, selling the contingent claim cannot generate a loss and almost

certainly generates a profit.

7Through a change of variables (to natural logarithms of the state variables) this equa-
tion can be transformed to one with constant coefficients on the second-order terms.

8If there is a lower bound on load (a minimum load constraint) there exists another
local time process and another Neumann-type boundary condition.
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In (7)-(8), there is a market price of risk function λ(qt, t). The valuation

PDE must contain a market price of risk because load is not a traded claim

and hence load risk is not hedgeable. Accurate valuation of a power contin-

gent claim therefore depends on accurate specification and estimation of the

λ(qt, t) function.

Valuation of a power contingent claim (“PCC”) also requires specification

of initial boundary conditions that link the state variables (load and the fuel

price) and power prices at the expiration of a PCC. In most cases, the buyer

of a PCC obtains the obligation to purchase a fixed amount of power (e.g.,

25 megawatts) over some period, such as every peak hour of a particular

business day or every peak hour during a particular month. Similarly, the

seller of a PCC is obligated to deliver a fixed amount of power over some

time period. Therefore, the payoff to a forward contract at expiration is:

F (0) =
∫ t′′

t′
δ(s)P ∗(q(s), f(s), s)ds (9)

where F is the forward price, q(s) is load at time s, f(s) is the fuel spot price

at s, δ(s) is a function that equals 1 if the forward contract requires delivery

of power at s and 0 otherwise, P ∗(.) is a function that gives the instantaneous

price of power as a function of load and fuel price, t′ is the beginning of the

delivery period under the forward contract, and t′′ is the end of the delivery

period. In words (9) states that the payoff to the forward equals the value

of the power, measured by the spot price, received over the delivery period.

For instance, if the forward is a monthly forward contract for the delivery of

1 megawatt of power during each peak hour in the month, δ(s) will equal 1

if s falls between 6 AM and 10 PM on a weekday during that month, and
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will equal 0 otherwise.

Economic considerations suggest that the price function P ∗(.) is increas-

ing and convex in q; section 4 provides evidence in support of this conjecture.

As load increases, producers must employ progressively less efficient gener-

ating units to service it. The spot price function should also be a function

of calendar time, with higher prices (given load) in spring and fall months

than in summer months due to the fact that utilities schedule their routine

maintenance to coincide with the seasonal demand “shoulders.”

This pricing function determines the dynamics of the instantaneous power

price. Using Ito’s lemma,

dP ∗ = Φ(qt, ft,f , t)dt + P ∗
q σqqtdut + P ∗

f σfft,fdzt (10)

with

Φ(qt, ft,f , t) = P ∗
q αq(qt, t)qt + P ∗

f αf (ft,t, t)ft,t

+ .5P ∗
qqσ

2
qq

2
t + .5P ∗

ffσ
2
ff

2
t,f + P ∗

qfqtft,fσqσfρqf

where ρqf is the correlation between qt and ft,T ; this correlation may depend

on qt, ft,T , and t.9 The volatility of the instantaneous price in this setup is

time varying because P ∗ is a convex, increasing function of q. Specifically,

the variance is

σ2
P (qt, ft,t, t) = P ∗2

q σ2
qq

2
t + P ∗2

f f2
t,tσ

2
f + 2P ∗

f P ∗
q qtft,tρqfσqσf . (11)

9The spot price process is continuous if P ∗ has continuous first derivatives. Nonetheless,
the market is still incomplete since qt is not traded. Moreover, when output nears capacity
and hence P ∗

q becomes very large, the price can appear to exhibit large jumps even if prices
are observed at high frequency (e.g., hourly). The spot price process is also likely to be
dis-continuous due to discontinuities in generators’ bids to sell power. These bids are step
functions.
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Since P ∗
q is increasing with q, demand shocks have a bigger impact on the

instantaneous price when load is high (i.e., demand is near capacity) than

when it is low. In particular, if the price function becomes nearly verti-

cal when demand approaches capacity, small movements in load can cause

extreme movements in the instantaneous price. Moreover, given the speed

of load mean reversion, the convexity of P ∗ implies that the speed of price

mean reversion is state dependent; prices revert more rapidly when load (and

prices) are high than when they are low. These non-linearities are a funda-

mental feature of electricity price dynamics, and explain many salient and

well-known features of power prices, most notably the “spikes” in prices when

demand approaches capacity and the variability of power price volatility.

The model also implies that the correlation between the fuel price and

the power price will vary. Assuming that ρqf = 0 (which is approximately

correct in most markets), then

corr(dP ∗ , df) =
P ∗

f σfft,T√
P ∗2

q q2
t σ2

q + P ∗2
f f2

t,Tσ2
f

Note that when load is small, P ∗
q ≈ 0, in which case corr(dP ∗, df) = 1.

Moreover, when load is large, P ∗
q ≈ ∞, in which case corr(dP ∗ , df) = 0.

It is also straightforward to show that the correlation declines monotoni-

cally with qt because P ∗
q increases monotonically with qt.

10 Thus, the model

can generate rich patterns of correlation between power and fuel prices, and

commensurately rich patterns of spark spread behavior.

The following sections discuss implementation of this model and describe

10This result can be generalized to ρqf �= 0. The same basic results hold; power price-
fuel price correlations are high when load is small, and the correlations are small when
load is high.
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some of its implications.

3 Estimating the Demand Process

The drift process for load given by (1) and (2) is complex because the change

in load (conditional on the deviation between load and its mean) and the

mean load both vary systematically by time of day, day of the week, and

time of the year. To capture these various effects we utilize nonparametric

techniques.

It is necessary to estimate μ(t), θq(t), and k. To see how this is done,

consider a discrete version of (1) and (2) that ignores the local time:

Δqt

qt
= μ(t)Δt + k[ln qt − θq(t)]Δt + σq

√
Δtεt

where εt is an i.i.d. standard normal variate. We have hourly load data, so

Δt is one hour. Note that:

Δqt

qt
−E[

Δqt

qt
|t] = k{ln qt − E[ln qt|t]}Δt + σq

√
Δtεt (12)

Simple algebra demonstrates that μ(t) = E[Δqt/qt|t] and θq(t) = E[ln qt|t].
Once these conditional expectations are known, k can be estimated by OLS.

Two nonparametric approaches were utilized to estimate how the log of

expected load depends on time of day, the day of the year, and the day of

the week. Both approaches give virtually identical results, so for brevity we

describe only one method.11 In this approach, we first create a 53 by 24 by 7

grid. The first dimension measures day of the year d, which runs between 1

11The other approach is also nonparametric, but estimates the day of the week effects
using day-of-week dummies in a kernel regression. We have also modeled the mean load
as a sum of sine functions. All methods give similar pricing results.
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and 365 in increments of 7 days. The second dimension measures hour of the

day h, and the third measures day of the week w, with 1 corresponding to

Monday, 2 to Tuesday, and so on. Given this grid, we then estimate expected

log load as a function of the three time variables using hourly load data from

PJM for 1 January, 1992 to 28 February, 2003. The data are first detrended

by assuming a 2 percent annual load growth rate.

At each point of the grid, we estimate two sets of local linear regressions;

each set entails estimation of 53 · 24 · 7 = 8904 sets of weighted least squares

regressions.

In the first set, at each point of the grid we estimate a local linear re-

gression with Δqt/qt as the dependent variable and d∗
t,i and a constant as the

independent variables. The variable d∗
t,i is the number of days between t and

day i; this number is less than or equal 182 (except in a leap year, when it is

less than or equal to 183). Note that d∗
t,i = dt −di if |dt−di| < 365−|dt −di|,

d∗
t,i = dt−di−365 if |dt−di| ≥ 365−|dt−di| and di < dt, and d∗

t,i = di+dt−365

if |dt − di| ≥ 365 − |dt − di| and di ≥ dt, where dt is the day of the year (a

number between 1 and 365) corresponding to time t, and di is the day of

the year corresponding to point i in the day of the year dimension of the

grid. Although we do not include these variables as regressors, we also define

the hour distance (which is less than or equal to 12) as h∗
t,j = ht − hj if

|ht − hj | < 24 − |ht − hj|, h∗
t,j = ht − hj − 24 if |ht − hj| ≥ 24 − |ht − hj|

and hj < ht, and h∗
t,j = hj + ht − 24 if |ht − hj| ≥ 24 − |ht − hj| and

hj ≥ ht, where ht is the hour of the day corresponding to time t, hj is the

hour corresponding to point j on the hour dimension of the grid, and the

day of the week distance (which is less than or equal to 3) as d∗
t,k = dt − dk
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if |dt − dk| < 7 − |dt − dk|, d∗
t,k = dt − dk − 7 if |dt − dj | ≥ 7 − |dt − dk| and

dk < dt, and d∗
t,k = dk + dt − 7 if |dt − dk| ≥ 7 − |dt − dk| and dk ≥ dt, where

wt is the day of the week corresponding to t, and wk is the k’th point on the

day of the week dimension. The hour and week day variables are relevant in

determining the kernel weights.

Each observation is weighted by the square root of the multiplicative

Gaussian kernel:

K(dt, ht, wt|di, hj, wk) =
1

bdbhbw
n(

d∗
t,i

bd
)n(

h∗
t,j

bh
)n(

w∗
t,k

bw
)

where n(.) is the standard normal density, bd is the day of year bandwidth

(in days), bh is the hour of day bandwidth (in hours), and bw is the day of

week bandwith (in days). After some experimentation, we chose bandwiths

bd = 14, bh = 2 and bw = 1; results are not very sensitive to this choice.

The constant from the regression at the point on the grid corresponding to

day of the year di, hour of the day hj, and day of the week wk is the value

of μ(t) for this specific time. For other t not corresponding to grid points,

μ(t) is estimated through interpolation. We find that μ(t) is important; this

function explains approximately 35 percent of the variation in load changes.

In the second set of regressions, we estimate local linear regressions with

ln qt as the dependent variable and d∗
t,i and a constant as independent vari-

ables. The observations are weighted by
√

K(.). The value of θq(t) on di, hj,

and wk is given by the constant from the regression estimated for this point

on the grid; θq(t) for other t is determined through interpolation. Figure 2

illustrates this function for the PJM market. Note the two seasonal peaks,

one corresponding to the summer cooling season and the other correspond-
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ing to the winter heating season, with seasonal troughs in the spring and

fall. The summer peak is larger than the winter one. Moreover, there is a

clear variation in load by time of day, with low loads during the night and

higher loads during the day. The intraday variation is more pronounced in

the summer than the winter.

Given the estimates of μ(t) and θq(t) we estimate the speed of mean

reversion k from (12) using OLS and the 1992-2003 PJM hourly load data.

Using hourly data, k̂ = −.0614; the annualized value of k is therefore -537.64

indicating extremely rapid reversal of load shocks. Indeed, the half-life of

a load shock is only 11.3 hours. The sample variance of the error term is

σ̂2
q = .00091. This variance and k̂ imply that the unconditional variance

of ln qt − θq(t) is −σ̂2
q/2k̂ = .0074. Due to the rapid mean reversion, the

conditional variance of this difference converges to its unconditional value

quite quickly.

4 Determining the Terminal Pricing Function

Valuation of a PCC using the equilibrium model requires estimation of the

payoff to a forward contract (or other derivative) to serve as the initial bound-

ary condition, where this payoff usually has the form given in (9) above.

Determining this payoff function poses several challenges.

First, solution of the valuation PDE (8) using finite difference methods

requires discretization of time and load steps, so it will be necessary to create

a discretized approximation of (9). Relatedly, computational considerations

call for using a relatively course time grid, so even an approximation of the

integral in (9) with a sum of hourly prices during the delivery period is not
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practical; this is especially true when solving the inverse problem (as in the

following section) as this requires solving PDEs for each and every maturity

from the present to the last day of the most distant contract’s delivery period.

A daily time step is reasonable, so it is necessary to approximate the integral

in (9) with a function of load at a single time on a given day.

Second, it is necessary to understand the relation betweeen price and load.

There are three basic approaches that one can employ to do so. The first is

to assume that the power market is competitive and utilize data on marginal

generation costs as a function of load and fuel prices to determine the termi-

nal power price as a function of these state variables. This is the approach

advanced by Eydeland and Geman (1999). The second is an econometric

approach that does not assume perfect competition. The third utilizes gen-

erators energy bids in centralized spot markets (where available) to construct

a bid stack; this approach does not assume competition because generators’

bids reflect any market power they possess.

There are numerous studies that document market power in pooled mar-

kets with generation bidding such as PJM. Examples include Rudkevich and

Duckworth (1998); Green and Newbery (1992); Newbery (1995); Wolak and

Patrick (1997), Wolfram (1999), and Hortaçsu and Puller (2005).12 Thus the

first alternative is problematic.

Since prices reflect market power, the second and third approaches are

preferable to the first. Where the relevant data are available (as it is for PJM

and some other markets with a system operator), the bid based approach has

12Since bidders in most pools submit supply schedules and most pools utilize second
price rather than first price mechanisms, the analysis of Back and Zender (1992) implies
that non-competitive outcomes are plausible in power pools.
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several virtues. Most notably, system operators actually use bids to set spot

prices, so there is a direct relation between bids and realized spot prices.

Implementing this method does pose some challenges, however.

First, the economics of generation are actually quite complex. Startup,

shutdown and no load costs imply that optimal dispatch requires solution of a

rather complex (and non-convex) dynamic programming problem. Moreover,

due to outages (planned and forced) the set of generating assets available

varies over time. The spatial pattern of load can also vary, and in the presence

of transmission constraints such varations can cause prices at a given point

to vary even if aggregate load in a region is unchanged; generation may be

dispatched out of merit order due to transmission constraints, which can

cause price fluctuations even in the absence of fluctuations in aggregate load.

These factors, in turn, imply that the marginal cost of generation at any

instant is a function of past loads and operating decisions, the set of available

generators, the spatial pattern of load, and the existence of transmission

constraints; due to these factors there is no unique mapping between load

and the marginal bid/market price in the market. However, taking these

complexities into account would greatly increase the dimensionality of the

problem, making it computationally intractible.

Second, bids may differ by hour, and loads certainly do in a systematic

way. Thus, calculation of a peak load price requires the knowledge of loads

for every instant of the on-peak period. Due to the necessity of discretizing,

it is necessary to find some way to calculate a peak load price based on loads

from only a subset of the peak hours, and perhaps load from only a single

hour.
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Third, most bid data is publically available only with a lag (six months

for PJM, for instance), and bids may change over time with entry of new

generating or transmission capacity, or changes in fuel prices. Thus, whereas

the boundary conditions for the PDE should be forward looking, available

data is backward looking.

Despite these challenges, the bid data have a crucial and desirable feature:

they reflect market participants’ intimate knowledge of the characteristics of

generating assets and the competitiveness of the market. Hence, I utilize

PJM bid data to estimate the terminal price function.13

Numerical and economic considerations also suggest imposing some ad-

ditional structure on the problem. Specifically, as just noted, market par-

ticipants’ bids are for power only, but should vary systematically with fuel

prices. It is therefore necessary to adjust historical bid information to reflect

the impact of variations in fuel prices on future payoffs. This can be done by

utilizing the concept of a “heat rate” that represents the number of BTU of

fuel needed to generate the marginal megawatt of power, where heat rate is

an increasing function of load to reflect the use of progressively less efficient

generating units to serve larger loads. The heat rate is the conventional way

for practitioners to analyze the impact of fuel price changes on power prices.

If the market heat rate fuction is φ(qt), with φ′(.) > 0,

P ∗(qt, ft,t) = ft,tφ(qt)

13Earlier versions of this paper utilize an econometric technique. This technique is
described in an Appendix. The basic conclusions presented herein obtain under both
terminal pricing function methods. Sepcifically, both methods imply that forward prices
are significantly upward-biased.
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More generally, one can consider a function of the form

P ∗(qt, ft,t) = fγ
t,tφ(qt)

The first specification imposes the restriction that the elasticity of the power

price with respect to the fuel price equals one. The second specification does

not.

In addition to being an economically sensible way of adjusting bids to

reflect fuel price variations, this approach has computational benefits. Spec-

ficially, it permits the reduction of the dimensionality of the problem. Posit

that the forward price function is of the form F (qt, ft,T , τ ) = fγ
t,TV (qt, τ ).

Then, making the appropriate substitutions into (9) produces the new one

dimensional PDE:

∂V

∂τ
= .5σ2

qq
2∂2V

∂q2
+ [γρσfq + a]

∂V

∂q
+ .5σ2

fγ(γ − 1)V (13)

where a = (αq(τ, q) − σqλ(τ, q))q, and where the equation must be solved

subject to the von Neuman boundary condition ∂V (X, τ )/∂q = 0 and the

initial condition V (qT , 0) = φ(qT ). Once this function is solved for, the

power forward price is obtained by multiplying V (.) by fγ
t,T . The reduction

in dimensionality is especially welcome when solving the computationally

intense inverse problem for λ(q, t) as described in the next section.14

Given these preliminaries, the analysis proceeds as follows. Assume that

it is 1 June, 2005, and that the objective is to determine the boundary

14This reduction is not feasible for all power contingent claims, particularly options.
Even if the spot price function is multiplicatively separable in fuel price and load, the
option payoff ([fγ

T,Tφ(qT ) −K]+ for a call at strike K) is not multiplicatively separable,
so the decomposition fγ

t,TV (q, τ ) is not appropriate for such an option. If γ = 1, the
decomposition works for a spark spread option that has payoff [fT,Tφ(qT ) − fT,TH

∗]+

where H∗ is the heat rate strike specified in the contract.
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condition for a foward contract maturing on 15 July, 2005; the analysis for

other maturity dates is identical. Then:

1. Collect PJM bid data for 15 July, 2004 (the most recent July for which

such data is available). For each generating unit, this data reports a set

of price-quantity pairs, with a maximum of 10 different pairs per unit.

The quantity element of the pair represents the amount the bidder is

willing to generate at the price element of the pair. Sort all such pairs

by price, and to determine the amount supplied at a given price P

sum all of the quantities bid at prices P or lower. This is the “bid

stack.” The bid stack characterizes price as a function of instantaneous

load–i.e., P ∗. Figure 3 depicts a bid stack from 15 July, 2004.

2. Convert the bid stack into a heat rate stack by dividing the bid stack

by the price of fuel on 15 July, 2004. We use daily data on day-ahead

natural gas prices for Columbia Gas and Texas Eastern Pipeline zone

M-3 obtained from Bloomberg. Columbia pipeline and Texas Eastern

pipeline zone M-3 serve plants in the PJM territory. This is referred to

as the “market heat rate stack” because the heat rate reflects market

bids divided by the price of fuel. It may differ from the true heat

rate stack (i.e., from true marginal costs) because bids may differ from

marginal costs.

3. Define a vector of market loads that may be observed at 4 PM on 15

July, 2005. The number of load points is given by the number of such

points in the finite difference valuation grid to be used to solve the
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valuation PDE.15

4. Utilize the load surface described in section 3 above that relates ex-

pected load to time of day, day of week, and day of the year to deter-

mine a “load shape” for 15 July, 2005. This load shape indicates the

expected load for each hour of this date. Divide each of the 16 expected

loads for peak hours given by the load shape by the 4 PM expected

load.

5. Multiply each load value in the load vector by the load shape. Each

product gives 16 hourly loads corresponding to that value of 4 PM

load. Since there are multiple values of 4 PM load in the valuation

grid, there are multiple 16 hour load vectors–one for each load step in

the valuation grid.

6. Using each of the 16 hour load vectors, input the load for each of the

peak hours into the heat rate stack function that relates price to load.

This produces 16 different market heat rates (one for each peak hour)

corresponding to a particular value of 4 PM load from the valuation

grid. Average these 16 heat rates to produce a peak heat rate on July

15, 2005 conditional on 4 PM load for that date. This represents the

payoff (boundary condition) for that value of the 4 PM corresponding

to a particular point on the valuation grid. That is, this is an approxi-

mation of the integral in (9) that takes into account variations in load

over time and systematic intra-day patterns in load. There is a peak

heat rate estimate for each load value in the valuation grid.

15See the next section for a detailed description of the PDE solution technique.
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This approach implicitly assumes that generator bidding strategies are

relatively stable over time, that generators effectively bid heat rates multi-

plied by fuel prices, and that generators are price takers in the fuel market.

The first assumption is plausible when valuing relatively short tenor for-

ward prices, but is problematic over longer time periods when entry, exit,

demand growth, and changes in market rules may affect the market power of

generators. The second assumption comports with conventional analyses of

generating economics, but should be validated empirically; choice of a γ �= 1

could be used if generators do not adjust power bids by x percent in response

to an x percent change in fuel price.

Moreover, due to the fact that load does not map one-to-one into a heat

rate (due to the complexities of generation), even conditional on load there

will be a difference between realized power prices and those implied by the

heat rate function. The existence of such a noise term does not impact

the estimation of the market price of risk function under certain simplifying

assumptions. Specifically, if PT = fγ
T,Tφ(qT ) + εT , where εT , the divergence

between observed spot prices and the heat rate function that results from

the factors discussed earlier, is unpriced in equilibrium, then the forward

price is Ft,T = Ẽtf
γ
T,Tφ(qT ) + ẼtεT where Ẽt indicates the time-t expectation

under Q. If εt mean reverts very rapidly (with a half-life measured in hours,

for instance, as is plausible for price movements caused by forced outages or

variations in the spatial variation in load), and this risk is not priced, then

if T − t is as little as a day then ẼtεT (which is conditional on εt) is very

nearly zero. Hence, Ft,T can reasonably be considered a function of qt and

ft,T alone. The Feynman-Kac Theorem implies that Ẽtf
γ
T,Tφ(qT ) is given by
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the solution to (8) with initial condition FT,T = fγ
T,Tφ(qT ).

5 Power Forward Prices and Expected Spot

Prices: The Market Price of Risk

As noted earlier, it is essential to incorporate the market price of risk in

any power derivative pricing exercise. The market price of risk is inevitably

present in any valuation problem due to the fundamental nature of electricity.

Moreover, the data make it clear that ignoring the market price of risk is likely

to lead to serious pricing errors because it is large.

Data from PJM illustrate this point clearly. If the market price of risk is

nonzero, the forward price will differ from the expected spot price. There-

fore, systematic differences between forward prices and realized spot prices

are evidence of a market price of risk. For the PJM West Hub, on average

there are systematic differences between one-day forward prices and realized

spot prices over the 1997-1999 period (where the day ahead prices are bilat-

eral trade prices reported on Bloomberg) and the 2000-2003 period (where

the forward prices are from the PJM day ahead market). Over the 1997-

1999 period, the forward price for peak power delivered on the following day

exceeded the average realized peak hourly price of power in PJM West on

the following day by an average of $.92/MWh. Moreover, the median of the

difference between the one day forward price and the realized average peak

hourly price on the following day was $1.36/MWh. This large median in-

dicates that the difference between the forward price and the realized spot

price is not due to a few outliers. Furthermore, the forward price exceeded

the realized spot price on 311 of the 503 days in the sample. The forward
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price is also a biased predictor of the next day’s realized spot price. The

intercept in a regression of the day t average peak spot price against the day

t − 1 one day forward price is 8.75 and the slope coefficient is .6545. The

standard error on the intercept is 1.5, while that on the slope coefficient is

.047. One can therefore reject the null that the intercept is zero and the

slope is one at any conventional significance level.

Similar results obtain for the 2000-2003 period. During this period, the

day ahead price for PJM West averaged $1.03 more than the realized real

time price. The median difference between the day ahead and real time prices

was $1.12. The constant in a regression of the real time on the forward was

2.26, and the slope .89. One can again reject the null that the forward is an

unbiased predictor of the real time price.

These data make it clear that the forward price is not an unbiased pre-

dictor of realized spot prices even one day hence.16 Indeed, the bias is large.

This indicates that even over a horizon as short of a day there is a risk

premium embedded in power forward prices.17

16There is evidence of such bias in other markets. Averaged across all PJM pricing
points, the median difference between the day ahead and real time prices was $1.73 in
2002. In 2000, the day ahead price was $4.00 greater on average than the real time price.
Borenstein et al also document large disparities between day ahead and realized real time
prices in the California market. They attribute these disparities to market inefficiencies
and market power, and rule out risk premia as an explanation on largely a priori grounds.
In particular, they invoke the CAPM to argue that the low correlation between power
prices and the overall market (proxied by the S& P 500) implies that risk premia should
be small. As Bessimbinder and Lemon (2002) note, however, (a) this presumes that the
power market is integrated with the broader financial market, and (b) there is considerable
reason to believe that in fact the power market is not so integrated. Moreover, the fact that
forward prices are biased predictors of spot prices in markets other than California casts
doubt on the view that the Borenstein et al results reflect only dysfunction in California.

17This finding is remarkable given the difficulty of detecting risk premia in other com-
modities. Economists since Telser (1956) have used increasingly sophisticated methods to
attempt to find risk premia in commodities, with mixed results.
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Since the market price of risk is potentially large, it is imperative to take

it into account when valuing derivatives. Unfortunately, the market price

of risk is not observable directly. However, it can be inferred from prices

of traded instruments. In particular, given a set of quoted forward prices,

inverse problem methods can be applied to (8) to generate an implied market

price of risk.

At any time there are only a finite number of forward prices quoted in

the marketplace. Call the set of available forward quotes D. There is an

arbitrary number of functions λ that could equate exactly the solutions of

(8) for a finite number of quotes in D. Thus, the problem of determining the

market price of risk is ill-posed. If a problem is ill-posed, small changes in

the data input (i.e., in the forward quotes) can lead to large changes in the

estimates of the λ function. These problems are quite common in a variety

of physics and engineering contexts, and methods have been developed to

solve them. These involve use of regularization techniques.18

The solution technique involves choosing a function λ that minimizes the

sum of squared deviations between the forward prices implied by (8) for a

given set of delivery dates and the prices quoted for these dates, subject

to some regularization constraint. To make the problem tractible, λ is a

function of load only. We use the H2 norm as our regularizer. Formally, the

regularizer is:

R(λ) =

X∫
0

⎡
⎣λ2 +

(
∂λ

∂q

)2
⎤
⎦ dq.

where as before X is the maximum load (given by the physical capacity of

18See Tikhonov and Arsenin (1977).
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the power system). We choose a function λ to minimize:

∑
i∈D

[Fi(qt, ft,T |λ) − Fi]
2 + κR(λ)

In this expression, Fi(qt, ft,T |λ) is the solution to (8) for a forward contract

corresponding to forward price quote i ∈ D given current load qt and cur-

rent fuel price ft,T ; note that this forward price depends on the λ function.

Moreover, Fi is the quoted ith forward price. Finally, κ is the regularization

parameter.

The regularization technique in essence penalizes overfitting. In the reg-

ularized problem, there is a trade-off between the precision with which the

forward quotes are fit and the smoothness of the λ function. Note that R(λ)

is large when |∂λ/∂q| is large. Thus, R(λ) is large (small) when λ is very

jagged (smooth). Choice of a regularization parameter κ determines the

smoothness of the resulting fit; the bigger the value of this parameter, the

greater penalty for non-smoothness, and the smoother the resulting solution.

This problem is solved using finite difference techniques. We create a

valuation grid in q and τ with increments Δq and Δτ ; there are N total time

steps and M total q values. An initial guess for λ is made. In the valuation

grid, λ is represented as a vector, where the length of the vector is equal to

M .

The estimation then proceeds by the Method of Small Parameter. Specif-

ically, letting λ0 denote the initial guess for the λ function, define

λ(q) = λ0(q) +
∞∑

j=1

λk(q)

where the λk are improvements to the initial guess. Similarly, define V0 as
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the solution to (13) based on λ0, and let

V = V0 +
∞∑

j=1

Vk

where the Vk are improvements to the initial guess. Note that the use of the

V (.) function exploits the dimensionality reduction.

Consider an ε-family of market price of risk functions:

λ(q) = λ0 +
∞∑

j=1

εkλk(q)

with a corresponding representation of V :

V (τ, q) = V0(τ, q) +
∞∑

j=1

εkVk(τ, q).

Plugging these various equations into the valuation PDE and equating powers

of ε implies:
∂V0

∂τ
= c0

∂2V0

∂q2
+ c1[λ0]

∂V0

∂q
+ c0V0 (14)

∂V1

∂τ
= c0

∂2V1

∂q2
+ c1[λ0]

∂V1

∂q
+ c0V1 − σqqλ1

∂V0

∂q
(15)

∂Vk

∂τ
= c0

∂2Vk

∂q2
+ c1[λ0]

∂Vk

∂q
+ c0Vk −

k∑
j=0

σqqλj
∂Vk−j

∂q
(16)

for k = 2, 3, . . . where c0 = .5σ2
fγ(γ − 1), c1[λ0] = q[γρσqσf + αq(τ, q) −

σqλ0(τ, q)], and c2 = .5σ2
qq

2. There is a set of equations (14)-(16) for each

maturity date included in the analysis.

The PDE (14) is solved implicitly by switching between forward and back-

ward difference approximations for the first partial derivative term depending

on the sign of the drift term. Now note that it can be shown from (15) that

in the discretized q and τ grid, a recursion relationship holds:

An+1V
(i)
1 [n + 1] = V

(i)
1 [n] + G

(i)
n+1λ1 (17)
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where n+1 indicates the time step, An+1 is a tri-diagonal (M −2)× (M −2)

matrix, V
(i)
1 [n] is an M − 2 vector giving the value of V1 at each interior load

point for maturity i ∈ D at time step n, and

G
(i)
n+1 = −.5

Δτ

Δq
σqq

∂V
(i)
0 (q, (n + 1)Δτ )

∂q

where the partial derivative is estimated using a central finite difference.

Furthermore, G(i)
n = 0 if nΔt is greater than the time to maturity of forward

contract i ∈ D. Completing this recursion implies:

V
(i)
1 [N ] =

N−1∑
j=1

(Πj
k=0AN−j)G

(i)
N−jλ1 ≡ B(i)λ1 (18)

Now note that the regularized objective function becomes:

∑
i∈D

[V
(i)
0 + B(i)λ1 − Fi

fγ
i

]2 + κR(λ1) (19)

where fi is the fuel forward price with the same maturity as power forward

contract i. One can show that if one uses the trapezoidal rule to approxi-

mate the integral in the expression for the regularizer, R(λ1) is quadratic in

λ1. Therefore, minimizing (19) with respect to λ1 produces a set of linear

equations that can be solved for λ1.

Given this improvement, a similar method can be used to solve for λk,

k > 1, based on (16); the main difference in the solution technique for k =

2, 3, . . . as opposed to k = 1 is the presence of additional forcing terms that

depend on the q-derivatives of V improvements k − 1, k − 2, . . . , 2. The

user can choose the total number of improvements to implement, with more

improvements involving greater computational cost (particularly storage).

Using this method, we evaluate the market price of risk function for PJM

prices for a variety of dates from 1999-2005. We present detailed results for 7
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June, 2005. For this date, we obtained prices for monthly PJM forwards for

each delivery month July, 2005 through December, 2005. These prices were

for PJM monthly futures transactions executed on the NYMEX ClearPort

system for delivery dates in July, 2005 through December, 2005. These

contracts call for delivery of power during each peak hour of the delivery

month.

Figure 4 depicts the λ function fitted to these seven forward prices based

on four improvements. Note that the market price of risk function is uni-

formly negative. This implies that under the equivalent measure load drifts

up more rapidly than under the physical measure. Given that the power

price is monotonically increasing in load, this in turn implies that forward

prices are upward biased; that is, the expectation under the equivalent mea-

sure exceeds the expectation under the physical measure. Note also that the

absolute value of the λ function is increasing in load, which implies that up-

ward bias should be more extreme for forwards expiring during high demand

periods.

The λ(q) function thus determined can then be used in expression (8) to

solve the direct problem for daily forward contracts for each possible delivery

date during the 8 June, 2005-31 December, 2005 period. The solutions to

these direct problems give theoretical forward prices for each such delivery

date that are consistent with the transaction prices for the monthly forward

contracts. This is similar to using volatilities implied from traded options to

value other options.

The shape of the λ function generated by the model and the solution of the

inverse problem implies that the buyer of a July or August forward position
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must pay a substantial risk premium to the seller. This is illustrated by

Figure 5, which depicts (1) the forward prices for each possible daily delivery

date determined as just described, and (2) the forward prices for each such

delivery date implied by the model assuming that λ = 0. The forward price

with λ = 0 is the expected spot price implied by the dynamics of the load

and fuel prices and by the terminal pricing function. The jagged nature of

the lines is due to the systematic intra-weekly variations in load, which affect

both the expected spot price and the likelihood of price spikes.19

Note that the difference between these two functions exhibits seasonali-

ties, as illustrated in Figure 6. Although the bias is positive throughout the

year, for the summer peak delivery dates the difference between the forward

price curve derived from the solution of the inverse problem and the forward

curve assuming no market price of risk is particularly large. It reaches its

maximum in mid-summer when the difference between the forward price and

the expected spot price reaches a maximum of almost $19/MWh, which is

about 24 percent of the calibrated forward price for the relevant day. The

average difference between the forward price and expected price curves is

$17.71/MWh for July delivery. In contrast, the upward bias in Octoberr is

only about $6.64/MWh.

Although this upward bias is large, it is actually smaller than observed in

other years. We have estimated the λ function for various dates in the 1998-

2005 time period.20 In all cases, forward prices are upward biased for July

19The vertical displacements in the figure reflect the use of monthly fuel prices that are
substantially different month-to-month for the ft,T .

20For years prior to the launch of PJM futures on ClearPort, we utilize OTC forward
price quotes obtained from Bloomberg’s Volt page. We also used the econometric method
to estimate the payoff. For 2005, the econometric method gives similar values to those
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and August deliveries. In general, the degree of upward bias has declined over

time. In May, 2000, for instance, the average upward bias for July-August

deliveries averaged 35 percent of the forward price, and reached a maximum

of $50/MWh–or about 50 percent of the calibrated forward price. In 2003,

the maximum upward bias was substantially smaller–about $35/MWh. As

just noted, it is smaller still in 2005.

The existence of a substantial upward bias is consistent with the existence

of a “skewness premium” or “spike-a-phobia” in power prices. During the

summer months in particular, power prices can spike up, generating substan-

tial right skewness in prices. A price spike of this sort can impose a large

loss on a seller of power forwards; for example, during the summer of 1998

one large utility (Illinova) that was short power had an entire year’s earn-

ings wiped out by a single day’s trading losses, and other utilities (including

Pacificorp and others) lost heavily as well. Thus, the profit distribution of

a short power forward position exhibits substantial left skewness. It is well

known that those with consistent preferences exhibiting risk aversion dislike

left skewness and therefore demand a risk premium to bear it. The above

results suggest that this premium to bear skewness risk is large.21

Moreover, the results are consistent with the main theoretical analysis of

presented above, which were estimated based on the bid stack data.
21It is also somewhat variable. The variance in the daily changes in July and August

forward prices is on the order of 5 times the variance of the change in daily changes in
the corresponding expected spot prices. Due to the rapid mean reversion in load, there
is little variation in expected spot prices until the time to delivery becomes very short,
and what variation that exists is due primarily to fluctuations in fuel forward prices.
Fluctuations in power transactions prices could reflect microstructure effects–the power
forward market is relatively illiquid, and hence small transactions volumes can have big
price impacts. Relatedly, they may also reflect fluctuations in price bias due to changes
in hedging pressure.
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risk premia in power markets. Bessimbinder and Lemmon (2002) show that

power forward prices should be upward biased when prices are highly right

skewed. This reflects hedging pressure. Right skewness induces long hedging

pressure and variance induces short hedging pressure. The former effect dom-

inates when prices are highly skewed (during high demand periods). Thus,

Bessimbinder-Lemon predict substantial upward biases in seasonal peak pe-

riods. We document these effects here.

The decline in upward bias that has occurred in the recent past is also

broadly consistent with this theoretical explanation. There was substantial

entry of new generating capacity in PJM in the 2000-2002 period. Ceteris

paribus, the entry of new generating capacity reduces the likelihood of price

spikes, which in turn should reduce the degree of bias–this is exactly what we

observe. Moreover, Bessembinder-Lemon argue that the lack of integration

between power markets and the broader financial market impedes the shifting

of risk to speculators who can diversify it away and therefore exacerbates the

bias. During the past several years the degree of integration has increased.

Several major financial institutions have entered power trading. This has

been facilitated in part by the development of financially settled (as opposed

to physical delivery-settled) derivatives and the development of other mech-

anisms (such as “virtual bidding” on PJM day ahead markets) that permit

speculators to supply risk bearing services without having to navigate the

complexities of making or taking delivery of physical power. Both new ca-

pacity and the entry of risk bearing capacity should reduce upward bias, and

we have found such a reduction in PJM.

These preliminary empirical results strongly suggest that there is a sub-
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stantial risk premium in PJM power forward prices for summer delivery.

However, the magnitude of the upward bias is extraordinary, so alternative

explanations should be considered. For instance, a so-called “peso prob-

lem” may be at work here. That is, the forward prices may incorporate

expectations of events that did not occur in the historical data employed to

determine the terminal boundary conditions and the probability distribution

for load. In this case, we may underestimate the expected spot prices and

therefore overestimate the market price of risk. However, the persistence of

these results over seven years strengthens the case for the upward bias inter-

pretation and undermines the plausibility of the peso problem explanation.

Moreover, other investigators (e.g., Ronn-Dincerler (2001), Geman-Vasicek

(2001), Bessembinder-Lemon (2002), and Longstaff-Wang (2004)), using a

variety of methodologies have presented evidence of upward bias from a va-

riety of power markets. This further suggests that the risk premium expla-

nation is robust.

The finding of such a large risk premium in power forward prices suggests

that the power forward market remains incompletely integrated with other

financial markets despite the recent entry of speculative risk bearing capacity

to the marketplace. Although shocks to power prices can be extremely large,

they are plausibly completely idiosyncratic and hence diversifiable. If this

were indeed the case, power forward prices would embed no risk premium

if the power forward market were completely integrated with the financial

markets.

Presumably the existence of large risk premia like those documented here

will attract additional speculative capital to the power markets. This should
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lead to a continued decline in the risk premium. The risk premium may not

disappear altogether even if “spike risk” is diversifiable if there are economies

of scale in trading. Firms (including trading firms, hedge funds, and other

pools of speculative capital) must invest in specialized expertise and systems

to trade a particular class of claims (such as power). Scale economies induce

some concentration in position size, which given agency costs will impose

some deadweight costs on the firms trading power. Moreover, the potential

for extreme price moves in power implies that those providing risk bearing

capacity to the power market will incur higher moral hazard and monitoring

costs than firms providing such capacity to other markets (e.g., the currency

or fixed income markets). Thus, although the risk premium in power forwards

is likely to decline as the power market becomes more closely integrated with

the broader financial market, it is unlikely to disappear altogether.

6 Integrated Valuation of Power Price, Vol-

ume, and Weather-Sensitive Claims

The foregoing analysis utilizes load as the demand state variable. It is well

known that load is largely determined by weather, especially by tempera-

ture. Therefore, it is possible to recast the model using weather as the state

variable. This allows unified hedging of derivatives or assets with values that

depend on power prices, loads, or weather, or all three.

Formally, define wt as the value of the weather variable as of time t. The

weather variable follows an Ito process:

dwt = αw(wt, t)dt + σw(wt, t)dzt (20)
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where dzt is a standard Brownian motion. Whereas in our original analysis

power spot prices depended on load, we now specify that they depend on

this weather variable and calendar time:22

Pt = g(wt, t) (21)

Moreover, power output as t depends on wt:

qt = h(wt, t) (22)

Consider the value of any power derivative with a payoff that depends on

the spot price of power at T > t. The value of this derivative at t can be

written as V (wt, t, T ). The value of a derivative with a positive value at t

(such as an option) must satisfy the partial differential equation:

rV =
∂V

∂t
+

∂V

∂wt
[αw − σwλ(wt, t)] + .5

∂2V

∂w2
t

σ2
w (23)

The term λ(wt, t) is a market price of wt risk. The expression must include

a market price of risk because wt is not a traded asset, and thus is not a

hedgeable risk. For a forward contract, the PDE is:

0 =
∂F

∂t
+

∂F

∂wt
[αw − σwλ(wt, t)] + .5

∂2F

∂w2
t

σ2
w (24)

This PDE must be solved subject to boundary conditions. For a daily

strike call option on a forward contract with strike price K, the payoff is

V (wT , T, T ) = max[g(wT , T ) − K, 0]. For a put option with strike price K,

the boundary condition at expiration is V (wT , T, T ) = max[K− g(wT , T ), 0].

For a forward contract, boundary condition is F (wT , T, T ) = g(wT , T ).

22The dependence of power prices on the price of fuel is suppressed to simplify the
notation.
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Some claims may have payoffs that depend on both price and load. For

example, the revenue of a utility is given by the product of price and load.

Thus, a utility interested in hedging its revenue is interested in the value of

a claim with a payoff of g(wT , T )h(wT , T ). As another example, the value

of a power plant depends on both the price at which it sells power and the

amount of power the plant generates. Denoting the output of the plant as a

function of the weather variable as x(wT , T ), the value of the right to operate

the plant and sell power at T is given by the solution of (18) with a payoff

at T of max[x(wT , T )(g(wT , T )− c)− a, 0] where c is the (assumed constant)

marginal cost of operating the plant, and a is the avoidable, non-output

dependent cost of operation (i.e., the no-load cost).23

Weather derivatives can be evaluated in an identical framework. In gen-

eral, a weather derivative is a claim with a payoff that depends on the re-

alization of some weather variable. The most common weather derivatives

that have payoffs that depend on temperature over some time period. These

include degree day swaps and degree day options. The payoffs to these claims

depend on the average of deviations of temperatures at some location from

65◦ Farenheit over some time period. Since temperature and load are so

closely related, some power producers and consumers use weather deriva-

tives to hedge volumetric risks.

To see how to value weather derivatives, call W (wt, t, T ) the price a

weather contingent claim with a payoff that depends on wt that expires at

23The analysis is also readily extended to the case of a risky fuel price and “spark
spread.”
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T . This contingent claim must satisfy the following PDE:

rW =
∂W

∂t
+

∂W

∂wt
[αw − σwλ(wt, t)] + .5

∂2W

∂w2
t

σ2
w (25)

subject to the appropriate boundary conditions implied by the payoff function

for the weather derivative.

The solutions to the PDEs for a power contingent claim and a weather

contingent claim generate information necessary to construct a hedge posi-

tion. Specifically, consider a weather derivative with Δw = ∂W (wt, t, T )/∂wt

and a power derivative with Δv = ∂V (wt, t, T )/∂wt. A firm holding a long

position in the power derivative can hedge this postion against wt risk by

trading −Δv/Δw units of the weather derivative.

Finite difference techniques are especially useful in valuing weather deriva-

tives due to the path-dependent nature of the latter; payoffs to the most com-

mon weather derivatives depend on the average temperatures across many

days, rather than the temperature on a single day. For example, consider

an option with a payoff that depends on the average temperature over some

time period [t0, tN ]. This average temperature is given by the integral:

I =
1

t0 − tN

∫ tN

t0
w(τ )dτ (26)

It is possible show that the average temperature option must satisfy the

following PDE (see Wilmott et al 1993):

rW (wt, I, t) =
∂W

∂t
+

∂W

∂wt
[αw − σwλ(wt, t)] + .5

∂2W

∂w2
t

σ2
w + δ(t)wt

∂W

∂I
(27)

where δ(t) = 1 for t ∈ [t0, tN ], and δ(t) = 0 otherwise. Capturing the state

dependence therefore requires increasing the dimensionality of the problem.
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However, although this makes the problem more computationally expensive,

it is still quite tractible and can be solved using traditional approaches. Now

the pricing mesh must have an I dimension in addition to the w and t di-

mensions. In addition, the solution must satisfy certain “jump” conditions.

7 Summary

The valuation of power contingent claims presents acute difficulties due to

the non-storability of power its resultant implications for power price dy-

namics. Traditional valuation approaches based on specifying a power price

process face difficulties due to the unique behavior of power prices. More-

over, since the spot power price is not properly a traded asset (and hence the

market is incomplete) due to non-storability, this approach cannot side-step

the necessity of estimating a market price of risk.

We take a different approach to valuing power derivatives. Exploiting

the transparency of the fundamentals of the power market, we specify that

the power price is a function of underlying demand and cost state variables.

These state variables are very well behaved, are readily characterized using

standard diffusion models, and for the PJM market we study, there is a clear

and close relation between these variables and spot power prices. Apply-

ing traditional valuation techniques implies that any power contingent claim

must obey a partial differential equation that can be solved using traditional

finite difference methods. This approach also allows integrated valuation and

risk management of power derivatives, weather derivatives, and claims with

payoffs that depend on volume.

Implementation of this approach faces one key challenge: since one of the
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state variables is not a traded asset, it is necessary to take account of its

market price of risk. Since the market price of risk is not observable, it is

necessary to estimate it. We extract the market price of risk from the prices

of traded power claims for the PJM market using inverse methods. The key

finding of the article is that this market price of risk was large during 1998-

2005 for the PJM market studied, but has declined over this period. For

delivery dates during the peak of the 2000 cooling season (July and August)

this market price of risk was approximately 50 percent of the forward price.

By the 2005 cooling season, likely due to the entry of generating and risk

bearing capacity to the market, the upward bias for July delivery had fallen

to about 15 percent of the forward price (reaching a maximum of 24 percent

of the forward price).24

These findings regarding the market price of risk have important impli-

cations for valuation problems in power markets. First, they suggest that at

present the power markets are not fully integrated with the broader financial

markets. Second, they imply that ignoring the market price of risk will lead

to substantial errors in valuing any power contingent claim.

This last result is of particular interest in the power markets at present.

The industry is currently undergoing a substantial restructuring as result of

the deregulation process. As part of this restructuring, market participants

are evaluating whether to buy or sell existing generating assets, and whether

to invest in new assets. These decisions require valuation of generation ca-

24We emphasize again that due to the non-storability of electricity that it will be nec-
essary to incorporate a market price of risk into more traditional valuation approaches
based on a specification of the spot power price process due to market incompleteness.
Thus, the market price of risk is not an artifact of the particular model we implment; it
is an inherent feature of power derivatives pricing.
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pacity, which can be viewed as contingent claims. The results of this article

imply that those ignoring the market price of risk will make large valuation

errors. Given that (1) the market price of risk is not observable, (2) real gen-

erating assets have very long lives (extending far beyond the visible portion

of the forward curve), and (3) the market price of risk is likely to change

over time due to the flow of speculative capital to power market trading,

these valuation problems are non-trivial even for those who recognize the

importance of power risk premia.

A Econometric Estimation of the Payoff Func-

tion

The main text uses generator bid information to determine forward contract

payoffs (boundary conditions). For some markets, bid data is not readily

available. Moreover, the bid stack approach does impose some economic

structure on the problem that may be deemed problematic. An alternative is

to utilize econometric techniques to estimate a payoff function. Econometric

estimates impose no assumptions about competition in the power market.

They only assume that there is a close and stable relation between the state

variables and power prices.

As noted in section 4, since numerical solution of the PDE requires dis-

cretization of time and load steps. Computational considerations make it

desirable to approximate the payoff for a daily forward contract as a function

of the load at a single point in the delivery day. Moreover, due to the diffi-

culties of specifying a parametric function that captures the rapid increase

in prices that occurs when loads near generation capacity, we use semipara-
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metric techniques to estimate the terminal pricing function using daily data

on prices and loads. Therefore, we specify that the relation between average

peak price and load is:

P (q∗j , fj, j) = fγ
j φ(ln q∗j ) (28)

where P (.) is the average 16 hour on peak price on a given day, q∗j is the load

during the selected hour of that peak period, fj is the spot fuel price at that

time, and φ(.) is an unknown function.

This functional form also captures the traditional way of characterizing

generation economics. As noted in section 4, it is conventional to measure the

efficiency of generating assets by their “heat rate.” The heat rate measures

the amount of fuel required (measured in BTU) to generate one megawatt

of power. Given a heat rate, the cost of generating a megawatt of electricity

is the heat rate multiplied by the price of fuel per BTU. In (13), the φ(.)

function can be interpreted as the market marginal heat rate. Also as noted

in section 4, computational considerations also make the functional form of

fuel price times some function of load desirable. It permits a reduction of

the 2D PDE (7) or (8) to a 1D PDE, which greatly eases computation. This

is of particular importance for the solution of the inverse problem.

Data on the average price from the real time spot market during each

hour and average load during each hour are available from the PJM web

site. For fj we use daily data on day-ahead gas prices for Columbia Gas

and Texas Eastern Pipeline zone M-3 obtained from Bloomberg. Since the

forward price data is for contracts that specify delivery of a constant amount

of power per hour during each peak hour of the day, we use the average PJM
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spot price during the peak period on a given day as the dependent variable in

our regression.25 We use load during the hour ending at 4PM Eastern time

on that day as our output variable. The sample period for this analysis is 1

January, 2000-28 December, 2004.26

We use a two-step semiparametric procedure to estimate γ and φ(ln q).

First, we estimate E(ln f | ln q) and E(lnP | ln q) using a local quadratic re-

gression in ln q with an Epanechnikov kernel. Note that from (13):

[lnP − E(lnP | ln q)] = γ[ln f − E(ln f | ln q)]

Therefore, to estimate γ, we regress [lnP − E(lnP | ln q)] against [ln f −
E(ln f | ln q)]. Given the coefficient estimate γ̂ (which is consistent), we de-

termine φ(ln q) by estimating a local quadratic regression with Epanechnikov

kernel weights, Pj/f
γ̂
j as the dependent variable, and ln q∗j , (ln q∗j )

2, and a con-

stant as the regressors.27 Figure 7 demonstrates the relation between 4PM

load and peak price along with a scatter of both observed prices (marked

with an ‘o’) and fitted prices (marked with an ‘x’) against observed loads. It

is evident that the semiparametric estimation captures the salient features of

the load-price relation. It especially reproduces the rapid increase in prices

for small load changes as output nears capacity. The fit is not perfect (the R2

25Peak hours are between 6 AM and 10 PM.
26We also estimated a function based on data from the 1997-2003 period. However,

a review of this model suggests that large capacity investments in the 2000-2001 period
caused the supply curve to shift rightwards, as the model for the 1997-2003 period under-
predicts peak prices in the 1997-1999 period and overpredicts peak prices for the 2000-2003
period. Adjustments for installed capacity (as reported by PJM) reduce these problems,
but do not eliminate them. Moreover, adjusting loads to reflect scheduled outages (again
as reported by PJM) do not substantially increase explanatory power.

27The Epanechnikov kernel is .75(1 − ψ2
t,i) for |ψt,i| ≤ 1 and 0 otherwise, where ψt,i =

(ln qt − ln q∗i )/bq. In this expression, ln q∗i is the i’th point in the estimation grid and bq is
the bandwidth.
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is .68), but this is to be expected because, as noted earlier, the economics of

generation imply that there is no unique mapping between the state variables

and prices. Nonetheless, simulated market heat rates based on simulations

of load filtered through the fitted function behave quite similarly to observed

PJM market heat rates.28

Using interpolation, it is possible to estimate P for arbitrary ln q. There-

fore, this procedure can be used to determine forward contract payoffs when

solving the valuation PDE.

B The PJM Market

We apply the equilibrium model to study the pricing of power in the PJM

market. It is worthwhile to describe briefly the operation of the PJM market

as these details affect the data available to us and thus affect our methodol-

ogy. The PJM is one of the first markets to implement centralized dispatch

and real time market pricing of power. PJM is governed by an independent

system operator (“ISO”) that dispatches generation to meet power demand.

PJM operates a two settlement system. On the day before power is to

be delivered, owners of generation assets submit bids specifying various costs

that they must cover to operate (e.g., startup and no-load costs) and per

unit charges to deliver energy into the day ahead market–a one-day forward

market. Load serving entities specify demand curves. Given these bids from

28The existence of the noise term does not impact the estimation of the market price
of risk function under certain simplifying assumptions. Specficially, if Pt = fγ

t,Tφ(qt) + εt
(as is assumed in the estimation), and if εt is unpriced in equilibrium, then the forward
price is F = Ẽt(f

γ
T,Tφ(qT )) where Ẽt is the expectation under the equivalent measure.

The Feynman-Kac Equation implies that this expectation is given by the solution to (9)
with initial condition F (0) = fγ

T,Tφ(qT ).
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suppliers and demanders, the ISO chooses which generators will operate at

each instant of the next day in order to maximize net surplus; the solution

to this “unit commitment problem” ensures that the generation and load

schedules do not violate any transmission constraints. The marginal cost of

supplying power during each hour establishes the day ahead forward price;

due to transmission constraints, there can be different prices at every bus

in the PJM system as the marginal cost at each bus may differ. After the

close of the day ahead market, generators not scheduled in the day ahead

market submit additional multi-part supply bids. Based on its forecast of

load, PJM then schedules additional resources to meet expected load and

provide reserves for reliablity. This second commitment iteration schedules

generation to minimize no load and startup costs.

During the operating day, the ISO optimizes dispatch (based on the bids

made the day before) to minimize cost while respecting system reliability

and transmission constraints. In essence, given the load at a particular time,

the ISO allocates generation to serve this load to maximize total surplus,

subject to transmission and system reliability constraints. During real time,

the price of power is set equal to the marginal cost of generation implied

by these bids. Again, real time prices can differ by location depending on

transmission constraints.

In the two settlement system, commitments to buy and sell power es-

tablished in the day ahead market are settled using the day ahead clearing

price. Deviations from commitments established in the day ahead market

are settled using the real time price.

In addition to the real time spot market, buyers and sellers of electricity
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can engage in bilateral transactions in forward markets. These bilateral

transactions may be for delivery during the next hour, the next day, or

months in the future. Power producers who engage in bilateral transactions

“self-schedule” their facilities. That is, they inform the ISO of their dispatch

plans so the ISO can utilize this information to respect transmission and

reliability constraints when dispatching generation. About 50 percent of

the power generated in PJM is bought and sold through the spot market,

the remainder through bilateral transactions. Since we employ price data

from both the spot and bilateral markets, the fact that each supports a high

volume of trade provides some confidence in the reliability of this data.

As noted above, the ISO is also responsible for maintaining the reliability

and safety of the generating and transmission system. In the event that

reliability or safety is jeapordized due to large loads or the failure of some

generating or transmission the ISO can intervene to ensure continued safe

operation of the system. For instance, the ISO can curtail loads or order the

activation of additional generation in order to achieve this objective.

PJM disseminates information about hourly load and prices (day ahead

and real time) via its web site. We utilize this data to calibrate our θq(t),

μ(t), and payoff functions. Sections 3 and 4 describe the calibration methods

we employ.
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