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The Price of Selfish Routing1

Marios Mavronicolas2 and Paul Spirakis3

Abstract. We study the problem of routing traffic through a congested network. We focus on the simplest
case of a network consisting of m parallel links. We assume a collection of n network users; each user employs
a mixed strategy, which is a probability distribution over links, to control the shipping of its own assigned
traffic. Given a capacity for each link specifying the rate at which the link processes traffic, the objective is to
route traffic so that the maximum (over all links) latency is minimized. We consider both uniform and arbitrary
link capacities.

How much decrease in global performance is necessary due to the absence of some central authority to
regulate network traffic and implement an optimal assignment of traffic to links? We investigate this fun-
damental question in the context of Nash equilibria for such a system, where each network user selfishly
routes its traffic only on those links available to it that minimize its expected latency cost, given the network
congestion caused by the other users. We use the Coordination Ratio, originally defined by Koutsoupias and
Papadimitriou [16], as a measure of the cost of lack of coordination among the users; roughly speaking, the
Coordination Ratio is the ratio of the expectation of the maximum (over all links) latency in the worst possible
Nash equilibrium, over the least possible maximum latency had global regulation been available.

Our chief instrument is a set of combinatorial Minimum Expected Latency Cost Equations, one per user,
that characterize the Nash equilibria of this system. These are linear equations in the minimum expected
latency costs, involving the user traffics, the link capacities, and the routing pattern determined by the mixed
strategies. In turn, we solve these equations in the case of fully mixed strategies, where each user assigns its
traffic with a strictly positive probability to every link, to derive the first existence and uniqueness results for
fully mixed Nash equilibria in this setting. Through a thorough analysis and characterization of fully mixed
Nash equilibria, we obtain tight upper bounds of no worse than O(ln n/ln ln n) on the Coordination Ratio for
(i) the case of uniform capacities and arbitrary traffics and (ii) the case of arbitrary capacities and identical
traffics.
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1. Introduction

1.1. Motivation-Framework. We study a selfish routing problem in noncooperative
networks; in this problem, paths from a source to a destination are to be established by

1 A preliminary version of this work appeared in the Proceedings of the 33rd Annual ACM Symposium on
Theory of Computing (Heraklion, Greece, July 2001), pp. 510–519, ACM, New York, 2001. This work has
been supported in part by the IST Program of the European Union under Contract Numbers IST-1999-14186
(ALCOM-FT) and IST-2001-33116 (FLAGS), 001907 (DELIS) and 015964 (AEOLUS), by the Greek General
Secretariat for Research and Technology (project�E N E� 99/ALKAD), by the Greek Ministry of Education,
by funds from the Joint Program of Scientific and Technological Collaboration between Greece and Cyprus
(research project “Efficiency and Performance of Distributed Systems”), and by research funds at the University
of Cyprus.
2 Department of Computer Science, University of Cyprus, Nicosia CY-1678, Cyprus. mavronic@ucy.ac.cy.
3 Department of Computer Engineering and Informatics, University of Patras, 265 00 Patras, Greece, and
Research Academic Computer Technology Institute, 265 00 Patras, Greece. spirakis@cti.gr.

Received December 2, 2005. Communicated by E. Cohen.
Online publication March 22, 2007.



92 M. Mavronicolas and P. Spirakis

a collection of independent entities called users. So, users correspond to different traffic
sources, each seeking to determine the shipping of its own traffic over a shared network.
However, in doing so, different users may have to optimize completely different (and even
conflicting) measures of performance and demand. Such noncooperative and antagonistic
scenaria apply to various modern networking environments, where the possibility of
centrally optimizing given performance objectives is absent.

A natural framework for such multiobjective problems with multiple entities seeking
to optimize their own payoffs in a noncooperative network is (Noncooperative) Game
Theory. An appropriate, game-theoretic concept for the solution is Nash equilibrium
[21], [22]. Roughly speaking, the operating points of a noncooperative network are the
Nash equilibria of the underlying game among the users; these are points where unilateral
deviation does not help any user to improve its performance. The mission of this work
is to study the inherent cost incurred at Nash equilibrium due to the lack of a central
authority to monitor and engineer network operation according to global objectives; this
cost is often referred to as the Price of Anarchy [23].

We consider the simplest case of a network consisting of m parallel links. Here,
each of n users fixes a mixed strategy, which is a probability distribution over links;
the distribution determines the (possibly zero) probability for the user to ship its traffic
through each link. We model the latency over each link as the ratio of the total traffic
assigned to the link over its capacity; each user is charged, for each link it chooses, a
latency cost equal to the latency over the link. Here, Nash equilibrium requires that for
each user, its expected latency cost be constant across all links that are potential carriers
of the user’s traffic, given the congestion caused by other users; moreover, this (constant)
expected latency cost should not exceed the expected latency cost of the user on any of
the remaining links. So, in a Nash equilibrium no user could unilaterally decrease its
expected latency cost by switching to a different strategy.

We adopt Coordination Ratio [16] as the measure of performance loss due to unreg-
ulated traffic in a congested network. Roughly speaking, the Coordination Ratio is the
ratio of the Social Cost (specifically, the expected maximum latency in the setting we
consider) in the worst possible Nash equlibrium, over the Social Optimum; the latter
is the best “off-line” global cost (specifically, the least possible maximum latency in
our setting) had all information been available to a central network authority regulating
traffic.

1.2. Results, Techniques, and Contribution. Our departure point is a linear system of
equations for the minimum expected latency costs (Proposition 4.1), which we call Mini-
mum Expected Latency Cost Equations. These equations are specific to any arbitrary but
fixed Nash equilibrium of the system; they are inspired by (and reminiscent of) classical
equations of stochastic equilibrium, such as the Chapman–Kolmogorov equation which
describes the steady-state equilibrium of a Markov chain (see Section 6.1 of [13]). Their
coefficients and constant terms depend on the link capacities and the user traffics, as well
as on the routing pattern (which user can use which links).

For the rest of our study, we focus on a natural and intuitively promising special
case of routing pattern that we call fully mixed strategies; here, each user assigns strictly
positive probability to every link. Intuitively, fully mixed strategies favor collisions of
users across the links. Since collisions increase the maximum link latency, they are ex-
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pected to increase Social Cost, which is the expectation of maximum link latency. This
informal intuition behind fully mixed strategies suggests that they deserve study, since
they provide a natural candidate for Nash equilibria maximizing Social Cost and Coor-
dination Ratio; such equilibria have been called worst-case equilibria by Koutsoupias
and Papadimitriou [16].

Besides their purely intuitive appeal as worst-case equilibria, fully mixed strategies
are found to facilitate the solvability of the Minimum Expected Latency Cost Equations.
Specifically, we are able to explicitly solve them for the case of fully mixed strategies
and derive each user’s probabilities in a Nash equilibrium with fully mixed strategies,
henceforth called fully mixed Nash equilibrium; these probabilities will be referred to
as Nash probabilities. We discover that, for the fully mixed Nash equilibrium, the Nash
probabilities, cast as functions of link capacities and user traffics, enjoy a particularly
insightful form (Proposition 4.4).

The requirement that the derived expressions for the fully mixed Nash probabilities
represent probabilities that suffice for a Nash equilibrium yields the first existence and
uniqueness result for fully mixed Nash equilibria in this setting (Theorem 4.7).

We use our improved understanding of the structure of fully mixed Nash equilibria
to derive some new bounds on Coordination Ratio in two significant special cases of the
problem.

• We first consider the case where link capacities are uniform, while user traffics may
vary arbitrarily. Here, we observe that in a Nash equilibrium all links are equiprobable
for each user. This allows direct use of simple results from the classical theory of
random allocations (see, e.g., [14]), where each of n balls is thrown into one of m
bins, chosen uniformly at random. So, in our study, we treat users and links as balls
and bins, respectively.
• We also consider the case where user traffics are identical, but link capacities vary

arbitrarily while sufficing for a fully mixed Nash equilibrium to exist (Corollary 4.5).
In this case, links are no longer equiprobable for any particular user; nevertheless, the
constraints imposed by Nash equilibrium still enable us to recall the theory of random
allocations.

To prove bounds on Coordination Ratio, we develop a modular methodology that may
be applicable to other instances of the problem, and even to other settings with different
performance measures. The methodology consists of three major steps:

• The first step establishes a probabilistic tail lemma. Roughly speaking, a tail lemma
assumes a tail inequality for the maximum number of users choosing any particular
link (see Chapter 4 of [20]); that is, it is assumed that this number enjoys a sharp
concentration around its expectation. Using this assumption, the tail lemma establishes
an upper bound on Social Cost that may depend on parameters specifying the sharpness
of the concentration. (See Propositions 5.2 and 6.2 for the two cases we consider,
respectively.)
• The second step establishes a particular tail inequality for the maximum number of

users choosing any particular link; this step employs the form of Nash probabilities, the
constraints on link capacities and user traffics that are necessary for a Nash equilibrium
(Corollary 4.5), and standard probabilistic tools such as Chernoff-like bounds [2].



94 M. Mavronicolas and P. Spirakis

The first two steps establish together a concrete upper bound on Social Cost. (See Propo-
sitions 5.3 and 5.4, and Proposition 6.3 for the two cases we consider, respectively.)

• The third step shows a lower bound on Social Optimum. (See Lemmas 5.5 and 6.4
for the two cases we consider, respectively.)

Overall, the proposed methodology implies concrete upper bounds on the Coordination
Ratio for each specific case we consider; the bounds obtained are as follows:

• For the case of uniform capacities and arbitrary traffics:
– Assuming that m = n, we prove an upper bound of �(3 ln n)/ln ln n� + 1

(Theorem 5.6).
– Assuming that m ≤ n/(16 ln n), we prove an upper bound of 3

2 + o(1) times the
ratio of the maximum over the average user traffics (Theorem 5.7).

• For the case of arbitrary capacities and identical traffics, and assuming that m ≤ n, we
prove a strict upper bound of (2+o(1)) �(3 ln n)/ln ln n�+16/(4− e) (Theorem 6.6).

This article promotes the fully mixed Nash equilibrium as a candidate equilibrium for
an intuitively hard problem instance with respect to Social Cost and Coordination Ratio.
We emphasize, however, that attempting to make any formal claims for this apparent
hardness has remained outside the scope of the present article. We believe that the
significance of fully mixed strategies, as such a central class, is due to be revealed. (See
Section 7 for a discussion on some follow-up work that supports this belief.) Finally, we
believe that the approach to studying the structure of Nash equilibria set forth here and
the proposed analytical methodology will prove instrumental to settling other problem
instances as well.

1.3. Related Work and Comparison. The KP model [16] initiated the algorithmic study
of performance degradation caused by lack of traffic regulation in a congested network.
Koutsoupias and Papadimitriou [16] obtained tight bounds on Coordination Ratio for
the case where m = 2 and less tight ones for the general case (under both uniform and
arbitrary capacities).

Our first and third bounds on the Coordination Ratio (Theorems 5.6 and 6.6) match
asymptotically a corresponding lower bound of �(ln n/ln ln n) shown by Koutsoupias
and Papadimitriou [16, Theorem 6], which was conjectured by them to be the right
bound for the model of uniform capacities. On the other hand, our second bound
(Theorem 5.7) identifies the first conditions on (nonconstant) m and n allowing for
a bound independent of m and n. Moreover, our first and second bounds surpass a
general upper bound of O(

√
m ln m) shown by Koutsoupias and Papadimitriou [16,

Theorem 8] for the model of uniform capacities; that bound, however, holds for all
possible Nash equilibria, while our bounds hold for fully mixed strategies and under
particular assumptions on the relation between m and n. In the same vein, consider a

corresponding (general) upper bound of O
(√
(cm/c1)

∑
j∈[m](c

j/c1)
√

ln m
)

shown by

Koutsoupias and Papadimitriou [16, Theorem 9] for the model of arbitrary capacities;
clearly, this bound can be no better in order than�(

√
m ln m). Hence, our third bound of

O(ln n/ln ln n) (shown by taking m ≤ n) surpasses [16, Theorem 9] in all cases where
ln n/ln ln n ∈ o(

√
m ln m).
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Inspired by the interest in Coordination Ratio, Roughgarden and Tardos [24] (and
much subsequent work) investigated the degradation in network performance due to
unregulated traffic for the earlier Wardrop model [25], which considers splittable traffics.

Some recent follow-up work on selfish routing in the KP model includes [3], [5], [7],
[10], [15], and [18]. (See Section 7 for an expanded discussion on some of this follow-up
work.) An excellent survey of research on the KP model, with some emphasis on results
related to the fully mixed Nash equilibrium, appeared recently in [12].

1.4. Road Map. Section 2 introduces the KP model, summarizes some background
material, and establishes some preliminary facts. Section 3 outlines random allocations.
The structure of Nash equilibria is studied in Section 4. The case of fully mixed strategies
is treated in Sections 5 and 6 under the models of uniform capacities and arbitrary
capacities, respectively. We conclude, in Section 7, with a discussion of our results and
suggestions for further research.

2. Definitions, Background, and Preliminaries

2.1. Notation and Preliminary Facts. Throughout, for any integer m ≥ 2, denote
[m] = {1, . . . ,m}. For a real interval (a, b) and a real δ > 0, (a, b)+ δ denotes the real
interval (a+ δ, b+ δ). For all integers m ≥ 2 and n ≥ 2, let Jm×n denote the matrix with
all entries in its m rows and n columns equal to 1; let In×n denote the identity matrix with
n rows and n columns; all of its entries vanish except for those on the main diagonal
which are equal to 1. Let e denote the base of the natural logarithm. It is well known that
for any sufficiently large integer n and for an integer ϑ ≤ n,

(n
ϑ

) ≤ (ne/ϑ)ϑ .
For an event E in a sample space, Pr(E) denotes the probability of event E happening.

For a random variable X , E(X) denotes the expectation of X . A tail probability for X is
the probability for X to take values away from its expectation (see Chapter 4 of [20]).

The following simple fact will be useful for proving bounds on tail probabilities.

CLAIM 2.1. Assume ρ = �3 ln n/ln ln n� > 3. Then (e/ρ)ρ ≤ 1/n2.

PROOF. Since ρ > 3, it follows that e/ρ < 1, so that(
e

ρ

)ρ
=
(

e

ρ

)�(3 ln n)/ln ln n�
≤
(

e

ρ

)(3 ln n)/ln ln n

=
(

e⌈
3 ln n
ln ln n

⌉)(3 ln n)/ln ln n

≤
(

e
3 ln n
ln ln n

)(3 ln n)/ln ln n

=
(

e ln ln n

3 ln n

)(3 ln n)/ln ln n

.

Thus, it suffices to show that(
e ln ln n

3 ln n

)(3 ln n)/ln ln n

≤ 1

n2
,

or, by taking natural logarithms on both sides and using the increasing monotonicity of
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the logarithmic function, that

3 ln n

ln ln n
ln

(
e ln ln n

3 ln n

)
≤ −2 ln n,

or, since ln ln n > 0 and ln n > 1, that

3
(

ln
e

3
+ ln ln ln n − ln ln n

)
≤ −2 ln ln n,

or

3
(

ln
e

3
+ ln ln ln n

)
≤ ln ln n,

which holds as an equality for ln ln n = 3 and as a strict inequality for all n > 3, as
needed.

2.2. Model. Our presentation of the KP model is patterned after the original one in
Sections 1 and 2 of [16].

We consider a network consisting of a set of m ≥ 2 parallel links 1, 2, . . . ,m from
a source node to a destination node. Each of n ≥ 2 users 1, 2, . . . , n wishes to route a
particular amount of traffic along a (nonfixed) link from source to destination. (Through-
out, we will be using subscripts for users and superscripts for links.) Let wi denote the
traffic of user i ∈ [n]. Define the n × 1 traffic vector w in the natural way. For a traffic
vector w, max/avg(w) denotes the ratio of the maximum over the average traffic in w.
In the model of identical traffics, all user traffics are equal to 1; they vary arbitrarily in
the model of arbitrary traffics.

A pure strategy for user i ∈ [n] is some specific link. A mixed strategy for user i ∈ [n]
is a probability distribution over pure strategies; thus, a mixed strategy is a probability
distribution over the set of links. The support of the mixed strategy for user i ∈ [n] is
the set of pure strategies (links) to which i assigns positive probability. A pure strategies
profile is represented by an n-tuple 〈�1, �2, . . . , �n〉 ∈ [m]n; a mixed strategies profile
is represented by an n × m probability matrix P of nm probabilities p�i , i ∈ [n] and
� ∈ [m], where p�i is the probability that user i chooses link �. In this work, we shall be
mainly concerned with mixed strategies.

For a probability matrix P, define indicator variables I �i ∈ {0, 1}, i ∈ [n] and � ∈ [m],
such that I �i = 1 if and only if p�i > 0. Thus, the support of the mixed strategy for user
i ∈ [n] is the set {� ∈ [m] | I �i = 1}. In the fully mixed case, I �i = 1 for all users
i ∈ [n] and links � ∈ [m]; here, each user assigns its traffic on each link with positive
probability, and its support is [m].

A solo link is a link � ∈ [m] such that
∑n

k=1 I �k = 1. Clearly, there is a single user
s(�) such that I �k = 1 if k = s(�), while I �k = 0 otherwise; thus, the solo link � can be
traversed only by user s(�). Since n > 1, it follows that there are no solo links in the
fully mixed case. Let S ⊆ [m] denote the set of solo links. A nonsolo link is a link that is
not solo. For each link � ∈ [m], the random variable θ� is the number of users choosing
link �.

Let c� denote the capacity of link � ∈ [m], representing the rate at which the link
processes traffic. So, the latency for trafficw through link � equalsw/c�. In the model of
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uniform capacities, all link capacities are equal to 1; they vary arbitrarily in the model of
arbitrary capacities. Define the m × n capacity matrix C with all entries in row � equal
to c�; so,

C =


c1 c1 · · · c1

c2 c2 · · · c2

...
...

. . .
...

cm cm · · · cm

 .
For a pure strategies profile 〈�1, �2, . . . , �n〉, the latency cost for user i ∈ [n], denoted

λi , is (
∑

k|�k=�i
wk)/c�i ; that is, the latency cost for user i is the latency of the link it

chooses.
For a mixed strategies profile P, let W � denote the expected traffic on link � ∈ [m];

clearly, W � = ∑n
i=1 p�iwi . Given P, define the m × 1 expected traffic vector W in the

natural way. For a mixed strategies profile P, the expected latency cost for user i ∈ [n]
on link � ∈ [m], denoted λ�i , is the expectation, over all random choices of the remaining
users, of the latency cost for user i when its traffic is assigned to link �; thus, clearly,

λ�i =
wi +

∑n
k=1,k �=i p�kwk

c�

= wi − p�iwi +
∑n

k=1 p�kwk

c�

= (1− p�i )wi +W �

c�
.

For each user i ∈ [n], the minimum expected latency cost λi is the minimum, over all
links � ∈ [m], of the expected latency cost for user i on link �; so, λi = min�∈[m] λ

�
i . For

a probability matrix P, define the n × 1 minimum expected latency cost vector λ in the
natural way.

We are interested in a special class of mixed strategies called Nash equilibria [21]
that we describe below. Formally, P is a Nash equilibrium if for all users i ∈ [n] and
links � ∈ [m],

λ�i

{= λi if I �i = 1,
≥ λi if I �i = 0.

Thus, each user assigns its traffic with positive probability only on links (possibly more
than one of them) for which its expected latency cost is minimized; this implies that
there is no incentive for a user to unilaterally deviate from its mixed strategy. Call (fully
mixed) Nash probabilities the probabilities in a (fully mixed) Nash equilibrium.

Associated with a traffic vector w and a mixed strategies profile P is the Social Cost [16,
Section 2], denoted SC(w,P), which is the expectation, over all random choices of the
users, of the maximum (over all links) latency of traffic through a link; thus,

SC(w,P) = E
(

max
�∈[m]

∑
k:�k=� wk

c�

)
=

∑
〈�1,�2,...,�n〉∈[m]n

(
n∏

k=1

p�k
k · max

�∈[m]

∑
k:�k=� wk

c�

)
.
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On the other hand, the Social Optimum [16, Section 2] associated with a traffic vector w,
denoted OPT(w), is the least possible maximum (over all links) latency of traffic through
a link; thus,

OPT(w) = min
〈�1,�2,...,�n〉∈[m]n

max
�∈[m]

∑
k:�k=� wk

c�
.

Note that while SC(w,P) is defined in relation to a mixed strategies profile P, OPT(w)
is realized by an optimum pure strategies profile. The Coordination Ratio [16], denoted
CR, is the maximum value, over all traffic vectors w and Nash equilibria P, of the ratio
SC(w,P)/OPT(w).

2.3. Properties of Nash Equilibria. Koutsoupias and Papadimitriou [16, Section 2]
provide necessary conditions for Nash equilibria.

PROPOSITION 2.2 [16]. Take any Nash equilibrium P. Then, for each user i ∈ [n] and
link � ∈ [m],

p�i =
W � + wi − c�λi

wi
,

subject to

(1) for each link � ∈ [m], W � =∑n
k=1 I �k (W

� + wk − c�λk), and
(2) for each user i ∈ [n], wi =

∑m
j=1 I j

i (W
j + wi − c jλi ).

We remark that the necessary conditions in Proposition 2.2 neither provide any ap-
parent way of computing Nash probabilities nor say anything about their existence or
uniqueness. It appears that existence and uniqueness are contingent upon the correspond-
ing existence and uniqueness of solutions for W and λ to the conditions (1) and (2). We
observe a simple rearrangement of terms in condition (1) that yields explicit expressions
for the expected traffics on nonsolo links (in terms of the minimum expected latency
costs). We prove:

LEMMA 2.3. Take any Nash equilibrium P. Then, for any nonsolo link � ∈ [m],

W � = −
∑n

k=1 I �kwk + c�
∑n

k=1 I �k λk∑n
k=1 I �k − 1

.

PROOF. Proposition 2.2 (condition (1)) implies that

W � =
n∑

k=1

I �k W � +
n∑

k=1

I �kwk −
n∑

k=1

I �k c�λk

= W �
n∑

k=1

I �k +
n∑

k=1

I �kwk − c�
n∑

k=1

I �k λk,
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or (
n∑

k=1

I �k − 1

)
W � = −

n∑
k=1

I �kwk + c�
n∑

k=1

I λk λk .

Since � is a nonsolo link,
∑n

k=1 I �k �= 1. This implies that

W � = −
∑n

k=1 I �kwk + c�
∑n

k=1 I �k λk∑n
k=1 I �k − 1

,

as needed.

2.4. An Exact Lower Bound. We conclude this section by establishing a simple lower
bound on Coordination Ratio for the fully mixed case and under the model of uniform
capacities; this bound is shown from first principles, and it holds for all possible values
of m.

PROPOSITION 2.4. Consider the fully mixed case under the model of uniform capacities.
Then,

CR ≥ m − 1

mm
·

m−1∑
ϑ=1

 ∑
θ1, . . . , θm ≤ ϑ

(
m

θ1, . . . , θm

) .
PROOF. For each user i ∈ [n], set wi := 1; set also n := m and c := 1. Note that for
these particular choices, OPT (w) = 1, since the least possible maximum (over all links)
latency of traffic through a link is achieved by assigning each traffic to a different link.
Hence, for any Nash equilibrium P, SC (w,P) is a lower bound on Coordination Ratio.

We will establish the claimed lower bound by specifying a suitable Nash equilibrium
P: for each user i ∈ [n] and link � ∈ [m], set p�i = 1/m. Notice that, by definition of
expected latency cost, for each user i ∈ [n] and link � ∈ [m], λ�i = 1 + (n − 1)/m, so
that λi = min�∈[m] λ

�
i = 1 + (n − 1)/m = λ�i for any link � ∈ [m]. Thus, P is a Nash

equilibrium. So,

CR ≥ SC(w,P)

= E(max
�∈[m]

θ�)

=
m∑
ϑ=1

ϑ Pr (max
�∈[m]

θ� = ϑ)

=
m∑
ϑ=1

ϑ(Pr(max
�∈[m]

θ� ≤ ϑ)− Pr(max
�∈[m]

θ� ≤ ϑ − 1))

= m Pr(max
�∈[m]

θ� ≤ m)−
m−1∑
ϑ=1

Pr
(

max
�∈[m]

θ� ≤ ϑ
)

(by sum telescoping)

= m −
m−1∑
ϑ=1

Pr(max
�∈[m]

θ� ≤ ϑ) (since max�∈[m] θ
� ≤ m).
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For any fixed constant ϑ , 1 ≤ ϑ ≤ m−1, what is Pr
(
max�∈[m] θ

� ≤ ϑ)? It is the pro-
portion of traffic assignments for which none of θ1, . . . , θm exceedsϑ among all possible
traffic assignments. Since

∑
�∈[m] θ

� = m, there are, clearly,
∑

θ1,...,θm≤ϑ
( m
θ1,...,θm

)
such

traffic assignments, while the total number of traffic assignments is mm .
Thus,

Pr
(

max
�∈[m]

θ� ≤ ϑ
)
=

∑
θ1,...,θm≤ϑ

( m
θ1,...,θm

)
mm

,

so that

CR ≥ m −
m−1∑
ϑ=1

∑
θ1,...,θm≤ϑ

( m
θ1,...,θm

)
mm

= m − 1

mm

m−1∑
ϑ=1

∑
θ1,...,θm≤ϑ

(
m

θ1, . . . , θm

)
,

as needed.

We remark that Proposition 2.4 yields an exact lower bound on Coordination Ratio
for any particular value of m, in the sense that its proof explicitly provides a traffic vector
w and a Nash equilibrium P which together attain exactly the claimed lower bound. For
example, for m = 2 and m = 3, Proposition 2.4 yields the exact lower bounds of 3

2 and
51
27 ≈ 1.889, respectively, on Coordination Ratio. (The lower bound of 3

2 for m = 2 was
shown before by Koutsoupias and Papadimitriou [16, Theorem 1].)

3. Random Allocations. In this section, we briefly outline some material on random
allocations. The reader may prefer to skip this section for now, returning to it later when
its results are required.

Recall that a discrete random variable X follows the binomial distribution with param-
eters n and p if for each integer ϑ , 0 ≤ ϑ ≤ n, Pr (X = ϑ) = (n

ϑ

)
pϑ(1− p)n−ϑ ; then,

E (X) = np. In this case, X may be cast as a sum
∑n

i=1 Xi of n independent and identi-
cally distributed Bernoulli trials Xi , where Pr (Xi = 1) = p and Pr (Xi = 0) = 1− p
for each index i ∈ [n].

We shall use concepts and tools from the theory of random allocations (see, e.g., [14]),
studying the size of the fullest bin when each of n balls is independently thrown into one
of m bins, chosen according to some specific probability distribution. We shall exploit
arising analogies between selfish routing and random allocation problems, and we shall
interchangeably use the terms balls and users, and bins and links, respectively; thus, for
example, for any bin � ∈ [m], θ� denotes the random variable for the number of balls
thrown into it.

In the special case where all balls choose bin � ∈ [m] with the same probability
p(�), each random variable θ�, where � ∈ [m], may be cast as a sum of n independent
and identically distributed Bernoulli trials; each trial represents the choice made by
each specific ball to drop onto bin � (with probability p(�)) or onto a different bin
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(with probability 1− p(�)). Thus, in this case, θ� follows the binomial distribution with
parameters n and p(�).

The Case p(�) = 1/m. This is the case where each ball chooses a bin uniformly at
random. Then, E(θ�) = n/m, for all bins � ∈ [m]. A classical tool from the theory
of random allocations provides then an upper bound on an appropriate tail probability
involving the size of the fullest bin (see, e.g., Theorem 3.1 of [20]) and assuming that
m = n.

LEMMA 3.1. Assume each of n balls is thrown uniformly at random into one of n bins.
Then,

Pr
(

max
�∈[n]

θ� >

⌈
3 ln n

ln ln n

⌉)
≤ 1

n
.

The Case of General p(�). For the general case, arbitrary probabilities p(�) are allowed
for each bin � ∈ [m]; then, E(θ�) = np(�). In this case, classical Chernoff-like results [2]
apply to provide bounds for tail probabilities; we will use a particular such result derived
by Angluin and Valiant [1].

LEMMA 3.2 [1]. Consider any bin � ∈ [m]. Then, for any parameter β ∈ (0, 1),

Pr(θ� > (1+ β) E(θ�)) ≤ exp

(
−β

2

3
· E(θ�)

)
.

We conclude this section with a technical fact that will be used later; it derives a
bound on an appropriate tail probability involving the size of any particular bin.

LEMMA 3.3. Consider any bin � ∈ [m]. Then, for any integer n ≥ 3,

Pr
(
θ� ≥

⌈
3 ln n

ln ln n

⌉
max

{
1, E

(
θ�
)})

<
4 max {1, np(�)}
(4− e)n2

.

The proof of Lemma 3.3 appears in the Appendix. We remark that Lemma 3.3 gen-
eralizes Lemma 3.1 to the case of arbitrary probabilities p(�), � ∈ [m]. Moreover, the
proof of Lemma 3.3 generalizes the one given for Theorem 3.1 of [20].

4. The Structure of Nash Equilibria. Section 4.1 derives the Minimum Expected La-
tency Cost Equations. These are used in Section 4.2 for showing existence and uniqueness
results for fully mixed Nash equilibria.

4.1. Minimum Expected Latency Cost Equations. We remind the reader that S ⊆ [m]
denotes the set of solo links. We show:
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PROPOSITION 4.1 (Minimum Expected Latency Cost Equations). Take any Nash equi-
librium P. Then, for any user i ∈ [n],

λi

(
m∑

j=1

I j
i c j −

m∑
j=1, j �∈S

I j
i∑n

k=1 I j
k − 1

c j

)
−

n∑
k=1,k �=i

λk

(
m∑

j=1, j �∈S

I j
i I j

k∑n
k=1 I j

k − 1
c j

)

= wi

(
m∑

j=1

I j
i − 1−

m∑
j=1, j �∈S

I j
i∑n

k=1 I j
k − 1

)

−
n∑

k=1,k �=i

wk

(
m∑

j=1, j �∈S

I j
i I j

k∑n
k=1 I j

k − 1

)
+

m∑
j=1, j∈S

I j
i W j .

PROOF. We start with an informal outline of our proof. For any user i ∈ [n], we derive
two alternative expressions for

∑m
j=1 I j

i W j . The first one

m∑
j=1

I j
i W j = wi

(
1−

m∑
j=1

I j
i

)
+ λi

m∑
j=1

I j
i c j

follows directly from Proposition 2.2 (condition (2)). The second expression

m∑
j=1

I j
i W j = −

m∑
j=1, j �∈S

I j
i

∑n
k=1 I j

k wk∑n
k=1 I j

k − 1
+

m∑
j=1, j �∈S

I j
i c j

∑n
k=1 I j

k λk∑n
k=1 I j

k − 1
+ wi

m∑
j=1, j∈S

I j
i

will follow by using the expressions for the expected traffics on nonsolo links that were
derived in Lemma 2.3. Equating the two derived expressions will yield the Minimum
Expected Latency Cost Equations. We now continue with the details of the formal proof.

Fix any user i ∈ [n]. By Proposition 2.2 (condition (2)), it follows that

m∑
j=1

I j
i W j = wi

(
1−

m∑
j=1

I j
i

)
+ λi

m∑
j=1

I j
i c j .

We now derive an alternative expression for the sum
∑m

j=1 I j
i W j by using the ex-

pressions for the expected traffics on nonsolo links that were derived in Lemma 2.3.
Clearly,

m∑
j=1

I j
i W j =

m∑
j=1, j �∈S

I j
i W j +

m∑
j=1, j∈S

I j
i W j

=
m∑

j=1, j �∈S
I j
i

(
−∑n

k=1 I j
k wk + c j

∑n
k=1 I j

k λk∑n
k=1 I j

k − 1

)
+

m∑
j=1, j∈S

I j
i W j

= −
m∑

j=1, j �∈S
I j
i

∑n
k=1 I j

k wk∑n
k=1 I j

k − 1
+

m∑
j=1, j �∈S

I j
i c j

∑n
k=1 I j

k λk∑n
k=1 I j

k − 1
+

m∑
j=1, j∈S

I j
i W j .
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Equating the two derived expressions for
∑m

j=1 I j
i W j yields that

wi

(
1−

m∑
j=1

I j
i

)
+ λi

m∑
j=1

I j
i c j

= −
m∑

j=1, j �∈S
I j
i

∑n
k=1 I j

k wk∑n
k=1 I j

k − 1
+

m∑
j=1, j �∈S

I j
i c j

∑n
k=1 I j

k λk∑n
k=1 I j

k − 1
+

m∑
j=1, j∈S

I j
i W j ,

or

λi

m∑
j=1

I j
i c j −

m∑
j=1, j �∈S

I j
i c j

∑n
k=1 I j

k λk∑n
k=1 I j

k − 1

= −wi

(
1−

m∑
j=1

I j
i

)
−

m∑
j=1, j �∈S

I j
i

∑n
k=1 I j

k wk∑n
k=1 I j

k − 1
+

m∑
j=1, j∈S

I j
i W j .

It follows that

λi

m∑
j=1

I j
i c j −

m∑
j=1, j �∈S

I j
i c j

I j
i λi +

∑n
k=1,k �=i I j

k λk∑n
k=1 I j

k − 1

= wi

(
m∑

j=1

I j
i − 1

)
−

m∑
j=1, j �∈S

I j
i

∑n
k=1 I j

k wk∑n
k=1 I j

k − 1
+

m∑
j=1, j∈S

I j
i W j .

Thus,

λi

m∑
j=1

I j
i c j − λi

m∑
j=1, j �∈S

I j
i∑n

k=1 I j
k − 1

c j −
m∑

j=1, j �∈S
I j
i c j

∑n
k=1,k �=i I j

k λk∑n
k=1 I j

k − 1

= wi

(
m∑

j=1

I j
i − 1

)
−

m∑
j=1, j �∈S

I j
i

∑n
k=1 I j

k wk∑n
k=1 I j

k − 1
+

m∑
j=1, j∈S

I j
i W j ,

or

λi

(
m∑

j=1

I j
i c j −

m∑
j=1, j �∈S

I j
i∑n

k=1 I j
k − 1

c j

)
−

m∑
j=1, j �∈S

I j
i c j

∑n
k=1,k �=i I j

k λk∑n
k=1 I j

k − 1

= wi

(
m∑

j=1

I j
i − 1

)
−

m∑
j=1, j �∈S

I j
i

∑n
k=1 I j

k wk∑n
k=1 I j

k − 1
+

m∑
j=1, j∈S

I j
i W j .

Thus, interchanging the order of summation,

λi

(
m∑

j=1

I j
i c j −

m∑
j=1, j �∈S

I j
i∑n

k=1 I j
k − 1

c j

)
−

n∑
k=1,k �=i

λk

(
m∑

j=1, j �∈S

I j
i I j

k∑n
k=1 I j

k − 1
c j

)

= wi

(
m∑

j=1

I j
i − 1

)
−

n∑
k=1

wk

(
m∑

j=1, j �∈S

I j
i I j

k∑n
k=1 I j

k − 1

)
+

m∑
j=1, j∈S

I j
i W j
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= wi

(
m∑

j=1

I j
i − 1−

m∑
j=1, j �∈S

I j
i∑n

k=1 I j
k − 1

)

−
n∑

k=1,k �=i

wk

(
m∑

j=1, j �∈S

I j
i I j

k∑n
k=1 I j

k − 1

)
+

∑
j=1, j∈S

I j
i W j ,

as needed.

4.2. Fully Mixed Strategies. We now focus on the fully mixed case. (Recall that there
are no solo links in the fully mixed case. This implies, in particular, that the last term∑

j=1, j∈S I j
i W j in the left-hand side of the Minimum Expected Latency Cost Equations

is eliminated.) We set I �i = 1 for all users i ∈ [n] and links � ∈ [m] in the Minimum
Expected Latency Cost Equations (Proposition 4.1) and solve the resulting linear system
to obtain that λ is a linear transformation of w.

LEMMA 4.2. Consider any Nash equilibrium P, in the fully mixed case. Then

λ = 1∑m
j=1 c j


m 1 · · · 1
1 m · · · 1
...

...
. . .

...

1 1 · · · m

 · w.

PROOF. By Proposition 4.1, for each user i ∈ [n],

λi

(
m∑

j=1

c j −
m∑

j=1

1∑n
k=1 1− 1

c j

)
−

n∑
k=1,k �=i

λk

(
m∑

j=1

1∑n
k=1 1− 1

c j

)

= wi

(
m∑

j=1

1− 1−
m∑

j=1

1∑n
k=1 1− 1

)
−

n∑
k=1,k �=i

wk

(
m∑

j=1

1∑n
k=1 1− 1

)
,

or

λi

(
m∑

j=1

c j − 1

n − 1

m∑
j=1

c j

)
−

n∑
k=1,k �=i

λk

(
1

n − 1

m∑
j=1

c j

)

= wi

(
m − 1− m

n − 1

)
−

n∑
k=1,k �=i

wk

(
m

n − 1

)
,

or

λi (n−2)

(
m∑

j=1

c j

)
−

n∑
k=1,k �=i

λk

(
m∑

j=1

c j

)
= wi ((m−1)(n−1)−m)− m

n∑
k=1,k �=i

wk,

or (
m∑

j=1

c j

)(
(n − 1)λi −

n∑
k=1

λk

)
= (m − 1)(n − 1)wi − m

n∑
k=1

wk .
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Thus, in matrix form,

(
m∑

j=1

c j

)
n − 2 −1 · · · −1
−1 n − 2 · · · −1
...

...
. . .

...

−1 −1 · · · n − 2

 · λ

=


(m − 1)(n − 1)− m −m · · · −m

−m (m − 1)(n − 1)− m · · · −m
...

...
. . .

...

−m −m · · · (m − 1)(n − 1)− m

 · w.
We observe that

n − 2 −1 · · · −1
−1 n − 2 · · · −1
...

...
. . .

...

−1 −1 · · · n − 2

 ·


0 − 1
n−1 · · · − 1

n−1
− 1

n−1 0 · · · − 1
n−1

...
...

. . .
...

− 1
n−1 − 1

n−1 · · · 0

 = In×n,

so that inverting yields that

λ = 1∑m
j=1 c j


0 − 1

n−1 · · · − 1
n−1

− 1
n−1 0 · · · − 1

n−1
...

...
. . .

...

− 1
n−1 − 1

n−1 · · · 0



·


(m − 1)(n − 1)− m −m · · · −m

−m (m − 1)(n − 1)− m · · · −m
...

...
. . .

...

−m −m · · · (m − 1)(n − 1)− m

 · w

= 1∑m
j=1 c j


m 1 · · · 1
1 m · · · 1
...

...
. . .

...

1 1 · · · m

 · w,

as needed.

We now substitute the expressions for the minimum expected latency costs
(Lemma 4.2) into the expressions for the expected traffics (Lemma 2.3) to obtain that W
is a linear transformation of w.

LEMMA 4.3. Consider any Nash equilibrium P, in the fully mixed case. Then,

W = 1

n − 1

(
−Jm×n + m + n − 1∑m

j=1 c j
C

)
· w.
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PROOF. Since, in the fully mixed case, there are no solo links and I j
i = 1 for all users

i ∈ [n] and links j ∈ [m], Lemma 2.3 implies that for all links � ∈ [m],

W � = −
∑n

k=1wk + c�
∑n

k=1 λk

n − 1
.

Thus, in matrix form, Lemma 4.2 implies that

W = 1

n − 1
(−Jm×n · w+ C · λ)

= 1

n − 1

−Jm×n · w+ C · 1∑m
j=1 c j


m 1 · · · 1
1 m · · · 1
...

...
. . .

...

1 1 · · · m

 · w


= 1

n − 1

(
−Jm×n + m + n − 1∑m

j=1 c j
C

)
· w,

as needed.

We now derive expressions for the fully mixed Nash probabilities.

PROPOSITION 4.4. Consider any Nash equilibrium P, in the fully mixed case. Then, for
all users i ∈ [n] and links � ∈ [m],

p�i =
(

1− mc�∑m
j=1 c j

) (
1−

∑n
k=1wk

(n − 1)wi

)
+ c�∑m

j=1 c j
.

PROOF. The proof amounts to substituting the expressions for λi , i ∈ [n], and W �,
� ∈ [m], derived in Lemmas 4.2 and 4.3, respectively, into the expressions for the
Nash probabilities p�i from Proposition 2.2. So, for a user i ∈ [n] and link � ∈ [m],
Proposition 2.2 implies that

p�i = 1+ W �

wi
− c�

wi
λi

= 1+ 1

wi

1

n − 1

(
−1+ (m + n − 1)c�∑m

j=1 c j

)
n∑

k=1

wk

− c�

wi

1∑m
j=1 c j

(
(m − 1)wi +

n∑
k=1

wk

)
(by Lemmas 4.2 and 4.3)

= 1− (m − 1)c�∑m
j=1 c j

+
∑n

k=1wk

wi

(
− 1

n − 1
+ (m + n − 1)c�

(n − 1)
∑m

j=1 c j
− c�∑m

j=1 c j

)

= 1− (m − 1)c�∑m
j=1 c j

+
∑n

k=1wk

wi

(
− 1

n − 1
+ mc�

(n − 1)
∑m

j=1 c j

)
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= 1− (m − 1)c�∑m
j=1 c j

− 1

n − 1

∑n
k=1wk

wi

(
1− mc�∑m

j=1 c j

)

=
(

1− mc�∑m
j=1 c j

) (
1−

∑n
k=1wk

(n − 1)wi

)
+ c�∑m

j=1 c j
,

as needed.

Do the quantities p�i determined in Proposition 4.4 indeed represent probabilities?
For them to do so, it must be that for each user i ∈ [n], (1)

∑m
j=1 p j

i = 1, and (2) for each
link � ∈ [m], 0 ≤ p�i ≤ 1. Also, since these quantities were specifically derived for the
case of fully mixed strategies, condition (2) should more accurately be stated as (2′) for
each link � ∈ [m], 0 < p�i < 1. A straightforward calculation verifies that conditions (1)
and (2′) may or may not hold, depending on the particular values of the user traffics and
link capacities. Hence, we obtain an inexistence result for fully mixed Nash equilibria.

COROLLARY 4.5. Assume that there exist a user i ∈ [n] and a link � ∈ [m] such that(
1− mc�∑m

j=1 c j

) (
1−

∑n
k=1wk

(n − 1)wi

)
+ c�∑m

j=1 c j
�∈ (0, 1).

Then, in the fully mixed case, there exists no Nash equilibrium.

We continue to show that the necessary condition for a Nash equilibrium (in the fully
mixed case) determined in Corollary 4.5 is also sufficient.

PROPOSITION 4.6. Assume that for all users i ∈ [n] and links � ∈ [m],(
1− mc�∑m

j=1 c j

) (
1−

∑n
k=1wk

(n − 1)wi

)
+ c�∑m

j=1 c j
∈ (0, 1).

Then, in the fully mixed case, the probabilities

p�i =
(

1− mc�∑m
j=1 c j

) (
1−

∑n
k=1wk

(n − 1) wi

)
+ c�∑m

j=1 c j
,

for each user i ∈ [n] and link � ∈ [m], are Nash probabilities.

PROOF. The assumption implies that for any user i ∈ [n] and link � ∈ [m], 0 < p�i < 1.
Thus, by definition of Nash equilibrium, we need to show that for any user i and link �,
λ�i = λi . So fix any user i and link �. Clearly, by definition of expected latency cost,

λ�i =
wi +

∑n
k=1,k �=i p�kwk

c�

= wi

c�
+ 1

c�

n∑
k=1,k �=i

p�kwk
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= wi

c�
+ 1

c�

n∑
k=1,k �=i

((
1− mc�∑m

j=1 c j

) (
1−

∑n
k ′=1wk ′

(n − 1)wk

)
+ c�∑m

j=1 c j

)
wk

= wi

c�
+ 1

c�

(
1− mc�∑m

j=1 c j

)
n∑

k=1,k �=i

(
1−

∑n
k ′=1wk ′

(n − 1)wk

)
wk

+ 1

c�
c�∑m
j=1 c j

n∑
k=1,k �=i

wk

= wi

c�
+ 1

c�

(
1− mc�∑m

j=1 c j

)
·

n∑
k=1,k �=i

wk

− 1

c�

(
1− mc�∑m

j=1 c j

)
1

n − 1

n∑
k ′=1

wk ′

n∑
k=1,k �=i

wk

wk
+ 1∑m

j=1 c j

n∑
k=1,k �=i

wk

= wi

c�
+ 1

c�

(
1− mc�∑m

j=1 c j

)
n∑

k=1,k �=i

wk − 1

c�

(
1− mc�∑m

j=1 c j

)
n∑

k ′=1

wk ′

+ 1∑m
j=1 c j

n∑
k=1,k �=i

wk

= wi

c�
− 1

c�

(
1− mc�∑m

j=1 c j

)
wi + 1∑m

j=1 c j

n∑
k=1,k �=i

wk

= m∑m
j=1 c j

wi + 1∑m
j=1 c j

n∑
k=1,k �=i

wk

= 1∑m
j=1 c j

(
mwi +

n∑
k=1,k �=i

wk

)
.

Lemma 4.2, implies now that λ�i = λi , so that by definition of Nash equilibrium and
fully mixed strategies, the probabilities p�i are Nash probabilities, as needed.

Propositions 4.4 and 4.6 together establish:

THEOREM 4.7 (Existence and Uniqueness of Nash Equilibria). Consider the fully mixed
case. Then, for all users i ∈ [n] and links � ∈ [m],

(
1− mc�∑m

j=1 c j

)
·
(

1−
∑n

k=1wk

(n − 1) wi

)
+ c�∑m

j=1 c j
∈ (0, 1)
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if and only if there exists a Nash equilibrium, which must be unique and has associated
Nash probabilities

p�i =
(

1− mc�∑m
j=1 c j

) (
1−

∑n
k=1wk

(n − 1) wi

)
+ c�∑m

j=1 c j
,

for each user i ∈ [n] and link � ∈ [m].

The expressions for the Nash probabilities p�i in Theorem 4.7 enjoy, as functions of
the link capacities and user traffics, a particularly insightful form. Their first term is the
product of two factors: the first one 1−mc�/

∑m
j=1 c j depends solely on link capacities,

while the second one 1 −∑n
k=1wk/[(n − 1) wi ] depends solely on user traffics. Their

second term c�/
∑m

j=1 c j depends only on link capacities. The first factor in the first
term vanishes for the model of uniform capacities; thus, it is responsible for eliminating
the dependence of Nash probabilities on user traffics in this model. A corresponding
elimination is lacking for the case of identical traffics, since the second factor in the first
term of the Nash probabilities does not vanish when user traffics are identical; thus, Nash
probabilities do depend on link capacities in the model of identical traffics. This subtle
difference manifests an inherent asymmetry between link capacities and user traffics, as
parameters determining the fully mixed Nash probabilities.

We finally remark that Theorem 4.7 implies that for the fully mixed case, Nash
equilibrium can be checked for existence and evaluated (if existing) in time �(mn).

5. Uniform Capacities and Arbitrary Traffics. In this section we derive upper
bounds on the Coordination Ratio for the case of fully mixed strategies and under the
model of uniform capacities, where c� = 1 for each link � ∈ [m].

5.1. Preliminaries. We start with a characterization of fully mixed Nash probabilities.

LEMMA 5.1. Consider the fully mixed case under the model of uniform capacities. Then
there exists a unique Nash equilibrium with associated Nash probabilities p�i = 1/m,
for each user i ∈ [n] and link � ∈ [m].

PROOF. Since 1/m ∈ (0, 1), the claim follows immediately since, by Theorem 4.7, for
any user i ∈ [n] and link � ∈ [m],

(
1− mc�∑m

j=1 c j

)(
1−

∑n
k=1wk

(n − 1) wi

)
+ c�∑m

j=1 c j

=
(

1− m

m

)(
1−

∑n
k=1wk

(n − 1) wi

)
+ 1

m
= 1

m
.
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Lemma 5.1 determines the Nash probabilities associated with the unique Nash equi-
librium. So, the discussion in Section 3 applies to yield that for each link � ∈ [m],

Pr(θ� = ϑ) =
(

n

ϑ

)(
1

m

)ϑ (
1− 1

m

)n−ϑ
,

where 0 ≤ ϑ ≤ n, and that E(θ�) = n/m.

5.2. First Tail Lemma. We prove an upper bound on Social Cost under a certain as-
sumption on the tail of the probability distribution of max�∈[m] θ

�.

PROPOSITION 5.2 (First Tail Lemma). Consider the fully mixed case under the model
of uniform capacities. Assume that, for a Nash equilibrium P, there exists a function
ρ(m, n) such that for every link � ∈ [m],

Pr
(

max
�∈[m]

θ� > ρ(m, n) E(θ�)
)
≤ 1

n
.

Then

SC (w,P) ≤ max
k∈[n]

wk ·
(
ρ(m, n)

n

m
+ 1

)
.

PROOF. We start with an informal outline of our proof. We use the definition for Social
Cost to observe that

SC (w,P) ≤ max
k∈[n]

wk ·
n∑

ϑ=0

ϑ Pr
(

max
�∈[m]

θ� = ϑ
)
.

We then use the assumption on Pr(max�∈[m] θ
� > ρ(m, n) E(θ�)) and split the summation

across ϑ = ρ(m, n)E(θ�0), for any particular link �0 ∈ [m], to derive the claimed upper
bound on SC (w,P). We now continue with the details of the formal proof.

We analyze the Social Cost for the Nash equilibrium P. Clearly,

SC (w,P) = E
(

max
�∈[m]

∑
k:�k=� wk

c�

)

= E
(

max
�∈[m]

( ∑
k:�k=�

wk

))

≤ E
(

max
�∈[m]

(
θ� max

k:�k=�
wk

))
≤ E

(
max
�∈[m]

(
θ� max

1≤k≤n
wk

))
= max

k∈[n]
wk · E

(
max
�∈[m]

θ�
)

= max
k∈[n]

wk · c
n∑

ϑ=0

ϑ Pr
(

max
�∈[m]

θ� = ϑ
)
.
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We break the sum in the left-hand side according to the event that for some arbitrary
(but fixed) link �0 ∈ [m], max�∈[m] θ

� < ρ(m, n)E(θ�0), to obtain that

SC(w,P) ≤ max
k∈[n]

wk

·
 ∑

0≤ϑ≤ρ(m,n)E(θ�0 )
ϑ Pr

(
max
�∈[m]

θ� = ϑ
)

+
∑

ρ(m,n)E(θ�0 )<ϑ≤n

ϑ Pr
(

max
�∈[m]

θ� = ϑ
)

≤ max
k∈[n]

wk

·
 ∑

0≤ϑ≤ρ(m,n)E(θ�0 )
ρ(m, n) E(θ�0)Pr

(
max
�∈[m]

θ� = ϑ
)

+
∑

ρ(m,n)E(θ�0 )<ϑ≤n

n Pr
(

max
�∈[m]

θ� = ϑ
)

= max
k∈[n]

wk

·
ρ(m, n) E(θ�0)

∑
0≤ϑ≤ρ(m,n)E(θ�0 )

Pr
(

max
�∈[m]

θ� = ϑ
)

+ n
∑

ρ(m,n)E(θ�0 )<ϑ≤n

Pr
(

max
�∈[m]

θ� = ϑ
)

= max
k∈[n]

wk

·
(
ρ(m, n) E(θ�0)Pr

(
max
�∈[m]

θ� ≤ ρ(m, n) E(θ�0)

)

+ n Pr
(

max
�∈[m]

θ� > ρ(m, n) E(θ�0)

))

≤ max
k∈[n]

wk ·
(
ρ(m, n) E

(
θ�0
) · 1+ n · 1

n

)
(by assumption on Pr(max�∈[m] θ

� > ρ(m, n) E(θ�0)))

= max
k∈[n]

wk ·
(
ρ(m, n)

n

m
+ 1

)
,

as needed.
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The function ρ(m, n) in Proposition 5.2, called a tail function, provides a multiplica-
tive tail threshold for the random variable max�∈[m] θ

� such that the measure of the tail
distribution of it that lies above ρ(m, n) E(θ�), for any link � ∈ [m], is sufficiently small.

Proposition 5.2 implies that to show an upper bound on Social Cost, it suffices to
determine a suitable tail function ρ(m, n). We now do so for two particular instances of
the problem.

5.3. Upper Bounds on Social Cost. We determine a suitable tail function under two
particular assumptions on how m and n compare to each other.

The Case m = n. We prove:

PROPOSITION 5.3. Consider the fully mixed case under the model of uniform capacities.
Assume that m = n. Then, for a Nash equilibrium P,

SC (w,P) ≤ max
k∈[n]

wk ·
(⌈

3 ln n

ln ln n

⌉
+ 1

)
.

PROOF. Take any link � ∈ [n]. Since E(θ�) = 1, Lemma 3.1 implies that for each link
� ∈ [n],

Pr
(

max
�∈[n]

θ� >

⌈
3 ln n

ln ln n

⌉
· E (θ�)) ≤ 1

n
.

Thus, Proposition 5.2 applies with ρ(m, n) = �(3 ln n)/(ln ln n)� and yields

SC (w,P) ≤ max
k∈[n]

wk ·
(⌈

3 ln n

ln ln n

⌉
+ 1

)
,

as needed.

The Case m ≤ n/16 ln n. We prove:

PROPOSITION 5.4. Consider the fully mixed case under the model of uniform capacities.
Assume that m ≤ n/(16 ln n). Then, for a Nash equilibrium P,

SC (w,P) ≤ max
k∈[n]

wk ·
(

3

2

n

m
+ 1

)
.

PROOF. Take any link � ∈ [m]. Since E(θ�) = n/m, Lemma 3.2 implies that for any
parameter β ∈ (0, 1),

Pr(θ� > (1+ β) E(θ�)) ≤ exp

(
−β

2

2

n

m

)
≤ exp

(
−β

2

2
16 ln n

) (
since m ≤ n

16 ln n

)
.
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Now fix β = 1
2 , so that

Pr(θ� > 3
2E(θ

�)) ≤ exp (−2 ln n) = 1

n2
.

Thus,

Pr
(

max
�∈[m]

θ� > 3
2E
(
θ�
)) = Pr

(∨
�∈[m]

(θ� > 3
2E(θ

�))

)

≤
∑
�∈[m]

Pr(θ� > 3
2E(θ

�))

≤
∑
�∈[m]

1

n2

= m · 1

n2

≤ n

24 ln n
· 1

n2

<
1

n
.

Thus, Proposition 5.2 applies with ρ(m, n) = 3
2 to yield the claim.

5.4. Lower Bound on Social Optimum. In this section we prove a lower bound on
Social Optimum.

LEMMA 5.5. Consider the model of uniform capacities. Then

OPT(w) ≥ max

{∑
1≤k≤n wk

m
, max

1≤k≤n
wk

}
.

PROOF. Clearly, in the optimal assignment of traffics to links, some link must receive
traffic no less than the average (over all links) traffic, and some link must receive the
maximum (over all users) traffic. Thus,

OPT(w) ≥ max

{∑
1≤k≤n wk

m
, max

k∈[n]
wk

}
= max

{∑
1≤k≤n wk

m
, max

k∈[n]
wk

}
,

as needed.

5.5. Combining the Bounds. Assuming first that m = n and appealing to Proposi-
tion 5.3 and Lemma 5.5, we obtain:

THEOREM 5.6. Consider the fully mixed case under the model of uniform capacities.
Assume that m = n. Then

CR ≤
⌈

3 ln n

ln ln n

⌉
+ 1.
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PROOF. By the definition of Coordination Ratio,

CR = max
w,P

SC (w,P)
OPT (w)

(where P is a Nash equilibrium)

≤ max
k∈[n]

wk ·
(⌈

3 ln n

ln ln n

⌉
+1

)
1

maxk∈[n]wk
(by Proposition 5.3 and Lemma 5.5)

=
⌈

3 ln n

ln ln n

⌉
+ 1,

as needed.

With m ≤ n/(16 ln n) appealing to Proposition 5.4 and Lemma 5.5 yields:

THEOREM 5.7. Consider the fully mixed case under the model of uniform capacities.
Assume that m ≤ n/(16 ln n). Then,

CR ≤ ( 3
2 + o(1))max/avg(w).

PROOF. By the definition of Coordination Ratio,

CR = max
w,P

SC (w,P)
OPT (w)

(where P is a Nash equilibrium)

≤ max
k∈[n]

wk

(
3

2

n

m
+1

)
m∑

k∈[n]wk
(by Proposition 5.4 and Lemma 5.5)

≤
(

3

2
+ 1

16 ln n

)
max/avg(w)

(
since m ≤ n

16 ln n

)
=
(

3

2
+ o(1)

)
max/avg(w),

as needed.

6. Arbitrary Capacities and Identical Traffics. In this section, we derive upper
bounds on the Coordination Ratio for the case of fully mixed strategies under the model
of arbitrary capacities and identical traffics.

For each link � ∈ [m], let c̃� = c�/(
∑n

j=1 c j ) denote the reduced capacity of link �.

(Clearly,
∑

�∈[m] c̃� = 1.)

6.1. Preliminaries. We start with a simple characterization of existence and uniqueness
of fully mixed Nash equilibria for this case.

LEMMA 6.1. Consider the fully mixed case under the model of arbitrary capacities.
Assume that all traffics are identical. Then, for all links � ∈ [m],

c̃� ∈
(

1

m + n − 1
,

n

m + n − 1

)
,
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if and only if there exists a Nash equilibrium, which must be unique and has associated
Nash probabilities

p�i =
(m + n − 1) c̃� − 1

n − 1
,

for any user i ∈ [n] and link � ∈ [m].

PROOF. By Theorem 4.7, there exists a Nash equilibrium, which must be unique, if and
only if for all users i ∈ [n] and links � ∈ [m],(

1− mc̃�
) (

1− nw

(n − 1)w

)
+ c̃� ∈ (0, 1),

or (
m

n − 1
+ 1

)
c̃� ∈ (0, 1)+ 1

n − 1
=
(

1

n − 1
,

n

n − 1

)
.

This is equivalent to

m + n − 1

n − 1
· c̃� ∈

(
1

n − 1
,

n

n − 1

)
or c̃� ∈

(
1

m + n − 1
,

n

m + n − 1

)
,

as needed. Also, by Theorem 4.7, the associated Nash probabilities are

p�i =
(

1− mc̃�
) (

1− nw

(n − 1)w

)
+ c̃�

=
(

1− mc̃�
) (
− 1

n − 1

)
+ c̃� = (m + n − 1) c̃� − 1

n − 1
,

for all users i ∈ [n] and links � ∈ [m], as needed.

Lemma 6.1 describes the Nash probabilities for the case of identical traffics and
under the model of arbitrary capacities; thus, it is the analog of Lemma 5.1 that holds
for the case of arbitrary traffics and under the model of uniform capacities. We remark
that these two lemmas stand in contrast to each other, since Lemma 5.1 establishes
the unconditional existence of a (unique) Nash equilibrium, while Lemma 6.1 provides
conditions on link capacities under which a (then unique) Nash equilibrium exists. Thus,
Lemmas 5.1 and 6.1 reveal an essential difference with respect to existence of Nash
equilibria between the case of uniform capacities and arbitrary traffics, and the case of
arbitrary capacities and identical traffics, respectively.

Lemma 6.1 shows that each Nash probability is now independent of the particular user
and depends only on the link; to emphasize this independence, we write p(�) to denote
p�i for a user i ∈ [n] and link � ∈ [m]. So, the discussion in Section 3 applies to yield
that for each link � ∈ [m], Pr(θ� = ϑ) = (n

ϑ

)
pϑ(�)(1 − p(�))n−ϑ , where 0 ≤ ϑ ≤ n,

and that E(θ�) = np(�).
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6.2. Second Tail Lemma. We prove an upper bound on Social Cost under a certain
assumption on the tails of the probability distributions of the random variables θ�, where
� ∈ [m].

PROPOSITION 6.2 (Second Tail Lemma). Consider the fully mixed case under the model
of arbitrary capacities. Assume that all traffics are equal to w. Assume that, for a Nash
equilibrium P, there exists, for each link � ∈ [m], a function ρ�(m, n) such that

Pr

(∧
�∈[m]

(θ� ≤ ρ�(m, n) max{1, E(θ�)})
)
> 1− δ

n
,

for some constant δ > 0. Then, in a Nash equilibrium P,

SC (w,P) <
m + n − 1∑

�∈[m] c�
·
(

max
�∈[m]

ρ�(m, n)
n

n − 1
+ δ

)
.

PROOF. We start with an informal outline of our proof. We use the definition for So-
cial Cost to observe that SC(w,P) = w E(max�∈[m] θ

�/c�). To bound from above the
expectation of the (discrete) random variable max�∈[m] θ

�/c�, we partition its sample
space according to the event that for all links � ∈ [m], θ� ≤ ρ�(m, n) max{1, E(θ�)};
we obtain that

SC (w,P) ≤ max
�∈[m]

ρ�(m, n) ·max

{
max
�∈[m]

1

c�
, max
�∈[m]

E(θ�)
c�

}
+ δ

min�∈[m] c�
.

We then use the necessary conditions on reduced capacities derived in Lemma 6.1 as
well as the expressions for the Nash probabilities p(�), where � ∈ [m], derived there to
establish the claim. We now continue with the details of the formal proof.

We analyze the Social Cost for the Nash equilibrium P. By definition of Social Cost,

SC (w,P) = E
(

max
�∈[m]

∑
k :�k=� wk

c�

)
= E

(
max
�∈[m]

θ�

c�

)
(since all traffics are identical)

= E
(

max
�∈[m]

θ�

c�

)
.

We continue to analyze (and bound from above) the expectation of the random variable
max�∈[m] θ

�/c�. Since each variable θ� may only take on values from {0, 1, . . . , n}, it
follows that, given the link capacities, the random variable max�∈[m] θ

�/c� is a discrete
random variable, taking on only finitely many values; thus, its expectation is a finite sum,
so that

SC (w,P) =
∑

ϑ :max�∈[m] θ�/c�=ϑ
ϑ Pr

(
max
�∈[m]

θ�

c�
= ϑ

)
.
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We break the sum in the left-hand side according to the event that for all links � ∈ [m],
θ� ≤ ρ�(m, n) max{1, E(θ�)}, to obtain that

SC (w,P) =
∑

ϑ : ϑ=max�∈[m] θ
�/c� &

∀�∈[m]:
θ�≤ρ�(m,n)max{1,E(θ�)}

ϑ Pr
(

max
�∈[m]

θ�/c� = ϑ
)

+
∑

ϑ : ϑ=max�∈[m]
θ�

c�
&

∃�∈[m]:
θ�>ρ�(m,n)max{1,E(θ�)}

ϑ Pr
(

max
�∈[m]

θ�

c�
= ϑ

)
.

We proceed to calculate upper bounds on the dummy variable ϑ involved in each of
the two sums in the right-hand side of the last expression.

• Consider the first sum, taking that for all links � ∈ [m], θ� ≤ ρ�(m, n)max{1, E(θ�)};
it follows that

max
�∈[m]

θ�/c� ≤ max
�∈[m]

ρ�(m, n)max{1, E(θ�)}
c�

.

• Now consider the second sum. The condition that there exists a link � ∈ [m] such
that θ� > ρ�(m, n) max{1, E(θ�)} is not particularly helpful; so, we use the (trivial)
upper bound θ� ≤ n for all links � ∈ [m]. Since ϑ represents all possible values
taken on by the random variable max�∈[m] θ

�/c�, it follows that for the second sum,
ϑ ≤ max�∈[m] n/c�.

It follows that

SC (w,P) ≤
∑

ϑ :ϑ=max�∈[m] θ
�/c� &

∀�∈[m]:
θ�≤ρ�(m,n) max{1,E(θ�)}

max
�∈[m]

ρ�(m, n) max{1, E(θ�)}
c�

Pr
(

max
�∈[m]

θ�/c� = ϑ
)

+
∑

ϑ : ϑ=max�∈[m] θ
�/c� &

∃�∈[m]:
θ�>ρ�(m,n) max{1,E(θ�)}

max
�∈[m]

n

c�
Pr
(

max
�∈[m]

θ�/c� = ϑ
)

= max
�∈[m]

ρ�(m, n) max{1, E(θ�)}
c�

·
∑

ϑ : ϑ=max�∈[m] θ
�/c� &

∀�∈[m]:
θ�≤ρ�(m,n) max{1,E(θ�)}

Pr
(

max
�∈[m]

θ�/c� = ϑ
)

+max
�∈[m]

n

c�
·

∑
ϑ : ϑ=max�∈[m] θ

�/c� &

∃�∈[m]:
θ�>ρ�(m,n) max{1,E(θ�)}

Pr
(

max
�∈[m]

θ�/c� = ϑ
)
.

Clearly, ∑
ϑ : ϑ=max�∈[m] θ

�/c� &

∀�∈[m]:
θ�≤ρ�(m,n) max{1,E(θ�)}

Pr
(

max
�∈[m]

θ�/c� = ϑ
)
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= Pr

(∧
�∈[m]

(θ� ≤ ρ�(m, n) max{1, E(θ�)})
)

≤ 1,

while ∑
ϑ : ϑ=max�∈[m] θ

�/c� &

∃�∈[m]:
θ�>ρ�(m,n) max{1,E(θ�)}

Pr
(

max
�∈[m]

θ�

c�
= ϑ

)
= Pr

(∨
�∈[m]

(θ� > ρ�(m, n) max{1, E(θ�)})
)

<
δ

n
.

It follows that

SC(w,P) < max
�∈[m]

ρ�(m, n) max{1, E(θ�)}
c�

· 1+ max
�∈[m]

n

c�
· δ

n

≤ max
�∈[m]

ρ�(m, n) · max
�∈[m]

max{1, E(θ�)}
c�

+ δ

min�∈[m] c�

= max
�∈[m]

ρ�(m, n) · max
�∈[m]

max

{
1

c�
,
E(θ�)

c�

}
+ δ

min�∈[m] c�

= max
�∈[m]

ρ�(m, n) ·max

{
max
�∈[m]

1

c�
,max
�∈[m]

E(θ�)
c�

}
+ δ

min�∈[m] c�

= max
�∈[m]

ρ�(m, n) ·max

{
1

min�∈[m] c�
,max
�∈[m]

E(θ�)
c�

}
+ δ

min�∈[m] c�
.

By Lemma 6.1,

1

min�∈[m] c�
<

m + n − 1∑
�∈[m] c�

.

On the other hand,

max
�∈[m]

E
(
θ�
)

c�
= max

�∈[m]

n p(�)

c�
(since E

(
θ�
) = np(�))

= n max
�∈[m]

p(�)

c�

= n max
�∈[m]

(m + n − 1) c̃� − 1

(n − 1) c�
(by Lemma 6.1)

< n max
�∈[m]

(m + n − 1) c̃�

(n − 1) c�

= n(m + n − 1)

n − 1
max
�∈[m]

1∑
�∈[m] c�

(by definition of reduced capacities)

= n(m + n − 1)

(n − 1)
∑

�∈[m] c�
.
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Thus,

max

{
1

min�∈[m] c�
,max
�∈[m]

E
(
θ�
)

c�

}
≤ max

{
m + n − 1∑

�∈[m] c�
,

n (m + n − 1)

(n − 1)
∑

�∈[m] c�

}

= m + n − 1∑
�∈[m] c�

max

{
1,

n

n − 1

}
= m + n − 1∑

�∈[m] c�
n

n − 1
.

It follows that

SC (w,P) < max
�∈[m]

ρ�(m, n)
m + n − 1∑

�∈[m] c�
· n

n − 1
+ δ m + n − 1∑

�∈[m] c�

= m + n − 1∑
�∈[m] c�

(
max
�∈[m]

ρ�(m, n)
n

n − 1
+ δ

)
,

as needed.

We remark that the assumption that P is a Nash equilibrium has been crucial for prov-
ing Proposition 6.2, since it allowed Lemma 6.1 to be used, which provides conditions
on reduced capacities that are necessary for a Nash equilibrium but may fail to hold in
general.

6.3. Upper Bound on Social Cost. In this section we determine a suitable tail function
for each link � ∈ [m], under the additional assumption that m ≤ n. Taking the maximum
of these tail functions will yield, via Proposition 6.2, an upper bound on Social Cost. We
show:

PROPOSITION 6.3. Consider the fully mixed case under the model of arbitrary capaci-
ties. Assume that all traffics are equal tow, and that m ≤ n. Then, in a Nash equilibrium P,

SC (w,P) <
2n − 1∑
�∈[m] c�

(⌈
3 ln n

ln ln n

⌉
n

n − 1
+ 8

4− e

)
.

PROOF. We start with an informal outline of our proof. We set ρ�(m, n) = �(3 ln n)/
(ln ln n)� for each link � ∈ [m]; by appealing to Lemma 3.3, we prove that

Pr

(∧
�∈[m]

(
θ� ≤

⌈
3 ln n

ln ln n

⌉
max{1, E(θ�)}

))
> 1− 8

(4− e)n
.

Then Proposition 6.2 applies to establish the claim. We now present the details of the
formal proof.
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For each link � ∈ [m], set ρ�(m, n) = �(3 ln n)/(ln ln n)�. Then,

Pr

(∧
�∈[m]

(θ� ≤ ρ�(m, n) max{1, E(θ�)})
)

= 1− Pr

(∨
�∈[m]

(
θ� >

⌈
3 ln n

ln ln n

⌉
max{1, E(θ�)}

))

≥ 1− Pr

(∨
�∈[m]

(
θ� ≥

⌈
3 ln n

ln ln n

⌉
max{1, E(θ�)}

))

≥ 1−
∑
�∈[m]

Pr
(
θ� ≥

⌈
3 ln n

ln ln n

⌉
max

{
1, E

(
θ�
)})

> 1−
∑
�∈[m]

4 max {1, np(�)}
(4− e)n2

(by Lemma 3.3)

= 1− 4

(4− e)n2

∑
�∈[m]

max {1, np(�)}

= 1− 4

(4− e)n2

∑
�∈[m]:

np(�)≤1

max {1, np(�)} +
∑
�∈[m]:

np(�)>1

max {1, np(�)}


= 1− 4

(4− e)n2

∑
�∈[m]:

np(�)≤1

1+
∑
�∈[m]:

np(�)>1

np(�)


≥ 1− 4

(4− e)n2

(∑
�∈[m]

1+
∑
�∈[m]

np(�)

)

= 1− 4

(4− e)n2

(
m + n

∑
�∈[m]

p(�)

)

= 1− 4

(4− e)n2
(m + n)

≥ 1− 4

(4− e)n2
(2n) (since m ≤ n)

= 1− 8

(4− e)n
.

Thus, Proposition 6.2 implies that

SC(w,P) <
m + n − 1∑

�∈[m] c�
·
(

max
�∈[m]

⌈
3 ln n

ln ln n

⌉
· n

n − 1
+ 8

4− e

)
≤ m + n − 1∑

�∈[m] c�
·
(⌈

3 ln n

ln ln n

⌉
· n

n − 1
+ 8

4− e

)
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≤ 2n − 1∑
�∈[m] c�

(⌈
3 ln n

ln ln n

⌉
n

n − 1
+ 8

4− e

)
(since m ≤ n),

as needed.

6.4. Lower Bound on Social Optimum. In this section, we prove a lower bound on
Social Optimum.

LEMMA 6.4. Consider the fully mixed case under the model of uniform capacities.
Assume that all traffics are equal to w. Then

OPT(w) ≥ n∑
�∈[m] c�

.

PROOF. We start with an informal outline of our proof. The proof considers an alter-
native model where each individual traffic may be “split” among more than one link;
clearly, the Social Optimum is no less than the value it attains in this model. This splitting
assumption is modeled by introducing a split fraction ϕ� ∈ [0, 1] for each link � ∈ [m],
representing the fraction of the total traffic nw received by link �. Thus, the Social Op-
timum for this model is the minimum, over all possible choices of split fractions ϕ� for
links, of the maximum, over all links, of ϕ�n/c�. The claim follows easily then from the
observation that there must exist a link � ∈ [m] such that ϕ� ≥ c̃�. We now continue with
the details of the formal proof.

Clearly, the Social Optimum is no less than the value it attains in a model where
each individual traffic may be “split” among more than one link. So, define a split
fraction ϕ� ∈ [0, 1] for each link � ∈ [m], representing the fraction of the total traffic∑n

k=1wk = n received by link �. Then, the Social Optimum for this model is given by

OPT (w) ≥ min
{ϕ�∈[0,1]}�∈[m] |��∈[m]ϕ�=1

max
�∈[m]

ϕ�nw

c�

= n · min
{ϕ�∈[0,1]}�∈[m] |��∈[m]ϕ�=1

max
�∈[m]

ϕ�

c�

= n∑
�∈[m] c�

· min
{ϕ�∈[0,1]}�∈[m] |��∈[m]ϕ�=1

max
�∈[m]

ϕ�

c̃�
.

We continue to prove a simple fact.

CLAIM 6.5. There exists a link � ∈ [m] such that ϕ� ≥ c̃�.

PROOF. Assume, by way of contradiction, that for each link � ∈ [m], ϕ� < c̃�, so
that

∑
�∈[m] ϕ� <

∑
�∈[m] c̃� = 1. By definition of split fractions,

∑
�∈[m] ϕ� = 1. A

contradiction.

Claim 6.5 implies now that

OPT (w) ≥ n∑
�∈[m] c�

· min
{ϕ�∈[0,1]}�∈[m] |��∈[m]ϕ�=1

1 = n∑
�∈[m] c�

,

as needed.
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6.5. Combining the Bounds. Assuming that m ≤ n and appealing to Proposition 6.3
and Lemma 6.4, we obtain:

THEOREM 6.6. Consider the fully mixed case under the model of arbitrary capacities.
Assume that all traffics are identical. Assume also that m ≤ n. Then

CR < (2+ o(1))

⌈
3 ln n

ln ln n

⌉
+ 16

4− e
.

PROOF. By the definition of Coordination Ratio,

CR ≤ max
w,P

SC (w,P)
OPT (w)

(where P is a Nash equilibrium)

<
2n − 1∑
�∈[m] c�

(⌈
3 ln n

ln ln n

⌉
n

n − 1
+ 8

4− e

) ∑
�∈[m] c�

n

(by Proposition 6.3 and Lemma 6.4)

= 2n − 1

n − 1

⌈
3 ln n

ln ln n

⌉
+ 2n − 1

n

8

4− e

< (2+ o(1))

⌈
3 ln n

ln ln n

⌉
+ 16

4− e
,

as needed.

7. Epilogue. Our work has been the first attempt to understand and analyze a new genre
of algorithmic problems arising from the KP model and the Coordination Ratio [16].
We introduced the fully mixed Nash equilibrium and proved for it asymptotically tight
(within small constants), and sometimes even constant, upper bounds of no worse than
�(lg n/lg lg n) on the Coordination Ratio for two interesting instances of the problem:
all links have the same capacity while user traffics may vary, or all users carry the same
traffic while link capacities vary.

Although the fully mixed Nash equilibrium is one out of the exponentially many
possible Nash equilibria, we believe that it encapsulates the difficulty of the whole
problem; that is, we believe that the fully mixed Nash equilibrium is an abstraction of a
hard problem instance with respect to Social Cost and Coordination Ratio. A substantial
body of recent research that followed the original conference publication of our work in
2001 has provided some concrete evidence to this belief. To be more specific, there has
been a substantial body of recent research work addressing the so-called Fully Mixed
Nash Equilibrium Conjecture [7], [10], [18], which asserts that the fully mixed Nash
equilibrium maximizes, when it exists, Social Cost.

This natural conjecture was initially motivated by some preliminary results by Fotakis
et al. [7], explicitly formulated by Gairing et al. [10], and first studied in a systematic
way by Lücking et al. [18]. The conjecture could be proved for several special cases
of the problem [7], [10], [11], [18]. For the special case of arbitrary users and identical
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links, Gairing et al. [11, Theorem 5.1] prove that for any arbitrary vector w, the Social
Cost of any Nash equilibrium is within 2max/avg(w)(1+ ε) of that of the fully mixed
Nash equilibrium, for any constant ε > 0. Combined with our upper bounds on the
Coordination Ratio restricted to the fully mixed Nash equilibrium (Theorems 5.6, 5.6,
and 6.6) this implies corresponding upper bounds (multiplied by 2max/avg(w)(1+ ε))
on Coordination Ratio for the general case.

The fully mixed Nash equilibrium conjecture was recently disproved in [6] for the
case of arbitrary users and uniform capacities. It is an interesting open problem whether
the conjecture holds for the case of identical users and arbitrary capacities. Finally,
conjectures motivated by and similar to the Fully Mixed Nash Equilibrium Conjecture
were recently formulated and studied in an intensive way for several variants of the KP
model [4], [8], [9], [17], [19]. For an advocate of conjectures related to the fully mixed
Nash equilibrium, we refer the reader to the recent survey [12].

Two independent research teams, one of Koutsoupias et al. [15] and another of Czumaj
and Vöcking [3], have subsequently bounded (in a nonconstructive way) the Coordination
Ratio to be �(lg m/lg lg m) for the model of uniform capacities and arbitrary traffics.
Their corresponding, nonconstructive proofs have not identified the worst-case Nash
equilibrium [16] for this model—they have only provided a tight upper bound for any
Nash equilibrium (and, therefore, for the worst-case one). Theorem 5.7 implies that this
bound is not tight for the restriction of the model of uniform capacities and arbitrary
traffics to the fully mixed Nash equilibrium. A corresponding, nonconstructive tight upper
bound of �(lg m/lg lg lg m) on the Coordination Ratio has been shown by Czumaj and
Vöcking [3] for the model of arbitrary traffics and arbitrary capacities. Theorem 6.6
implies that this bound is not tight for the restriction of the model of arbitrary capacities
and identical traffics to the fully mixed Nash equilibrium.

Acknowledgments. We thank Elias Koutsoupias and Christos Papadimitriou, whose
seminal article “Worst-case Equilibria” [16] has inspired our work.

Appendix. Proof of Lemma 3.3. Since θ� follows the binomial distribution with
parameters n and p(�), it holds, for any integer ϑ such that 1 ≤ ϑ ≤ n, that

Pr
(
θ� = ϑ) = (

n

ϑ

)
pϑ(�) (1− p(�))n−ϑ ≤

(
n

ϑ

)
pϑ(�)

≤
(en

ϑ

)ϑ
· pϑ(�) =

(
enp(�)

ϑ

)ϑ
≤
(

e max {1, np(�)}
ϑ

)ϑ
.

Consider now some integer parameter ρ > 3 that will be determined later. Clearly,

Pr(θ� ≥ ρmax{1, E(θ�)})
= Pr

(
θ� ≥ ⌈ρmax

{
1, E

(
θ�
)}⌉)

(since θ� is integer)
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=
n∑

ϑ=�ρmax{1,E(θ�)}�
Pr(θ� = ϑ)

=
n∑

ϑ=�ρmax{1,np(�)}�
Pr(θ� = ϑ)

≤
n∑

ϑ=�ρmax{1,np(�)}�

(
e max{1, np(�)}

ϑ

)ϑ

≤
n∑

ϑ=�ρmax{1,np(�)}�

(
e max{1, np(�)}
�ρmax{1, np(�)}�

)ϑ

≤
n∑

ϑ=�ρmax{1,np(�)}�

(
e

ρ

)ϑ

=
(

e

ρ

)�ρmax{1,np(�)}� n−�ρmax{1,np(�)}�∑
ϑ=0

(
e

ρ

)ϑ

<

(
e

ρ

)�ρmax{1,np(�)}� ∞∑
ϑ=0

(
e

ρ

)ϑ

≤
(

e

ρ

)�ρmax{1,np(�)}� ∞∑
ϑ=0

( e

4

)ϑ
(since ρ ≥ 4)

=
(

e

ρ

)�ρmax{1,np(�)}�
· 1

1− e
4

≤ 4

4− e

(
e

ρ

)ρmax{1,np(�)}
(since e

ρ
< 1 and ρmax{1, np(�)} > 3)

= 4

4− e

((
e

ρ

)ρ)max{1,np(�)}

≤ 4

4− e

(
e

ρ

)ρ
·max{1, np(�)}

(since (e/ρ)ρ < 1 and max{1, np(�)} ≥ 1).

Now fix ρ = �(3 ln n)/ln ln n�. Since n ≥ 3, ln n > 1 and ln ln n > 0 so that
(3 ln n)/ln ln n > 3 and ρ = �(3 ln n)/ln ln n� > 3, as presumed. It follows by Claim 2.1
that

Pr
(
θ� ≥

⌈
3 ln n

ln ln n

⌉
max{1, E(θ�)}

)
<

4

4− e
· 1

n2
·max {1, np(�)}

= 4 max {1, np(�)}
(4− e)n2

,

as needed.
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