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Abstract. Network design is a fundamental problem for which it is important to understand the
effects of strategic behavior. Given a collection of self-interested agents who want to form a network
connecting certain endpoints, the set of stable solutions — the Nash equilibria — may look quite
different from the centrally enforced optimum. We study the quality of the best Nash equilibrium,
and refer to the ratio of its cost to the optimum network cost as the price of stability. The best Nash
equilibrium solution has a natural meaning of stability in this context — it is the optimal solution
that can be proposed from which no user will defect.

We consider the price of stability for network design with respect to one of the most widely-studied
protocols for network cost allocation, in which the cost of each edge is divided equally between users
whose connections make use of it; this fair-division scheme can be derived from the Shapley value,
and has a number of basic economic motivations. We show that the price of stability for network
design with respect to this fair cost allocation is O(log k), where k is the number of users, and that a
good Nash equilibrium can be achieved via best-response dynamics in which users iteratively defect
from a starting solution. This establishes that the fair cost allocation protocol is in fact a useful
mechanism for inducing strategic behavior to form near-optimal equilibria. We discuss connections
to the class of potential games defined by Monderer and Shapley, and extend our results to cases in
which users are seeking to balance network design costs with latencies in the constructed network,
with stronger results when the network has only delays and no construction costs. We also present
bounds on the convergence time of best-response dynamics, and discuss extensions to a weighted
game.
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1. Introduction. In many network settings, the system behavior arises from the
actions of a large number of independent agents, each motivated by self-interest and
optimizing an individual objective function. As a result, the global performance of the
system may not be as good as in a case where a central authority can simply dictate
a solution; rather, we need to understand the quality of solutions that are consistent
with self-interested behavior. Recent theoretical work has framed this type of question
in the following general form: how much worse is the solution quality of a Nash
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equilibrium1, compared to the quality of a centrally enforced optimum? Questions of
this genre have received considerable attention in recent years, for problems including
routing [37, 39, 13], load balancing [14, 15, 27, 38], and facility location [41]; see [34,
Chapters 17–21] for an overview of this literature.

An important issue to explore in this area is the middle ground between cen-
trally enforced solutions and completely unregulated anarchy. In most networking
applications, it is not the case that agents are completely unrestricted; rather, they
interact with an underlying protocol that essentially proposes a collective solution to
all participants, each of which can either accept it or defect from it. As a result, it
is in the interest of the protocol designer to seek the best Nash equilibrium; this can
naturally be viewed as the optimum subject to the constraint that the solution is sta-
ble, with no agent having an incentive to unilaterally defect from it once it is offered.
Hence, one can view the ratio of the solution quality at the best Nash equilibrium
relative to the global optimum as a price of stability, since it captures the problem
of optimization subject to this constraint. Some recent work [3, 13] has considered
this definition (termed the “optimistic price of anarchy” in [3]); it stands in contrast
to the larger line of work in algorithmic game theory on the price of anarchy [35] —
the ratio of the worst Nash equilibrium to the optimum — which is more suited to
worst-case analysis of situations with essentially no protocol mediating interactions
among the agents. Indeed, one can view the activity of a protocol designer seeking
a good Nash equilibrium as being aligned with the general goals of mechanism de-
sign [33] — producing a game that yields good outcomes when players act in their
own self-interest.

Network Design Games. Network design is a natural area in which to explore the
price of stability, given the large body of work in the networking literature on methods
for sharing the cost of a designed network — often a virtual overlay, multicast tree,
or other sub-network of the Internet — among a collection of participants. (See e.g.
[19, 22] for overviews of work in this area).

A cost-sharing mechanism can be viewed as the underlying protocol that deter-
mines how much a network serving several participants will cost to each of them.
Specifically, say that each user i has a pair of nodes (si, ti) that it wishes to connect;
it chooses an si-ti path Si; and the cost-sharing mechanism then charges user i a cost
of Ci(S1, . . . , Sk). (Note that this cost can depend on the choices of the other users
as well.) Although there are in principle many possible cost-sharing mechanisms,
research in this area has converged on a few mechanisms with good theoretical and
empirical behavior; here we focus on the following particularly natural one: the cost
of each edge is shared equally by the set of all users whose paths contain it, so that

Ci(S1, S2, . . . , Sk) =
∑

e∈Si

ce

|{j : e ∈ Sj}| .

This equal-division mechanism has a number of basic economic motivations; it can be
derived from the Shapley value [32], and it can be shown to be the unique cost-sharing
scheme satisfying a number of different sets of axioms [19, 22, 32]. For the former
reason, we will refer to it as the Shapley cost-sharing mechanism. Note that the total
edge cost of the designed network is equal to the sum of the costs in the union of all
Si, and the costs allocated to users in the Shapley mechanism completely pay for this
total edge cost:

∑k
i=1 Ci(S1, S2, . . . , Sk) =

∑
e∈∪iSi

ce.

1Recall that a Nash equilibrium is a state of the system in which no agent has an interest in
unilaterally changing its own behavior.
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Fig. 1.1. An instance in which the price of stability converges to H(k) = Θ(log k) as ε → 0.

Now, the general question is to determine how this basic cost-sharing mechanism
serves to influence the strategic behavior of the users, and what effect this has on
the structure and overall cost of the network one obtains. Given a solution to the
network design problem consisting of a vector of paths (S1, . . . , Sk) for the k users,
user i would be interested in deviating from this solution if there were an alternate si-
ti path S′i such that changing to S′i would lower its cost under the resulting allocation:
Ci(S1, . . . , Si−1, S

′
i, Si+1, . . . , Sk) < Ci(S1, . . . , Si−1, Si, Si+1, . . . , Sk). We say that a

set of paths is a Nash equilibrium if no user has an interest in deviating. As we will see
below, there exists a set of paths in Nash equilibrium for every instance of this network
design game. (In this paper, we will only be concerned with pure Nash equilibria; i.e.,
with equilibria where each user deterministically chooses a single path.)

The goal of a network design protocol is to suggest for each user i a path Si so that
the resulting set of paths is in Nash equilibrium and its total cost exceeds that of an
optimal set of paths by as small factor as possible; this factor is the price of stability
of the instance. It is useful at this point to consider a simple example that illustrates
how the price of stability can grow to a super-constant value (with k). Suppose k
players wish to connect from the common source s to their respective terminals ti,
and assume player i has its own path of cost 1/i, and all players can share a common
path of cost 1 + ε for some small ε > 0 (see Figure 1.1). The optimal solution would
connect all agents through the common path for a total cost of 1 + ε. However, if
this solution were offered to the users, they would defect from it one by one to their
alternative paths. The unique Nash equilibrium has a cost of

∑k
i=1 1/i = H(k).

While the price of stability in this instance grows with k, it only does so loga-
rithmically. It is thus natural to ask how large the price of stability can be for this
network design problem. If we think about the example in Figure 1.1 further, it is
also interesting to note that a Nash equilibrium is reached by players taking turns up-
dating their paths (in other words, best-response dynamics) starting from an optimal
solution; it is natural to ask to what extent this holds in general.

Our Results. Our first main result is that in every instance of the network design
problem with Shapley cost-sharing, there always exists a Nash equilibrium of total
cost at most H(k) times optimal. In other words, the simple example in Figure 1.1 is
in fact the worst possible case.

We prove this result using a potential function method due to Rosenthal [36]
(based on [6]) and later generalized by Monderer and Shapley [30]: one defines a
potential function Φ on possible solutions and shows that every improving move of
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one of the users (to lower its own cost) reduces the value of Φ. Since the set of possible
solutions is finite, it follows that every sequence of improving moves leads to a Nash
equilibrium. The goal of Monderer’s and Shapley’s and Rosenthal’s work was to prove
existence statements of this sort; for our purposes, we make further use of the potential
function to prove a bound on the price of stability. Specifically, we give bounds relating
the value of the potential for a given solution to the overall cost of that solution; if
we then iterate using best-response dynamics starting from an optimal solution, the
potential does not increase, and hence we can bound the cost of any solution that we
reach. Thus, for this network design game, best-response dynamics starting from the
optimum do in fact always lead to a good Nash equilibrium.

We can extend our basic result to a number of more general settings. To begin
with, the H(k) bound on the price of stability extends directly to the case in which
users are selecting arbitrary subsets of a ground set (with elements’ costs shared
according to the Shapley value), rather than paths in a graph; it also extends to the
case in which the cost of each edge is a non-decreasing concave function of the number
of users on it. In addition, our results also hold if we introduce capacities into our
model; each edge e may be used by at most ue players, where ue is the capacity of e.

We arrive at a more technically involved set of extensions if we wish to add
latencies to the network design problem. Here each edge has a concave construction
cost ce(x) when there are x users on the edge, and a latency cost de(x); the cost
experienced by a user is the full latency plus a fair share of the construction cost,
de(x) + ce(x)/x. We give general conditions on the latency functions that allow us
to bound the price of stability in this case by d · H(k), where d depends on the
delay functions used. Moreover, we obtain stronger bounds in the case where users
experience only delays, not construction costs; this includes a result that relates the
cost of a best Nash equilibrium to that of an optimum with twice as many players,
and a result that improves the potential-based bound on the price of stability for the
single-source delay-only case.

Since a number of our proofs are obtained by following the results of best-response
dynamics via a potential function, it is natural to investigate the speed of convergence
of best-response dynamics for this game. We show that with k players, it can run for
a time exponential in k. Whether there is a way to schedule players’ moves to make
best-response dynamics converge in a polynomial number of steps for this game in
general is an interesting open question.

Finally, we consider a natural generalization of the cost-sharing model that carries
us beyond the potential-function framework. Specifically, suppose each user has a
weight (perhaps corresponding to the amount of traffic it plans to send), and we
change the cost-allocation so that user i’s payment for edge e is equal to the ratio
of its weight to the total weight of all users on e. In addition to being intuitively
natural, this definition is analogous to certain natural generalizations of the Shapley
value [29]. The weighted model, however, is significantly more complicated: there is
no longer a potential function whose value tracks improvements in users’ costs when
they greedily update their solutions. We also show, using a construction involving
user weights that grow exponentially in k, that the price of stability can be as high as
Ω(k). We have obtained some initial positive results here, including the convergence
of best-response dynamics when all users seek to construct a path from a node s to
a node t (the price of stability here is 1), and in the general model of users selecting
sets from a ground set, where each element appears in the sets of at most two users.
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Related Work. Network design games under a different model were considered
by a subset of the authors in [3]; there, the setting was much more “unregulated”
in that users could offer to pay for an arbitrary fraction of any edge in the network.
This model resulted in instances where no pure Nash equilibrium existed; and in
many cases in [3] when pure Nash equilibria did exist, certain users were able to
act as “free riders,” paying very little or nothing at all. The present model, on the
other hand, ensures that there is always a pure Nash equilibrium within a logarithmic
factor of optimal, in which users pay for a fair portion of the resources they use.
Network creation games of a fairly different flavor — in which users correspond to
nodes, and can build subsets of the edges incident to them — have been considered in
[2, 12, 5, 16, 21, 31]. The model in this paper associates users instead with connection
requests, and allows them to contribute to the cost of any edge that helps them to
form a path that they need.

The bulk of the work on cost-sharing (see e.g. [19, 22] and the references there)
tends to assume a fixed underlying set of edges. Jain and Vazirani [23] and Kent and
Skorin-Kapov [26] consider cost-sharing for a single source network design game. Cost-
sharing games assume that there is a central authority that designs and maintains the
network, and decides appropriate cost-shares for each agent, depending on the graph
and all other agents, via a complex algorithm. The agents’ only role is to report their
utility for being included in the network.

Here, on the other hand, we consider a simple cost-sharing mechanism, the
Shapley-value, and ask what the strategic implications of a given cost-sharing mecha-
nism are for the way in which a network will be designed. This question explores the
feedback between the protocol that governs network construction and the behavior
of self-interested agents that interact with this protocol. An approach of a similar
style, though in a different setting, was pursued by Johari and Tsitsiklis [24]; there,
they assumed a network protocol that priced traffic according to a scheme due to
Kelly [25], and asked how this protocol would affect the strategic decisions of self-
interested agents routing connections in the network.

The special case of our game with only delays is closely related to the congestion
games of [39, 37]. They consider a game where the amount of flow carried by an
individual user is infinitesimally small (a non-atomic game), while in this paper we
assume that each user has a unit of flow, which it needs to route on a single path. In
the non-atomic game of [39, 37] the Nash equilibrium is essentially unique (hence there
is no distinction between the price of anarchy and stability), while in our atomic game
there can be many equilibria. Fabrikant, Papadimitriou, and Talwar [17] consider our
atomic game with delays only. They give a polynomial time algorithm to minimize the
potential function Φ in the case that all users share a common source, and show that
finding any equilibrium solution is PLS-complete for multiple source-sink pairs. Our
results extend the price of anarchy results of [39, 37] about non-atomic games to results
on the price of stability for the case of single source atomic games. Subsequent to
our work, further results on the price of anarchy and stability in atomic games with
delays were obtained in [4, 7, 11, 10, 40]. For games without delays, Agarwal and
Charikar [1] give improved bounds on the price of stability in single-source undirected
networks, and Fiat et al. [20] give bounds with the additional assumption that each
vertex is the destination of some player. Other aspects of these and closely related
games were recently explored in [9, 18].

A weighted game similar to ours is presented by Libman and Orda [28], with a
different mechanism for distributing costs among users. They do not consider the



6 ANSHELEVICH, DASGUPTA, KLEINBERG, TARDOS, WEXLER, ROUGHGARDEN

price of stability, and instead focus on convergence in parallel networks. Recently,
Chen and Roughgarden [8] proved general results on the price of stability and the
existence of approximate Nash equilibria in the weighted version of our game.

2. Nash Equilibria of Network Design with Shapley Cost-Sharing. In
this section we consider the Fair Connection Game for k players as defined in the
Introduction. Let a directed graph G = (V, E) be given, with each edge having a
nonnegative cost ce. Each player i has a set of terminal nodes Ti that he wants to
connect. A strategy of player i is a set of edges Si ⊂ E such that Si connects all
nodes in Ti. We assume that we use the Shapley value to share the cost of the edges,
i.e. all players using an edge split up the cost of the edge equally. Given a vector of
players’ strategies S = (S1, . . . , Sk), let xe be the number of agents whose strategy
contains edge e. Then the cost to agent i is Ci(S) =

∑
e∈Si

(ce/xe), and the goal of
each agent is to connect its terminals with minimum total cost.

In the worst case, Nash equilibria can be very expensive in this game, so that the
price of anarchy becomes as large as k. To see this, consider k players with common
source s and sink t, and two parallel edges of cost 1 and k. The worst equilibrium has
all players selecting the more expensive edge, thereby paying k times the cost of the
optimal network. However, we can bound the price of stability by H(k), which is the
harmonic sum 1 + 1

2 + 1
3 + . . . + 1

k , as follows.
Theorem 2.1. The price of stability of the fair connection game is at most

H(k).
Proof: The fair connection game that we have defined falls into the class of congestion
games as defined by Rosenthal [36], as the cost of edge e to a user i is fe(x) = ce/x,
which depends only on edge e and the number of users x whose strategy contains e.
Rosenthal [36] shows that all congestion games have deterministic Nash equilibria.
He proves this using a potential function Φ, defined as follows.

Φ(S) =
∑

e∈E

xe∑
x=1

fe(x) (2.1)

Rosenthal [36] shows that for any strategy S = (S1, . . . , Sk) if a single player i deviates
to strategy S′i, then the change in the potential value Φ(S)−Φ(S′) of the new strategy
set S′ = (S1, . . . , S

′
i, . . . , Sk) is exactly the change in the cost to player i. Note that

the change of player i’s strategy affects the cost of many other players j 6= i, but
the value of Φ is not affected by the change in the cost of these players, it simply
tracks the cost of the player who changes its strategy. Monderer and Shapley [30]
call a game in which such a function Φ exists a potential game. To show that such
a potential game has a Nash equilibrium, start from any state S = (S1, . . . , Sk) and
consider a sequence of selfish moves (allowing players to change strategies to improve
their costs). In a congestion game any sequence of such improving moves leads to a
Nash equilibrium as each move decreases the potential function Φ, and hence must
lead to a stable state.

Neither Rosenthal nor Monderer and Shapley say anything about the quality
of Nash equilibria with respect to the centralized optimum, but we can use their
potential function to establish our bound. Let xe be defined as above with respect to
S. Now the potential function of Equation 2.1 in our case is Φ(S) =

∑
e∈E ceH(xe).

Consider the strategy S∗ = (S∗1 , . . . , S∗k) defining the optimal centralized solution.
Let OPT =

∑
e∈S∗ ce be the cost of this solution. Then, Φ(S∗) ≤ ∑

e∈S∗(ce ·H(k)),
which is exactly H(k) ·OPT . Now we start from strategy S∗ and follow a sequence of
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improving self-interested moves. We know that this will result in a Nash equilibrium
S with Φ(S) ≤ Φ(S∗).

Note that the potential value of any solution S is at least the total cost: Φ(S) ≥∑
e∈S ce = cost(S). Therefore, there exists a Nash equilibrium with cost at most

H(k) ·OPT , as desired.
Recall from the example in Figure 1.1 that the upper bound of Theorem 2.1 is

tight.
Unfortunately, even though Theorem 2.1 says that cheap Nash equilibria exist,

finding them is NP-complete.
Theorem 2.2. Given an instance of a fair connection game and a value C, it is

NP-hard to determine if the game has a Nash equilibrium of cost at most C.
Proof: The reduction is from 3D-Matching. Given an instance of 3D-Matching with
node sets X, Y, Z, form a graph G = (V, E) as follows. Form a node for each node
in X, Y , and Z, and also a node vi,j,k for each 3D edge (xi, yj , zk). Also add an
additional node t. Form a directed edge from each node vi,j,k to t with cost function
ce = 3. Form a directed edge from each node v in X, Y, Z to all nodes representing 3D
edges that contain v. Make these edges have a cost ce = 0. Let C = |X|+ |Y |+ |Z|,
and form a player for each node v in X ∪ Y ∪ Z. This player has two terminals: v
and t.

If there exists a 3D Matching in the 3D-Matching instance, then there exists a
Nash equilibrium in the above fair connection game of cost C: Take the 3D Matching
M , and let Si for the player whose terminals are v and t be the edge from v to the
unique node vi,j,k corresponding to the 3D edge in M, and the edge from this node to
t. Since M is a matching, the cost of S is exactly 3C/3 = C. S is a Nash equilibrium,
since any deviation for a player involves paying for some edge of cost 3 by himself,
while the current amount he is paying is 1.

If no 3D Matching exists, then any solution to the fair connection game must
cost more than C. Therefore, no Nash equilibrium can exist of cost at most C. This
finishes the proof.
Notice that the same proof shows that determining if there exists a Nash equilibrium
that costs as little as OPT is NP-complete.

We can extend the results of Theorem 2.1 to concave cost functions. Consider
the extended fair connection game where instead of a constant cost ce, each edge has
a cost which depends on the number of players using that edge, ce(x). We assume
that ce(x) is a nondecreasing, concave function, modeling the buy-at-bulk economies
of scale of buying edges that can be used by more players. Notice that the cost of an
edge ce(x) might increase with the number of players using it, but the cost per player
fe(x) = ce(x)/x decreases if ce(x) is concave.

Theorem 2.3. Take a fair connection game with each edge having a nondecreas-
ing concave cost function ce(x), where x is the number of players using edge e. Then
the price of stability is at most H(k).
Proof: The proof is analogous to the proof of Theorem 2.1. We use the potential
function Φ(S) defined by (2.1). As before, the change in potential if a player i deviates
equals exactly the change of that player’s payments. We start with the strategy S∗

with minimum total cost, and perform a series of improving deviations until we reach
a Nash equilibrium S with Φ(S) ≤ Φ(S∗). To finish the proof all we need to show
is that cost(S) ≤ Φ(S) ≤ H(k) · cost(S) for all strategies S. The second inequality
follows since ce(x) is nondecreasing and therefore

∑xe

x=1(ce(x)/x) ≤ H(xe) · ce(xe).
To see that cost(S) ≤ Φ(S) notice that since ce(x) is concave, the cost per player
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must decrease with x, i.e. ce(x)/x is a nonincreasing function. Therefore, cost(S) =∑
e∈S ce(xe) =

∑
e∈S xe · (ce(xe)/xe) ≤ Φ(S), which finishes the proof.

Notice that the requirement of cost functions being concave is general enough to
encompass the utility function of a player being a combination of the cost he has to
pay for his edges and the distance between his terminals in the network of bought
edges. If ce is the cost function of an edge, we simply set c′e(x) = ce(x) + x. The
payment of each player i now becomes |Si|+

∑
e∈Si

(ce(xe)/xe), and c′e is still concave
if ce is concave.

Extensions. The proof of Theorem 2.3 extends to a general congestion game,
where players attempt to share a set of resources R that they need. Instead of having
an underlying graph structure, we now think of each s ∈ R as a resource with a
concave cost function cs(x) of the number of users selecting sets containing s. The
possible strategies of each player i is a set Si of subsets of R. Each player seeks to
select a set Si ∈ Si so as to minimize his cost. Since the proofs above did not rely on
the graph structure, they translate directly to this extension.

We can further extend the results to the case where the cost of a player is a combi-
nation of the cost ce(x)/x, and a function of the selected set, such as the distance be-
tween terminals in the network design case. More precisely, the price of stability is still
at most H(k) if each player is trying to minimize the cost

∑
e∈Si

(ce(xe)/xe) + di(Si)
where ce is monotone increasing and concave, and di is an arbitrary function specific
to player i (e.g. a distance function, or diameter of Si, etc.). The proof is analogous to
Theorem 2.3, except with a new potential Φ(S) =

∑
i di(Si)+

∑
e∈S

∑x=xe

x=1 (ce(x)/x).
Notice that this is technically not a congestion game on the given graph G. Finally
we note that all these results (as well as those subsequent) hold in the presence of
capacities. Adding capacities ue to each edge e and disallowing more than ue players
to use e at any time does not substantially alter any of our proofs.

The Case of Undirected Graphs. While the bound of H(k) is tight for general
directed graphs, it is not tight for undirected graphs. Finding the correct bound is
an interesting open problem; see [20] for some recent progress. In the case of two
players, our bound on the price of stability is H(2) = 3/2. In Section 4 we show that
this bound can be improved to 4/3 in the case of two players and a single source. We
also give an example to show that this bound is tight.

3. Dealing with Delays. In most of the previous section, we assumed that the
utility of a player depends only on the cost of the edges he uses. What changes if
we introduce latency into the picture? We have extended this to the case when the
players’ cost is a combination of “design” cost and the length of the path selected.
More generally, delay on an edge does not have to be simply the “hop-count”, but
can also depend on congestion, i.e., on the number of players using the edge. In this
section we will consider such a model.

Assume that each edge has both a cost function ce(x) and a latency function de(x),
where ce(x) is the cost of building the edge e for x users and the users will share this
cost equally, while de(x) is the delay suffered by users on edge e if x users are sharing
the edge. The goal of each user will be to minimize the sum of his cost and his latency.
If we assume that both the cost and latency for each edge depend only on the number
of players using that edge, then this fits directly into our model of a congestion game
above: the total cost felt by each user on the edge is fe(x) = ce(x)/x + de(x). If the
function xfe(x) is concave then Theorem 2.3 applies. But while concave functions are
natural for modeling cost, latency tends to be convex.
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3.1. Combining Costs and Delays. First, we extend the argument in the
proof of Theorem 2.3 to general functions fe. The most general version of this argu-
ment is expressed in the following theorem.

Theorem 3.1. Consider a fair connection game with arbitrary edge-cost func-
tions fe. Suppose that Φ(S) is as in Equation 2.1, with cost(S) ≤ A · Φ(S), and
Φ(S) ≤ B · cost(S) for all S. Then, the price of stability is at most A ·B.
Proof: Let S∗ be a strategy such that S∗i is the set of edges i used in the centralized
optimal solution. We know from above that if we perform a series of improving
deviations on it, we must converge to a Nash equilibrium S′ with potential value at
most Φ(S∗). By our assumptions, cost(S′) ≤ A ·Φ(S′) ≤ A ·Φ(S∗) ≤ AB · cost(S∗) =
AB ·OPT .

Our main interest in this section are functions fe(x) that are the sums of the fair
share of a cost and a delay, i.e., fe(x) = ce(x)/x + de(x). We will assume that de(x)
is monotone increasing, while ce(x) is monotone increasing and concave.

Corollary 3.2. If ce(x) is concave and nondecreasing, de(x) is nondecreasing
for all e, and xede(xe) ≤ A

∑xe

x=1 de(x) for all e and xe, then the price of stability is
at most A · H(k). In particular, if de(x) is a polynomial with degree at most l and
nonnegative coefficients, then the price of stability is at most (l + 1) ·H(k).
Proof: For functions fe(x) = ce(x)/x+de(x), both the cost and potential of a solution
come in two parts corresponding to cost c and delay d.

For the part corresponding to the cost, the potential over-estimates the cost by
at most a factor of H(k) as proved in Theorem 2.3. If on the delay, the potential
underestimates the cost by at most a factor of A, then we get the bound of A ·H(k)
for the price of stability by Theorem 3.1.

Therefore, for reasonable delay functions, the price of stability cannot be too
large. In particular, if the utility function of each player depends on a concave cost
and delay that is independent of the number of users on the edge, then we get that the
price of stability is at most H(k) as we have shown at the end of the previous section.
If the delay grows linearly with the number of users, then the price of stability is at
most 2H(k).

3.2. Games with Only Delays. In this subsection we consider games with
only delay. We assume that the cost of a player for using an edge e used by x players
is fe(x) = de(x), and de is a monotone increasing function of x. This cost function
models delays that are increasing with congestion.

We will mostly consider the special case when there is a common source s. Each
player i has one additional terminal ti, and the player wants to connect s to ti via a
directed path. Fabrikant, Papadimitriou, and Talwar [17] showed that in this case, one
can compute the Nash equilibrium minimizing the potential function Φ via a minimum
cost flow computation. For each edge e they introduce many parallel copies, each with
capacity 1, and cost de(x) for integers x > 0. We will use properties of a minimum
cost flow for establishing our results.

3.2.1. A Bicriteria Result. First we show a bicriteria bound, and compare
the cost of the cheapest Nash equilibrium to that of the optimum solution with twice
as many players.

Theorem 3.3. Consider the single source case of a congestion game with only
delays. Let S be the minimum cost Nash equilibrium and S∗ be the minimum cost
solution for the problem where each player i is replaced by two players. Then cost(S) ≤
cost(S∗).
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Proof: Consider the Nash equilibrium obtained by Fabrikant et al [17] via a minimum
cost flow computation. Assume that xe is the number of users using edge e at this
equilibrium. By assumption, all users share a common source s. Let D(v) denote the
cost of the minimum cost path in the residual graph from s to v. The length of the
path of user i is at most D(ti) (as otherwise the residual graph would have a negative
cycle) and hence we get that cost(S) ≤ ∑

i D(ti).
Now consider modified delay function d̂e for each edge e = (u, v). Define d̂e(x) =

de(x) if x > xe, and d̂e(x) = D(v) − D(u) if x ≤ xe. Note that for any edge e we
have D(v) −D(u) ≤ de(xe + 1) as edge e = (u, v) is in the residual graph with cost
de(xe +1). This implies that the modified delay d̂ is monotone. For edges with xe 6= 0
we also have that de(xe) ≤ D(v) −D(u) as the reverse edge (v, u) is in the residual
graph with cost −de(xe), so the delay of an edge is not decreased.

Now observe that, subject to new delay d̂, the shortest path from s to ti has
length D(ti). The minimum possible cost of two paths from s to ti for the two
users corresponding to user i is then at least 2D(ti) for each player i. Therefore the
minimum cost of a solution with delays d̂ is at least 2

∑
i D(ti).

To bound cost(S∗) we need to bound the difference in cost of a solution when
measured with delays d̂ and d. Note that for any edge e = (u, v) and any number
x we have that xd̂e(x) − xde(x) ≤ xe(D(v) − D(u)), and hence the difference in
total cost is at most

∑
e=(u,v) xe(D(v) −D(u)) =

∑
i D(ti). Using this, we get that

cost(S∗) ≥ ∑
i D(ti) ≥ cost(S).

Note that a similar bound is not possible for a model with both costs and delays,
when additional users compensate to some extent for the price of stability. Consider a
problem with two parallel links e and e′ and k users. Assume on link e the cost function
is ce(x) = 1+ ε for a small ε > 0, and the latency function is de(x) = 0. On the other
link e′ the cost is ce′(x) = 0, and the delay with x users is de′(x) = 1/(k−x+1). The
optimum solution is to use the first edge e, and it costs 1+ ε. Note that the optimum
with any number of extra users costs the same. On the other hand, the only Nash
equilibrium is to have all users on e′, incurring delay 1, for a total cost of k.

3.2.2. Bounding the Price of Stability with Only Delays. Note that the
H(k) term in Corollary 3.2 comes from the concave cost c, and so the bound obtained
there improves by an H(k) factor when the cost consists only of the delay. The
results from Corollary 3.2 already tell us that if the delay functions are such that
xede(xe) ≤ A

∑xe

x=1 de(x), the the price of stability is at most A. Specifically, we
know that if the delays are polynomial of degree l, then the price of stability is at
most l + 1, and therefore with linear delays the price of stability is at most 2.

Roughgarden [37] showed a tighter bound for non-atomic games. He assumed that
the delay is monotone increasing, and the total cost of an edge xde(x) is a convex
function of traffic x. He showed that for any class of such functions D containing all
constant functions, the price of anarchy is always obtained on a two node, two link
network. Let us call α(D) the price of anarchy for non-atomic games with delays from
the class D (which is also the price of stability, since the Nash equilibrium is unique in
that context). For example, Roughgarden [37] showed that for polynomials of degree
at most l this bound is O(l/ log l), and for linear delays it is 4/3. Here we extend
this result to a single source atomic game, and thereby show tighter bounds than in
Corollary 3.2 for the single source case.

Theorem 3.4. If in a single source fair connection game all costs are delays, and
all delays are from a set D satisfying the above condition, then the price of stability
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is at most α(D).
Proof: As in the proof of Theorem 3.3 consider the Nash equilibrium obtained via a
minimum cost flow computation, and let D(v) be the length of the shortest path from
s to v in the residual graph. As before we have that cost(S) ≤ ∑

i D(ti). Further,
for each edge e = (u, v) we have that D(v) −D(u) ≤ de(xe + 1), and for edges with
xe 6= 0, we also have that de(xe) ≤ D(v)−D(u).

Give each edge e = (u, v) a capacity of xe, and augment our network by adding a
parallel edge e′ with constant delay D(v)−D(u). Let Ĝ denote the resulting network
flow problem. Note that the new capacity and the added links do not affect the
equilibrium, as de(xe) ≤ D(v)−D(u). For each edge e, the two parallel copies: edge
e with new capacity xe and edge e′, can carry any number of paths at least as cheaply
as the original edge e could since D(v)−D(u) ≤ de(xe + 1), hence this change in the
network can only improve the minimum possible cost. We will prove the bound in
this new network by comparing the cost of the Nash equilibrium with the minimum
possible cost of a (possibly fractional) flow carrying one unit of flow from s to each of
the terminals ti.

The nice property of Ĝ is that the optimum fractional flow x̂ in Ĝ is easy to
determine. Consider an edge e = (u, v) that is used by xe 6= 0 paths in the equilibrium.
We will obtain a fractional flow x̂e by splitting the corresponding xe amount of flow
between the two edges e and e′. For an edge e let `e(x) = de(x) + xd′e(x). By
assumption, de(x) ≤ `e(x) for all x. For an edge e such that `e(xe) ≤ D(v) −D(u),
we set x̂e = xe, and x̂e′ = 0. Otherwise, let x̂e be such that `e(x̂e) = D(v) −D(u),
and let x̂e′ = xe − x̂e.

First, we claim that x̂ is the minimum cost fractional solution in Ĝ. For all edges
e = (u, v) such that x̂e 6= xe, we have that `e(x̂e) = D(v)−D(u). When x̂e = xe, then
we have that flow x̂e is equal to the capacity of the edge, and `e(x̂e) ≤ D(v)−D(u).
Therefore, if there is a negative cycle in the residual graph of x̂e with constant edge
costs `e(xe) for e and costs D(v)−D(u) for e′, then this is also a negative cost cycle
in G with constant edge costs D(v) −D(u). This is impossible, however, since xe is
a min-cost flow with those costs. We can now use Lemma 3.5 to see that x̂e is also a
min-cost flow for edge costs xde(x).

The theorem then follows, as on each original edge e ∈ E the cost xede(xe) is at
most α(D) times the cost of the corresponding two edges e and e′ in Ĝ by Lemma
3.6.

To finish the proof of the Theorem, we require the following lemmas.
Lemma 3.5. Let G be a network, and xe be a fractional flow sending one unit

of flow from the source s to each sink ti. Let ` denote the gradient of the total cost
xde(x), that is, let `e(x) = de(x) + xd′e(x) for each edge e. The flow xe is minimum
cost subject to the cost

∑
e xde(x) if and only if it is a minimum cost flow subject to

the constant cost function ce = `e(xe).
Proof: If the flow xe is not of minimum cost subject to costs ce, then the residual
graph has a negative cycle, and moving a small amount of flow along the cycle de-
creases the cost

∑
e xde(x), as the cost ce is exactly the gradient of this objective

function. To see the other direction, we use the fact that the cost function is convex
by assumption, and hence all local optima are also global optima.

Next, it is useful to recall from [37] what is α(D). Consider edge e, with delay
d(x) from class D. Now consider a graph with two parallel links: edge e, which has
delay d(x), that will carry some r units of flow, and a parallel link e′ with constant
delay d(r) independent of the traffic. Now the unique Nash equilibrium is to route
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all r units of flow on e, while we get the optimum by setting x such that the gradient
c(x) = d(x) + xd′(x) is equal to d(r), and sending x units of flow along e, and the
remainder r − x along edge e′. This is because of the following Lemma from [37].

Lemma 3.6 ([37]). If a set D of delay functions satisfies the above condition,
then the price of stability is at most α(D) = maxr,x,d∈D rd(r)/(xd(x) + (r − x)d(r)),
and the maximum is achieved by setting x such that d(x) + xd′(x) = d(r).

4. The Undirected Case. While the bound of H(k) on the price of stability
is tight for general directed graphs with costs, it is not tight for undirected graphs.
Finding the correct bound is an interesting open problem. In the case of two players,
our bound on the price of stability is H(2) = 3/2. We now show that that this bound
can be improved to 4/3 in the case of two players and a single source.

Here is an example of an undirected two-player game with the price of stability
approaching 4/3. Let G have 3 nodes: s, t1, and t2. Player 1 wants to connect t1 with
s, and player 2 wants to connect t2 with s. There are edges (s, t1) and (s, t2) with
cost 2. There is an edge (t1, t2) with cost 1 + ε. The optimal centralized solution has
cost 3 + ε. However, the cheapest Nash has cost 4. This example implies that the
following claim is tight.

Claim 4.1. The price of stability is at most 4/3 in a fair connection game with
two players in an undirected graph, each having two terminals with one terminal in
common.
Proof: Let s be the common terminal, and let t1 and t2 be the personal terminals.
Consider the optimal centralized solution (S1, S2). Let X1 = S1\S2 be the edges only
being used by player 1, X2 = S2\S1 be the edges only used by player 2, and X3 =
S1 ∩ S2 be the edges shared by the two players. Let (S′1, S

′
2) be a Nash equilibrium

that a series of improving responses converges to starting with (S1, S2). Similarly,
let Y1 = S′1\S′2, Y2 = S′2\S′1, and Y3 = S′1 ∩ S′2. Finally, set xi = cost(Xi) and
yi = cost(Yi) for 1 ≤ i ≤ 3. By the properties of Φ(S1, S2) from the proof of
Theorem 2.1, we know that Φ(S′1, S

′
2) ≤ Φ(S1, S2). Substituting in the definition of

Φ, we obtain that

y1 + y2 +
3
2
y3 ≤ x1 + x2 +

3
2
x3. (4.1)

Look at S′1 and S′2 as paths instead of sets of edges (there will be no cycles
since then this would not be a Nash). We now show that in (S′1, S

′
2), as in any

Nash equilibrium, once the paths of the two players merge, they do not separate
again. Suppose to the contrary that this happens. Let v be the first node that S′1
and S′2 have in common, and set P1 and P2 be the subpaths of S′1 and S′2 after v,
respectively. We know that cost(P1\P2) = cost(P2\P1), since if they were not equal,
say cost(P1\P2) > cost(P2\P1), then player 1 could deviate to P2 instead and pay
strictly less. However, even if they are equal, player 1 could deviate to use P2 instead
of P1, and pay strictly less, since he will pay the same as before on edges in P1 ∩ P2,
and pay only cost(P1\P2)/2 in total on the other edges. Therefore, the only way this
could be a Nash equilibrium is if P1 ∩ P2 = P1 = P2, as desired.

Consider a deviation from (S′1, S
′
2) that player 1 could make. He could decide to

use X1∪X2∪Y2∪Y3 instead of S′1 = Y1∪Y3. This is a valid deviation because player
1 still connects his terminals by following X1 until X1 meets with X2, then following
X2 back to t2, and then following S′2 to s. Since (S′1, S

′
2) is a Nash equilibrium, this

deviation must cost more to player 1 than his current payments, and so x1 + x2 +
y2/2 + y3/2 ≥ y1 + y3/2. By symmetric reasoning, x1 + x2 + y1/2 + y3/2 ≥ y2 + y3/2.
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If we add these inequalities together, we obtain that

y1/2 + y2/2 ≤ 2x1 + 2x2. (4.2)

To show that the price of stability is at most 4/3, it is enough to show that
cost(S′1, S

′
2) ≤ 4

3cost(S1, S2). Using the above notation, this is the same as showing
3y1 + 3y2 + 3y3 ≤ 4x1 + 4x2 + 4x3. We do this by using Inequalities 4.1 and 4.2 as
follows:

3y1 + 3y2 + 3y3 ≤ 3y1 + 3y2 + 4y3

=
1
3
(y1 + y2) +

8
3
(y1 + y2 +

3
2
y3)

≤ 4
3
(x1 + x2) +

8
3
(x1 + x2 +

3
2
x3)

= 4x1 + 4x2 + 4x3

5. Convergence of Best Response. In this section, we show that, in general,
best response dynamics in our game can take a long time to converge to an equilibrium.
Specifically, we construct a sequence of best responses that takes exponential time to
converge to a Nash equilibrium.

Theorem 5.1. Best response dynamics for k players may run in time exponential
in k.

To prove this, we now construct an example (shown in Figure 5.1) in which by
appropriate ordering of the best response of players, we can simulate a Ω(k)-bit binary
counter. The idea is that we have a set of players corresponding to each bit of the
counter. Then we describe a sequence of best response moves that lead to the counter
incrementing from the “all zeros” state onwards. Since with n bits, we can implement
a counter that counts upto 2n, then as long as we can show that each increment
of the counter corresponds to a sequence of best response moves from the current
configuration, we would have shown an exponentially long best response sequence. In
what follows, we first describe the set of gadgets to construct the counter, and then
show the set of inequalities that result from the increments of the counter.

The graph has 3n players: n “bit” players, each denoted by bit(i), and for each
bit player we also have two “auxiliary” players. The auxiliary players of the bit(i)
player are denoted by A(i) and B(i). We construct the graph as follows. For each
player we form a gadget as shown in Figure 5.1. The gadget for each bit player and
each auxiliary player has only two path options, we call these the 0 path and the 1
path. Figure 5.1 shows the set of edges that belong to each gadget. The gadget for
the ith bit player, for instance, consists of edges α(i), β(i), a set of edges t(j, i), one
for each j > i, and a few unnamed edges as shown in the figure. To construct the
graph, we simply take the union of these gadgets. The labeled edges are shared with
the other gadgets, whereas the unlabeled edges are not. Furthermore, the label ∆
actually denotes the cost of the corresponding edges, these edges too are individual
to each gadget.

Thus, each of the α(i) edges are in the gadgets of players A(i) and bit(i), and so
appear in the 1 path of both A(i) and bit(i). Each edge β(i) is in the 1 path of two
players B(i) and bit(i), and each edge e(i) is in the 0 path of A(i) and the 1 path of
B(i). Each edge f(i, j) and t(i, j) is actually shared by two gadgets. For a specific
i and j with i > j, the same edge f(i, j), for instance, is present in the 0-path of
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∆

∆

Fig. 5.1. The construction of an exponential Best-Response run. The filled-in nodes are the
sources and sinks of the players.

bit2 bit1 B2 A2 B1 A1

0 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 1
0 1 0 0 1 1
0 1 0 0 1 0
1 1 0 0 1 0
1 1 0 1 1 0
1 1 0 1 0 0
1 0 0 1 0 0
1 0 1 1 0 0
1 0 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 1
1 1 1 0 1 1
1 1 1 0 1 0

Table 5.1
Table showing the first 15 steps of the scheduled best response run for 2 players. The number

“1” represents that this player is taking the 1-path in the current configuration, and “0” represents
that it takes the 0-path. The first, fifth, eleventh, and last configuration correspond to the counter
values of 00, 01, 10, and 11 respectively.

B(j), and also in the 1 path of A(i). In addition to the unnamed edges drawn in the
gadget, assume there are unnamed edges before and after every edge type of f(i, j)
or t(i, j) and these unnamed edges are directed and specific to a particular gadget. In
the above Figure, we have not specified the order in which the edges of, for example,
f(j, i) for all j > i in the gadget of bit(i) proceed. In all of these cases, there is one
index that is fixed, and one that is variable, so we assume that these edges appear in
increasing order of the variable index.
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We will later prove that no player will ever choose a path in this graph other
than the 0 or the 1 path corresponding to its gadget. This significantly simplifies the
strategy sets of the players, so now we can simply think of each player as choosing
either strategy 0 or 1. Below we describe an exponential-length best-response run
that simulates a binary counter. A sample run of this type is shown in Table 5.1.
The first, fifth, and eleventh step shown correspond to the values 00, 01, and 10 of
the counter, and indeed these are the values of the strategies of the bit(i) players.
The rest of the steps pictured are intermediate steps, and only exist to get the bit(i)
players into the correct configuration.

In what follows, we abuse notation and represent the cost of an edge by the label
itself, e.g. α(i), f(i, j), t(i, j) will also be used to denote the cost of the corresponding
edges. All the unnamed edges are zero cost, except for the two sets of edges, one in
each path of A(i) that each have cost ∆, which is large, say 3n times bigger than the
sum of the cost of all the named edges. Thus player A(i) always pays at least ∆ in
order to get to the sink, but never should agree to pay more than ∆ + ∆/3n.

We also refer to the player going on the “one” path as the player being set and
going on the “zero” path as the player being reset. Each player has one source and
one sink and the paths of each player are as shown in the gadgets above. The costs of
the paths of ith bit player are referred to as x

(0)
i and x

(1)
i , and those of the player A(i)

and B(i) as a
(0)
i , a

(1)
i and b

(0)
i , b

(1)
i respectively. Note that these denote the actual

costs of these paths, not the cost shares in any configuration. Now we describe the
sequence of best-response moves that lead to the counter incrementing. For the moves
that we will describe to actually be best-response moves, particular inequalities will
have to hold on the edge costs. Below we give a sequence of best-response moves that
is exponential length, together with the inequalities that must hold for these to be
valid best-response moves. We will later show that all of these inequalities can be
satisfied.

Start Step : All the players are reset.
General Step : The bits from 1 to ` − 1 are all set. The bits from ` + 1 to n maybe at 0

or 1. The `th bit is currently at 0 and has to be set at 1. Also, all the A(j)
players are reset. The B(j) players are set if and only if the jth players are
set.
Notice that the first, fifth, and last step in Table 5.1 are of this form. We
now show a sequence of best responses which will set the `’th bit, set all the
bits 1 to `− 1 to 0 (which is what should happen in a counter when the `’th
bit is set), and return all the auxiliary players to the form described in the
”General Step” above.

• First, the `th bit sets. At this point, there are no other players using either
of bit `th player’s paths, so for this to happen, we need only the following to
be true.

x
(1)
` < x

(0)
`

implying, α(`) + β(`) <
∑

j>`

t(j, `)

The setting of the bit(`) player will now first trigger A(`) and then B(`), as
follows.

• The cost of the 1 path of A(`) has now decreased by α(`)/2 because of the
player bit(`) using it. A(`) is thus triggered and is allowed to set. Since both
the 0 and 1 path have the ∆ cost edges that are to be paid by A(i) alone,
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they do not matter in the best response calculations. Thus, for this to be a
valid best response move, it is enough that,

a
(1)
` − α(`)/2 < a

(0)
`

implying that, α(`)/2 +
∑

j<`

f(`, j) +
∑

j<`

t(`, j) < e(`)

• The setting of A(`) triggers all the B(i) for i < ` to be reset. Recall that the
corresponding A(i) are already reset. We allow these B(i) to reset. Due to
A(`) being on its 1 path, the cost of 0 path has changed by f(`, i)/2. Since
only the player bit(i) is using the edge β(i), then for B(i) to want to reset,
we need that,

b
(0)
i − f(`, i)/2 < b

(1)
i − e(i)/2− β(i)/2

that is,
∑

j>i

f(j, i)− f(`, i)/2 < e(i)/2 + β(i)/2

• A(`) now also triggers all the bit players bit(i) for all i < l to reset by reducing
the cost of the 0 path of bit(i) by t(`, i)/2. For each such i < `, the bit B(i)
has also just been reset. Thus for this to be a best response move, it should
be the case that,

x
(0)
i − t(`, i)/2 < x

(1)
i∑

j>i

t(j, i)− t(`, i)/2 < α(i) + β(i)

• Now because of the setting of the bit(`), the 1 path of B(`) became cheaper
by β(`)/2. B(`) wants to set and is allowed to. For this, we need that

b
(1)
` − β(`)/2 < b

(0)
`

e(`) + β(`)/2 <
∑

j>`

f(j, `)

• Lastly, we now want A(`) to reset. As a result of the setting of B(`), the
0 path of A(`) became cheaper by e(`)/2. Edges on the 1-path of A(`) are
shared by players bit(x) and B(x) for x < i, and by the player bit(`). So we
need that the 0-path of A(`) be less expensive to it even if all these players
pay off their corresponding shares on the 1-path. Again since the ∆-cost
edges are present on both sides, they do not matter in the computation of
the best response. That is, we need that

a
(0)
` − e(`)/2 < a

(1)
` −

∑

j<`

(f(`, j)/2 + t(`, j)/2)− α(`)/2

e(`)/2 < α(`)/2 +
∑

j<`

(f(`, j)/2 + t(`, j)/2)

• Now we have the subgame of bit and auxiliary players from 1 to `− 1 being
completely reset, and no other player corresponding to the higher-numbered
bits influencing any of their paths. This corresponds to the first ` − 1 bits



THE PRICE OF STABILITY FOR NETWORK DESIGN WITH FAIR COST ALLOCATION17

of the counter becoming 0 because the `’th bit just became 1. We can now
use the best response run corresponding to incrementing the first ` − 1 bits
of the counter from all 0’s to all 1’s again, without any interference from the
players corresponding to the higher-numbered bits. This gets us back to the
configuration in the start of the recursion (the “General Step” above), except
now we need to deal with the (` + 1)st bit.

Proof of Theorem 5.1: We now prove that the above game has an exponential best
response run under the above best response scheduling.

All we need to show is that the moves described in the scheduling are best re-
sponses. We first argue that each player has only two cheap paths available to him,
which we have described as the zero path and the one path. To complete the con-
struction we next need to come up with a set of values for the links that satisfy the
set of best response inequalities above. Taken together, it follows that the moves are
all best responses and simulate a Ω(k)-size counter.

First note that the 0 path and 1 path of any one particular player are vertex
disjoint. Recall that the unnamed edges, both in the figure and the ones in between the
f(i, j) edges and the t(i, j) edges are all exclusive to each gadget. By our construction,
the unnamed edges also impose the following property on the 0/1-paths of all players:
the 0/1-path of any one player must either have at least one edge in common or must
be vertex disjoint from the 0/1-path of any other player. We do not have to worry
about the case of just having vertices in common.

We need to argue that each player has only two cheap paths available to him.
Intuitively the argument is as follows. If one player deviates out of his gadget (i.e,
takes a path other than its 0 or 1 path), it will never be able to come back to his own
sink, or would have to pay an exorbitant amount (∆) in order to reach its sink. Thus,
the only available cheap strategies to a player are the 0 and 1 paths.

Before going into the details, we first define a function to make the notation
simpler. For any edge e, define the function sink(e) to be the set of all possible sinks
(terminal nodes of players) that paths from this edge can lead to. Note that the graph
only has edges f(x, y) and t(x, y) where x > y, there are no corresponding edges for
x ≤ y. For notational simplicity, for a general tuple (x, y), we define sink(f(x, y)) as
follows. Note that f(x, y) can lead to the sink of A(x) and B(y) if x > y, as well as
to sink(f(x + 1, y)) and sink(f(x, y + 1)). Thus, inductively, if x > y

sink(f(x, y)) = {A(x), . . . , A(n), B(y), . . . , B(n)}
and ∅ otherwise (since the corresponding f(x, y) edges do not appear in the gadget
at all).

Similarly, since for x ≤ y, the edges t(x, y) are not present in the construction,
define sink(t(x, y)) = ∅ for x ≤ y. In order to compute sink(t(x, y)) for x > y, note
that t(x, y) can lead to A(x), bit(y), as well as sink(t(x+1, y)), sink(t(x, y +1)), and
sink(f(x, 1)) (since in the 1 path of A(x), edge t(x, y) can be followed by f(x, 1)).
Thus, if x > y

sink(t(x, y)) = {bit(y), . . . , bit(n), A(x), . . . , A(n), B(1), . . . , B(n)}
and ∅ else.

We now flesh out the argument for each player for each of the two cases, the set-
case and the reset-case. Consider player B(i). If a strategy follows the first unnamed
edge of 1-path, then it reaches β(i). From the end vertex of β(i) it has the option of
choosing the next unnamed edge in 1-path of gadget B(i), or in the 1-path of bit(i).
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In the first case the strategy has to go through e(i). But after it crosses e(i) there is
only a zero-cost edge left to be covered to the sink of B(i), and so other deviations
are useless. If the path instead had chosen to enter the gadget of bit(i) after the edges
β(i), then it would have to travel through α(i) and then either get stuck at the sink
of bit(i) or travel through one or more edges of the form {t(i, y), y < i}. But in order
to enter an edge of the form t(i, y) this strategy would have to pay at least ∆/3n to
share the edge priced ∆, which is more than the total cost of B(i). So any strategy
starting on the 1-path of B(i) does not enter the A(i) gadget.

Next consider a strategy starting out on the 0-path of B(i) through the first
unnamed edge. The edges then appearing on this path are of the form {f(x, i), x > i}.
These edges also appear in the gadgets A(x). If this strategy chooses to deviate to
exit the B(i) gadget after the edge f(x, i) and enter the A(x) one, the labeled edge
that it meets next is f(x, i + 1). But no path from f(x, i + 1) leads to the sink of
B(i), as is verified from the sink-function above. So this deviation cannot happen.
We have now shown that the best strategies of B(i) must be the 0 and 1 paths only.

Now, take the A(i) player and a strategy which starts out on the first unnamed
edge of the 1-path. This strategy then has to go through α(i). From the endpoint of
α(i) the only edges are to the sink of bit(i), or continue along the A(i) gadget. The
edges that appear next are of the form {t(i, x), x < i}. If the path does not continue
along the gadget of A(i), and instead switches to the 0-path of bit(x), then the next
edge it encounters is t(i + 1, x). But according to the sink function, there is no way
to reach the sink of A(i) from t(i + 1, x), so this is not a valid deviation. Next, the
path cannot deviate out of any the {f(i, x), x < i} edges since A(i) does not lie in
any sink(f(i + 1, x)). Thus strategies of A(i) starting out on the 1-path of A(i) stay
on this path.

Next consider the strategy of A(i) that starts out through the unnamed edge in
the 0-path of A(i). This path cannot deviate after e(i) because it would just get stuck
in the sink of B(i). Thus, we have shown that the best strategies of A(i) must be the
0 and 1 paths only.

Lastly consider the i-th bit player. Along 0-path of bit-i, the only shared nodes
and edges of this player are the t(x, i) edges that are each shared with A(x) for all
x > i. Suppose this bit player follows the t(x, i) edge to the gadget of A(x) with
x > i. The next edge is then t(x, i + 1) which does not lead to bit(i)-sink. Thus the
0-path strategies do not allow any deviations. A path starting with the first edge of
the 1-path of this bit-player, can deviate after β(i) and enter edge e(i) of the B(i)
gadget. But from there all paths get stuck at sinks. Thus the 1-path deviations
cannot happen after β(i). But the deviations cannot happen after α(i) either, as the
remaining edge is zero cost.

This concludes the proof that the best strategies of the players always correspond
to the 0 and 1 paths in the gadgets.

For the last part of the construction, we show that it is possible to come up with
a set of values for the links such that the best response inequalities are satisfied. Let
the edge costs be as follows. In all the remaining formulae let c be any constant
greater than 10. Let α(i) = 1, and β(i) = 2ci(n − i) − ci/2 − 3e(i)/2. Also, e(i) =∑

j<i f(i, j) +
∑

j<i t(i, j) + 3/4 for all i. Finally, for all pairs i, j, f(i, j) = cj and
t(i, j) = 2cj . Given these values, we can check that the inequalities above are satisfied
for all i < n, and thereby we can have a run of best responses of length exponential
in the number of players.
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6. Weighted Players. So far we have assumed that players sharing an edge e
pay equal fractions of e’s cost. We now consider a game with fixed edge costs where
players have weights wi ≥ 1, and players’ payments are proportional to their weight.
More precisely, given a strategy S = (S1, . . . , Sk), define W to be the total weight of
all players, and let We be the sum of the weights of players using e. Then player i’s
payment for edge e will be wi

We
ce.

Note that the potential function Φ(S) used for the unweighted version of the game
is not a potential function once weights are added. In particular, in a weighted game,
improving moves can increase the value of Φ(S), as this is no longer a congestion
game. The following theorem uses a new potential function for a special class of
weighted games.

Theorem 6.1. In a weighted game where each edge e is in the strategy spaces of
at most two players, there exists a potential function for this game, and hence a Nash
equilibrium exists.
Proof: Consider the following potential function. For each edge e used by players i
and j, define

Φe(S) =





cewi if player i uses e in S
cewj if player j uses e in S
ceθij if both players i and j use e in S
0 otherwise

where θij = (wi + wj − wiwj

wi+wj
). For any edge e with only one player i, simply

set Φe(S) = wice if i uses e and 0 otherwise. Define Φ(S) =
∑

e Φe(S). We now
simply need to argue that if a player makes an improving move, then Φ(S) decreases.
Consider a player i and an edge e that player i joins. If the edge already supported
another player j, then i’s cost for using e is ce

wi

wi+wj
, while the change in Φe(S) is

ce(wi − wiwj

wi + wj
) = ce

wi
2

wi + wj
.

Thus the change in potential when i joins e equals the cost i incurs, scaled up by a
factor of wi. In fact, it is easy to show the more general fact that when player i moves,
the change in Φ(S) is equal to the change in player i’s payments scaled up by wi. This
means that improving moves always decrease Φ(S), thus proving the theorem.

Note that this applies not only to paths, but also to the generalized model in
which players select subsets from some ground set. The analogous condition is that
no ground element appears in the strategy spaces of more than two players.

Corollary 6.2. Any two-player weighted game has a Nash equilibrium.
While the above potential function also implies a bound on the price of stability,

even with only two players this bound is very weak. However, if there are only two
players with weights 1 and w ≥ 1, then we can show that the price of stability is at
most 1 + 1

1+w , and this is tight for all w.
The following result shows the existence of Nash equilibria in weighted single

commodity games.
Theorem 6.3. For any weighted game in which all players have the same source

s and sink t, best response dynamics converges to a Nash equilibrium, and hence Nash
equilibria exist.
Proof: Start with any initial set of strategies S. For every s − t path P define the
marginal cost of P to be c(P ) =

∑
e∈P

ce

We
, where We is the sum of the weights of
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players using e in the state S. Observe that if player i currently uses path P , then
i’s payment is wic(P ). Define P (S) to be a tuple of the values c(P ) over all paths P ,
sorted in increasing order. We want to show that the cheapest improving deviation
of any player causes P (S) to strictly decrease lexicographically.

Suppose that one of the best moves for player i is to switch paths from P1 to P2.
Let P denote the set of paths that intersect P1 ∪ P2. For any pair of paths P and
Q, let cP (Q) denote the new value of c(Q) after player i has switched to path P . To
show that P (S) strictly decreases lexicographically, it suffices to show that

min
P∈P

cP2(P ) < min
P∈P

c(P ). (6.1)

Define P ′ = arg minP∈P c(P ). Since P2 was i’s best response, cP2(P2) ≤ cP (P ) for all
paths P . In particular, cP2(P2) ≤ cP ′(P ′). We also know that cP ′(P ′) ≤ c(P ′), since
in deviating to P ′, player i adds itself to some edges of P ′. In fact, cP ′(P ′) < c(P ′)
unless P ′ = P1. Assuming P ′ 6= P1, we now have that cP2(P2) < c(P ′), which proves
inequality 6.1. If P ′ = P1, then since player i decided to deviate, cP2(P2) < c(P1).
Therefore, we once again have that cP2(P2) < c(P ′), as desired.

In the case where the graph consists of only 2 nodes s and t joined by parallel
links, we can similarly show that any sequence of improving responses converge to a
Nash equilibrium.

Weighted games with three or more players need not have a pure Nash equilib-
rium [8]. The following claim shows that, even when Nash equilibria do exist, the
price of stability bounds from the unweighted case do not carry over.

Theorem 6.4. There are weighted games for which the price of stability is
Θ(log W ) and Θ(k).

An example exhibiting this is a modified version of the graph in Figure 1.1.
Change the edge with cost 1 + ε to cost 1, and for all other edges with positive cost,
set the new cost to be 1

2 . For 1 ≤ i ≤ k let player i have weight wi = 2i−1. Since each
player has a greater weight than all smaller weight players combined, the only Nash
equilibrium has cost k

2 = Θ(log W ), while the optimal solution has cost 1.

7. Conclusions and Open Questions. For the Fair Connection Game, we
showed that the price of stability is always at most H(k), and that this is tight for
directed graphs. However, the case for undirected graphs remains largely unresolved.
The results of Section 4 show that, at least for two players, the price of stability for
undirected graphs can be strictly better than that for directed. The largest lower
bound that we know of for the price of stability in undirected networks is 12/7. The
worst-case price of stability in undirected games could be constant, showing that fair
sharing works very well in such games. See [1] for improved price of stability bounds
in the undirected case, as well as Fiat et al. [20] for recent progress on a special case
of this question.

Another open question is whether or not a good Nash equilibrium can be com-
puted in polynomial time for a large number of players. One approach to solv-
ing this problem is to first compute an approximation to the centralized optimum,
and then simulate best-response dynamics to reach a Nash equilibrium with cost at
most O(log k) times that of the initial state. Unfortunately, Theorem 5.1 shows that
arbitrary best-response dynamics can require exponential time to converge. On the
other hand, it is possible that best responses can always be scheduled in a way that
guarantees convergence in polynomial time. A weaker goal is to show how to compute
a (1+ε)-approximate Nash equilibrium, where no player can decrease its cost by more
than a 1 + ε factor, in polynomial time.
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For the version of the Fair Connection Game with latencies instead of edge costs,
the main challenge is to provide price of stability results for the general scenario,
rather that just the single-source special case. See [7, 10] for recent results for the
special case of linear latency functions.

Finally, for weighted games (Section 6) we have given only preliminary results.
Recently, Chen and Roughgarden [8] proved that pure Nash equilibria need not exist
in such games. They also showed that every weighted game has an O(log wmax)-
approximate Nash equilibrium that costs at most O(log W ) times the centralized
optimum (where wmax is the maximum weight and W is the sum of the weights,
assuming that the minimum weight is 1). These bounds are nearly tight. But the
following natural question is still open: what is the price of stability of approximate
Nash equilibria in Weighted Fair Connection Games if all players share a common
terminal?
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[40] S. Suri, C. Tóth, and Y. Zhou. Selfish load balancing and atomic congestion games. Algorith-

mica, 2007. To appear.
[41] A. Vetta. Nash equilibria in competitive societies, with applications to facility location, traffic

routing and auctions. In Proceedings of the 43rd Annual Symposium on Foundations of
Computer Science (FOCS), pages 416–425, 2002.


