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Abstract 
This paper develops a new class of models for pricing dual-expiry options 
that are characterized by two expiry dates. The underlying asset price is mod-
eled by a time changed exponential Ornstein Uhlenbeck (OU) process, where 
the time change process is a Lévy subordinator. The new models can capture 
both mean reversion and jumps often observed in various types of underlying 
assets of exotics. The pricing method exploits the observation that dual expiry 
options have payoffs that can be perfectly replicated by a particular set of first 
and second order binary options. The novelty of the paper is that we are able 
to derive the analytical solutions to the prices of these binaries through ei-
genfunction expansion method. Based on that, we can obtain the formulas for 
dual-expiry exotics through static replication. We also numerically investigate 
the sensitivities of prices of chooser, compound and extendable options with 
respect to the parameters of the models. 
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1. Introduction 

Dual-expiry option is a class of exotic options that depends on a single underly-
ing asset but whose payoff structure involves two fixed future dates. Usually, at 
the first expiry date, the option holder receives a contract that matures at the 
second expiry date. Chooser options, compound options, extendable options, 
shout options, American call options on an asset with a single known dividend 
payment and partial barrier options are good examples. The dual-expiry exotics 
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can be easily generalized to multiple-expiry options, whose payoff structure in-
volves several fixed future dates. Examples include ladder options, multiple 
shout options, Bermudan options, multiple extendable options and barrier op-
tions with discrete monitoring. 

[1] develops a new technique for pricing dual-expiry exotic options by as-
suming the underlying asset price dynamics follows continuous geometric 
Brownian motion. The method exploits the observation that dual expiry options 
have payoffs that can be perfectly replicated by a particular set of first and 
second order binary options. Hence, in order to avoid arbitrage, the exotic op-
tion prices are obtained by static replication with respect to this family of bina-
ries. As pointed out by [1], the representation of prices in terms of binaries is 
quite general and does not depend on any particular underlying asset price dy-
namics. In the Black-Scholes (BS) framework, [2] extends the method of [1] for 
pricing multiple-expiry options using a concept of higher order binary options. 
[3] [4] generalize [1] for dual- and multiple-expiry exotics to a Lévy environ-
ment. The binary option prices are derived using the mathematical methodology 
of [5] that employs the pseudo-differential operators whose symbol is expressed 
in terms of the characteristic exponent of the underly Lévy process. [6] further 
generalizes method of [1] to exotics with multiple-asset and multiple-expiry. 

In this paper, we present a new class of models for pricing dual-expiry exotic 
options. We assume the underlying asset price is an exponential function of OU 
process subject to stochastic time change. The time change process is modeled 
by a Lévy subordinator. The resulting asset price then exhibits mean reversion 
and jumps.  

We generalize the works of [1] [2] [3] [4] in two directions. In the previous 
works, the mean reversion is absent in the underlying asset price dynamics. As a 
result, these models are restricted to the dual-expiry exotics written on equities. 
On the other hand, the empirical evidence on mean reversion in financial asset is 
abundant. There is a census that many underlying assets of exotic option con-
tracts, such as currencies, commodities, energy, temperature and even some 
stocks, display mean reversion. Our models are built on the OU process and can 
therefore be applied to a wider range of asset classes.  

Time-changing a continuous time Markov process such as OU process can 
lead to a much wider class of models than classical jump-diffusion models. In 
the typical jump-diffusion models, such as [3] [4], the state-independent jumps 
are added to the diffusion process. In these models, upon arrival, the direction of 
the jump and the probability distribution of jump amplitude are independent of 
the current state of the process. Through Lévy subordination of OU process, our 
model, in contrast, can feature state-dependent mean reverting jumps with the 
jump direction and the jump amplitude dependent on the current state of the 
process. The subordinate OU process is found to be a better candidate for mod-
eling phenomena where jumps depend on the state, such as mean-reverting 
jumps. See its successful applications for callable and putable bonds in [7], 
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commodities in [8], electricity in [9] and variance swaps in [10]. We also refer to 
[11] for a brief introduction of subordinate Markov processes and [12] [13] [14] 
[15] for their further applications.  

To solve the dual-expiry exotics pricing problems, we extend the works of [1] 
to the case where the asset price follows the mean reverting process with jumps. 
We are able to derive the analytical pricing formulas for first and second order 
binary options using eigenfunction expansion method. After that, we apply them 
to pricing of some dual-expiry exotics such as chooser options, compound op-
tions and extendable options by static replication. We need to emphasize that 
eigenfunction expansion method is particularly suitable for pricing contingent 
claims written on the subordinate processes. The subordinate process is as ana-
lytically tractable as the original process without time change. The subordinate 
process shares the same eigenfunctions with the original one and the only mod-
ification is the replacement of eigenvalues of the original process with the Lap-
lace transform of the eigenvalues. To the best of our knowledge, this is the first 
piece of work that applies this method for pricing dual-expiry options and it can 
be extended with little effort to the case of multiple-expiry exotics. We refer to 
[11] [16] for the surveys on the eigenfunction expansion method and [7] [8] [9] 
[10] [12] [13] [14] [15] for its various applications.  

The rest of the paper is organized as follows. In Section 2, we introduce the 
general framework for modeling asset price as a time changed exponential OU 
process, where the time change process is modeled by the Lévy subordinators. In 
Section 3, we introduce the eigenfunction expansion method for our new model 
and also discuss how to calculate some important integrals that are essential for 
the determination of the eigenfunction expansion coefficients. In Section 4, we 
apply the eigenfunction expansion method to the valuation of first and second 
order binary options. We provide the analytical formulas for these binaries. In 
Section 5, we express the payoffs of some dual-expiry options in terms of binary 
options and then demonstrate how to valuate these options by static replication. 
We also implement the model and analyze the effect of parameters of the model 
on the selected option prices through specific numerical examples. 

2. The Model Framework  

Let ( ), ,QΩ   be a probability space with an information filtration ( t ). 
Suppose under the risk neutral measure Q, the asset price process S is governed 
by a time-changed exponential OU process, that is,  

( ) ( )( )exp ,S t Y t=                         (1) 

where  

( ) ( )( ) ,Y t X T t=                         (2) 

where T  is a time change process and X  is an OU process  

( ) ( )( ) ( )d d d ,X t X t t B tκ θ σ= − +                 (3) 
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where 0κ >  and ( )B t  is a standard Brownian motion. 
To introduce jumps into the asset price dynamics, we will follow [7]-[15] and 

model the time change process T as a Lévy subordinator. The Lévy subordinator 
T  is a nondecreasing process with positive jumps and non-negative drift with 
the Laplace transform:  

( )( ) ( )( )E exp exp ,T t tλ φ λ − = −                   (4) 

where φ  is the Lévy exponent and given by the Lévy-Khintchine formula (see 
e.g., [17])  

( ) ( ) ( )( ) ( )
0,

1 exp d ,s sφ λ γλ λ ν
∞

= + − −∫                (5) 

where 0γ ≥  and the Lévy measure ν  must satisfy  

( ) ( ) ( )
0,

1 d .s sν
∞

∧ < ∞∫  

To make sure that the expectation in (4) is finite for λ ∈ , we also impose 
the following restriction  

( ) ( ) ( )
0,

exp d .s sλ ν
∞

− < ∞∫  

An important sub-class of Lévy subordinators are the tempered stable 
subordinators. For such subordinators, the Lévy measure ( )sν  is given by  

( ) ( )1 exp ,ps Cs sν η− −= −  

where 0C >  and 0η > . Important special cases are the Gamma subordinator  

with 0p = , the IG subordinator with 
1
2

p =  and the compound Poisson  

subordinator with 1p = −  and 0η > . For such subordinators, the Lévy 
exponent is given by  

( )
( ) ( ) , 0

log 1 , 0

p pC p p

C p

γλ λ η η
φ λ λγλ

η

  − Γ − + − ≠ =   
 + + = 
  

 

We can also reparameterize the exponent by setting  

( ) ( ) ( )1 2

2

, 1 , 0

, , 0

p pC p p C p p p p
C C p

ϑ η ω η

ϑ ω
η η

− − = − Γ − = − Γ − − ≠

 = = =


 

where ( )( )E 1Tϑ γ= −  and ( )( )Var 1Tω = . 
According to [11], when the process X is time changed by a Lévy subordinator 

T, the resulting process Y will be a jump-diffusion process with mean-reverting 
diffusion drift and mean-reverting jumps if 0γ >  or a pure jump process with 
mean-reverting jumps if 0γ = . 

3. Eigenfunction Expansion Method  

For the OU process X in (3), its infinitesimal generator   is defined by  
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( ) ( ) ( ) ( )21 ,
2

f x x f x f xκ θ σ′ ′′= − +                 (6) 

where f is transformation function. f ′  and f ′′  are first- and second-order 
derivatives of f, respectively. 

Let ( )( )2 , ,L m−∞ ∞  denote the space of functions on ( ),−∞ ∞  square 
integrable with the speed measure ( ) ( )d dm x m x x=  and endowed with the 
inner product ( ),f g , where  

( ) ( )2

2 2

2 exp ,
x

m x
κ θ

σ σ

 −
 = −
 
 

                   (7) 

and  

( ) ( ) ( ) ( )
0

, d .f g f x g x m x x
∞

= ∫                    (8) 

Then, for any ( )( )2 , ,f L m∈ −∞ ∞ , we have (see e.g., [11])  

( )( ) ( ) ( ) ( )
0

E | 0 exp ,n n n
n

f X t X x f t xλ ψ
∞

=

 = = −  ∑            (9) 

where ( ),n nf f ψ= , { }nλ  are the eigenvalues of −  and { }nψ  are the 
corresponding eigenfunctions satisfying the following Sturm-Liouville equation  

.n n nψ λ ψ− =  

For the OU process X defined in (3), its eigenvalues and eigenfunctions can be 
summarized in the following result (see e.g., [11]):  

Proposition 1 For the OU process X defined in (3), the eigenvalues nλ  and 
eigenfunction nψ , 0,1,n =  , are  

,n nλ κ=                           (10) 

and  

( ) ( ) ,n n nx N Hψ ξ=                       (11) 

where ( )xκξ θ
σ

= − ,  

2
1

,
2 ! πn n

N
n

σ κ
+

=  

and ( )nH x  is the Hermite polynomial defined as  

( ) ( )
( ) ( )

2
2

0

1
! 2 .

! 2 !

n
m

n m
n

m
H x n x

m n m

 
   −

=

−
=

−∑  

For the time changed OU process Y defined in (2), for any ( )( )2 0, ,f L m∈ ∞ , 
we can also employ the eigenfunction expansion method to compute the 
following expectation (see e.g., [8]):  

( )( ) ( ) ( )( ) ( )

( )( ) ( )

0

0

E | 0 E exp

exp ,

n n n
n

n n n
n

f Y t X x f T t x

f t x

λ ψ

φ λ ψ

∞

=

∞

=

   = = −   

= −

∑

∑
        (12) 

where { }nλ  and { }nψ  are the eigenvalues and eigenfunctions of OU process 
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and can be obtained from (10) and (11), respectively. φ  is the Lévy exponent 
for the time change process T. 

It is clear that the eigenfunction expansion of Y has the same form as X, but 
with ( )exp ntλ−  replaced by ( )( )exp n tφ λ− . Thus, the eigenfunction 
expansion method makes the time changed model as tractable as the original 
model. This important result explains why eigenfunction expansion method is 
the natural way of computing option prices for the time-changed processes. 

For our new pricing model, the eigenvalues and eigenfunctions of OU process 
can be calculated easily from Proposition 1. To employ the eigenfunction 
expansion method to calculate the dual-expiry exotics prices, we still need to 
obtain the eigenfunction expansion coefficient nf . In this section, we provide 
the formulas for several integrals that will later be employed to calculate nf . 

The following formulas can be found in [18]:  
Lemma 1  
1) For 0y > ,  

( ) ( )( ) ( ) ( )2: exp d π 2 .n
n ny x y H x x yα

∞

−∞
= − − =∫            (13) 

2)  

( ) ( )2 π , 0: exp d
0, 0n n

nx H x x
n

β
∞

−∞

 == − = 
≠

∫             (14) 

3)  

( ) ( ) ( )2
,

π2 !,: exp d
0,

n

m n m n
n m nx H x H x x

m n
γ

∞

−∞

 == − = 
≠

∫         (15) 

The following integrals can be computed using the results of [7]:  
Lemma 2  
1) Define  

( ) ( ) ( )2, : exp d .
u

n nc u cx x H x xα
−∞

= −∫                (16) 

Then, ( ),n c uα  can be computed recursively as follows:  

( ) ( )0
1 1, exp π e 2 1 ,
2 4 2

cc u rf u cα     = − +    
    

 

where ( )erf x  is the error function defined by  

( ) ( )21erf exp d ,
π

x
x t t

−∞
= −∫  

and for 0n > ,  

( ) ( ) ( ) ( )2
1 1, exp , .n n nc u cu u H u c c uα α− −= − − +  

2)  

( ) ( ) ( )
( )
( ) ( )

2

2
1

π 2 , 0
: exp d

exp , 0

u
n n

n

u n
u x H x x

H u u n
β

−∞
−

 Φ == − = 
− − ≠

∫     (17) 
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where ( )xΦ  is the CDF of standard normal distribution.  
3) Define  

( ) ( ) ( ) ( )2
, : exp d .

u
m n m nu x H x H x xγ

−∞
= −∫              (18) 

Then, ( ),m n uγ  can be calculated recursively as follows:  

( ) ( ) ( ) ( ) ( ) ( ) ( )2
0,0 , 1, 1 1π 2 , 2 exp , 1,n n n n n nu u u n u H u H u u nγ γ γ − − −= Φ = − − ≥  

and for m n≠ ,  

( ) ( ) ( ) ( ) ( )
( ) ( )1 1 2

, exp .
2

m n n m
m n

H u H u H u H u
u u

n m
γ + +−

= −
−

 

4. Valuation of First and Second Order Binaries  

Following [1], we define the first order up (or down) binary option as the option 
that delivers an agreed payoff on expiry date if the price of underlying asset is 
above (or below) a fixed exercise price and zero otherwise. Let Y be the time 
changed OU process defined in (2). Let ( ),s = + −  be sign indicators for the up 
and down binaries, respectively. Let ( )0, ,sV y t tξ  denote the time t value of 
binaries with payoff function ( )( ) ( ){ }00 1 sY t sf Y t ξ>  at time 0t , 0t t> , 
conditioning on ( )Y t y= , that is,  

( ) ( )( ) ( )( ) ( ){ }00 0 0, , exp E 1 | .s
tsY t sV y t t r t t f Y tξ ξ>

 = − −
 

  

Clearly, the up and down binaries satisfy the parity relation  

( ) ( ) ( )( ) ( )( )0 0 0 0, , , , exp E | .tV y t t V y t t r t t f Y tξ ξ
+ −  + = − −    

We also denote three specific options as follows.  
• ( )0, ,sA y t tξ  is the asset binary with ( ) ( )expf x x= .  
• ( )0, ,sB y t tξ  is the bond binary with ( ) 1f x = .  
• ( )0, , ;sQ y t t kξ  is the Q-option with ( ) ( )( )expf x s x k= − .  

In the following theorem, we can derive the analytical formulas for the above 
three option prices.  

Proposition 2 Assume the processes for the underlying asset price are given 
by (1)-(3). Let T be a Lévy subordinator with Lévy exponent φ . Then,  

1)  

( ) ( )( ) ( ) ( )( )( ) ( )0 0 0
0

, , exp exp ,s s
n n n

n
A y t t r t t f t t yξ ξ φ λ ψ

∞

=

= − − − −∑    (19) 

where nλ  and ( )n yψ  are in (10) and (11), respectively. Furthermore,  

( ) ( ) ( )2
exp , ,n

n n
N

f σ κξ θ α ξ θ
σσ κ κ

−  
= −  

 
            (20) 

and  

( ) ( )
22

exp ,
4 2

n
n n n

N
f fσ σξ θ α ξ

κσ κ κ
+ −   

= + −   
  

             (21) 
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where nα  and nα  can be calculated using Lemma 1 and Lemma 2, 
respectively.  

2)  

( ) ( )( ) ( ) ( )( )( ) ( )0 0 0
0

, , exp exp ,s s
n n n

n
B y t t r t t g t t yξ ξ φ λ ψ

∞

=

= − − − −∑    (22) 

where  

( ) ( )2
,n

n n
N

g κξ β ξ θ
σσ κ

−  
= −  

 
               (23) 

and  

( ) ( )2
,n

n n n
N

g gξ β ξ
σ κ

+ −= −                    (24) 

where nβ  and nβ  can be calculated using Lemma 1 and Lemma 2, 
respectively.  

3)  

( ) ( ) ( )0 0 0, , ; , , , , .s s sQ y t t k s A y t t kB y t tξ ξ ξ = −             (25) 

Proof. To prove 1), using eigenfunction expansion, we have  

( ) ( )( ) ( )( ) ( ){ }

( )( ) ( ) ( )( )( ) ( )

00 0 0

0 0
0

, , exp E exp 1 |

exp exp ,

s
tsY t s

s
n n n

n

A y t t r t t Y t

r t t f t t y

ξ ξ

ξ φ λ ψ

>

∞

=

 = − −
 

= − − − −∑


 

where  

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2

2

exp d

2
exp exp d

2
exp exp d

2
exp , ,

n n

n
n

n
n

n
n

f x x m x x

N
y H y y y

N
y y H y y

N

ξ

κ ξ θ σ

κ ξ θ σ

ξ ψ

σ θ
σ κ κ

σθ
σ κ κ

σ κθ α ξ θ
σσ κ κ

−

−∞

−

−∞

−

−∞

=

 
= + − 

 
 

= − 
 

 
= −  

 

∫

∫

∫
 

where the equality in the last line comes from Lemma 2. 
For ( )nf ξ+ , using Lemma 1, we obtain  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

2 2

2

exp d

exp d

2
exp exp d

42

2
exp .

4 2

n n

n n

n
n n

n
n n

f x x m x x

x x m x x f

N
y H y y f

N
f

ξ
ξ ψ

ψ ξ

σ σθ ξ
κσ κ κ

σ σθ α ξ
κσ κ κ

∞+

∞ −

−∞

∞ −

−∞

−

=

= −

   = − − + −    
   

= + −   
  

∫

∫

∫
 

The proof for 2) is similar to 1). The only differences are that we need to 
compute  
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( ) ( ) ( ) ( ) ( ) ( )d , d ,n n n ng x m x x g x m x x
ξ

ξ
ξ ψ ξ ψ

∞− +

−∞
= =∫ ∫  

which can both be analytically solved using Lemma 1 and Lemma 2. 
3) can be obtained using the definition of Q-options.  
We also define the second order binary option as an expiry 0t  binary contract 

on an underlying expiry 1t  binary option, 0 1t t< . Let ( )( )1
1 0 0 1, ,sF Y t t tξ  denote 

a first order binary, 0 1,s s  be up-down indicators at times 0t  and 1t , 
respectively and 0 1,ξ ξ  be their corresponding exercise prices. The time t value 
of the second order binaries, conditioning on ( )Y t y= , is given by  

( ) ( )( ) ( )( ) ( ){ }
0 1 1

0 1 1 0 0 0 00 1 0 0 0 1, , , exp E , , 1 | .s s s
ts Y t sF y t t t r t t F Y t t tξ ξ ξ ξ>

 = − −
 

  

It is clear that the following up-down parity relation exists:  

( ) ( ) ( )1 1 1
0 1 0 1 10 1 0 1 1, , , , , , , , .s s sF y t t t F y t t t F y t tξ ξ ξ ξ ξ
+ −+ =  

Depending on if the first order binary is an asset binary, a bond binary or a 
Q-option, we can define the corresponding second order binaries. We derive the 
analytical formulas for the second order binaries in the following theorem.  

Proposition 3. Assume the processes for the underlying asset price are given 
by (1)-(3). Let T be a Lévy subordinator with Lévy exponent φ . Then,  

1)  

( ) ( )( ) ( ) ( )( )( )

( ) ( )( )( ) ( )

0 1 1
0 1

0

0 1 1 1 1 0
0

0 0
0

, , , exp exp

exp ,

s s s
n n

n

s
mn m m

m

A y t t t r t t f t t

h t t y

ξ ξ ξ φ λ

ξ φ λ ψ

∞

=

∞

=

= − − − −

× − −

∑

∑
    (26) 

where functions s
nf  is given in Proposition 2 and nλ  and ( )n yψ  are in (10) 

and (11), respectively. Furthermore,  

( ) ( ),
2

,m n
mn m n

N N
h κξ γ ξ θ

σσ κ
−  

= −  
 

              (27) 

and  

( ) ( ),
2

,m n
mn m n mn

N N
h hξ γ ξ

σ κ
+ −= −                (28) 

where ,m nγ  and ,m nγ  can be calculated using Lemma 1 and Lemma 2, 
respectively.  

2)  

( ) ( )( ) ( ) ( )( )( )

( ) ( )( )( ) ( )

0 1 1
0 1

0

0 1 1 1 1 0
0

0 0
0

, , , exp exp

exp ,

s s s
n n

n

s
mn m m

m

B y t t t r t t g t t

h t t y

ξ ξ ξ φ λ

ξ φ λ ψ

∞

=

∞

=

= − − − −

× − −

∑

∑
     (29) 

where s
ng  is given in Proposition 2.  

3)  

( ) ( ) ( )0 1 0 1 0 1
0 1 0 1 0 10 1 1 0 1 0 1, , , ; , , , , , , .s s s s s sQ y t t t k s A y t t t kB y t t tξ ξ ξ ξ ξ ξ = −         (30) 
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Proof. It suffices to prove 1). Using eigenfunction expansion and iterated 
conditional expectation, we have  

( )
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5. Examples  

Once we obtain the analytical formulas for the first and second order binary 
options, we can apply the theoretical framework for pricing dual-expiry options 
developed by [1]. We can express the payoffs of dual-expiry exotics in terms of a 
portfolio of elementary binary options. According to the principle of static 
replication, if the payoff of a European style derivative can be expressed as a 
portfolio of elementary contacts, then the arbitrary free price of the derivative is 
the present value of this portfolio. Hereby, we utilize the results of the previous 
section to the pricing of some dual-expiry exotics. 

5.1. Chooser Options 

These exotics give the holder at time 0t , the choice of either a European call 
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option of strike ck  and expiry ct , or a European put option of strike pk  and 
expiry pt . The payoff at time 0t , conditioning on ( ) ( )0 0Y t y t= , is therefore  

( )( ) ( )( ) ( )( ){ }
( )( ) ( )( ){ }

0 0 0 0 0 0

0 0 0 0

, max , , ; , , , ;

max , , ; , , , ; ,
c p
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V t y t C y t t t k P y t t t k

Q y t t t k Q y t t t k+ −

=

=
 

 

where C and P are the call and put options, respectively. And ( )logc ck k=  and 

( )logp pk k= . 
We can calculate time t value of chooser options from the following result.  
Lemma 3 Assume the processes for the underlying asset price are given by 

(1)-(3). Let T be a Lévy subordinator with Lévy exponent φ . Then, the time t 
value of chooser option, conditioning on ( )Y t y= , is  
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         (31) 

where d is the unique solution of  
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              (32) 

Proof. Since the call option function ( )( )0 0, , ;
c c ckQ y t t t k+


 is a monotonic 
increasing function of ( )0y t  and the put option function ( )( )0 0, , ;

p p pkQ y t t t k−


 
is a monotonic decreasing function of ( )0y t , we will have a unique solution d 
to (32). Then the value of chooser option at time t is given by  
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5.2. Compound Options 

For these exotics, the underlying are options. There are four basic types of 
compound options, generally referred to as call-on-call, call-on-put, put-on-all 
and put-on-put options. At time 0t , the holder of a compound option has the 
right to buy (or sell) a standard European call (or put) option with strike price 

1k  and expiry 1t  for price 0k . Let ( )0 1, ,s s = + −  for call or put at time 0t  
and 1t . Then the time t value of a 0 1s s -compound option can be obtained from 
the following result.  

Lemma 4 Assume the processes for the underlying asset price are given by 
(1)-(3). Let T be a Lévy subordinator with Lévy exponent φ . Then, the time t 
value of compound option, conditioning on ( )Y t y= , is  

( ) ( ) ( )2 1 2
22 10 0 1 1 0 0 0, , , , ; , , ,s s s

kk kV t y s Q y t t t k s k B y t t= −


       (33) 

where ( )1 1logk k= , 2 0 1s s s=  and 2k  is the unique solution of  

( )1

1 2 0 1 1 0, , ; .s
kQ k t t k k=


              (34) 

Proof. Since the function ( )1

1 0 1 1, , ;s
kQ y t t k


 is a monotonic increasing 
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(decreasing) function of y when 1s = +  ( 1s = − ), the solution 2k  to (34) will 
be unique. The value of compound option at time t is given by  

( ) ( )( ) ( )( )( )
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5.3. Extendable Options 

These exotics allow expiry date to be extended to a future date for a fee with a 
different strike price at the extended expiry. The holder of an expendable call 
option has the right at time 0t  to exercise a standard European call option with 
strike price 0k ; or for premium p, to extend the expiry date to time 1 0t t>  and 
change the strike from 0k  to 1k . The time t value of an extendable option can 
be obtained using the following result.  

Lemma 5. Assume the processes for the underlying asset price are given by 
(1)-(3). Let T be a Lévy subordinator with Lévy exponent φ . Then the time t 
value of extendable option, conditioning on ( )Y t y= , is  
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where ( )1 1logk k=  and 1I  and 2I  are the solutions of  

( )
1 1 0 1 1, , ; ,kQ I t t k p+ =


                     (36) 

and  

( )
1 2 0 1 1 2 0, , ; .kQ I t t k I p k+ = + −


                  (37) 

Proof. Assume that the 1I  and 2I  are the unique solutions to (36) and (37), 
respectively. Then the value of extendable option at time t  is given by  
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5.4. Numerical Analysis 

In this section, we numerically study chooser, compound and extendable options 
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based on a specific time-changed process. We assume the time change process T 
is a Gamma subordinator with the Lévy exponent  

( )
2

log 1 .ϑ λωφ λ
ω ϑ

 = + 
 

 

To calculate the prices for dual exotics, we need to truncate the eigenfunction 
expansion after a finite number of terms. Following [14], we truncate the infinite 
series when a given error tolerance level is reached. In practice, we find the 
convergence of the expansion is rather fast. 

In Figures 1-3, we perform some sensitivity tests to demonstrate how 
sensitive the selected dual-expiry exotics are to the changes in the key 
parameters in the model. We can summarize the findings as follows:  
• The option prices decrease with the mean reverting parameter κ  for 

chooser and compound options, but increase for extendable options.  
 

 
Figure 1. Sensitivities of chooser option prices to the parameters of the model. The 
parameters in the base case are 2κ = , 0.2σ = , 1θ = , 1ϑ = , 0.02ω = , 0 2.5S = , 

0.05r = , 0t = , 0 0.5t = , 0.8ct = , 1pt = , 2.8ck =  and 3.2pk = . 
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• The option prices are decreasing function of long-run mean parameter θ  
for chooser options but increasing for compound and extendable options.  

• The option prices are monotonically increasing with asset variance parameter 
σ  for compound options, whereas the relationship between option prices 
and variance is U-shaped for both chooser and extendable options.  

• The option prices increase with the mean of Gamma subordinator ( )1T  for 
both compound and extendable options but decrease for chooser options.  

We note that the sensitivities of option prices to the model parameters depend 
on the option types. This is plausible for two reasons. First, different types of 
exotics respond differently with respect to the changes in the parameters. Second, 
the existence of mean reversion together with Lévy subordination can produce 
complex price dynamics. For example, when the mean reversion speed increases, 
the conditional mean of asset price will increase/decrease depending on if spot 
price is below/above the long-term mean, whereas there is no clear-cut relation  
 

 
Figure 2. Sensitivities of compound option prices to the parameters of the model. The 
parameters in the base case are 2κ = , 0.2σ = , 1θ = , 1ϑ = , 0.02ω = , 0 2.5S = , 

0.05r = , 0t = , 0 0.5t = , 1 1t = , 0 2.5k = , 1 0.1k = , 0 1s =  and 1 1s = . 
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Figure 3. Sensitivities of extendable option prices to the parameters of the model. The 
parameters in the base case are 2κ = , 0.2σ = , 1θ = , 1ϑ = , 0.02ω = , 0 2.5S = , 

0.05r = , 0t = , 0 0.5t = , 1 1t = , 0 2.5k = , 1 2.8k =  and 0.1p = . 

 
between conditional variance and mean reversion speed. The subordination 
complicates the issue further. Therefore, it is not surprising to find the impacts 
of model parameters differ across the option types.  

6. Conclusion  

This paper studies a new class of models for pricing dual-expiry exotic options. 
The underlying asset price is modeled as exponential function of OU process 
time changed by a Lévy subordinator. The resulting asset price can display both 
mean reversion and jumps often observed in a large range of underlying assets of 
exotic option contracts. We employ the method of [1] to decompose the exotic 
option prices into a portfolio of first and second order binaries. We are able to 
employ the eigenfunction expansion technique to derive the analytical pricing 
formulas for the binaries. After that, we can compute dual-expiry exotics option 
prices by static replication. We also implement the model and analyze the effect 
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of parameters of the model on some examples of exotics through specific 
numerical examples. We need to emphasize our techniques can be extended with 
minor changes when pricing multiple-expiry options. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Buchen, P.W. (2004) The Pricing of Dual-Expiry Exotics. Quantitative Finance, 4, 

101-108. https://doi.org/10.1088/1469-7688/4/1/009 

[2] O, H.C. and Kim, M.C. (2013) Higher Order Binary Options and Multiple-Expiry 
Exotics. Electronic Journal of Mathematical Analysis and Applications, 1, 247-259. 

[3] Agliardi, R. (2009) The Quintessential Option Pricing Formula under Lévy 
Processes. Applied Mathematics Letters, 22, 1626-1631.   
https://doi.org/10.1016/j.aml.2009.05.008 

[4] Agliardi, R. (2011) A Comprehensive Mathematical Approach to Exotic Option 
Pricing. Mathematical Methods in the Applied Sciences, 35, 1256-1268.   
https://doi.org/10.1002/mma.2519 

[5] Boyarchenko, S.I. and Levendorskii, S.Z. (2002) Non-Gaussian Merton-Black-Scholes 
Theory. World Scientific, Singapore. https://doi.org/10.1142/4955 

[6] Buchen, P.W. (2012) An Introduction to Exotic Option Pricing. CRC Press, Boca 
Raton. https://doi.org/10.1201/b11589 

[7] Lim, D., Li, L. and Linetsky, V. (2012) Evaluating Callable and Putable Bonds: An 
Eigenfunction Expansion Approach. Journal of Economic Dynamics & Control, 36, 
1888-1908. https://doi.org/10.1016/j.jedc.2012.06.002  

[8] Li, L. and Linetsky, V. (2014) Time-Changed Ornstein-Uhlenbeck Processes and 
Their Applications in Commodity Derivative Models. Mathematical Finance, 24, 
289-330. https://doi.org/10.1111/mafi.12003 

[9] Li, L., Mendoza-Arriaga, R., Mo, Z. and Mitchell, D. (2016) Modelling Electricity 
Prices: A Time Change Approach. Quantitative Finance, 16, 1089-1109.  
https://doi.org/10.1080/14697688.2015.1125521  

[10] Tong, Z. and Liu, A. (2017) Analytical Pricing Formulas for Discretely Sampled 
Generalized Variance Swaps under Stochastic Time Change. International Journal 
of Financial Engineering, 4, 1-24. https://doi.org/10.1142/S2424786317500281  

[11] Linetsky, V. and Mitchell, D. (2008) Spectral Methods in Derivatives Pricing, in 
Birge, J.R. and Linetsky, V. (editors). Handbook of Financial Engineering, Elsevier, 
Amsterdam, 223-299. 

[12] Mendoza-Arriaga, R., Carr, P. and Linetsky, V. (2010) Time Changed Markov 
Processes in Unified Credit-Equity Modeling. Mathematical Finance, 20, 527-569.  
https://doi.org/10.1111/j.1467-9965.2010.00411.x  

[13] Mendoza-Arriaga, R. and Linetsky, V. (2013) Time-Changed CIR Default Intensi-
ties with Two-Sided Mean-Reverting Jumps. The Annals of Applied Probability, 24, 
811-856. https://doi.org/10.1214/13-AAP936  

[14] Li, J., Li, L. and Zhang, G. (2017) Pure Jump Models for Pricing and Hedging VIX 
Derivatives. Journal of Economic Dynamics & Control, 74, 28-55.  

https://doi.org/10.4236/jmf.2019.91003
https://doi.org/10.1088/1469-7688/4/1/009
https://doi.org/10.1016/j.aml.2009.05.008
https://doi.org/10.1002/mma.2519
https://doi.org/10.1142/4955
https://doi.org/10.1201/b11589
https://doi.org/10.1016/j.jedc.2012.06.002
https://doi.org/10.1111/mafi.12003
https://doi.org/10.1080/14697688.2015.1125521
https://doi.org/10.1142/S2424786317500281
https://doi.org/10.1111/j.1467-9965.2010.00411.x
https://doi.org/10.1214/13-AAP936


K. Z. Tong et al. 
 

 

DOI: 10.4236/jmf.2019.91003 41 Journal of Mathematical Finance 
 

https://doi.org/10.1016/j.jedc.2016.11.001  

[15] Tong, Z. and Liu, A. (2018) Analytical Pricing of Discrete Arithmetic Asian Options 
under Generalized CIR with Time Change. International Journal of Financial Engi-
neering, 5, 1-21. https://doi.org/10.1142/S2424786318500020  

[16] Linetsky, V. (2004) The Spectral Decomposition of the Option Value. International 
Journal of Applied and Theoretical Finance, 5, 337-384.  
https://doi.org/10.1142/S0219024904002451  

[17] Sato, K. (1999) Lévy Processes and Infinitely Divisible Distribution. Cambridge 
University Press, Cambridge. 

[18] Prudnikov, A.P., Brychkov, Y.A. and Marichev, O.I. (1986) Integrals and Series, 
Vol. 2. Gordon and Breach Science Publishers, London. 

https://doi.org/10.4236/jmf.2019.91003
https://doi.org/10.1016/j.jedc.2016.11.001
https://doi.org/10.1142/S2424786318500020
https://doi.org/10.1142/S0219024904002451

	The Pricing of Dual-Expiry Exotics with Mean Reversion and Jumps
	Abstract
	Keywords
	1. Introduction
	2. The Model Framework 
	3. Eigenfunction Expansion Method 
	4. Valuation of First and Second Order Binaries 
	5. Examples 
	5.1. Chooser Options
	5.2. Compound Options
	5.3. Extendable Options
	5.4. Numerical Analysis

	6. Conclusion 
	Conflicts of Interest
	References

