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ABSTRACT

Context. The fringe sensor unit (FSU) is the central element of the phase referenced imaging and micro-arcsecond astrometry
(PRIMA) dual-feed facility and provides fringe sensing for all observation modes, comprising off-axis fringe tracking, phase ref-
erenced imaging, and high-accuracy narrow-angle astrometry. It is installed at the Very Large Telescope Interferometer (VLTI) and
successfully served the fringe-tracking loop during the initial commissioning phase.
Aims. To maximise sensitivity, speed, and robustness, the FSU is designed to operate in the infrared K-band and to include spatial
filtering after beam combination and a very-low-resolution spectrometer without photometric channels. It consists of two identical
fringe sensors for dual-star operation in PRIMA astrometric mode.
Methods. Unique among interferometric beam combiners, the FSU uses spatial phase modulation in bulk optics to retrieve real-time
estimates of fringe phase after spatial filtering. The beam combination design accommodates a laser metrology for pathlength moni-
toring. An R = 20 spectrometer across the K-band makes the retrieval of the group delay signal possible. The calibration procedure
uses the artificial light source of the VLTI laboratory and is based on Fourier transform spectroscopy to remove instrumental effects.
Results. The FSU was integrated and aligned at the VLTI in July and August 2008. It yields phase and group delay measurements at
sampling rates up to 2 kHz, which are used to drive the fringe-tracking control loop. During the first commissioning runs, the FSU
was used to track the fringes of stars with K-band magnitudes as faint as mK = 9.0, using two VLTI auxiliary telescopes (AT) and
baselines of up to 96 m. Fringe tracking using two Very Large Telescope (VLT) unit telescopes was demonstrated.
Conclusions. The concept of spatial phase-modulation for fringe sensing and tracking in stellar interferometry is demonstrated for
the first time with the FSU. During initial commissioning and combining stellar light with two ATs, the FSU showed its ability to
improve the VLTI sensitivity in K-band by more than one magnitude towards fainter objects, which is fundamental for achieving the
scientific objectives of PRIMA.
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1. Introduction

Fringe tracking is essential for increasing the efficiency and
accuracy of astronomical observations with optical interferom-
eters. Because it is the equivalent of adaptive optics for single-
dish telescopes, fringe tracking partly removes the atmospheric
piston turbulence that limits the quality of interferometric mea-
surements, at the cost of decreased sensitivity. After the first
demonstration by Shao & Staelin (1980), fringe tracking has be-
come a common feature of modern optical interferometers and
opened the path to new scientific results (Monnier 2003; Barry
et al. 2008; Le Bouquin et al. 2009b). It makes narrow-angle
astrometry of the order of 100 µas possible, which is demon-
strated both in single-beam interferometry (Colavita 1994; Lane
& Muterspaugh 2004a) and later in a dual-beam interferometer,
where the technique is extended to off-axis fringe tracking and
phase referencing (Lane & Colavita 2003). A new instrument
relying on fringe-tracking observations is PRIMA (Quirrenbach
et al. 1998; Delplancke et al. 2006).

The deployment of the PRIMA system at the VLTI
(Haguenauer et al. 2008) began in July 2008. Once fully
operational, the PRIMA dual-beam facility will increase the

⋆ Part of this work is based on technical observations collected at the
European Southern Observatory at Paranal, Chile. Public data can be
downloaded at http://www.eso.org/sci/activities/vltcomm/
prima/PACMAN_CommDataRelease_text.html.

sensitivity of the VLTI and enable it to perform phase-referenced
imaging and high-accuracy narrow-angle astrometry. During
PRIMA operation, two objects within an isoplanatic angle are
simultaneously observed with two unit telescopes (UT) or aux-
iliary telescopes (AT), and their light is routed in four separated
beams by star separator modules (Nijenhuis et al. 2008) at the
telescopes.

In astrometric mode, the two beam pairs are combined in the
twin fringe sensors of the FSU: FSUA and FSUB, each com-
bining two beams originating from the primary object and the
secondary object, respectively. In normal mode, FSUB serves as
fringe tracker on the brighter, primary object whereas FSUA ob-
serves the fringes of the fainter, secondary object. In swap mode,
introduced to eliminate systematic and instrumental effects, it
is the opposite. An infrared laser metrology system (Schuhler
2007) measures the internal differential optical path difference
(OPD) between the two observed objects and a set of differen-
tial delay lines (DDL, Pepe et al. 2008) equalises the differential
sidereal delay between the two objects. Eventually, the angular
separation between both objects can be derived from OPD mea-
surements in FSUA and FSUB and the differential OPD deliv-
ered by the laser metrology (Delplancke et al. 2006; Elias et al.
2008).

In imaging mode, PRIMA provides two-telescope off-
axis fringe tracking and the phase reference for the present
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VLTI-instruments (Quirrenbach et al. 1998). There, the light of
the primary object is fed into one of the FSU fringe sensors,
which drives the fringe-tracking control loop. The light of the
secondary object, potentially much dimmer than the primary ob-
ject, is combined in either AMBER (Petrov et al. 2007) or MIDI
(Leinert et al. 2003).

In all modes, the FSU plays the central role within the
PRIMA facility. Two identical FSU fringe sensors can deliver
real-time estimates of phase, group delay, and signal-to-noise ra-
tio (SNR) for one or two observed targets. Hence, it serves both
as the scientific instrument for astrometry and as sensor for off-
axis fringe tracking. The requirements imposed by these oper-
ation modes lead to the high-throughput, high-bandwidth twin
design of the FSU.

The current magnitude limit for fringe tracking with FINITO
at the VLTI in routine operation with the ATs is mH = 5
(ESO 2009) and slightly fainter in engineering mode (mH = 6,
Le Bouquin et al. 2008). Using the FSU, it is possible to extend
this limit to a magnitude of mK ∼ 7−8. We describe the instru-
ment concept and implementation, report on laboratory test re-
sults, and present first on-sky performances.

2. Scientific rationale

The astrophysical science accessible with PRIMA can be sum-
marised with respect to the operation mode. One of the sci-
entific drivers of the astrometric mode is the extrasolar planet
search and characterisation, where a large programme is be-
ing prepared (Launhardt et al. 2008). This programme exploits
the potential of narrow-angle astrometry with dual-beam inter-
ferometers (Shao & Colavita 1992) and the expected accuracy
of 30−40 µas with PRIMA (van Belle et al. 2008). Combining
astrometric with spectroscopic, radial-velocity observations of
planetary systems can yield the complete orbital solution, hence
solve for the planets’ mass (Benedict et al. 2002; Bean et al.
2007; Pravdo & Shaklan 2009). Similarly, astrometric obser-
vations can yield the components’ masses of binary systems
(Muterspaugh et al. 2005, 2008; Lane et al. 2007) and can be
used to explore the dynamics of the stellar cluster close to the
galactic centre’s black hole (Bartko et al. 2008).

In the off-axis fringe-tracking and imaging mode, PRIMA
can be used to explore stellar surfaces and circumstellar discs, as
well as to carry out high-resolution observations of active galac-
tic nuclei, making use of the visibility measurement capabilities
of AMBER and MIDI, together with the phase reference pro-
vided by PRIMA and the improvement in limiting magnitude of
this mode (Quirrenbach et al. 1998).

3. FSU specifications

The FSU design is driven by three key criteria:

1. high throughput to reach faint stellar magnitudes;
2. high bandwidth and robustness against OPD and wavefront

perturbations for correction of atmospheric and instrumental
piston disturbances via fringe tracking;

3. twin design of FSUA and FSUB to allow PRIMA to swap
objects to eliminate systematic errors in astrometric mode.

These lead to the following specifications for the FSU.

– Fringe sensing is performed in the atmospheric K-band
(1.95−2.45 µm). The effective wavelength is longer than in
H-band, hence the non-ambiguous phase measurement range

of this bandpass is 35 % wider. In addition, the visibility loss
due to longitudinal atmospheric dispersion is two times less
than in H-band, and the expected Strehl ratio, hence fibre-
coupling efficiency is higher;

– spatial phase modulation is applied in contrast to a temporal
phase modulation scheme. The delay estimates are delivered
at the sampling rate of the detector;

– the design does not include photometric channels to accom-
modate a common combiner for telescope beams and for
the laser metrology and to maximise the optical through-
put, hence increase the sensitivity. Common telescope and
metrology beam combination is a requirement set by the as-
trometric mode;

– operation is possible at a selectable sampling rate be-
tween 0.5 Hz and 2 kHz;

– FSUA and FSUB are opto-mechanically and electronically
identical systems and their roles are interchangeable for the
accurate calibration of astrometric observations.

4. Instrument description

The FSU was initially designed and manufactured by
Thales Alenia Space Italy in cooperation with Osservatorio
Astronomico di Torino (Mottini et al. 2005; Gai et al. 2004) fol-
lowing the technical specifications requested by the European
Southern Observatory (ESO). It was delivered to ESO in July
2006 where it was installed in a dedicated test laboratory, re-
ferred to as the testbed (Abuter et al. 2006). Consequent to the
findings during the testing period, important changes to FSU
hardware and software had to be carried out until the delivery of
the instrument to the VLTI observatory in July 2008 (Sahlmann
et al. 2008a).

4.1. Phase measurement

The common technique for obtaining the phase measurements of
interfering light is to sample the fringe at two or more points with
known separation in phase space. The fringe phase relative to a
reference can then be retrieved with standard formulae (Wyant
1975; Creath 1988).

In stellar interferometry there are currently two schemes to
achieve the sampling of the fringe phase: spatial and tempo-
ral phase modulation. In the case of temporal modulation, the
fringe packet is scanned at a fast rate (∼100 Hz), typically us-
ing a piezo-driven actuator. Synchronising the detector read-out
and the modulator produces a temporal sequence of detector
reads across the fringe and the phase can be retrieved. Currently
operating fringe trackers, such as FATCAT at the Keck inter-
ferometer (Vasisht et al. 2003), FINITO at VLTI (Le Bouquin
et al. 2008), their equivalents at Palomar testbed interferometer
(Colavita et al. 1999), and the CHARA interferometer (Berger
et al. 2008), apply temporal phase modulation. In the presence of
fast piston perturbations, e.g., caused by vibrations in the beam
relaying optics, this scheme suffers from the scrambling of the
fringes during the acquisition sequence. Because the OPD seen
by the sensor changes at frequencies comparable to the mod-
ulation frequency, the phase separation of consecutive reads is
unknown, so that the phase measurement is of poor quality.

The FSU is the first fringe-tracking sensor to implement spa-
tial phase modulation at an astronomical interferometer. Here
the phase is modulated by static optical components, and four
combined beams with known phase separation, denoted A, B,
C, and D are produced. The four beam intensities are measured
contemporaneously, and the fringe phase can be estimated after
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Fig. 1. FSU layout showing the optical beam path, the beam combination and detection principle, remotely controlled optics, and the control system
structure: two telescope beams (B1 and B2) enter the FSU from the VLTI laboratory and motorised stages (s) are used to shut the beams or to
introduce longitudinal atmospheric dispersion compensators. The mirrors M1, M3, and M4 are fixed, whereas M2 is a piezoelectrically controlled
tip-tilt mirror and mounted on a motorised translation stage for longitudinal pathlength adjustment. Both beams have been superimposed in the
beam combiner (BC) after one beam experienced the achromatic retardation of π/2 between p- and s-polarisation. Dichroic mirrors (k) deflect
the H-band light. A polarising beam splitter (PBS) splits each combined beam and the four generated beams (A, B, C, and D) separated by π/2
in phase, respectively, are injected in single-mode fibres (g) by means of coupling doublets. The cold optics image the fibre bundle (f) on the
four-quadrant infrared detector (d) after spectral dispersion. The fibre bundle is mounted onto a 2-axis linear piezoelectric stage for lateral image
alignment, and its focus position is adjustable with a manually controlled stepper motor. Raw pixel intensities are delivered to the acquisition local
control unit (LCU). The shutter stages, the M2 actuators, and the fibre bundle lateral position are piloted by the alignment LCU. Laser metrology
beams (red) are injected (i) and extracted (e) in the beam combiner, pass through a central dichroic patch on M4 and propagate in the centre of
the telescope beams. The FSU LCUs communicate with the other VLTI real-time control systems via the reflective memory network (RMN). The
layout is identical for FSUA and FSUB.

each detector read-out. Piston perturbations at frequencies com-
parable to the read-out rate (∼1 kHz), which typically have very
low amplitudes, reduce the fringe contrast, hence increase the
noise, but do not distort the phase measurement.

We can can compare both schemes in two scenarios.

– the integration time per ABCD bin is identical. Spatial mod-
ulation has a 4 times greater measurement bandwidth than
temporal modulation; however, the phase noise is 4 times
higher for spatial modulation because the pixel intensity is
reduced by a factor of 4;

– the phase sampling time is identical. The theoretical band-
width is identical for both schemes, but the temporal scheme
requires a 4 times faster detector and at least the reading of
2 pixels, corresponding to the two interferometric outputs,

with the effect of slightly higher phase noise (factor
√

2).

The general drawback of the spatial scheme is that it has
to account for the differential effect between the four chan-
nels, such as differential injection into the single-mode fibres,
non-ideal phase separations, differential transmission, effective
wavelengths, and pixel response. This calls for an accurate cali-
bration of these instrumental effects.

4.2. FSU opto-mechanical design

The FSU opto-mechanics are installed on a steel honeycomb op-
tical table in the VLTI interferometric laboratory. The FSU foot-
print is a 1550×1740 mm rectangle hosting two 600×1500 mm
breadboards, a cylindrical cryostat with ∼350 mm diameter
and ∼600 mm height, and the shutter system, which is placed
in front of the breadboards. FSUA and FSUB are identical in de-
sign and their respective warm optics are each mounted on one

breadboard, whereas they share the cryostat for their cold optics
and detectors (Fig. 2). Therefore, the description below applies
to both of them.

Telescope beams are combined in bulk optics, where the spa-
tial phase modulation is introduced. Four beams with a relative
phase separation of π/2 provide ABCD signals, used to recon-
struct phase and group delay. Single-mode fibres spatially filter
the beams and route the light to the cryogenic infrared camera,
which includes a low-resolution spectrograph to obtain fringes
in one white-light pixel, covering the full K-band, and five spec-
tral pixels in each ABCD channel. The phase φ is computed from
the white-light pixels, while the group delay is estimated using
the spectral pixels.

Most optical components rely on reference pins for position-
ing to minimise manual alignment operations. Wherever possi-
ble, movable optics are motorised and controlled remotely with
the result of 13 manual adjustment points, which are the four
X − Y − Z fibre positioners and the focus position of the cold
camera.

The FSU opto-mechanical system can be divided into three
main components: the dispersion compensator and alignment
system, the beam combination and spatial filter system, and the
cryostat with spectrograph and detector.

4.2.1. Dispersion compensator

Motorised stages are used to insert optical components in the
input beams before beam combination (Fig. 1). Four configura-
tions are available for each beam:

S0 the beam path is free;
S1 a black metal plate stops the beam and the detector sees an

uniform background;

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912271&pdf_id=1
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Fig. 2. FSUB breadboard with opto-mechanics installed in the testbed: Left: alignment system with tip-tilt piezo and linear motor a), achromatic
retarder b), optical path length compensator c), beam combiner d), and spatial filter system e). The FSUA breadboard f) and the cryostat g) are
partially visible. Laser metrology injection p) and extraction q) optics are installed on the FSU breadboard. The shutter system is not shown. Top
right: close-up of the spatial filters showing H/K-dichroics h), polarising beam-splitters i), coupling doublets j), and fibre positioners k). Bottom
right: close-up of the beam combining system with beam combiner m) and folding mirrors n) (Photos: ESO/H.-H. Heyer).

S2 a retro-reflector oriented towards the beam combiner inter-
rupts the beam: the detector sees itself and the laser metrol-
ogy beam is retro-reflected;

S3t the beam passes through an infrared silica plate of thick-
ness t to compensate for longitudinal atmospheric disper-
sion (LAD).

The glass plates S3t are introduced to minimise the effects of
LAD, mainly on fringe visibility (Tango 1990; Lévêque et al.
1996), when the total delay in air of the interferometer is longer
than 24 m. Four thicknesses t are available, two for each beam,
and one unit of t equals 1.7 mm, which is the thickness required
to compensate for the LAD of 48 m beam-path in air (for typical
VLTI environmental conditions, cf. Daigne & Lestrade 1999).
The sign of the total delay is defined by the difference of optical
path length in beam B1 and beam B2. The effective LAD com-
pensator thickness ∆t is given by the thickness difference of S3t

in B1 and B2. Table 1 summarises the LAD compensator con-
figurations. With this setup offering five configurations, the LAD
compensation is not dynamic and the required configuration has
to be defined beforehand with the constraint that it cannot be
changed during an observation.

LAD compensation in the FSU was not tested on the sky,
and all results presented here were obtained without LADC. The
effect of the inserted glass plates on the laser metrology beams
was found not to be problematic in the testbed.

4.2.2. Beam alignment system

The alignment system for each telescope beam consists of
one static flat mirror (M1 in Fig. 1) and a second mirror
(M2) mounted onto a piezo-driven tip-tilt stage (PI S-330),
which is attached to a motorised linear stage (PI M-126)
for OPD adjustment. This system was adapted from FINITO

Table 1. Configurations for LAD compensation.

Total delay B1 B2 ∆t
(m)

−120−−72 S34 S32 +2
−72−−24 S34 S33 +1
−24−+24 S0 S0 0
+24−+72 S31 S32 –1
+72−+120 S31 S33 –2

(Le Bouquin et al. 2008) and makes fast (actuator bandwidth
>100 Hz) beam tip-tilt control possible. This functionality is es-
sential for fringe-tracking operation at the VLTI, because it is
required for automated injection optimisation and feed-forward
correction of real-time tip-tilt measurements (Bonnet et al. 2006;
Sahlmann 2007). The linear stage is needed to adjust the OPD
when observing the calibration source and is driven by a DC
motor, which makes it unsuitable as a fringe tracking actuator.

The shutter stages, the linear motors, and the piezoelectric
stages of M2 are controlled by the alignment LCU (cf. Fig. 1
and Sect. 4.4). Consequently, each input beam can be remotely
aligned with the FSU in terms of tip-tilt and OPD. The lateral
pupil position during PRIMA observations is maintained by an
independent control system, which is based on the PRIMA laser
metrology and actuators in the star-separator modules (Schuhler
2007).

4.2.3. Achromatic phase shifter

Before the telescope beams are combined, an achromatic
phase shifter introduces a π/2 phase shift between the p-
and s-polarisation component of one beam, achieved through
three internal total reflections in a K-shaped silica prism

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912271&pdf_id=2
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(Mottini et al. 2005). The other beam traverses a silica block,
acting as compensator to equalise the optical path in silica of
both beams.

The optical path length of 207.6 mm inside the phase shifter
and the compensator match within 50 µm. The total optical path
length difference inside silica is inferior to 100 µm between both
beams due to manufacturing errors of the phase shifter, compen-
sator, and beam-combiner. As a result, the corresponding chro-
matic dispersion can account for at most a 0.75% contrast loss
over the K-band.

Silica dispersion also accounts for 1.3 µm differential
OPD between 2.25 µm and the laser metrology wavelength at
1.319 µm. During PRIMA astrometric observations, this con-
stant offset can be calibrated if the temperature gradient between
phase shifter and compensator is small. To keep the offset varia-
tion below 1 nm over 30 min, the gradient has to remain constant
within 0.04 K, which is ensured by the VLTI laboratory thermal
stability and by the good thermal connection of the phase shifter
and compensator, which are glued on a common glass plate.

4.2.4. Beam combiner and spatial filter system

Both telescope beams are superimposed in the beam com-
biner, which is a 50/50 beam splitter cube, to produce two
combined beams. Each combined beam is relayed to a po-
larising beam splitter, which separates the orthogonal p- and
s-polarisations, and four combined beams are produced (Fig. 1).
The H/K-dichroics, initially included with the main purpose of
feeding a possible H-band FSU1, have a transmission of 0.05%
at λ = 1319 nm and serve as filter to remove metrology laser
straylight. Although they also attenuate by 1% in K-band, they
are kept in the optical path to limit the amount of background
photons, especially for integration times of seconds, as envi-
sioned on the secondary object in PRIMA astrometric mode. All
transmissive bulk optics in the warm beamtrain are made of in-
frared silica. The combination of phase shifts originating from
the achromatic phase shifter and from reflection or transmission
in the beam combiner results in a relative phase shift of π/2 be-
tween adjacent beams (Fig. 6). These are the ABCD channels re-
quired for the phase computation. However, the measured phase
shifts of the real system can depart from the ideal values by up
to π/4. Each of those ABCD beams is focussed by a coupling
doublet onto the core of a single-mode fibre, which is held by
a manual fibre positioner (Fig. 2). The coupling losses due to
static aberrations caused by the doublets amount to (9 ± 1)%
(Sahlmann 2007).

The beam propagation distance from the entrance of the FSU
at the shutter to beam combination is ∼1300 mm and ∼2100 mm
until the injection in the fibres. The fluoride glass fibres manu-
factured by Le Verre Fluoré have a core diameter of 8.5 µm with
a cut-off wavelength of 1.75 µm and a length of 3.25 m. The
four fibres pass a vacuum feedthrough and guide the light of the
ABCD channels into the cryostat and towards the cold optics.

According to the specifications in Sect. 3, the FSU beam
combiner is also the injection point for the PRIMA laser metrol-
ogy, explained in Sect. 4.5. During observation, the telescope
pupils are imaged on the FSU beam combiner, independently
of the variable propagation distance in the VLTI optical train.
This is achieved with a variable curvature mirror located in
the VLTI delay line cat’s eye (Ferrari et al. 2003) and, for
PRIMA observations, in the star separator modules (Nijenhuis
et al. 2008). Dynamical pupil re-imaging is a feature of VLTI

1 This idea was abandoned for cost reasons after the design phase of
the project.

Fig. 3. Ray tracing through the FSU cold optics: fibre outputs a),
collimation doublet b), prism assembly c), camera lens doublet d), and
images on detector e). Dispersed and undispersed images cannot be dis-
tinguished in this illustration. The propagation distance from a) to e)
is 110 mm.

(Haguenauer et al. 2008) and is required to avoid beam vi-
gnetting by the FSU beam combiner, in spite of its minimum
physical size. For PRIMA observations, it ensures that the laser
metrology beam, returning from the star separator module at the
telescope, remains focussed at the level of the FSU beam com-
biner, to minimise laser straylight on the detector.

After installation in the VLTI laboratory, long-term drift
measurements of the FSU warm opto-mechanical parts were per-
formed by regularly monitoring of the relative positions of the
four warm fibre ends. The relative fibre positions can be deduced
from the individual point spread function profiles, which are ob-
tained by injecting one calibration source beam, modulating the
M2 tilt mirror and recording the corresponding injected flux in
each fibre along with the mirror tilt. Over 30 days, the maxi-
mum relative drift between two fibres of FSUA was measured to
be smaller than 1% of the theoretical AT point spread function
FWHM (240′′ on sky in K-band), which corresponds to approxi-
mately two times the alignment accuracy reached. No systematic
drift was detected.

4.2.5. Cryogenic low resolution spectrograph

The outputs of the four fibres are assembled in a bundle to form
a square array and are imaged on the detector by the cold optics,
consisting of three optical components (Fig. 3). After collima-
tion, the extended beam traverses the prism assembly, where two
non-cemented prisms imposing different dispersion are mounted
in contact. The front face of both prisms is located close to a
pupil plane, and each prism intercepts a fraction of the pupil
area. This fraction, defining the flux splitting ratio between the
spectral pixels and the white-light pixel, can be manually ad-
justed by moving the common prism mount along the Y-axis.
Both prisms apply nearly the same 16.3◦ deviation to the in-
cident collimated beams, but one prism, made of infrared sil-
ica, has ∼5 times higher dispersion than the other prism, made
of barium fluoride (BaF2). A camera doublet then focusses the
light on the four-quadrant infrared detector. Because of the dif-
ferent prism dispersions, one part of the beam is chromatically
dispersed over the 5 spectral pixels, whereas the other part of the
beam is dispersed over less than one pixel, providing the white-
light pixel. Spectral and white-light pixels are aligned in a row
and separated by a one pixel wide gap (Fig. 4).

Collimating doublet and camera doublet lenses are made of
infrared silica and zinc selenide (ZnSe). The silica prism car-
ries a filter coating reflecting wavelengths above 2.45 µm to re-
duce the thermal background, while the BaF2 prism has an anti-
reflection coating. Both prisms are also used as filtering elements

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912271&pdf_id=3
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Fig. 4. Sketch of the PICNIC detector layout for the FSU (not to scale).
The white-light pixels (filled) and the spectral pixels (striped) separated
by a one pixel wide gap are indicated for each detector quadrant A, B,
C, and D. Each pixel measures 40 × 40 µm.

and have a notch filter coating that rejects the 1319 nm wave-
length of the metrology laser.

4.3. Cryogenic system, actuators and detector

The FSU cryostat contains the liquid nitrogen tank in the up-
per part and the cold optical bench in the lower part. FSUA
and FSUB share a single cryostat; i.e., the cryostat hosts two
identical sets of cold optics and two detectors. In operational
condition, the cryostat is evacuated and cooled with liquid ni-
trogen. The fibre cables coming from the FSU warm optics
pass a feedthrough and the bundle with the four fibre outputs is
mounted on a piezo-driven X−Y translation stage (Piezosystem
Jena) with a range of 140 µm, used to finely align the fibre im-
ages on the pixels. The housings for collimation lenses, the prism
assembly, the camera lens, and the detector are mounted on a
common baseplate to assure mechanical stability (Fig. 5). Focus
adjustment along the optical Z-axis is realised with a Phytron
stepper motor driving a spring-loaded flexure blade mechanism,
which holds the piezo stage.

In the prism assembly, the two prisms are stacked vertically
and held by an aluminium frame. The flux ratio between the
white-light pixel and the spectral pixels is adjusted by sliding
this frame vertically within the external housing. This operation
requires the opening of the cryostat.

Each FSUA and FSUB uses one Teledyne 256×256 PICNIC
detector with four simultaneously sampled 128×128 pixel quad-
rants and a pixel size of 40 × 40 µm. Each quadrant is used for
one ABCD-channel. Only a subset of six pixels (five spectral
pixels and one white-light pixel) in one column per quadrant is
read, which reduces the read-out time compared to the full frame
read-out by a factor of 103. A total number of 24 detector pixels
are therefore used for each fringe sensor (Fig. 4). They are lo-
cated close to the quadrant’s origin to minimise the access time
of pixel reads. The detector is read using a non-destructive read-
out mode, where the electric charge accumulated in each pixel is
evenly sampled N times between two consecutive resets and the
final pixel intensity is computed from a linear fit to the N sub-
samples. For a typical FSU integration time of 1 ms, N is lim-
ited to 16 by the detector video signal bandwidth. This leads to a
read-out noise of (19±1) electrons rms in the testbed (Sahlmann
et al. 2008a).

Fig. 5. FSU cold optics assembly: piezo X-Y-stage a), collimator hous-
ing b), prism assembly c), camera lens housing d), detector housing e),
and focus motor f). The optical axis is horizontal in this image and light
is propagating from left to right.

In addition to the flux ratio adjustment possibility, white-
light and spectral pixels can be read at different rates, which pro-
vides high-bandwidth phase measurements and low-bandwidth
group delay estimates with reduced noise. The white-light pixel
can be read at a high rate for accurate phase tracking, whereas
the spectral pixels can be read at a lower rate and the resulting
group delay signal is used for fringe centring and the fringe ac-
quisition. However, this mode was never tested because, during
commissioning, the flux ratio had to be adjusted to put all light
into the spectral pixels (see Sect. 6.1).

The group delay estimate is extremely sensitive to relative
drifts of the fibre bundle with respect to the detector in the di-
rection of dispersion, because they alter the spectral content of
the pixels. To achieve the envisioned astrometric precision of
PRIMA, their effect on the measurement has to be negligible on
a typical observation timescale of 30 min. An astrometric mea-
surement is based on the difference of group delay measured by
FSUA and FSUB, while observing reference and target object,
hence it is sensitive to the instrumental drifts. The image motion
was measured in the testbed to be below 2 µm over 40 h for both
axes and is compliant with the stability requirement over 30 min.

4.4. Acquisition and control electronics

The FSU PICNIC detector read-out is managed with the IRACE
system (Meyer et al. 1998) developed by ESO. FSU real-time
computation and control at kHz data rates is performed by local
control units (LCUs) based on Motorola mv2700 CPU boards
running VxWorks operating system, whereas high-level coordi-
nation and bookkeeping is done with Linux workstations. FSUA
and FSUB run identical software and each comprise two real-
time computers: one for acquisition and one for driving the
alignment system. All LCUs use the reflective memory network
(RMN) for fast communication and to interface the VLTI control
system (Fig. 1), e.g. the angle tracker, the OPD controller, and
the RMN recorder (Abuter et al. 2008). LCU time synchronisa-
tion at µs-level relies on the ESO fibre-optics timing system.

The acquisition LCU collects the non-destructive pixel reads
to compute the pixel intensities and implements the real-time
algorithms described in Sect. 4.6. The alignment LCU controls
the actuators of cold and warm optics. Each LCU is housed in
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a VME crate, together with the interface cards to IRACE and
the RMN. Optical links are used for transmission of the detector
trigger signal and for piezo actuator control.

4.5. Calibration source and laser metrology

Although they are not part of the FSU, the PRIMA laser metrol-
ogy and the VLTI calibration source play an important role in
the laboratory calibration (Sect. 5.1).

Together with PRIMA, a new calibration and alignment unit
was integrated in the VLTI laboratory. It generates four near-
infrared beams, each covering the J-, H-, and K-bands, using
wavefront division (in contrast to the former unit which used
amplitude division), providing a better control of spectrum, spa-
tial coherence, and polarisation state (Morel et al. 2004). This
unit was previously used in the testbed (Sahlmann 2007) and is
usually powered by a black body light source.

The role of the metrology system (Schuhler 2007) during
PRIMA observations is to provide the internal differential OPD
between the two observed objects. It uses super-heterodyne laser
interferometry at λ = 1319 nm to measure the differential
OPD between FSUA and FSUB ∆LA−B and the internal OPD
of FSUB ∆LB in an incremental way. The metrology beams
have a diameter of 1 mm at injection and propagate within the
central obscuration of the telescope beams, which originates
from the telescope secondary mirror. Metrology endpoints are
given by the FSU beam combiners and the star separator mod-
ules (Nijenhuis et al. 2008). Two laser beams, one for FSUA
and FSUB respectively, with frequency-shifted orthogonal po-
larisation states are injected in and extracted from the stellar
beams via centro-circular dichroic patches with 2.5 mm diam-
eter on the FSU M4 mirrors (Figs. 1 and 2). They propagate
from the beam-combiners to the telescopes, where they are retro-
reflected by the star separator modules, and the return beams are
extracted in the beam combiners. The metrology hardware in-
cludes the laser source, a custom frequency-stabilisation system
(Schuhler 2007), the injection and extraction optics, and three
real-time computers interfacing the reflective memory network.
The metrology estimates of ∆LA−B and ∆LB can therefore be
recorded with the RMN recorder, but they are not used for feed-
back control.

During the FSU laboratory calibration, the laser metrology
monitors the OPD scan applied to the beams coming from the
calibration unit and feeding FSUA and FSUB. For this purpose,
the calibration unit provides metrology endpoints by means of
integrated corner-cube retro-reflectors of 4 mm diameter, located
in the central part of the beam behind a holed mirror and hence
only acting on the metrology beams.

4.6. Real time algorithms

The FSU real-time algorithms for phase, group delay, and SNR
are evaluated based on the 24 instantaneous pixel intensities
Ii,Γ(t) at time t, where i ∈ {0, 1, 2, 3, 4, 5} denotes the spec-
tral pixel, Γ ∈ {A,B,C,D} denotes the ABCD-channel, i = 0
stands for the white-light pixel, and i = 1, .., 5 stands for the
five spectral pixels. Typical computation rates for fringe track-
ing are 250 Hz–2 kHz. A number of parameters have to be pre-
computed during the calibration and stored in the FSU database,
where they can be accessed from the real-time computers. These
calibration parameters are:

1. Dark: one bias value Gi,Γ for each pixel used for dark-
correction.

2. Flat: one flat-value Fi,Γ for each pixel used for photometric
correction.

3. Wavelength: one effective wavelength value λi,Γ for each
pixel.

4. Phase-shift error coefficients: 6 values αi, βi, γi, and δi for
each ABCD-channel.

5. Visibility noise: one value υ0 for the white-light band used
to compute the SNR.

The current algorithms do not take the individual per-pixel wave-
lengths into account, but the mean wavelength λi and the corre-
sponding wavenumber σi in each spectral channel:

λi =
1

4

∑

Γ

λi,Γ, σi =
1

λi

· (1)

The raw pixel intensities are dark-corrected and normalised with
the photometric factor to yield the signals S i,Γ:

S i,Γ(t) =
Ii,Γ(t) −Gi,Γ

Fi,Γ − 2Gi,Γ

· (2)

Factor 2 in Eq. (2) originates in the way the database entries are
computed, see Sect. 5.1.2.

In the ideal case of even-phase separations of π/2 between
ideal signals S ′

i,Γ
, the fringe phase φi is computed from the fringe

quadratures, X′
i
= S ′

i,A
− S ′

i,C
and Y′

i
= S ′

i,B
− S ′

i,D
, using the

classic ABCD formula2 (Shao & Staelin 1977):

φi = tan−1
Y′

i

X′
i

= tan−1
S ′

i,B
− S ′

i,D

S ′
i,A
− S ′

i,C

· (3)

In the real case, where the phase separations of the signals S i,Γ(t)
are uneven and different from π/2, Eq. (3) needs to be gener-
alised by expressing the fringe quadratures as a function of the
non-ideal signals S i,Γ(t). To achieve this, we define the non-ideal
fringe quadratures, Xi = S i,A − S i,C and Yi = S i,B − S i,D, and find
that they can be expressed as linear combinations of X′

i
and Y′

i
.

Inverting the corresponding 2×2 matrix yields the correct fringe
quadratures X′

i
and Y′

i
as function of Xi and Yi, hence of S i,Γ:

Xi(t)
′ =
[

(S i,A(t) − S i,C(t)) γi − (S i,B(t) − S i,D(t))αi

]

csc,

Yi(t)
′ =
[

(S i,B(t) − S i,D(t)) βi − (S i,A(t) − S i,C(t)) δi

]

csc,
(4)

where the phase shift error coefficients are defined as

αi = sinψi,C, βi = 1 + cosψi,C, γi = cosψi,B + cos, ψi,D

and δi = − sinψi,B − sinψi,D,
(5)

and the phase shift errors ψi,B, ψi,C, and ψi,D are defined as the
deviation of the B, C, and D channel phase shifts from their nom-
inal values of 1

2
π, π, and 3

2
π, respectively (ψi,A = 0, by definition

of channel A as reference). The constant

csc = (βγ − αδ)−1 (6)

is required for correct visibility estimation.
Now we can apply Eq. (3) and compute the FSU phase φ in

radians from the white-light signals with a non-ambiguous range
of one wavelength λ0:

φ(t) = φ0(t) = tan−1
Y′

0
(t)

X′
0
(t)
· (7)

2 The two argument function atan2 is used to reach the 2π non-
ambiguous range.
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The optical path differenceΩmeasured with the FSU in units of
length is then given by

Ω(t) =
φ0(t)

2π
λ0. (8)

To estimate the group delay, we calculate the discrete Fourier
transformation (DFT) F of the fringe quadratures

F (x, t) =

5
∑

i=1

(

X′i (t) + jY′i (t)
)

exp− j2πσix, (9)

where j =
√
−1 and x spans an evenly spaced range of ±12 µm

with 60 points, i.e. x = x1, .., xN with N = 60, x1 = −12 µm
and x60 = 12 µm. A first estimate of the group delay GD is
the displacement xM for which the DFT modulus is maximum
(Colavita et al. 1999):

GD(t) = xM such that |F (xM , t)| ≥ |F (x, t)| ∀x. (10)

To refine this estimate, we compute the final group delay value
from the maximum of the parabolic fit to |F (xM , t)| and two
neighbouring values |F (xM±1, t)|. Consequently, the FSU deliv-
ers group delay estimates in units of length over a range of
±12 µm across the central fringe (Fig. 8). The visibility ampli-
tude V in white light writes as

V(t) =

√

X′2
0

(t) + Y′2
0

(t). (11)

Finally, the SNR is computed as the ratio of visibility and the
visibility noise υ0, derived by applying Eq. (11) to calibration
data in absence of fringes (Eq. (14), see Sect. 5.1.3):

SNR0(t) =
V(t)

υ0

· (12)

In summary, the three FSU real-time estimates used by the OPD
controller for fringe tracking are the phase in radian, the group
delay in meters, and the unitless SNR. The state machine of the
OPD controller relies on the SNR0(t) in the white-light pixel.

5. FSU operation

5.1. Laboratory calibration

The FSU calibration procedure was developed in the testbed
(Sahlmann et al. 2008b). It relies on the PRIMA laser metrol-
ogy and makes use of the RMN recording facility (Abuter et al.
2008). FSUA and FSUB need to be calibrated independently and
the procedure is identical in either case. It is possible to perform
FSUA and FSUB calibration simultaneously. The initial step is
to inject two beams from the VLTI calibration source (Sect. 4.5),
powered by a black body cavity at 700 ◦C, into the fringe sensor.
The beam propagation distance from the calibration source to
the FSU entrance is ∼9 m, and the metrology laser beams travel
it in doublepass.

Before calibration, the beam injection is optimised by cir-
cular modulation of M4 and feeding back the alignment error
derived from synchronous de-modulation of the sum of the four
white-light intensities

∑

Γ I0,Γ(t). This procedure is adapted from
FINITO (Bonnet et al. 2006).
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Fig. 6. White light fringes close to zero OPD from a calibration scan.
The signals are vertically offset for clarity.

5.1.1. Dark calibration

The bias values Gi,Γ for the dark-correction are computed from a
10 s record of the detector signals Gi,Γ(t) in the 24 pixels, where
both incoming beams are off-pointed by the FSU alignment sys-
tem. The dark-calibration template computes the mean values
Gi,Γ = 〈Gi,Γ(t)〉, where the brackets denote time averaging and
updates the database entries accordingly.

5.1.2. Flat calibration

The photometric flat-signals Fi,Γ are obtained in two steps. First
the beam B2 (Fig. 1) is off-pointed and a 10 s record of the
24 pixels is taken, yielding the flat signals F1i,Γ(t) of the beam
B1. The analogous procedure provides the flat signals F2i,Γ(t) of
beam B2. The flat calibration template updates the FSU database
with the flat values Fi,Γ = 〈F1i,Γ(t)〉 + 〈F2i,Γ(t)〉. The dark-
correction of these values is ensured with Eq. (2).

5.1.3. Fringe calibration

The computation of phase, group delay, and SNR requires the
precise values of the effective wavelength and phase shift error of
each pixel and the visibility noise in the white-light band. These
parameters are deduced from the fringe calibration. We use
Fourier Transform Spectroscopy to derive the effective wave-
lengths. Several OPD scans over the white-light fringe packet are
performed with a linear motor of the alignment system, while the
FSU pixel intensities and the internal OPD, measured with the
laser metrology system, are recorded simultaneously. For each
of the 24 pixels, we combine the consecutive scans based on
the metrology reference. The fringes are smoothed and interpo-
lated for even spacing (Fig. 6) before computing the effective
wavelengths λi,Γ from the barycentre of the Fourier transform
modulus (Fig. 7). The default calibration parameters are four
fringe scans and an effective scanning range of 140 µm. This
leads approximately to 50 samples per fringe and a wavelength
resolution of 32 nm. The effective wavelengths of ABCD pix-
els typically differ by some percent. The relative phase shifts of
the ABCD-channels are derived by cross-correlating their fringe
packets. Offsets of the crosscorrelation-functions with respect to
the autocorrelation of channel A are converted into phase, based
on the effective wavelengths. The resolution here is 1 mrad.
Eventually, the phase shift error coefficients αi, βi, γi, and δi are
derived from Eq. (5)

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912271&pdf_id=6
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Fig. 7. Fourier Transform modulus of all 24 pixels from a calibration
run, corrected for the black body spectrum. The wavelength variation in
the spectral pixels (1−5, top) and the broad-band white-light pixel (W,
bottom) are visible.

We measure large deviations of the phase shifts from the
nominal values of 1

2
π, π and 3

2
π, which can reach 0.25 π in ex-

treme cases, and a slight chromatic dependence. The reasons
for these large deviations are imperfections in the FSU opti-
cal components, especially in the achromatic retarder and the
beam combiner, and in relay optics of the VLTI laboratory. By
design, the phase difference between p- and s-polarisation gen-
erated by the phase shifter is ( 1

2
± 0.002) π across K-band. The

beam combiner semi-reflective coatings introduce phase differ-
ences below ± 0.05 π. Polarising beam-splitter leakage associ-
ated with beam combiner differential phase retardance accounts
for 0.11 π, whereas the observed values can be more than twice
this number. Therefore the observed deviations can only be ex-
plained partially by the known warm optics characteristics. This
may stem from the unknown contribution to differential phase
retardance of the relay mirrors between the calibration source
and the FSU.

The calibration procedure corrects for the deviations and
makes it possible to recover phase and group delay. However,
non-ideal phase shifts increase the phase noise and deteriorate
group delay and SNR estimates (Sect. 5.2).

Once the wavelengths and phase shift errors are known, the
visibility noise υ0 can be computed from the normalised flat ex-
posure Ŝ 0,Γ(t):

Ŝ 0,Γ(t) =
(F10,Γ(t) −G0,Γ) + (F20,Γ(t) −G0,Γ)

F0,Γ − 2Gi,Γ

, (13)

υ2
0 =

〈

[(

Ŝ 0,A(t) − Ŝ 0,C(t)
)

γ0 −
(

Ŝ 0,B(t) − Ŝ 0,D(t)
)

α0

]2

+
[(

Ŝ 0,B(t) − Ŝ 0,D(t)
)

β0−
(

Ŝ 0,A(t) − Ŝ 0,C(t)
)

δ0

]2
〉

c2
sc. (14)

5.2. Real-time estimates

The linearity of phase and group delay estimates is essential for
guaranteeing a reasonable control signal for the fringe tracking
loop. From the OPD scans during calibration, the non-linearity
is estimated as the deviation of the delay measurement slope
from unity, where the laser metrology measurement serves as
reference (Fig. 8). The phase non-linearity is within specifica-
tion below 10% over the central fringe, while the group delay
non-linearity exceeds the specified 20% over the central ±6 µm
by a factor of 3, which comes from the real-time algorithm not
taking the individual wavelengths of the ABCD-channels into
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Fig. 8. Top: FSU OPD (from Eq. (8), blue) and group delay estimates
(black) obtained on a calibration scan. Bottom: visibility V (black) and
one FSU signal (blue) as function of internal OPD. Group delay is de-
livered over a range of ±12 µm and the FSU OPD is wrapping with a
λ0-period. The coherence length of the bandpass is roughly 30 µm.

account, but instead their mean value (Eq. (1)). The resulting
wavelength mismatch causes a periodic error with double fre-
quency, an effect also visible in the visibility amplitude plotted
in Fig. 8. However, the gain margin of the fringe-tracking con-
trol loop amounts to approximately 10 dB and is large enough to
cope with the phase non-linearity.

In the testbed, the 3dB-bandwidth of the phase estimate was
measured to (910 ± 40) Hz with an integration time of 0.5 ms.
In addition, we measured the phase noise performance, which
sets the FSU sensitivity, hence the fringe-tracking limiting mag-
nitude. For detector integration times (DIT) of 0.5 ms, 1 ms,
and 2 ms with readout-noise of (27 ± 1), (19 ± 1), and (18 ±
1) electrons rms per pixel, respectively, we found the phase rms
noise to be 1.1 to 1.6 times greater than the theoretical value
(Sahlmann et al. 2008a), resulting in a theoretical sensitivity loss
of ∼0.5 mag.

5.3. Night calibration

Every time the FSU acquires a new stellar object, the night cali-
bration is executed. It consists of measuring the sky background
and the object’s photometry, following the same procedure as de-
scribed for the laboratory dark (Sect. 5.1.1) and flat (Sect. 5.1.2)
calibration, respectively, and re-computing the visibility noise
(Eq. (14)). As a result the FSU database is updated with the new
background, photometric, and visibility noise values, which are
henceforth considered for the real-time computations.

At a later stage, when both FSUA and FSUB are available
with the star separator modules, it is possible to perform the
fringe calibration on the observed object, to account for the
spectral transmission of the VLTI beamtrain and the object’s
spectrum. The procedure becomes more elaborate because of
the telescopes, delay lines, and other VLTI-subsystems, but in
principle one fringe sensor will be used to stabilise the fringes,
while the other fringe sensor performs the fringe calibration as
described in Sect. 5.1.3.

6. FSU fringe tracking

The presented results are obtained in single-feed, on-axis fringe
tracking. For our test purposes, the role of the first VLTI
fringe tracking sensor FINITO was taken over by either FSUA
or FSUB, but limited to two telescope observations, and the
control system as described by Haguenauer et al. (2008) and

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912271&pdf_id=7
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Fig. 9. Simplified VLTI control system for single-feed fringe tracking
with FSUA or FSUB. Telescopes T1 and T2 capture the starlight, and
beams B1 and B2 are routed through the main delay lines. Dichroic
mirrors D1 and D2 feed the H-band light to the angle tracking camera
sending open-loop tilt offsets to the piezo-controlled mirrors M2_1 and
M2_2, as part of the FSU. K-band beams are combined (BC) and the
ABCD signals are used to compute phase, group delay, and SNR. These
estimates are used by the OPD controller (OPDC) to offset one delay
line for closed loop fringe tracking.

Le Bouquin et al. (2008) remained nearly identical. In this sec-
tion we briefly describe the VLTI control system and highlight
the differences when observing with the FSU instead of FINITO.

Figure 9 gives a simplified overview of the interferometer
control system, when used in conjunction with either FSUA or
FSUB. The target is observed with two ATs or two UTs, pro-
viding field stabilisation with a tip-tilt system (Koehler et al.
2006) or adaptive optics (Arsenault et al. 2004), respectively.
Mirrors guide the telescope beams through optical delay lines
into the beam combination laboratory, where the H-band beams
are fed into the angle-tracking camera (Gitton et al. 2004) and
the K-band beams enter the FSU. When the H-band fringe sen-
sor FINITO is used, the K-band is used for angle tracking. The
angle-tracking camera computes tip-tilt error signals with re-
spect to the alignment reference position at the read-out rate of
typically 100−300 Hz. Slow angle tracking (bandwidth ∼1 Hz,
limited by communication delays) is performed in closed loop
using actuators at the telescopes. If the target is bright enough
for fast angle tracking, the high-frequency error signals are for-
warded in open loop to the FSU M2 tip-tilt stages (described
for FINITO by Bonnet et al. 2006). The feed-forward is dis-
abled as soon as the camera has to run at read-out rates below
100 Hz, which from our experience is required for target magni-
tudes fainter than mH = 6, to avoid the amplifying regime of the
corresponding rejection function.

The FSU real-time estimates of phase, group delay, and SNR
are picked up by the OPD controller, which sends delay offsets
to one delay line, whereas the other delay line remains fixed.
The delay offset includes the pre-computed trajectory based on
the interferometer configuration and the target coordinates and
the fringe tracking offset computed in real time from the fringe
sensor estimates.

The three-state OPD controller used for our observations
samples at 2 kHz and is described by Le Bouquin et al. (2008).
Three user-defined SNR thresholds (det, close, and open) define
transitions between the three states

SEARCH a triangular search trajectory is performed around
the predicted fringe position. Fringe tracking loop is
open;

IDLE the delay line follows the predicted fringe position.
Fringe tracking loop is frozen;

Table 2. OPD controller state transition table (adapted from Le Bouquin
et al. 2008).

Next SEARCH IDLE TRACK
current

SEARCH SNR < det - SNR > det
IDLE SNR < close SNR < close SNR > close

for 20 ms
TRACK – SNR < open SNR > open

TRACK fringe tracking offsets are sent to the delay line, based
on the fringe sensor estimates. Fringe tracking loop is
closed.

as explained in Table 2. The fringe-tracking control algorithm
used by the OPD controller with FSU estimates combines both
slow group delay and fast phase tracking. The phase estimate is
unwrapped if the difference between two consecutive samples
is more than π. Instead of controlling to zero-phase, the phase
controller tracks a time varying target designed to maintain the
group delay signal at zero. This variable target depends on the
integral of the group delay. The time constant of the group de-
lay integral controller is a few seconds and large compared to
the ∼0.1 s phase controller time constant. In consequence, the
control algorithm is tracking the delay of maximum coherence
within the central fringe. The gains of this controller were de-
fined during the testbed phase by fringe tracking on a model at-
mosphere (Sahlmann et al. 2008a) and are found to match for
on-sky observations.

6.1. Installation, alignment, and first fringes

As part of the PRIMA facility, the FSU was installed at the VLTI
during a seven-week period starting in July 2008. First stand-
alone tests were possible after placing the opto-mechanical sys-
tems and installing the computer infrastructure. One important
milestone was the first laboratory calibration, because it involves
several VLTI subsystems and requires the calibration source,
the laser metrology, and the reflective memory network to be
functional. Subsequently, the FSU was aligned within the VLTI
laboratory reference frame and interface tests to the angle track-
ing system were successfully carried out. Finally, communica-
tion with the main delay lines for fringe tracking was established
via the OPD controller, which made FSUA ready to go on sky.
FSUB became operational in January 2009, after correction of
an initial cold camera defect. Another milestone was achieved
when FSUA recorded first fringes with two ATs (Fig. 10).

Initial FSUA tests were performed with a cold camera con-
figuration where half of the detected light falls in the white-light
pixel and the other half is distributed on the five spectral pix-
els (see Sect. 4.2.5), the flux ratio for the white-light pixel TW

and for the spectral pixels TS each equal 50%. We denote this
configuration as FSUA[0].

In January 2009 both FSUA and FSUB cold cameras had to
be modified such that all light falls on the spectral pixels. This
became necessary because of difficulties during the alignment
of the prism assembly, causing substantial efficiency loss (cf.
Table 3), and because of degrading coatings on the BaF2-prisms,
making these prisms unusable. The white light pixel intensity
I0,Γ(t) is then replaced in software by the sum of the spectral
pixel intensities to provide a synthetic white light intensity

Î0,Γ(t) =

5
∑

i=1

Ii,Γ(t). (15)
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Fig. 10. First FSUA fringes obtained on 3 Sep. 2008 while observing
HD 19349 (mK = 0.4) and scanning the OPD with one linear motor of
the alignment system. Raw intensity differences I0,A(t) − I0,C(t) of the
white-light pixels in quadrants A and C are shown. The integration time
is 1 ms.

Table 3. FSU cold camera configurations.

Configuration TW TS Loss
(%) (%) (%)

FSUA[0] 49 51 27
FSUA[1] 0 100 13
FSUB[1] 0 100 5

These configurations are referred to as FSUA[1] and FSUB[1]
(TW = 0% and TS = 100%). Table 3 summarises the configura-
tions. The light loss is computed from the amount of light that
falls on adjacent pixels due to imperfect optics and is not de-
tected. TW and TS are given with respect to the detected light.
Uncertainties of these numbers are smaller than 1%.

6.2. Data recording and exploration

Data recording during FSU operation, both on sky and for the
laboratory calibration, relies exclusively on the RMN recording
facility (Abuter et al. 2008). It allows us to record virtually all
data available on the RMN in real time at kHz-rates and has
previously been implemented at the VLTI (Le Bouquin et al.
2009a). All real-time computers involved in the fringe-tracking
control system communicate via the RMN and all significant
data can be captured with this facility. Based on timestamps de-
livered with each data product and recorded in the produced file
of one exposure, it is possible to correlate each sample of real-
time data from different computers during the data analysis. For
instance, if FSUA is sampling at 1 kHz and the OPD controller
runs at 2 kHz, it is possible to identify the controller state for
every FSUA estimate. As a result, it is straightforward to clean
FSUA data from periods where the fringe tracking loop is not
closed. This results in an improvement of the FSUA data qual-
ity. The same principle applies to the angle-tracking system or
later on within PRIMA for the differential OPD controller.

PRIMA, once fully operational, will equally rely on the same
data recording facility and be able to profit from these data-
quality improvement possibilities.

7. Results

7.1. Fringe tracking with ATs

Two nights after having recorded first fringes, the VLTI fringe
tracking loop was closed with FSUA as sensor. In the subse-
quent nights, the FSU acquired and tracked fringes down to a

magnitude of mK = 5.73. Several baselines with lengths of 32 m,
72 m, and 96 m were used, while making pairwise use of all
four available ATs. To avoid nebulosity, we define fringe track-
ing as achieving a fringe lock ratio above 70% over one minute,
whereas there is no consideration of the tracking residuals.

During the first PRIMA commissioning runs in October and
November 2008, fringe tracking was routinely performed with
FSUA with baselines in the range of 32−96 m and two ATs, re-
spectively. For the February 2009 commissioning the cold cam-
eras of FSUA and FSUB were modified as described in Sect. 6.1
and FSUB performed first fringe tracking.

Tracking robustness was demonstrated for more
than 100 mostly unresolved stars at zenith angles of less
than 40 deg and for various atmospheric conditions and target
magnitudes. Within 30 commissioning nights, it was possible to
sample the magnitude space from mK ∼ 0−10 in atmospheric
conditions ranging from poor to excellent (seeing ∼0.4−2.2′′,
coherence time τ0 ∼ 8−0.8 ms). Atmospheric conditions were
retrieved from the Paranal observatory seeing monitor operating
at visible wavelength. Depending on these parameters, FSUA or
FSUB was capable of locking fringes at sampling rates between
100 Hz and 2 kHz. By the end of the third commissioning run,
FSUA at 250 Hz had achieved fringe tracking with two 1.8 m
ATs on an mK = 9.0 star, and fringes were recorded but not
tracked with FSUB at 100 Hz on a star of mK = 10.0 (Table 4).
Figure 11 illustrates a fringe-tracking sequence.

7.2. Data and estimators

During the 30 commissioning nights, more than 1500 files in
standard ESO fits-format were recorded with a data volume of
50 Gigabyte. Roughly one third corresponded to fringe track-
ing observations, while the remaining files were distributed be-
tween laboratory and night calibrations. The particularity of
FSU/PRIMA raw files is that they contain a data stream with
samples at kHz rates. This increases the file size but offers the
opportunity to reduce the complete dataset and gives access to
high-frequency measurements. We wrote Matlab code to reduce
this data, extract the significant parameters, and collect them in a
database, allowing us to access the complete sample by defining
selection criteria. Basic parameters of the observed targets are
extracted from the Simbad astronomical database.

Parameters with high dynamic variability, e.g. tracking resid-
uals and lock ratios, are typically computed in a running window
of fixed length over the data file. Characterising values of the ob-
tained distribution (e.g. median, mean, rms) are the results stored
in the database. A file selection based on quality estimators was
performed before running the reduction, and the number of files
is indicated for the results.

7.3. Injection

In addition to the effects common to every instrument employ-
ing single-mode fibres (flux variations due to uncorrected tip-
tilt jitter), the spatial modulation scheme of the FSU imposes
more complications. Because the four ABCD beams are gen-
erated before injection into the fibres, any differential static or
dynamic aberration will cause differential injection, hence fal-
sify the delay estimates. Therefore, good fibre co-alignment is
crucial (cf. 4.2.4).

3 Stellar magnitudes are taken from Centre de Données astronomiques
de Strasbourg (CDS).
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Table 4. Examples of FSU fringe tracking with ATs during commissioning.

Date Configuration Target mK Baseline Seeing τ0 DIT Lock ratio
(m) (′′) (ms) (ms) (%)

8 Sep. 2008 FSUA[0] HD 206647 5.7 96 0.7 3.2 2 >80
21 Oct. 2008 FSUA[0] HD 10067 7.6 32 0.5 3.5 2 >70
25 Nov. 2008 FSUA[0] HD 4803 7.6 64 0.7 5.0 2 >95
28 Nov. 2008 FSUA[0] HD 18558 8.3 96 0.7 3.0 4 >70
28 Nov. 2008 FSUA[0] HD 17967 9.0 96 0.7 3.0 4 >70
28 Nov. 2008 FSUA[0] HD 23747 9.5 96 1.0 2.3 4 ∼2

4 Feb. 2009 FSUB[1] HD 100091 8.6 48 0.8 4.6 4 >80
5 Feb. 2009 FSUA[1] HD 100091 8.6 48 0.6 5.7 10 >70
5 Feb. 2009 FSUB[1] [SMO84] 131534.25-330000.8 10.0 48 0.6 7.0 10 ∼10
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Fig. 11. FSUA fringe-tracking sequence observing HD4803 (mK = 7.6) on 25 Nov. 2008. Top: FSU OPD (blue), low-pass filtered group delay
(red), and the real-time offset (RTOffset) sent to the tracking delay line (black), which is a filtered representation of the atmospheric piston, in µm.
FSU OPD is obtained by unwrapping the phase and applying Eq. (8). Group delay is controlled to zero and different FSU OPD levels are visible
because the occurring fringe jumps cannot be corrected for by the unwrapping algorithm. Bottom: OPD controller state. This is achieved at a
sampling rate of 500 Hz, a baseline length of 64 m with two ATs, and in good atmospheric conditions with 0.7′′ seeing and 5.0 ms coherence time.
The lock ratio is 99% and the residual OPD is ∼190 nm rms.

Because the system, including coupling doublets, is not
aberration-free, residual tip-tilt jitter creates artificial phase es-
timates in the FSU, which cannot be distinguished from real
phase due to piston. This creates secondary effects during fringe
tracking: when the FSU detects artificial phase variations due to
differential injection, the OPD controller will inject these pertur-
bations into the optical path via the delay line actuator, which
in turn is seen by the FSU. Hence, it is not easy to distinguish
between tip-tilt and piston effects with the FSU during fringe
tracking.

Figure 12 shows a typical injection sequence and illustrates
the problem, together with Fig. 18. Wavefront perturbations in
the telescope beams cause fast injection variability and make
the intensity sum vary by 5% rms. Spectra of the ABCD in-
tensities reveal strong perturbations at 26 and 63 Hz, which are
also present in the piston spectrum, whereas their sum is flat at
these frequencies, therefore these perturbations have to originate
in piston vibrations and not from residual tip-tilt. On the other
hand, the features around 100 and 126 Hz appear in both individ-
ual and summed intensities and are thus at least partially caused
by residual tip-tilt. Typical average coupling losses due to resid-
ual tip-tilt are in the range of 30−40%. In poor conditions, the
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Fig. 12. White-light intensities during fringe tracking in normal condi-
tions (τ0 = 3.4 ms, observation run identical to Fig. 18). Top: time se-
ries of the four quadrants and their sum. The rms of the sum is 80 ADU.
Bottom: corresponding spectra showing strong features at 26 and 63 Hz.

equivalent figures look different and flux dropouts lasting several
ms inhibit efficient fringe tracking, which is reflected in Fig. 16.

In addition to the dynamic intensity imbalance of the in-
put beams, caused by uncorrelated tip-tilt jitter, there is also
the quasi-static intensity imbalance that remains approximately
constant during one observation and is caused by differences in
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Fig. 14. FSU total intensity as function of magnitude (22 files). The
detected intensity is the calculated from the sum of all pixel intensities.

transmission and alignment of the beamtrains. Its magnitude can
be estimated from the photometric night calibration executed be-
fore the observation. Figure 13 shows the beam intensity ratio
for a set of observations. In ∼80% of the cases, the intensity ra-
tio is greater than 0.65, and the resulting reduction in visibility
amplitude is below 3%.

7.4. Transmission

From the FSU photometric measurements collected during
fringe tracking, we can estimate the effective transmission of the
instrument. Figure 14 shows the total intensity detected in FSUA
or FSUB after the cryostat intervention. From the exponential fit
and the expected incident flux, we estimate the effective trans-
mission to 11±3% in K-band. This number includes the detector
quantum efficiency, both static and dynamic coupling losses, and
the cold camera losses (Table 3). The theoretical incident inten-
sity is computed assuming a VLTI K-band transmission of 35%
(Gitton & Puech 2009) and neglecting atmospheric extinction.
For the selected sample, the average dynamic coupling loss is
37± 5%, which is a coarse estimation based on the ratio of max-
imum and mean injected flux. With this number we can obtain
the FSU effective optical transmission of 18± 5%, including the
detector quantum efficiency.

7.5. Lock ratio

Two basic parameters that characterise fringe tracking are the
lock ratio and lock duration. The lock ratio defines the obser-
vation efficiency, and the lock duration sets the maximum time
that an instrument, attached to the fringe tracker, can use for co-
herent integration without perturbations by fringe losses. We de-
fine the lock ratio as the fraction of time over one minute that
the OPD controller is in state TRACK or IDLE. We include the
IDLE state, because in our experience the IDLE state rarely lasts
the maximum allowed 20 ms (Sect. 6) and fringes are either lost
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Fig. 15. Lock duration over one minute as function of lock ratio. The
exponential fit is shown (437 files).

or recovered very quickly. Consequently, we also compute other
parameters linked to the TRACK state with this convention, in
particular the closed loop phase residuals.

Figure 15 shows the mean lock duration over one minute as
function of lock ratio. The data can be approximated coarsely
by an exponential function, which shows that an average lock
duration longer than 2 s is reached for lock ratios above 60%.

Figure 16 shows the lock ratio as function of the object’s
K-band magnitude and environmental parameters. Ratios above
80% are reached for target magnitudes down to mK = 9.0. High
lock ratios are obtained over a wide range of atmospheric condi-
tions with generally increasing values for improving conditions.
Fringe tracking is hardly achieved for seeing above 1.3′′ and co-
herence time below 2 ms.

To further illustrate the limits of operation, Fig. 17 shows
lock ratio and average lock duration as function of coherence
time and includes the target magnitude range. For τ0 < 2 ms,
fringe tracking is almost impossible even for bright stars (mK <
4), and faint stars (mK > 7) can usually only be reached for
τ0 > 3 ms.

7.6. Residual OPD

Another parameter for evaluating fringe-tracking performance
is the closed loop residual jitter, which is seen by the fringe
tracker or the attached instrument. For PRIMA astrometry, the
jitter amplitude (commonly measured in nm rms over a given
time) defines the length of an observation to reach the required
accuracy on the differential delay, hence the observing effi-
ciency (Lindegren 1980; Shao & Colavita 1992). For an attached
visibility-measuring instrument, the jitter blurs the fringes dur-
ing the integration and makes the visibility estimation difficult
(see e.g. Lane & Muterspaugh 2004b; Le Bouquin et al. 2008).

Both phase and group delay estimates of the FSU can be
used to estimate the residual OPD, and we choose the phase
for its intrinsically lower noise. In fact, we use the unwrapped
phase of the OPD controller in states TRACK and IDLE4, which
is recorded in the fits-files and estimate the residual jitter rms
over 1 s. This means that the closed loop residuals are esti-
mated from the control signal itself and not by an independent

4 The controller keeps the phase constant when in state IDLE.
However, this residual OPD estimator is valid since its dependence on
residual group delay is linear.
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Fig. 16. Lock ratio (top row) and residual OPD (bottom row) as function of K-band magnitude, coherence time, seeing, and airmass (106 files).
Coherence time and seeing are measured in the visible by the seeing monitor.
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measurement. In the case of VLTI, the rejection function is dom-
inated by delays in the communication to the delay line actuator
and limits the closed loop bandwidth to ∼15 Hz (Di Lieto et al.
2008).

Figure 16 shows residual OPD as function of stellar magni-
tude and atmospheric observing conditions. For each night and
each target, the file with the highest lock ratio is selected, justi-
fied by the OPD controller thresholds being manually adjusted
to optimise the fringe tracking (cf. 7.8). Residuals below 200 nm
are measured at all magnitudes down to mK = 8.6, with a min-
imum and median value of 80 nm and 280 nm, respectively. A
strong correlation between jitter and coherence time is observed
and residuals below 300 nm can be expected for τ0 > 4 ms,
whereas they reach 800 nm in poor conditions with τ0 < 2 ms.
Dependence on seeing and airmass is less pronounced, although
clearly lower residuals are achieved for seeing <1.2′′. The air-
mass dependence is not fully conclusive due to the low number
of points at high airmass, but low residuals are achieved at air-
mass of 1.7.

Because the FSU detection principle is based on polarisation
splitting, the source and beam-train polarisation influence the
observations. The expected effect is an increased non-linearity
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Fig. 18. Power spectral densities of FSU OPD, group delay, and the
delay line RTOffset in normal conditions (τ0 = 3.4 ms, observation run
identical to Fig. 12). A power law with exponent −2.8 approximately
reproduces the atmospheric signature in the delay line offset.

of the FSU response, primarily of the group delay. Since dur-
ing fringe tracking the group delay is kept close to zero, its
non-linearity has a low impact as long as it does not cause the
controller track on a non-zero local minimum, which is never
observed. However, non-linearity is observed to be problem-
atic in combination with fringe loss events, which is described
in Sect. 7.9.

The actual FSU phase shifts when observing on sky are un-
known with the present setup. They can only be measured af-
ter dual feed operation is available (see Sect. 5.3). VLTI does
not provide an independent estimate of differential beam-train
polarisation, which may also affect the laboratory calibration
(cf. 5.1.3).

The power spectral density (PSD) of residual OPD and group
delay, together with the delay line control signal, is shown in
Fig. 18. The low-frequency atmospheric piston is corrected for
by the fringe tracking control loop up to the system’s band-
width of ∼15 Hz. The features at 26 and 63 Hz can thus not
be cancelled and are identified as pure piston perturbations with
the help of the reasoning in Sect. 7.3. They contribute ∼30
and ∼50 nm rms to the OPD residual, respectively. They are tran-
sient features with unknown origins and they apparently appear
randomly in roughly 35% of the observations. Most likely they
have to be attributed to a vibrating optical element in the VLTI
beam-train.

The group delay noise floor is one order of magnitude
above the OPD noise floor, as expected from its definition as a
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Fig. 19. FSU raw visibility measurements. Filled symbols indicate mea-
surements in the fringes (controller state TRACK), whereas open sym-
bols are obtained in the absence of fringes (controller state SEARCH).
The projected baseline length decreases from 65 m to 50 m during this
sequence. Atmospheric conditions are stable with seeing around 1′′.

wavelength derivative of the phase and the applied algorithm
(e.g. Lawson et al. 2000). At the observatory, an unidenti-
fied source of parasitic noise increases the read-out noise to
31 ± 4 electrons rms per pixel for a detector integration time of
1 ms compared to 19 ± 1 electrons rms measured in the testbed.
However, a considerable fraction of this additional noise is cor-
rellated for all quadrants, and the effective noise of a two-pixel
difference is 21 ± 4 electrons rms, which eventually affects the
FSU estimates.

The atmospheric turbulence shows a slope of approxi-
mately −2.8, which is the typical value throughout our obser-
vations and compatible with the nominal value of −8/3 from
Kolmogorov theory and the value of −2.5 measured at the
Palomar testbed interferometer (Lane & Colavita 2003).

This fringe tracking data can be used for atmospheric tur-
bulence measurements to derive e.g. the K-band coherence time
and outer scale size of the VLTI site, as demonstrated by Linfield
et al. (2001) for the Palomar testbed interferometer.

7.7. Visibility

We present FSU raw visibility measurements obtained during
one night while repeatedly observing a set of stars with similar
coordinates. Each observation consists of acquiring the star, per-
forming the night calibration, and taking 120 s of fringe-tracking
data. Thirty observations were carried out within 5 h, which re-
sults in one observation every 10 min. This is achieved in single-
feed engineering mode and for grouped stars. The raw visibility
amplitude is computed from Eq. (11) for each sample obtained
at a 1 kHz rate. Figure 19 shows alternating observations of two
stars. Each point is obtained as the mean value from several thou-
sands of normally distributed visibility estimates, with a result-
ing standard deviation that is smaller than the symbol size, and
is corrected for average beam intensity imbalance obtained from
the night calibration. Table 5 shows the results, along with se-
lected target characteristic. Mean visibility errors of each target
are estimated from the rms of the dataset. Both stars are unre-
solved with visibilities compatible with 1.0. The large scatter of
visibility values on the same target may be attributed to limita-
tions of the system and effects not taken into account by our sim-
ple algorithm (e.g. photon noise, cf. Colavita 1999) or to changes
of the interferometer transfer function, although the findings of
Le Bouquin et al. (2009a) suggest the former possibility.

A limitation of the FSU is that dynamic differential injection
in the ABCD fibres and the instantaneous photometry for the
individual beams cannot be monitored in real-time, and cannot
be used to correct the visibility estimates.

Table 5. FSUA raw visibilities.

Target mK V

HD 15520 4.5 1.00 ± 0.17
HD 18829 4.2 1.04 ± 0.17

0 2 4 6 8 10
0

5

10

K magnitude

S
N

R

 

 
TRACK

SEARCH

Fig. 20. Average SNR within the fringes (triangles, controller state
TRACK) and in absence of fringes (dots, controller state SEARCH)
for FSU observations (95 files). Error bars are suppressed for clarity.

The visibility bias due to the factors listed above is visible
in Fig. 19 as non-zero values obtained in the absence of fringes
and has the value 0.20 ± 0.04. A preliminary analysis with a
similar approach to Colavita 1999 shows that the bias contribu-
tion of read-out and photon noise is ∼0.05 and not sufficient to
explain the observed value. The contributions of differential in-
jection and calibration errors remain to be quantified.

As demonstrated by Le Bouquin et al. (2009a), VLTI fringe
tracking data can be used for high-precision stellar diameter
measurements. The results obtained here indicate that this is not
possible with the FSU and the current calibration and data re-
duction strategy. This has no immediate effect on the scientific
application, because precise visibility measurement capability is
not part of the FSU specifications.

7.8. SNR

The FSU SNR as computed from Eq. (12) is essential to allow
the OPD controller to switch between states, and the quality of
this estimator thus defines the capability of VLTI to track fringes
on a given star. Figure 20 shows the SNR estimate as a function
of target magnitude.

The SNR in Fig. 20 is computed as the mean of the SNR
distributions ΣTRACK and ΣSEARCH, each containing several thou-
sand samples with and without fringes, respectively, obtained
during the individual observation. We find that these distribu-
tions usually can be approximated Gaussian with standard devi-
ations σTRACK and σSEARCH. Let SNRopen be the value, where the
probability distributions associated with ΣTRACK and ΣSEARCH

have the same amplitude. In other words, SNRopen is the value
where fringe detection and false-detection probabilities are equal
to Popen. Figure 21 shows these parameters. With increasing
magnitude, SNRopen decreases, and the probability Popen rises,
meaning that it becomes more difficult to distinguish fringes and
noise based on the SNR estimate.

For our observations, the night calibration (Sect. 5.3) was
only partially operational and the SNR thresholds of the OPD
controller (det, close, and open, cf. Sect. 6) had to be adjusted
manually for each target, which is a time-consuming process
that requires the experience of the observer. With the results pre-
sented in this section, we were able to define how to automati-
cally set these thresholds.

The open threshold is set equal to SNRopen to avoid confusing
fringes with noise. det is set to ΣTRACK + σTRACK, whereas close
is set to ΣTRACK − σTRACK. Since these parameters cannot be
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Fig. 21. SNR probability distribution intersection SNRopen (top) and the
associated probability Popen (bottom) as function of target magnitude
(95 files).

computed before fringes are detected, default values have to be
defined. For mK < 6 these are det = 5, close = 3, and open = 2.
For mK > 6 default values can be det = 3, close = 1.5, and
open = 1, although the threshold setting becomes more difficult,
because the probability of false detection increases as is visible
in Fig. 21.

The SNR bias due to the intensity level and the read-noise
linked to the applied integration time is apparent in Fig. 20:
for short integration times and high intensities (mK < 5),
ΣSEARCH has an average value of ∼1.5, whereas it decreases with
magnitude and reaches ∼0.8 for mK > 7. The effect is that the
controller thresholds have to be adapted for the two regimes, as
suggested above, which could be avoided by improving the cal-
ibration procedure and accounting for read- and photon noise in
the SNR computation (Colavita 1999). The estimates of visibil-
ity amplitude and SNR are related by a multiplicative factor and
are therefore affected by the same biases (see Sect. 7.7).

7.9. Dispersion and non-linearity effects

The difference between phase and group delay of a propagating
wavepacket depends on the medium’s dispersion. Since the FSU
measures both phase and group delay, we can use it to exam-
ine air dispersion effects on interferometric observations, where
we limit our discussion to the first-order, quasi-static effects.
For VLTI observations, the vacuum delay between the coherent
wavefronts arriving at the telescopes is compensated with de-
lay lines in free air, which imposes dispersion of the wavepacket
for non-zero delays. As the delay changes with earth rotation,
the dispersion variation can be measured with the difference of
phase and group delay (Akeson et al. 2000). Figure 22 shows
group delay minus phase as function of delay for two targets ob-
tained during one night on a 96 m baseline. The total observing
time per target is 15 min, which is too short to cover a variation
of one fringe. However, we can measure the difference rate to
D = 0.12 ± 0.01 µm/m, which is 5 times lower than the value
measured with the Palomar testbed interferometer by Colavita
et al. (2004). For other nights, where D can be estimated, we
find values in the range of D = 0.10−0.14 µm/m. As explained
by Colavita et al. (2004), the difference rate depends on tempera-
ture, pressure and humidity and is dominated in K-band by water
vapour dispersion to first-order. The relative humidity during the
observations in Fig. 22 is 3% (T = 16.5 ◦C and P = 744 mbar),
which may explain the low value.

Figure 22 also illustrates an effect that we note for a num-
ber of FSU observations: during fringe tracking, the average
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Fig. 22. Group delay minus FSU OPD as function of VLTI delay. Each
point corresponds to 1 s of data.

difference between phase and group delay5 not only changes
due to dispersion but also exhibits several levels separated by
∼0.5 µm. This is also apparent in Fig. 11 when carefully exam-
ining the FSU OPD values.

This is probably caused by a highly non-linear group delay
estimate with a non-monotonic response function, which can be
close to zero for several OPD positions. The controller can then
either control to zero group delay, which is the more stable case,
or lock on a meta-stable, non-zero position. The track-point typ-
ically changes after a fringe-loss event, when the controller re-
turns to equilibrium. Since the phase and group delay response
functions are different, the difference between phase and group
delay depends on the track-point, which is reflected in the sev-
eral levels in Fig. 22.

Consequently, the FSU is not able to provide a unique track-
point for the OPD controller, and this introduces biases in the
measurements of the attached instrument. In principle, the SNR
or visibility amplitude could be used to constrain the track-point
error, but in practice the cyclic error (which for sky observations
is larger than in Fig. 8) only allows us to conclude that the track-
point is within the three central fringes.

The situation can be clarified and characterised when dual-
feed operation becomes available: the phase and group delay
linearity can then be measured on the target itself, and it is
also possible to evaluate the FSU fringe-tracking performance
independently and not, as throughout our analysis, based on the
control signals themselves. In addition, the complete night cal-
ibration becomes available, which makes it possible to correct
beam-train polarisation effects and consequently to reduce the
cyclic errors and non-linearities.

7.10. Fringe-tracking with UTs

Initial fringe tracking tests involving two 8 m VLT UTs were car-
ried out over three hours during the night of 8 March 2009. Four
stars were observed with UT3 and UT4 and fringes were ob-
served with FSUA. The adaptive optics systems (Arsenault et al.
2004) and the vibration cancellation system based on accelerom-
eters (Haguenauer et al. 2008) were enabled. Fringe tracking was
achieved for three stars with minimum brightness of mK = 8.6,
for the fourth star with apparent magnitude mK = 11.7 fringes
were detected but not tracked (Table 6).

As in the case of FINITO (Haguenauer et al. 2008; Di Lieto
et al. 2008), FSU fringe tracking with the UTs is affected by
structural vibrations of the telescope beamtrain. The OPD resid-
uals of FSUA over one second are in the range of 300−450 nm
rms in the few cases presented, which is substantially higher than
the corresponding numbers with the ATs. Figure 23 compares

5 The controller is tracking on zero group delay, see Sect. 6.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912271&pdf_id=21
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912271&pdf_id=22


J. Sahlmann et al.: The PRIMA fringe sensor unit 1755

Table 6. First FSU fringe-tracking targets with UTs.

Date Configuration Target mK Baseline Seeing τ0 DIT Lock ratio residual
(m) (′′) (ms) (ms) (%) (nm rms)

8 Mar. 2009 FSUA[1] HD 94890 2.2 62 (UT3-UT4) 0.6 6.3 1 100 ∼330
8 Mar. 2009 FSUA[1] HD 157591 4.5 62 (UT3-UT4) 1.1 3.5 1 100 ∼440
8 Mar. 2009 FSUA[1] HD 116714 8.6 62 (UT3-UT4) 0.9 4.5 2 100 ∼340
8 Mar. 2009 FSUA[1] RX J1514.7-4220 11.7 62 (UT3-UT4) 1.5 2.5 4 ∼5 ∼800
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Fig. 23. Comparison of OPD residual power spectral density above 5 Hz
(top) and its cumulative sum (bottom) for observations with ATs (solid
line) and UTs (dashed line) in normal conditions (τ0 = 3.4 ms, AT ob-
servation run identical to Figs. 12 and 18). The cumulative sum equals
the square root of the integral from the right over squared power spectral
density.

the power spectral densities of FSU OPD for an observation with
ATs and UTs. In the UT case the noise is constantly higher than
in the AT case, except for few vibration peaks. The excess of
low-frequency noise is caused by fringe-loss events, which oc-
cur frequently. Several strong features at 20-100 Hz are visible
and are known to originate in mechanical vibrations in the UTs
(Haguenauer et al. 2008). Consequently the residual OPD jitter
is higher, which considerably reduces the efficiency of observa-
tions with the UTs.

Considering the very limited amount of collected data, all
results presented in this section are preliminary. However, we
demonstrated that the FSU is capable of fringe tracking with two
UTs and faint objects can be reached. Further tests will be done
in the near future and will then allow us to conclude on the op-
erational limits.

8. Discussion

The described fringe tracking results do not constitute PRIMA
observations. FSUA or FSUB is used as the only constituent of
the PRIMA facility for on-axis fringe tracking with the VLTI in-
frastructure, and neither the star separator modules nor the differ-
ential delay lines are involved. The PRIMA metrology is solely
used for the laboratory calibration.

8.1. Operation range and performance

In accordance with FINITO experience (Le Bouquin et al. 2008),
fringe tracking with the FSU and the ATs is primarily limited
by the injection efficiency. In bad atmospheric conditions, non-
corrected tip-tilt perturbations cause frequent flux dropouts that
prevent fringe tracking or severely degrade it. For the FSU there

is an additional coupling between the tip-tilt and piston pertur-
bations, caused by differential injection into the ABCD fibres
and the absence of photometric channels. This coupling is trans-
mitted by the piston feedback control loop. It is questionable that
the real-time use of the total intensity sum for control can prevent
this undesired effect, and it has instead to be seen as a feature of
this system. The deterioration of e.g. the residual OPD caused
by this coupling is difficult to quantify, but it does not prevent
fringe tracking in nominal conditions.

The residual OPD during FSU fringe tracking shows a strong
dependence on the visible coherence time, which makes it the
primary parameter to characterise the atmospheric quality. The
approximate lower limit during operation is 150 nm rms and is
achieved over a wide range of conditions, although lower values
are measured in some cases. It is dominated by the atmospheric
piston, attenuated according to the system’s rejection function,
by the coupling between residual tip-tilt and artificial phase spe-
cific to the FSU and by vibrations of beam-train elements. It is
higher than the performance goal of 100 nm rms, which reduces
the anticipated observation efficiency.

The fringe-tracking operation range identified for the FSU
in terms of atmospheric conditions is compatible with the one of
FINITO (τ0 > 2.5 ms, seeing <1.2′′, airmass <1.5, ESO 2009),
which shows that both fringe trackers are similarly sensitive to
these parameters. However, statistics for FINITO are far more
extensive. Once more statistics have been built up for the FSU,
so accurate comparison with FINITO becomes possible.

A major concern is the possible existence of several track-
points, when fringe tracking with the FSU and the OPD con-
troller. It can be clarified only by testing FSU fringe tracking
within the PRIMA dual-feed facility, which makes it possible
to calibrate the FSU on the target and to acquire independent
delay measurements, hence to verify the FSU behaviour. If the
problem is confirmed, modifications to the real-time algorithms
and/or the calibration procedure are required.

Coarse object visibilities can be derived from FSU observa-
tions, although the observed biases and limitations are not com-
pletely quantified. Precise visibility measurement capability is
not part of the FSU specifications.

The FSU SNR estimates are used by the VLTI OPD con-
troller to automate fringe-tracking observations. According to
the range of observing conditions, the controller’s default SNR
thresholds need to be adapted. The quality of SNR estimates can
be expected to improve by considering bias terms associated
to photon and read-out noise, which are currently disregarded.
An additional and possibly larger bias affecting visibility and
SNR estimates originates in dynamic differential injection in the
ABCD fibres. The capability of simultaneous phase and group
delay measurement allows us to estimate the atmospheric disper-
sion due to water vapour, which is a limiting parameter for high-
precision interferometric observations (Colavita et al. 2004).

Based on the current FSU magnitude limit for unresolved
stars with the ATs of mK = 9 during commissioning, we can in-
fer a realistic limit for routine operation to be mK ∼ 7−8, which
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is two magnitudes fainter than the current VLTI limit using
FINITO (ESO 2009). Some improvement in FSU performance
can still be expected from software and operation changes, e.g.
by taking the individual pixel wavelengths into account for phase
and group delay computation, considering the different photom-
etry of the input beams, and by implementing the on-object
fringe calibration described in Sect. 5.1.3. The OPD controller
state machine can be optimised for operation with the FSU, as
done for FINITO (Le Bouquin et al. 2008). In summary, the
goal for PRIMA sensitivity of mK = 8 for the primary object
(van Belle et al. 2008) appears to be within reach, although the
absolute throughput of PRIMA is smaller than when only using
the FSU, because of the additional reflections in the star separa-
tor modules and the differential delay lines.

8.2. Limiting magnitude with ATs

Quirrenbach et al. (1998) describe the PRIMA conceptual study
and derive the anticipated FSU fringe-tracking limiting magni-
tude of mK = 12 with ATs, based on unpublished assumptions.
Without going into detail, we can evaluate the FSU performance
with respect to these assumptions.

The total effective transmission of FSU and VLTI including
wavefront errors is estimated from the observations to 4± 1% in
K-band, which is about one sixth of the assumed transmission
of 25%. Quirrenbach et al. (1998) assume a detector integration
time of 20 ms and perfectly corrected, flat wavefronts coming
from the telescopes. The current limit of mK = 9 is achieved
with a shorter integration time of 4 ms, and we can interpolate
the theoretical limit of mK = 10.7 for 20 ms, although fringe
tracking for integration times above 10 ms is not demonstrated.
The detector read-out noise is assumed to be 25 electrons rms
per pixel, which is comparable to the measured values of 31 ±
4 electrons rms (per pixel) and 21 ± 4 electrons rms (two-pixel
difference).

In conclusion, the estimated FSU fringe-tracking sensitivity
of mK = 12 with ATs is not reached. The discrepancy between
predicted and measured limiting magnitude can be explained by
the sensitivity loss from injection fluctuations caused by per-
turbed wavefronts entering the FSU and from the lower than an-
ticipated effective transmission.

9. Conclusions

The FSU was integrated and aligned at the VLTI in July and
August 2008. The successful and fast start of fringe tracking
operation profited heavily from the preceding two-year period
of intensive laboratory testing in Garching and the experience
gained by our team during this time.

The FSU yields phase and group delay measurements at
sampling rates up to 2 kHz, which are used to drive the fringe-
tracking control loop. During the first three commissioning runs,
it was used to track the fringes of stars with K-band magnitudes
as faint as mK = 9.0, using two VLTI ATs and baselines of up
to 96 m. Fringes on a fainter star of mK = 10.0 were recorded but
not tracked. The FSU operation range is constrained with respect
to atmospheric conditions. Further characterisation is required to
conclude on the dependence of fringe-tracking performance on
the target visibility. As of now, the VLTI incorporates two sen-
sors for fringe tracking based on different detection principles.
This is a unique opportunity to study and compare their perfor-
mances, especially given the importance of fringe tracking for
the upcoming second generation VLTI instruments.

Fringe tracking with two 8 m VLT UTs was demonstrated
during one initial test run, and a target magnitude of mK =

8.6 reached. Fringes on a star with mK = 11.7 were detected but
not tracked, which constitutes the deepest observation with the
VLTI to date. The concept of spatial phase modulation for fringe
sensing and tracking in stellar interferometry is demonstrated for
the first time with the FSU. During commissioning and combin-
ing light from two ATs, the FSU showed its ability to improve
the VLTI fringe tracking sensitivity by more than one magni-
tude in K-band towards fainter objects, which is fundamental for
achieving the scientific objectives of PRIMA.

However, many observation scenarios remain to be tested.
The FSU behaviour within the PRIMA facility, more observa-
tions using the UTs and the response to future improvements
of the VLTI infrastructure with respect to fringe-tracking band-
width, vibration environment, and injection efficiency will reveal
the ultimate FSU performance.
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