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Abstract: Understanding the brain requires us to answer both what the brain does, and how it does it.

Using a series of examples, I make the case that behavior is often more useful than neuroscientific mea-

surements for answering the first question1. Moreover, I show that even for “how” questions that pertain

to neural mechanism, a well-crafted behavioral paradigm can offer deeper insight and stronger constraints

on computational and mechanistic models than do many highly challenging (and very expensive) neural

studies. I conclude that purely behavioral research is essential for understanding the brain—especially its

cognitive functions—contrary to the opinion of prominent funding bodies and some scientific journals, who

erroneously place neural data on a pedestal and consider behavior to be subsidiary.

Introduction

In an era of increasingly more precise methods for measuring and perturbing neurons in the brain, it often

seems that with more neural data, we will soon make untold breakthroughs in understanding the brain. Such

anticipation has heralded neuroscience-data-focused projects such as the Brain Initiative and the Human

Connectome Project. The focus on neural measurement has been accompanied by the demotion of animal

and human behavioral research—the mainstays of psychology from where understanding of the brain and

mind originally hailed—to being “only” behavior, that is, insufficient, and even irrelevant to the neurosci-

entific quest. This widespread neuroscience chauvinism even infiltrates the way we think about and discuss

our findings: decision making is often described as executed by neurons, not by animals, and whole experi-

ments in awake behaving animals are sometimes described from the point of view of neurons, not the animal

housing them: ‘neurons were presented with images...’

I believe that this approach is fundamentally flawed. Assuming that a process such as decision making can

be understood solely by looking at single neurons, or even their ensembles, is like attempting to understand

why people in Australia drive on the left side of the road from examination of their DNA. Neural firing

patterns are the wrong level for investigating many pressing questions in neuroscience. Even if we could

1My arguments here have also been published, in similar form, as a chapter in Lerner, Cullen, & Leslie, 2020
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measure all the neurons in the brain with arbitrary precision, without an incisive behavioral paradigm we

would not be able to answer many neuroscientific questions. Indeed, the insights about the brain that I have

gleaned through my own research have almost all come from behavioral data, which explains the progressive

decrease of neuroimaging experiments that we choose to run.2

An extremely sobering reminder of the fact that a full neural description does not guarantee understanding of

what the brain does or how it does it, is the nematode Caenorhabditis elegans, whose behavior we are still far

from being able to predict despite it having only 302 neurons and probably the best characterized nervous

system in the universe (Bargmann & Marder, 2013). The fact that full knowledge of a circuit does not

equate with understanding of that circuit suggests that when trying to understand the brain, and in particular

high-order cognitive functions, focusing on neurons to the exclusion of other levels of inquiry, and without

careful thought about behavioral paradigms that allow us to meaningfully interrogate the neural substrate,

might lead us down an expensive and less-than-revealing rabbit hole. For the sake of better understanding

the brain, we should therefore reverse the current “hierarchy” (in which neural measurements are seen as

basic and fundamental, and behavior is an optional component that cannot stand on its own) and restore

behavioral research to its historical place of primacy and necessity.

One might argue that the reason the majority of discoveries that have withstood time are due to behavioral

research is that until recently we did not have access for incisive tools for neuroscientific research—non-

invasive magnetic resonance imaging of humans and optogenetic manipulations are fairly new techniques.

However, cutting-edge methods for recording and manipulating the brain have, for the most part, verified

what we already knew from behavior, rather than led to truly novel insight. Of course, neuroscientific

measurements (or brain perturbation studies) are necessary for answering questions about localization—

where in the brain different (behaviorally-identified) cognitive functions are implemented. But even today,

behavior remains the standard by which theories about the roles and computations carried out by different

neural structures are tested (even for theories that do not seek to model behavior directly, see for example,

Wang, 2008). If we ask ourselves candidly “what has neuroscience taught us about cognition that we did

not already know from behavior?” we realize that unfortunately the answer is “not very much.” Therefore,

in the name of expediency, we have a moral obligation to our subjects of study, our taxpayer funders, and

the patients waiting for cures, to reverse the trend that suggests that we should dispense with behavioral

research and focus only on neural mechanisms.

2This is not because functional neuroimaging (fMRI) experiments are useless. FMRI data, like any other data, be it choice
behavior, reaction times, eye movements, can answer some questions and not others. My research focuses on understanding what
algorithms the brain uses for decision making, and how these are affected by mental illness (i.e., computational- and algorithmic-
level questions, rather than implementation-level questions, according to Marr, 1982). For these particular questions, I often find
behavioral data together with computational models to provide more constraints than do neural data, and am hard-pressed to come
up with questions for which the neural data will tell us something beyond the behavior. However, there are exceptions, and I have
used neural data, in conjunction with specifically-tailored behavioral experiments and computational models, to formally compare
between computational models (admittedly, arriving at the same conclusion as was seen in the behavioral data) (Niv et al., 2015),
and to contrast computational algorithms that could not be differentiated behaviorally (Niv, Edlund, Dayan, & O’Doherty, 2012).
Different from Coltheart (2006), I am not arguing here that fMRI—or any neuroscience experiment—is useless, only that without
incisive behavioral paradigms, neuroscience is not nearly sufficient for achieving the understanding of cognition that we aim for.
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What has behavior taught us about the brain?

Long before the advent of neuroscience methods such as optogenetics and DREADDs (Designer Receptors

Exclusively Activated by Designer Drugs), ingenious behavioral experiments made great strides in identify-

ing the latent cognitive processes that underlie behavior—the ultimate output of the brain. For instance, even

in low-level perception, arguably the area of neuroscience farthest from behavioral output, scientists were

able to infer that color vision is due to three types of neurons (retinal cones), and were even able to estimate

the cones’ wavelength sensitivity from psychophysics experiments of color matching and chromatic adap-

tation and studies in color-blind observers (e.g. Stiles, 1959; Stiles & Burch, 1959). This occurred decades

before physiologists were able to patch and measure the wavelength response properties of individual cones

and verify the original behavior-based predictions (Baylor, Nunn, & Schnapf, 1987).

At the other end of the spectrum, the elusive domains of high-level cognition and cognitive control, ideas

about the role and information content of attentional signals feeding back into low-level perceptual pro-

cessing areas were also derived from simple, but revealing, behavioral paradigms such as visual search and

pop-out (Hochstein & Ahissar, 2002), and from experiments delineating the extent to which practice effects

generalize across simple visual tasks (Ahissar & Hochstein, 1993, 1997). These two examples from the

domain of vision are representative of others in all levels of research into the workings of the brain and the

mind. In this section, I describe in detail a small selection of results from behavioral studies that illuminate

brain processes, each going beyond what would have been achievable even using unrealistic, whole-brain,

single-cell resolution neural measurements.

I will start with my personal favorite: a rat is trained to run in a T-shaped maze, from the base of the T to

the right arm, in order to obtain food. At the critical junction, the rat may be choosing to go right due to

internal, egocentric cues (i.e., turning right relative to its own body), or based on external, allocentric cues

(turning towards a certain location in space, for example to the side of the room that has a window). Imagine

you could record activity from anywhere in the rat’s brain during this experiment. How could you determine

which of the two strategies the rat was using? Even knowing what we know about navigation, spatial maps

in the hippocampus, and head direction cells, it is not clear what you should look for in your recordings.

In particular, the fact that the external cues of the window and blinds are represented in some brain area

does not mean the rat is using these cues to guide its actions. Arguably, even if you had recordings of every

neuron in the brain during this task, it would be extremely difficult to answer this simple question regarding

the rat’s strategy. And the problem is not that recordings are correlational rather than causal. Perturbing a

brain area and seeing an effect on behavior would also not reveal how the animal was making its decision

when there was no perturbation. By manipulating the brain we can find out what brain areas can affect

behavior on this task, but not what brain areas do affect behavior as the rat is making its right turn.

Instead, what Packard and McGaugh (1996) did was simple and cheap: they turned the maze around, so that

if the base of the T was pointing to the south, now it was pointing to the north. They then set the rat at the

base of the T, and observed its behavior. If the rat continued to turn right, that would indicate an egocentric
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strategy. If the rat turned left, it must be following the peripheral external cues, and turning to the same side

of the room. The latter is indeed what happened for most of the rats after 8 days of training, but not after

16 days of training, suggesting that decision-making strategies change with extended training. This elegant

behavioral manipulation thus informed us of a neural strategy, suggested representations that are necessary

for executing it (the rat must be representing the external cues), and allowed for a variety of followup

experiments that would delineate the conditions under which rodents choose to use an allocentric rather

than egocentric strategy. Understanding these conditions then led to computational models that specified the

types of data that the animal must learn and use in each condition, and the computations that may support

transitioning from one strategy to another (Daw, Niv, & Dayan, 2005). Indeed, neuroscientific experiments

involving lesioning or inactivating brain areas continued to reveal some computational principles of this

decision making process (see the next section), and the transition between different behavioral strategies has

been linked to mental health phenomena such as addiction and obsessive-compulsive disorder (Voon et al.,

2015). However, the initial findings were due to cheap, but extremely clever, behavioral experiments.

In fact, the most fundamental observation about learning—that it proceeds through error-correction—was

based on behavioral findings. In particular, if you train an animal that a neutral stimulus, say, a flashing

light, predicts the availability of food, the animal will learn this relationship, as can be measured from the

animal’s salivation response or food-cup approach once the light begins flashing. Similarly, if a tone is

paired consistently with food, the animal will show the same responses to the tone. However, in a series of

carefully-controlled experiments in the 1960s, Leon Kamin showed that if the light is first paired with food

until learning asymptotes, and only then the tone is added to the light (still with food following presentation

of both), the animal will not learn to respond to the tone (Kamin, 1968). This phenomenon of “blocking”

showed that presenting two stimuli in a predictable temporal relationship is not sufficient to engender learn-

ing. Instead, learning requires a “prediction error”—the motivationally significant outcome (i.e., the food)

must not already be fully predicted (in this case, by the light).

Based on these and other seminal behavioral findings, Robert Rescorla and Alan Wagner proposed a compu-

tational model of learning based on prediction errors (Rescorla & Wagner, 1972) that is, to this day almost

50 years forward, the most influential account of trial-and-error learning in animals and humans. Together

with later computational models of reinforcement learning showing how one can use prediction errors to op-

timally learn the sum of future rewards predicated on a certain state or stimulus (Barto, Sutton, & Anderson,

1983; Sutton, 1988), and recordings of activity of dopaminergic neurons while monkeys learned to associate

cues with motivationally significant outcomes (Ljungberg, Apicella, & Schultz, 1992), these findings led to

the influential identification of phasic dopaminergic signals with a reward prediction-error signal (Barto,

1995; Montague, Dayan, Person, & Sejnowski, 1995; Montague, Dayan, & Sejnowski, 1996), widely her-

alded as the poster-child of computational neuroscience. This success story — a normative computational

theory that explains and predicts key neural signals with precision (e.g., Waelti, Dickinson, & Schultz, 2001;

Tobler, Dickinson, & Schultz, 2003), drilling in all the way from Marr’s (1982) computational level, through

an algorithmic solution and to its neural implementation (Niv, 2009; Niv & Langdon, 2016) — began with
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behavioral findings (Sutton & Barto, 1990), and is a prime case of behavior and computation informing our

understanding of neural mechanisms, not the other way around.

It goes without saying that ideas about stimulus competition and learning through prediction errors, first

identified through blocking, have had far-reaching implications for mental health research. For instance,

findings showing impaired blocking in schizophrenia (Martins Serra, Jones, Toone, & Gray, 2001) inspired

the hypothesis that positive symptoms of schizophrenia may, in part, be due to spurious associations between

stimuli that should otherwise have been subject to blocking. Linking this to aberrant dopamine prediction

errors provides another explanation for the beneficial effects of neuroleptics (dopamine antagonists) for

treating positive symptoms.

More recently, behavioral experiments have demonstrated a distinction between prediction-error signals due

to receiving less reward than expected and prediction-error signals due to making a motor error that misses

the rewarding target: while the former prediction errors affect learning of the value of the rewarding option,

the latter do not, suggesting a neural dissociation between the two types of prediction errors (McDougle et

al., 2016). In particular, the findings suggested that not receiving an expected reward due to one’s own reach

error does not activate the same type of neural prediction errors – a hypothesis supported by followup work

using functional neuroimaging of neural prediction-error signals in the striatum (McDougle et al., 2019).

In the domain of memory, the behavioral phenomenon of “retrieval-induced forgetting” shows that when

trying to recall an item, memory traces that are similar enough as to compete for recollection but eventu-

ally lose the competition are subsequently weakened (Anderson, 2003). For example, imagine learning the

word-pairs fruit-pear, fruit-kiwi and fruit-apple. In a later rehearsal phase, you are requested to

complete the stem fruit-pe__ (presumably with the word “pear”). Since “apple” is the quintessential fruit,

and moreover, it bears some semantic similarity to a pear (round-ish, palm-sized, tree-growing fruit that is

sometimes green), it may come to mind as you recall the word “pear” and compete for that recollection. Be-

havioral findings show that if the competition is sufficiently strong (but “pear” still wins, as “apple” cannot

complete the word stem), the memory trace for “apple” is weakened. As a result, subjects are less likely to

later remember the pair fruit-apple in a recall test, or to complete the stem fruit-a____ with “apple”;

moreover, they may even tend to not remember the word “apple” in other pairs (Anderson, Bjork, & Bjork,

1994). This effect is item-specific (it does not affect “kiwi,” a fruit that was less likely to come to mind and

compete with “pear”), it depends on competition for retrieval (just rehearsing the pair fruit-pear does not

weaken “apple”), and its boundaries in terms of dependence on practice, memory strength, etc., have been

extensively characterized (Anderson & Spellman, 1995). The behavioral phenomenon of retrieval-induced

forgetting imposes useful constraints on the implementation of memory systems, suggesting specific forms

for networks of memories and how and when they are updated. In particular, it has suggested that the func-

tion of oscillating inhibition seen in cortical semantic memory networks and hippocampal attractor networks

of episodic memory may be to strengthen weak memories and punish competitors (Norman, Newman, De-

tre, & Polyn, 2006; Norman, Newman, & Detre, 2007) — insight that would be much harder to glean from

neural recordings absent the rich behavioral data.
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In my own lab, Nina Rouhani recently completed a series of behavioral studies that revealed more about the

organizational structure of episodic memories than we could have hoped for even with invasive neuroscien-

tific techniques. Rouhani asked participants to report reward predictions during learning, and subsequently

tested their memory for trial-unique visual items (scenes) that had been presented throughout the task. Her

results showed that surprising outcomes (either much more or much less reward than expected) increase

memory accuracy for items that coincide with the surprising rewards (Rouhani, Norman, & Niv, 2018). The

findings were compatible with two different computational and mechanistic processes: surprising events

may be encoded more strongly, or they may be better differentiated from other events, making them eas-

ier to recall. By introducing sporadic large change-points in reward outcome and testing for recognition

priming (the phenomenon of faster recognition memory for an item when it is “primed” by an event that

was linked to it in memory storage), Rouhani was further able to show that memory for a highly surprising

event is separated from both the preceding and following items, even while serving as a connection node

in the overall network of memories (Rouhani, Norman, Niv, & Bornstein, 2020). These results inform our

understanding of the neural organization of memories and potential effects of norepinephrine and dopamine

on hippocampal encoding, and further suggest that the source of dopamine may not be the same midbrain

dopamine that affects learning (Rouhani et al., 2018), all using behavioral paradigms and computational

modeling.

Another example is research into the format and structure of working memory (Miller, 1956), in particu-

lar visual working memory (Brady, Konkle, & Alvarez, 2011). Here, too, progress on the key question of

whether working memory takes the form of a limited number of discrete slots or rather is limited due to a

shared resource—questions that seem most reliably about the neuroscientific implementation of a computa-

tional component of perception—has relied on behavioral psychophysics research as well as computational

modeling (Bays & Husain, 2008; Brady & Alvarez, 2015; van den Berg, Shin, Chou, George, & Ma, 2012;

Keshvari, van den Berg, & Ma, 2013; van den Berg, Awh, & Ma, 2014). Characteristically, neuroscientific

evidence for hypotheses derived from computational modeling of behavioral findings played a confirmatory

role, rather than revealing the phenomenon (Ma, Husain, & Bays, 2014).

Finally, detailed hypotheses about how attention is deployed and controlled have also been inspired by,

and tested in behavioral data. In particular, recent work suggests that even as we attend to an object or a

location in space, our attention spotlight is not stationary – it moves around briefly, scanning the environment

and returning back to the focus, at a frequency of 8 scans per second (Fiebelkorn, Saalmann, & Kastner,

2013). This “blinking of the attentional spotlight” may be related to other 8Hz (theta rhythm) processes

characteristic of environmental sampling. It also constrains the search for brain areas that are responsible

for deployment of attention. In particular, further neural data from non-human primates implicated the

lateral intraparietal cortex and frontal eye fields—two prominent parts of the classic frontoparietal attention

network—in both maintaining attention and suppressing shifts away, and periodically shifting attention to

rapidly scan the environment (Fiebelkorn, Pinsk, & Kastner, Under Review). Important for our discussion,

Fiebelkorn et al.’s (2013) findings that initially revealed the existence of this fascinating cognitive process
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did not involve any neural measurements. Moreover, those findings could hardly have been predicted even

knowing that other environmental sampling processes operate at 8Hz. Indeed, it seems that no amount of

neural data on attention could have led us to speculate this pattern of behavior with confidence, whereas a

single behavioral study was sufficient to establish it.

What have we learned from the brain that behavior had not already taught us?

Studying the brain is undoubtedly useful for neuroscience, especially inasmuch as many questions in neu-

roscience revolve around how different computations are implemented in neural hardware. The question I

am posing here is whether neuroscientific measurements are sufficient for making progress on understand-

ing cognition, so much so that their import overwhelms that of behavioral findings, and studies that do not

employ neuroscientific measurements should be categorized as “only” behavior and considered to not be

relevant to understanding the brain. I also ask whether neuroscientific studies are necessary for answering

some questions in cognition. That is, is it possible that a study can answer a question about the brain absent

any neural measurements? I pose these questions not as straw men. Although neuroscience and behavior

need not be at two opposing ends of acceptable research—in fact, they are most effective when done in

tandem, ideally also with theoretical modeling—unfortunately, in recent years, the rise of neuroscience has

been accompanied by a disdain of behavioral research to the point of rejecting its usefulness altogether.

Meetings (e.g. Computational Systems Neuroscience), journals (e.g., The Journal of Neuroscience – a so-

ciety journal that supposedly represents the whole field) and, perhaps most importantly, funders (e.g., the

National Institute of Mental Health) all share the implicit or explicit assumption that behavioral studies can-

not lead to valid neuroscientific findings, and therefore are irrelevant to understanding the brain. This leads

to rejection of abstracts, papers, and grant proposals, sometimes without review, and often with the claim

that they are not topically relevant.

However, the list of true discoveries about perception and cognition from neural measurements or perturba-

tions that were not already known from studies of behavior is embarrassingly short. Of course, beginning

from the Hodgkin-Huxley model (Hodgkin & Huxley, 1952)—a fundamental breakthrough in understand-

ing how neurons fire action potentials and communicate that is of course not attributable to any behavioral

findings—and continuing with many investigations of anatomy, physiology, and recordings of single neu-

rons while animals were performing different tasks, we have learned a lot about the workings of neurons in

different areas of the brain. Still, the breakdown of different functions and cognitive processes into mod-

ules that can be expected to be realized independently in neural hardware, and that we should therefore be

looking for in different areas, is predominantly thanks to behavioral studies of healthy individuals and those

suffering from brain damage.

Arguably, the most interesting findings from neural recordings or perturbations are when those are coupled

with incisive, hypothesis-driven behavioral experimental designs. It seems that neuroscience alone is not

nearly as revealing as are a combination of a telling behavioral design, neural recordings or perturbation of
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neural function (e.g., through lesion, inactivation or stimulation), and a computational model that states the

hypotheses to be tested precisely. For this combination to reach its peak performance, work on developing

and testing behavioral paradigms, as well as computational models, is as important as work on developing

new neuroscience methods. My argument is therefore that pure behavioral research is not only critical for

understanding the mind – it is also the cornerstone of understanding how mental processes are implemented

in the brain.

Assuming that one overarching goal of neuroscience is to understand how the brain processes informa-

tion, it is relevant to ask: what have we learned about information processing from neuroscientific research

alone? Unfortunately, even with the aid of my entire lab at the time I first conceived of this paper (see

acknowledgements), I could not come up with more than a very short list of such findings to highlight here.

The finding that face perception is special, for instance, was driven by behavioral findings (Kanwisher &

Yovel, 2006)—comparing perception of right-side-up and up-side-down faces (R. K. Yin, 1969; Diamond

& Carey, 1986)—long before face cells were discovered in infrotemporal cortex (Quiroga, Reddy, Kreiman,

Koch, & Fried, 2005). Of course, determining whether there are specialized modules for processing faces

versus other objects is aided by neuroscientific data (Kanwisher, McDermott, & Chun, 1997; Grill-Spector,

Knouf, & Kanwisher, 2004; Yovel & Kanwisher, 2004), however, even those distinctions are often easier to

make behaviorally rather than neurally (Leder & Carbon, 2006; Robbins & McKone, 2007). Another exam-

ple, moving from visual perception to higher cognitive functions, is “theory of mind.” In this domain, the

concept, its breadth, and its development were all successfully studied without looking into the brain (e.g.,

Wellman, Cross, & Watson, 2001). Neural studies have revealed potential brain areas underlying theory

of mind (Saxe & Kanwisher, 2003; Saxe, Moran, Scholz, & Gabrieli, 2006; Young, Camprodon, Hauser,

Pascual-Leone, & Saxe, 2010), but have not done much to explain the cognitive process of theory of mind as

a series of representations and computations over these. Even domain specificity and dissociations between

false beliefs and false photos were seen behaviorally through developmental work before their respective

neural counterparts were pinpointed (as reviewed in Saxe, Carey, & Kanwisher, 2004).

Obviously, questions such as ”what area of the brain is involved in process X” can only be asked at a neural

level. However, my claim is that understanding what process X is—what computations it embodies—is

rarely done at the neural level alone, if at that level at all. In a sense, the term “computational neuroscience”

is a misnomer, as computational discoveries about the brain can hardly skip the psychological-behavioral

level. Some exceptions can be found in the domain of perception. One can convincingly argue that measur-

ing the receptive fields of neurons at different levels of the hierarchy of visual processing areas in passive,

non-behaving animals, has helped explain how visual processing proceeds from building blocks to percepts

(although we are still far from understanding even this basic process, and recently computational models,

not neuroscientific data, seem to be providing most of the breakthroughs).

But is perception the “highest” cognitive function for which neuroscience without behavior can inform our

understanding of cognitive processes? Although few and far between, there are some instances where neu-

roscientific research has led to insights about higher cognitive functions that would perhaps not be available
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otherwise. This has been mostly by way of lesion studies (or, in animals, reversible inactivations) that illu-

minated the separable components of cognitive processes once thought to be unitary. In memory research,

for instance, the groundbreaking case of Henry Molaison (more commonly known as patient H. M.) first

suggested a separation between episodic long-term memory and other forms of memory and learning, revo-

lutionizing the study of memory and the hippocampus, and spurring the field of cognitive neuropsychology

(Scoville & Milner, 1957; Augustinack et al., 2014). Notably, the findings relied on testing with appropriate

behavioral tasks that demonstrated the different dissociations, for instance between forming new episodic

memories and learning new skills (Milner, 2005). Similarly, while behavioral studies such as Packard &

McGaugh’s (1996; discussed above) suggested that animals transition between decision strategies as they

become more familiar with a task, lesion studies in rodents paired with theoretically sophisticated behav-

ioral paradigms revealed that both strategies—goal-directed decision making that relies computationally on

planning in a mental model of the world, and habitual responses that lean exclusively on past experience

(Dickinson, 1985; Dickinson & Balleine, 2002; Daw, 2018; Drummond & Niv, 2020)—are learned in paral-

lel and, in principle, available for use at any given time (Killcross & Coutureau, 2003; H. H. Yin, Knowlton,

& Balleine, 2004, 2005; Balleine, 2005)

Other questions regarding apparent (or true) equivalence between categories of events still await resolution

by way of neuroscientific measurements. For instance, is not getting an expected reward equivalent to losing

money? Behavior suggests that these two situations are similar, but whether they truly are equivalent is a

question best answered at the implementational level. Another question of this same flavor is: do we have

two antagonistic motivational systems, an appetitive one and an aversive one (Konorski, 1967), or rather is

motivation controlled by one system with two poles? This class of questions can possibly only be answered

at a neural level, albeit coupled with a suitable behavioral task. Indeed, these are prime examples for

which a generic behavioral test (e.g., extinction learning or conditioned place preference) will not be nearly

sufficient, and the neural investigations must rely on a clever behavioral task specifically tailored to the

question at hand (see below). Finally, questions about social behavior and its reliance on specially-tailored

versus general-purpose neural mechanisms are another class of studies that combine all of Marr’s (1982)

levels. As Lockwood and colleagues convincingly argue, such questions about which of several algorithms

is implemented in the brain can be best answered with neural measurements during properly controlled

behavioral experiments tailored to the algorithms being contrasted (Lockwood, Apps, & Chang, 2020).

I therefore want to make clear that I am not arguing for the futility of neuroscientific research. I am calling

for a true merger between psychological cognitive science (ultimately interested in understanding behavior)

and neuroscience, or at least cognitive neuroscience (ultimately interested in explaining the brain). The

study of behavior cannot afford to ignore such an important source of information as the brain—why would

we be interested in measurements such as response times and eye movements but not be interested in accom-

panying neural measurements? And similarly, the study of the brain must rely on understanding of behavior

if it has any chance of making rapid progress.
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Clever behavioral experiments allow causal conclusions despite correlative
measures

One last point I would like to make, while on this soapbox, regards a related strong bias in neuroscience: the

preference for causal manipulations rather than correlational measurements. This predisposition suggests

that since an fMRI signal is correlational, it is by design inferior to a technique that manipulates the neural

hardware, for instance, optogenetically. This bias similarly renders behavioral measures in humans absent a

brain manipulation (for instance, using transcranial magnetic stimulation, or due to a lesion) automatically

inferior. However, I believe that clever behavioral designs have two advantages: they allow behavioral

studies to sidestep the causation/correlation pitfall and they help us utilize resources judiciously.

We can start by taking a cue from how the brain goes about making sense of the world: indeed, we often

infer causal constructs (e.g., in perception: “what I am looking at is a table surrounded by four chairs”)

from noisy, low-dimensional, correlational measurements (e.g., the two-dimensional images that fall on my

retina) together with prior knowledge about the generative process (that is, how we expect different objects

to manifest in such measurements). So, inferring causality from convergent correlational measurements is

not an ultimate sin.

The brain also utilizes perturbations – we can move our head to get a different image on our retina if an

obscured object seems particularly ambiguous. Or we can walk over to the object in question and move

it to verify that all the parts that we thought were connected really do belong to the object. Inferences are

therefore reliant on correlational methods very commonly, and on costly perturbation methods in extreme

cases. We can similarly construe scientific inquiry: in trying to infer the causal structures of the world

around us (why does application of a painful stimulus generate long-lasting fear responses? why are humans

so prone to assuming, even on first glance, that some people are more intelligent than others?), it would be

wise to combine both correlational measurements and causal perturbations.

The next step is to realize that causal manipulations in neuroscience are not limited to silencing or activating

a set of neurons, or lesioning a part of the brain. A behavioral task that requires a cognitive process can

effectively apply a causal manipulation, turning a neural process (and its underlying hardware) “on” and

“off” through changes in task demands. As an example, imagine the N-back task, in which a participant

views a series of letter stimuli and has to respond whenever the current letter is identical to the one viewed

N trials back (with N being set in advance, for instance, to 2). This task requires constant maintenance

of working memory, introducing and removing stimuli from the “recent N items” set, and comparing the

current item to the contents of working memory. Changes in task demands could turn working memory

mechanisms on or off, depending on the specifics: setting N to 1 would place minimal requirements on

updating of working memory as the task of identifying repetitions can be solved even at the level of iconic

visual working memory; or the task can be changed to “respond to up-side-down letters,” which does not

require working memory at all. Of course, task performance requires more than one cognitive process (e.g.,

10



in the N-back task: reading, memorizing, comparing the current stimulus to the content of memory, deciding

on a response), so a clever, well-controlled experimental design is necessary to single out one function and

not others. But this is exactly what the rich legacy of experiments in psychology has taught us to do well. The

super-power of psychologists is their ability to design behavioral experiments that isolate and manipulate a

process noninvasively, within a whole behaving organism.

As illustrated by the examples in prior sections of this paper, this means that using behavior alone, we can

investigate even the neural implementation of working memory. For instance, by assessing the capacity of

working memory for colors, orientations, or their conjunction, Luck and Vogel (1997) showed that visual

working memory was stored at the level of whole objects (that is, in higher order visual perception areas)

and not at the level of individual features. More recently, Katus and Eimer (2018) used the quintessential

“causal” behavioral manipulation of dual task requirements: they presented participants with visual and

tactile stimuli, separately varying the number of items in each modality, and testing for working memory

of only one modality in each trial. The two tasks effectively activated the neural mechanisms responsible

for visual and tactile working memory, allowing the researchers to assess whether these mechanisms are

shared or separate. The behavioral results—no reduction in working memory accuracy for one modality

with the increased demands on the other modality—suggest that independent memory storage exists for

each modality, and that capacity constraints on working memory do not result from a shared higher-level

control process (Cowan, 2010).

Thus, a relatively simple experiment can answer a question about the segregation of different types of in-

formation in working memory, without ever measuring neural signals. The equivalent neural perturbation

experiment is dauntingly difficult and less incisive: one would presumably perturb the activity of a brain

area (e.g., by TMS) and look for effects on working-memory performance. However, finding that the per-

turbation does not affect task performance would not mean the brain area is not involved in the task (there

could be redundancy in the system), and finding that performance is decreased would not specifically imply

deterioration of working memory (here, again, one has to design careful control conditions to rule out other

cognitive processes that are involved in the task). Finally, it is not clear what perturbation or neural mea-

surement would tell us conclusively whether tactile and visual working memory rely on shared or separate

neural substrates. This is therefore another example where a purely behavioral experiment can answer a

neural implementation question more readily than neuroscientific measurements and perturbations can.

To be sure, here again I am not suggesting that neuroscientific measurements are irrelevant, or that there is

no conceivable neuroscientific experiment that would answer the above question about working memory.

What I am arguing is that the opposite is not true: it is not the case that pure behavioral experiments, using

clever experimental designs, and behavioral output such as choices and reaction times, cannot possibly

answer a question about neural mechanism. To the contrary, the latter may be better suited to answering that

question with little time and effort. Considering behavioral measurements as inferior a priori is detrimental

to neuroscientific progress.
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So why do we chronically devalue behavioral work?

I have illustrated above the stark asymmetry between behavioral research and neuroscientific investiga-

tion in understanding cognition: behavioral work contributes more to our understanding of the brain than

neuroscience has contributed to understanding the mind. Interestingly, this is similar to the immense uni-

directional contributions of the fields of machine learning and computational modeling to neuroscience, all

while the former fields have learned relatively little from the brain. Perplexingly, in both cases funding

decisions—which are essentially prioritization exercises—suggest the exact opposite3.

This reversed perception of what field contributes meaningfully to another field may be fueled by several

misconceptions. One is a prevalent illusion that neurscientific data are in some sense “objective,” whereas

using a (computational) theory to interpret (behavioral) data is more “subjective” and less scientific. An-

other, not unrelated widespread misconception is that behavior is “solved” or not interesting, whereas the

“real” questions are ones in neuroscience. But we are still very far from explaining behavior and closing

shop in all departments of psychological science (Rescorla, 1988). A question remains, then, what is the

best way to make progress in understanding behavior? Although behavior is generated by the brain, I have

argued that it is not the case that understanding the brain is the best way to understand behavior. Behavior

and neural data are informative about different things: if you are interested in understanding behavior (as

are many of us in psychology, cognitive science, and neuroscience), you should study behavior.

This observation suggests that we need a prioritization of questions, not of techniques. Once the questions

of interest are clearly defined, for instance “what is a reliable diagnostic phenotype of bipolar disorder” (to

take a translational example that seems most readily yielding to neural biomarkers), we can consider what

are the best techniques to answer the question expeditiously.

Which brings me to the final illusion: that because behavioral work is sometimes easier (and very often

cheaper), its findings are worth less than findings from neuroscientific research. This is a common illusion

in economics—people (and animals) value an expensive good more than they do a cheap one (even when

the goods are identical) and prefer a reward that they have earned through more effort to one achieved more

easily (Aronson & Mills, 1959; Clement, Feltus, Kaiser, & Zentall, 2000; Plassmann, O’Doherty, Shiv, &

Rangel, 2008). But this preference is irrational. Sunk costs do not actually make something more valuable,

only more... expensive. Do we not, therefore, have a moral obligation to do the behavioral experiments—

those that may lead to faster answers at a lower cost—first? Concretely, if a series of behavioral tasks,

coupled with computational modeling of the cognitive processes underlying behavior on these tasks, can

quantify the aspects of bipolar disorder that fall outside the norm defined by healthy patients, should we

3As examples, a program officer at the National Institute for Mental Health (NIMH) requested that a colleague withdraw her
funding application from consideration prior to review, saying that regardless of reviewers’ evaluation, the clearly mental-health
relevant research will not be funded as it does not include a neural component; I have similarly been told, on consultation with
several program officers, that a computational psychiatry center that focuses on behavioral measures is not of interest to NIMH
unless we include neuroscience methods such as fMRI or MEG, despite research so far showing little return for such techniques
in understanding mental illness (Roiser, 2015), not to mention in developing clinically-feasible tools for diagnosis and treatment
selection.
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not pursue this route before subjecting patients to expensive neuroimaging scans, not to mention invasive

techniques?

Conclusion

In basic cognitive psychology research, the role of neuroscience has been suggested to be that of “constrain-

ing theories of representation and computation” (Cushman, 2020). It is wholly unclear, however, whether

the most effective constraints come from neuroscientific data or from behavioral data. The brain is complex

and forgiving – it represents many quantities that may be ancillary to a specific function, and can solve

a specific problem through several, often redundant mechanisms. As a result, neural data are often only

weakly constraining, if at all. It may be our limitation as researchers (working with the cognitive abilities

that our neurons afford us), but historically we have distilled more insight into cognitive processes from

contrasting behavior in well-crafted experiments than we have from measuring or perturbing the brain. If

we are to accelerate the progress of understanding the human mind, we therefore should restore behavior to

its rightful place as the firm base of neuroscience (Griffiths, 2015) on which other findings and types of data

can rely, but without which one cannot build a thesis.
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