
C H A P T E R

4
THE PRIMAL-DUAL METHOD FOR

APPROXIMATION ALGORITHMS AND
ITS APPLICATION TO NETWORK

DESIGN PROBLEMS

Michel X. Goemans David P. Williamson

Dedicated to the memory of Albert W. Tucker

The primal-dual method is a standard tool in the de-
sign of algorithms for combinatorial optimization problems.
This chapter shows how the primal-dual method can be
modified to provide good approximation algorithms for a
wide variety of NP-hard problems. We concentrate on re-
sults from recent research applying the primal-dual method
to problems in network design.

INTRODUCTION

4.1

In the last four decades, combinatorial optimization has been strongly influenced by
linear programming. With the mathematical and algorithmic understanding of linear
programs came a whole host of ideas and tools that were then applied to combinatorial
optimization. Many of these ideas and tools are still in use today, and form the bedrock
of our understanding of combinatorial optimization.

One of these tools is the primal-dual method. It was proposed by Dantzig, Ford, and
Fulkerson [DFF56] as another means of solving linear programs. Ironically, their inspira-
tion came from combinatorial optimization. In the early 1930s, Egerváry [Ege31] proved

144

4.1 INTRODUCTION 145

a min-max relation for the assignment problem (or the minimum-cost bipartite perfect
matching problem) by reducing it to a known min-max result for maximum cardinality
matchings. This lead Kuhn to propose his primal-dual “Hungarian Method” for solving
the assignment problem [Kuh55], which then inspired Dantzig, Ford, and Fulkerson. Al-
though the primal-dual method in its original form has not survived as an algorithm for
linear programming, it has found widespread use as a means of devising algorithms for
problems in combinatorial optimization. The main feature of the primal-dual method is
that it allows a weighted optimization problem to be reduced to a purely combinatorial,
unweighted problem. Most of the fundamental algorithms in combinatorial optimization
either use this method or can be understood in terms of it, including Dijkstra’s shortest
path algorithm [Dij59], Ford and Fulkerson’s network flow algorithm [FF56], Edmonds’
non-bipartite matching algorithm [Edm65] and, of course, Kuhn’s assignment algorithm.

The primal-dual method as described above has been used to solve problems that
can be modelled as linear programs; the method simply leads to efficient polynomial-
time algorithms for solving these problems. Since NP-hard problems cannot be modelled
as polynomially-sized linear programs unless P = NP, the primal-dual method does
not generalize straightforwardly to generate algorithms for the NP-hard optimization
problems that are the interest of this book. Nevertheless, with modifications the primal-
dual method leads to approximation algorithms for a wide variety of NP-hard problems.
In this chapter we will explain the current state of knowledge about how the primal-dual
method can be used to devise approximation algorithms.

One of the benefits of the primal-dual method is that it leads to a very general
methodology for the design of approximation algorithms for NP-hard problems. Until
quite recently, whenever one wanted to design an approximation algorithm, one usually
had to tailor-make an algorithm using the particular structure of the problem at hand.
However, in the past few years several general methods for designing approximation
algorithms have arisen. The primal-dual method is one of these, and we will see in this
chapter that it leads to approximation algorithms for a large number of problems.

Linear programming has long been used to design and analyze approximation al-
gorithms for NP-hard problems, particularly for problems which can be naturally for-
mulated as integer programs. Several approximation algorithms from the seventies use
linear programming (LP) in their analysis (see [Chv79, Lov75, CFN77], for example). A
1980 paper by Wolsey [Wol80] highlighted the use of linear programming, and showed
that several previously known approximation algorithms could be analyzed using linear
programming, including Christofides’ algorithm for the TSP [Chr76] and Johnson et al.’s
bin packing algorithms [JDU+74]. In the eighties, several papers appeared which used
the optimum solution of a linear program to derive an integer solution; the most com-
mon technique given rounds fractional solutions to integer solutions. The reader can find
examples of deterministic rounding and other techniques (as in [Hoc82]) in Chapter 3 of
this book, while randomized rounding [RT87] is presented in Chapter 11. In the primal-
dual method for approximation algorithms, an approximate solution to the problem and
a feasible solution to the dual of an LP relaxation are constructed simultaneously; the
performance guarantee is proved by comparing the values of both solutions. Many of
the approximation algorithms with an LP-based analysis can be viewed as primal-dual,
but the first truly primal-dual approximation algorithm in which the integer primal and

146 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

the dual solutions are constructed at the same time is the algorithm of Bar-Yehuda and
Even [BYE81] for the vertex cover problem. In the past few years, the power of the
primal-dual method has become apparent through a sequence of papers developing this
technique for network design problems [AKR95, GW95a, SVY92, KR93, WGMV95,
GGW93, AG94, GGP+94, GW94a, RW95]. This line of research started with a paper
by Agrawal, Klein, and Ravi [AKR95], who introduced a powerful modification of the
basic method. Our survey will focus mostly on these problems and results.

In basic versions of network design problems we are given a graph G = (V,E)
(undirected or directed) and a cost ce for each edge e ∈ E (or for each arc in the directed
case), and we would like to find a minimum-cost subset E ′ of the edges E that meets
some design criteria. For example, we may wish to find the minimum-cost set of arcs in a
directed graph such that every vertex can reach every other vertex; that is, we wish to find
the minimum-cost strongly connected subgraph. Network design problems arise from
many sources, including the design of various transportation systems (such as highways
and mass-transit systems), as well as telephone and computer networks. We direct the
reader to the book edited by Ball et al. [BMMN94] for a broad overview of network
design problems, models, and algorithms. For the most part, our survey will concentrate
on network design problems on undirected graphs G = (V,E) with nonnegative edge
costs ce.

We will present the primal-dual method as developed for network design problems
in a somewhat different fashion than in the original references. We isolate the essen-
tial ideas or design rules present in all these approximation results and develop generic
primal-dual algorithms together with generic proofs of their performance guarantees.
Once this is in place, it becomes quite simple to apply these algorithms and proofs to a
variety of problems, such as the vertex cover problem [BYE81], the edge covering prob-
lem [GW94a], the minimum-weight perfect matching problem [GW95a], the survivable
network design problem [AKR95, WGMV95], the prize-collecting traveling salesman
problem [GW95a], and the minimum multicut problem in trees [GVY93b]. We show
that each of these design rules is implicit in several long-known primal-dual algorithms
that solve network design problems exactly, namely Dijkstra’s shortest s-t path algo-
rithm [Dij59], Edmonds’ minimum-cost branching algorithm [Edm67], and Kruskal’s
minimum spanning tree algorithm [Kru56]. The generic algorithms reduce to these ex-
act algorithms for these problems.

The survey is structured as follows. In the next section, we review the classical
primal-dual method for solving linear programs and optimization problems that can
be modelled as linear programs. In Section 4.3 we gradually develop a primal-dual
method for the design of approximationalgorithm by modifying the classical method and
introducing a sequence of design rules. This yields our generic primal-dual algorithm
and generic theorems for proving good performance guarantees of the algorithm. We
then apply the algorithm and theorems to a number of network design problems in the
following sections. The general model of network design problems that we consider is
given in Section 4.4. We introduce a number of network design problems in Sections 4.5
through 4.7, and show that the generic algorithm yields near optimal results. In Section
4.8 we show that the primal-dual method can even be applied to other problems that do
not fit in our model, and we conclude in Section 4.9.

4.2 THE CLASSICAL PRIMAL-DUAL METHOD 147

THE CLASSICAL PRIMAL-DUAL METHOD

4.2

Before we begin to outline the primal-dual method for approximation algorithms, we
first review the classical primal-dual method as applied to linear programs and polyno-
mial-time solvable optimization problems. We refer the reader unfamiliar with the basic
theorems and terminology of linear programming to introductions in Chvátal [Chv83]
or Strang [Str88, Ch. 8]. For a more detailed description of the primal-dual method
for polynomial-time combinatorial optimization problems, see Papadimitriou and Stei-
glitz [PS82].

Consider the linear program

Min cT x

subject to:
Ax ≥ b

x ≥ 0

and its dual

Max bT y

subject to:
AT y ≤ c

y ≥ 0,

where A ∈Qm×n , c,x ∈Qn , b, y ∈Qm , and T denotes the transpose. For ease of presen-
tation we assume that c≥ 0. In the primal-dual method of Dantzig, Ford, and Fulkerson,
we assume that we have a feasible solution y to the dual; initially we can set y = 0. In
the primal-dual method, either we will be able to find a primal solution x that obeys the
complementary slackness conditions with respect to y, thus proving that both x and y are
optimal, or we will be able to find a new feasible dual solution with a greater objective
function value.

First consider what it means for x to be complementary slack to y. Let A i denote
the i th row of A and A j the j th column of A (written as a row vector to avoid the
use of transpose). For the linear program and dual given above, there are two types of
complementary slackness conditions. First, there are primal complementary slackness
conditions, corresponding to the primal variables, namely

x j > 0⇒ A j y = c j .

Let J = { j |A j y = c j }. Second, there are dual complementary slackness conditions,
corresponding to the dual variables, namely

yi > 0⇒ Ai x = bi .

Let I = {i |yi = 0}.
Given a feasible dual solution y we can state the problem of finding a primal feasible

x that obeys the complementary slackness conditions as another optimization problem:

148 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

find a solution x which minimizes the “violation” of the primal constraints and of the
complementary slackness conditions. The notion of violation can be formalized in sev-
eral ways leading to different restricted primal problems. For example, the following
restricted linear program performs the required role:

z I N F = Min
∑

i /∈I

si +
∑

j /∈J

x j

subject to:
Ai x ≥ bi i ∈ I

Ai x− si = bi i /∈ I

x ≥ 0
s ≥ 0.

(To ensure feasibility of the restricted primal, we are implicitly assuming the existence
of an x ≥ 0 satisfying Ax ≥ b.) If this linear program has a solution (x,s) such that
the objective function value z I N F is 0, then we will have found a primal solution x that
obeys the complementary slackness conditions for our dual solution y. Thus x and y
are optimal primal and dual solutions, respectively. However, suppose that the optimal
solution to the restricted primal has z I N F > 0. Consider now the dual of the restricted
primal:

Max bT y ′

subject to:
A j y ′ ≤ 0 j ∈ J

A j y ′ ≤ 1 j /∈ J

y ′i ≥−1 i /∈ I

y ′i ≥ 0 i ∈ I.

Since the optimal solution to its primal has value greater than 0, we know that this pro-
gram has a solution y ′ such that bT y ′ > 0. We will now show that we can find an ε > 0
such that y ′′ = y+εy ′ is a feasible dual solution. Thus, if we cannot find an x that obeys
the complementary slackness conditions, we can find a feasible y ′′ such that bT y ′′ =
bT y+εbT y ′ > bT y; that is, we can find a new dual solution with greater objective func-
tion value. Observe that, by definition of I , y ′′≥ 0 provided that ε ≤mini /∈I :y′i<0(−yi/y ′i)
while, by definition of J , AT y ′′≤ c provided that ε ≤min j /∈J :A j y′>0

c j−A j y
A j y′ . Choosing the

smaller upper bound on ε, we obtain a new dual feasible solution of greater value, and we
can reapply the procedure. Whenever no primal feasible solution obeys the complemen-
tary slackness conditions with y, the above restricted primal outputs the least infeasible
solution, and this can be used to trace the progress of the algorithm towards finding a
primal feasible solution.

Since the method outlined above reduces the solution of a linear program to the so-
lution of a series of linear programs, it does not seem that we have made much progress.
Notice, however, that the vector c has disappeared in the restricted primal and its dual.
In network design problems, this vector corresponds to the edge-costs. The classical
primal-dual method thus reduces weighted problems to their unweighted counterparts,
which are often much easier to solve. Furthermore, for combinatorial optimization prob-

4.2 THE CLASSICAL PRIMAL-DUAL METHOD 149

lems (such as network design problems), these unweighted problems can usually be
solved combinatorially, rather than with linear programming. That is, we can use com-
binatorial algorithms to find an x that obeys the complementary slackness conditions, or
failing that, to find a new feasible dual with greater dual objective value. In this way, the
method leads to efficient algorithms for these optimization problems.

As an example, we quickly sketch the primal-dual method as it is applies to the
assignment problem, also known as the minimum-weight perfect matching problem in
bipartite graphs. Suppose we have a bipartite graph G = (A,B,E), with |A| = |B| = n,
and each edge e = (a,b) has a ∈ A, b ∈ B. We assume that a perfect matching exists
in E . Let ce ≥ 0 denote the cost of edge e; throughout this section we will use ce and
cab interchangeably for an edge e = (a,b). We would like to find the minimum-cost
set of edges such that each vertex is adjacent to exactly one edge. This problem can be
formulated as the following integer program:

Min
∑

e∈E

cexe

subject to: ∑

b:(a,b)∈E

xab = 1 a ∈ A

∑

a:(a,b)∈E

xab = 1 b ∈ B

xe ∈ {0,1} e ∈ E .

It is well-known that the LP relaxation of this integer program has integer solutions as
extreme points (Birkhoff [Bir46], von Neumann [vN53]), so we can drop the integrality
constraints and replace them with xe ≥ 0. The dual of this LP relaxation is

Max
∑

a∈A

ua+
∑

b∈B

vb

subject to:
ua+vb ≤ cab (a,b) ∈ E .

The primal-dual method specifies that we start with a dual feasible solution, in this
case u = v = 0. Given our current feasible dual solution, we look for a primal feasible
solution that obeys the complementary slackness conditions. In this case, we only have
primal complementary slackness conditions. Let J = {(a,b) ∈ E : ua+vb = cab}. Then
the restricted primal is

Min
∑

a∈A

sa+
∑

b∈B

sb

subject to: ∑

b:(a,b)∈E

xab+ sa = 1 a ∈ A

∑

a:(a,b)∈E

xab+ sb = 1 b ∈ B

xe = 0 e ∈ (E− J)

xe ≥ 0 e ∈ J

s ≥ 0.

150 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

As with the original primal, every basic feasible solution to the restricted primal has
every component equal to 0 or 1. This implies that solving the restricted primal reduces
to the problem of finding the largest cardinality matching in the bipartite graph G ′ =
(A,B, J). Efficient algorithms are known for finding maximum matchings in bipartite
graphs. If we find a perfect matching in G ′, then we have found an x that obeys the
complementary slackness conditions with respect to (u,v), and x and (u,v) must be
optimal solutions. Initially, J is likely to be empty and, as a result, our initial primal
infeasible solution is x = 0. One can show that the infeasibility of x gradually decreases
during the course of the algorithm.

The dual of the restricted primal is

Max
∑

a∈A

u′a+
∑

b∈B

v′b

subject to:
u′a+v′b ≤ 0 (a,b) ∈ J

u′a ≤ 1 a ∈ A

v′b ≤ 1 b ∈ B.

It can easily be seen that every basic solution (u ′,v′) has all its components equal to
±1. Given the maximum matching, there is a straightforward combinatorial algorithm
to find an optimum solution to this dual. If the optimum value of the restricted primal is
not zero then an improved dual solution can be obtained by considering u ′′= u+εu′ and
v′′ = v+ εv′, for ε = min(a,b)∈E−J (cab− ua − vb). It is not hard to see that this choice
of ε maintains dual feasibility, and it can be shown that only O(n2) dual updates are
necessary before a perfect matching is found in G ′. At this point we will have found a
feasible x that obeys the complementary slackness conditions with a feasible dual u,v,
and thus these solutions must be optimal.

EXERCISE 4.1 Show how to formulate a restricted primal by using only one new vari-
able. Make sure that your restricted primal is always feasible.

THE PRIMAL-DUAL METHOD FOR
APPROXIMATION ALGORITHMS

4.3

Most combinatorial optimization problems have natural integer programming formula-
tions. However, unlike the case of the assignment problem, the LP relaxations typically
have extreme points which do not correspond to solutions of the combinatorial opti-
mization problem. Therefore, we cannot use the classical primal-dual method to find an
optimum integer solution. In this section, however, we will show that a suitable modifi-
cation of the method is very useful for finding approximate integer solutions. In addition,
we will show a sequence of design rules that leads to good approximation algorithms for
network design problems.

4.3 THE PRIMAL-DUAL METHOD FOR APPROXIMATION ALGORITHMS 151

The central modification made to the primal-dual method is to relax the comple-
mentary slackness conditions. In the classical setting described in the previous section,
we imposed both primal and dual complementary slackness conditions, and we used the
dual of the restricted primal problem to find a direction to improve the dual solution if
the complementary conditions were not satisfied. For the design of approximation al-
gorithms, we will impose the primal complementary slackness conditions, but relax the
dual complementary slackness conditions. Furthermore, given these conditions, if the
current primal solution is not feasible, we will be able to increase the value of the dual.

To illustrate this modification of the method, we will examine a specific combinato-
rial optimization problem, the hitting set problem. The hitting set problem is defined as
follows: Given subsets T1, . . . ,Tp of a ground set E and given a nonnegative cost ce for
every element e ∈ E , find a minimum-cost subset A ⊆ E such that A∩Ti 6= ∅ for every
i = 1, . . . , p (i.e. A “hits” every Ti). The problem is equivalent to the more well-known
set cover problem in which the goal is to cover the entire ground set with the minimum-
cost collection of sets (see Chapter 3).

As we proceed to construct piece by piece a powerful version of the primal-dual
method for approximation algorithms, along the way we will “rediscover” many classi-
cal (exact or approximation) algorithms for problems that are special cases of the hitting
set problem. From these classical algorithms, we will infer design rules for approxima-
tion algorithms which we will later show lead to good approximation algorithms for
other problems. The particular special cases of the hitting set problem we study are as
follows. The undirected s− t shortest path problem with nonnegative lengths can be for-
mulated as a hitting set problem by noticing that any s− t path must intersect every s− t
cut δ(S), where δ(S)= {e= (i, j) ∈ E : i ∈ S, j /∈ S} and s ∈ S and t /∈ S. Thus, we can
let E be the edge set of the undirected graph G = (V,E); ce be the length of the edge e;
and T1, . . . ,Tp be the collection of all s− t cuts, i.e. Ti = δ(Si)where Si runs over all sets
containing s but not t . Observe that the feasible solutions consist of subgraphs in which
s and t are connected; only minimal solutions (i.e. solutions for which no edge can be
removed without destroying feasibility) will correspond to s− t paths. The directed s− t
path problem can be similarly formulated. The minimum spanning tree problem is also
a special case of the hitting set problem; here we would like to cover all cuts δ(S) with
no restriction on S. The vertex cover problem (see Chapter 3) is the problem of finding a
minimum (cardinality or cost) set of vertices in an undirected graph such that every edge
has at least one endpoint in the set. The vertex cover is a hitting set problem in which
the ground set E is now the set of vertices and Ti corresponds to the endpoints of edge i .
In the minimum-cost arborescence problem, we are given a directed graph G = (V,E)
with nonnegative arc costs and a special root vertex r , and we would like to find a span-
ning tree directed out of r of minimum cost. Here the sets to hit are all r -directed cuts,
i.e. sets of arcs of the form δ−(S) = {(i, j) ∈ E : i /∈ S, j ∈ S} where S ⊆ V −{r}. All
these special cases, except for the vertex cover problem, are known to be polynomially
solvable. Dijkstra’s algorithm [Dij59] solves the shortest path problem, Edmonds’ algo-
rithm [Edm67] solves the minimum-cost arborescence problem, while Kruskal’s greedy
algorithm [Kru56] solves the minimum spanning tree problem. For many special cases
(again excluding the vertex cover problem), the number of sets to hit is exponential in
the size of the instance. We will see shortly that this does not lead to any difficulties.

152 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

The hitting set problem can be formulated as an integer program as follows:

Min
∑

e∈E

cexe

subject to: ∑

e∈Ti

xe ≥ 1 i = 1, . . . , p

xe ∈ {0,1} e ∈ E,

where x represents the incidence (or characteristic) vector of the selected set A, i.e.
xe = 1 if e ∈ A and 0 otherwise. Its LP relaxation and the corresponding dual are the
following:

Min
∑

e∈E

cexe

subject to: ∑

e∈Ti

xe ≥ 1 i = 1, . . . , p

xe ≥ 0 e ∈ E,

and

Max
p∑

i=1
yi

subject to: ∑

i :e∈Ti

yi ≤ ce e ∈ E

yi ≥ 0 i = 1, . . . , p.

For the incidence vector x of a set A and a dual feasible solution y, the primal comple-
mentary slackness conditions are

e ∈ A⇒
∑

i :e∈Ti

yi = ce (4.1)

while the dual complementary slackness conditions are

yi > 0⇒ |A∩ Ti | = 1. (4.2)

As we said earlier, the central modification made to the primal-dual method is to
enforce the primal complementary slackness conditions and relax the dual conditions.
Given a dual feasible solution y, consider the set A= {e :

∑
i :e∈Ti

yi = ce}. Clearly, if A is
infeasible then no feasible set can satisfy the primal complementary slackness conditions
(4.1) corresponding to the dual solution y. As in the classical primal-dual method, if we
cannot find a feasible primal solution given the complementary slackness conditions,
then there is a way to increase the dual solution. Here, the infeasibility of A means that
there exists k such that A∩Tk =∅. The set Tk is said to be violated. By increasing yk , the
value of the dual solution will improve; the maximum value yk can take without violating
dual feasibility is

yk =min
e∈Tk

{
ce−

∑

i 6=k:e∈Ti

yi

}
. (4.3)

4.3 THE PRIMAL-DUAL METHOD FOR APPROXIMATION ALGORITHMS 153

Observe that yk > 0 since no element e in Tk is also in A. For this value of yk, at least
one element e (the argmin in (4.3)) will be added to A since now

∑
i :e∈Ti

yi = ce. We can
repeat the procedure until A is a feasible primal solution.

This basic version of the primal-dual method is formalized in Figure 4.1. In the
description of the algorithm in the figure, we are adding only one element e at a time
to A, although other elements f could satisfy

∑
i : f ∈Ti

yi = c f . This means that in a later
stage such an element f could be added while the corresponding increase of yl for some
Tl 3 f would be 0. This does not affect the algorithm.

The primal-dual method as described is also referred to as a dual-ascent algo-
rithm. See for example the work of Erlenkotter [Erl78] for the facility location prob-
lem, Wong [Won84] for the Steiner tree problem, Balakrishnan, Magnanti, and Wong
[BMW89] for the fixed-charge network design problem, or the recent Ph.D. thesis of
Raghavan [Rag94].

The main question now is whether the simple primal-dual algorithm described in
Figure 4.1 produces a solution of small cost. The cost of the solution is c(A)=∑e∈A ce

and since e was added to A only if the corresponding dual constraint was tight, we can
rewrite the cost as

∑
e∈A

∑
i :e∈Ti

yi . By exchanging the two summations, we get

c(A)=
p∑

i=1
|A∩ Ti |yi .

Since y is a dual feasible solution, its value
∑p

i=1 yi is a lower bound on the optimum
value zO PT of the hitting set problem. If we can guarantee that

|A∩ Ti | ≤ α whenever yi > 0 (4.4)

then this would immediately imply that c(A) ≤ αz O PT , i.e. the algorithm is an α-
approximation algorithm. In particular, if α can be guaranteed to be 1, then the so-
lution given by the algorithm must certainly be optimal, and equation (4.4) together
with primal feasibility imply the dual complementary slackness conditions (4.2). Con-
ditions (4.4) certainly hold if we choose α to be the largest cardinality of any set Ti :
α=maxp

i=1 |Ti |. This α-approximation algorithm for the general hitting set problem was
discovered by Bar-Yehuda and Even [BYE81]; the analysis appeared previously in a pa-
per of Hochbaum [Hoc82], who gave an α-approximation algorithm using an optimal
dual solution. In the special case of the vertex cover problem, every Ti has cardinality
two, and therefore, the algorithm is a 2-approximation algorithm. We refer the reader to
the Chapter 3 for the history of these results, as well as additional results on the vertex

1 y← 0
2 A←∅
3 While ∃k : A∩Tk = ∅
4 Increase yk until ∃e ∈ Tk :

∑
i:e∈Ti

yi = ce

5 A← A∪{e}
6 Output A (and y)

FIGURE 4.1

The basic primal-dual algorithm.

154 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

cover problem and the general set cover problem. The algorithm above is functionally
equivalent to the “dual feasible” algorithm of Chapter 3.

Before refining the basic algorithm, we discuss some implementation and efficiency
issues. First, since A has at most |E| elements, the algorithm performs at most |E|
iterations and outputs a dual feasible solution y with at most |E| nonzero values. This
observation is particularly important when there are exponentially many sets Ti (and
these sets are given implicitly) as in the case of the s − t shortest path problem or the
minimum-cost arborescence problem. In such cases, the algorithm does not keep track
of every yi but only of the nonzero components of y. Also, the algorithm must be able
to find a set Tk not intersecting A. If there are many sets to hit, we must have a violation
oracle: given A the oracle must be able to decide if A∩Ti 6= ∅ for all i and, if not, must
output a set Tk for which A∩ Tk = ∅.

For the shortest path problem, the minimum-cost arborescence problem, or the net-
work design problems we will be considering, the sets Ti to be hit are naturally asso-
ciated to vertex sets Si (Ti = δ(Si), or for the minimum-cost arborescence problem,
Ti = δ−(Si)). For simplicity, we shall often refer to these vertex sets instead of the corre-
sponding cuts; for example, we will say that the set Si is violated, rather than Ti = δ(Si)

is violated. Also, we shall denote the dual variable corresponding to the cut induced by
S as yS .

We obtain our first design rule by considering a violation oracle for the s− t shortest
path problem. For this problem, the oracle simply computes the connected components
of (V, A) and check if s and t belong to the same component; if not, the component
containing s (or the one containing t , or the union of components containing s or t) is
a violated set. This comment raises the issue of which violated set to select in the basic
primal-dual algorithm when there are several sets which are not hit by A. For network
design problems in which the Ti ’s naturally correspond to vertex sets, a good selection
rule is to take among all violated edge sets T one for which the corresponding vertex set
S is (inclusion-wise) minimal, i.e. there is no violated S ′ with S′ ⊂ S. We refer to this
rule as the minimal violated set rule. In the case of the undirected shortest path problem,
this rule consists of selecting the connected component containing s, provided that this
component does not contain t . Here there is a unique minimal violated set, although this
is not always the case.

Let us consider the resulting primal-dual algorithm for the shortest path problem
in greater detail. Initially, all yS are 0, A = ∅, and the minimal violated set is simply
S = {s}. As yS is increased, the shortest edge (s, i) out of s is selected and added to A.
In a later stage, if S denotes the current minimal violated set, an edge (i, j) with i ∈ S
and j /∈ S is added to A and the minimal violated set becomes S∪ { j} (unless j = t in
which case there are no more violated sets). Thus, A is a forest consisting of a single
non-trivial component containing s. To see which edges get added to A, it is useful to
keep track of a notion of time. Initially, time is 0 and is incremented by ε whenever a
dual variable is increased by ε. For every edge e, let a(e) denote the time at which e
would be added to A if the minimal violated sets were not to change. We refer to a(e) as
the addition time of edge e. Similarly, let l(j) be the time at which a vertex j would be
added to S. Clearly, l(j) is simply the smallest a(e) over all edges e incident to j . The
next vertex to be added to S is thus the vertex attaining the minimum in min j /∈S l(j). As
j is added to S, we need to update the a(.) and l(.) values. Only the a(.) values of the
edges incident to j will be affected; this makes their update easy. Also, for k /∈ S, l(k)

4.3 THE PRIMAL-DUAL METHOD FOR APPROXIMATION ALGORITHMS 155

simply becomes min{l(k), l(j)+c jk}. By now, the reader must have realized that the l(.)
values are simply the labels in Dijkstra’s algorithm [Dij59] for the shortest path problem.
Keeping track of the a(.) values is thus not necessary in this case, but will be useful in
more sophisticated uses of the primal-dual method.

The primal-dual algorithm with minimal violated set rule thus reduces to Dijkstra’s
algorithm in the case of the shortest path. Or not quite, since the set A output by the
algorithm is not simply an s − t path but is a shortest path forest out of s. The cost of
this forest is likely to be higher than the cost of the shortest s − t path. In fact, if we
try to evaluate the parameter α as defined in (4.4), we observe that α could be as high as
|V |−1, if all edges incident to s have been selected. We should therefore eliminate all the
unnecessary edges from the solution. More precisely, we add a delete step at the end of
the primal-dual algorithm which discards as many elements as possible from A without
losing feasibility. Observe that, in general, different sets could be output depending on
the order in which edges are deleted; in this case, we simply keep only the path from
s to t in the shortest path forest. It is not difficult to show (this follows trivially from
the forthcoming Theorem 4.1) that the resulting s − t path P satisfies |P ∩ δ(S)| = 1
whenever yS > 0, implying that the algorithm finds an optimal solution to the problem.

In some cases, however, the order of deletion of elements is crucial to the proof of a
good performance guarantee; this leads to our next design rule. We adopt a reverse delete
step in which elements are considered for removal in the reverse order they were added to
A. This version of the primal-dual algorithm with the reverse delete step is formalized in
Figure 4.2. We first analyze the performance guarantee of this algorithm in general, then
show that it leads to Edmonds’ algorithm for the minimum-cost arborescence problem.

To evaluate the performance guarantee of the algorithm, we need to compute an
upper bound on α as given in (4.4). To avoid any confusion, let A f be the set output
by the algorithm of Figure 4.2. Fix an index i such that yi > 0, and let e j be the edge
added when yi was increased. Because of the reverse delete step, we know that when e j

is considered for removal, no element e p with p< j was removed already. Let B denote
the set of elements right after e j is considered in the reverse delete step. This means that
B = A f ∪{e1, . . . ,e j−1}, and that B is a minimal augmentation of {e1, . . . ,e j−1}, i.e. B
is feasible, B ⊇ {e1, . . . ,e j−1} and for all e ∈ B−{e1, . . .e j−1} we have that B−{e} is

1 y← 0
2 A←∅
3 l← 0
4 While ∃k : A∩Tk = ∅
5 l← l+1
6 Increase yk until ∃el ∈ Tk :

∑
i:el∈Ti

yi = cel

7 A← A∪{el}
8 For j← l downto 1
9 if A−{e j } is feasible then A← A−{e j }

10 Output A (and y)

FIGURE 4.2

Primal-dual algorithm with reverse delete step.

156 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

not feasible. Moreover, |A f ∩ Ti | ≤ |B ∩ Ti | and this continues to hold if we maximize
over all minimal augmentations B of {e1, . . . ,e j−1}. Thus, as an upper bound on α, we
can choose

β = max

infeasible
A ⊂ E

max

minimal
augmentations B of A

|B∩T (A)|, (4.5)

where T (A) is the violated set selected by the primal-dual algorithm when confronted
with the set A. We have therefore proved the following theorem:

THEOREM 4.1 The primal-dual algorithm described in Figure 4.2 delivers a feasible
solution of cost at most β

∑p
i=1 yi ≤ βzO PT , where β is given in (4.5).

The reverse delete step has thus allowed us to give a bound on the performance of the
algorithm without looking at the entire run of the algorithm, but simply by considering
any minimal augmentation of a set. As an exercise, the reader is invited to derive the
optimality of the primal-dual algorithm for the shortest path problem from Theorem 4.1.

Consider now the minimum-cost arborescence problem. For any subset A of arcs,
the violation oracle with minimal violated set rule can be implemented by first comput-
ing the strongly connected components and then checking if any such component not
containing the root, say S, has no arc incoming to it (i.e. δ−(S)∩ A=∅). If no such com-
ponent exists then one can easily derive that A contains an arborescence. Otherwise, the
algorithm would increase the dual variable corresponding to such a strongly connected
component (observe that we have the choice of which component to select if there are
several of them). Any minimal augmentation of A must have only one arc incoming to
a strongly connected component S, since one such arc is sufficient to reach all vertices
in S. Thus, the parameter β is equal to 1, and the primal-dual algorithm delivers an op-
timum solution. This elegant algorithm is due to Edmonds [Edm67]. We should point
out that in the case of the arborescence problem, deleting the edges in reverse is crucial
(while this was not the case for the shortest path problem). The use of the reverse delete
step will also be crucial in the design of approximation algorithms for network design
problems described in the following sections; in this context, this idea was first used by
Klein and Ravi [KR93] and Saran, Vazirani, and Young [SVY92].

Several variants of the primal-dual algorithm described in Figure 4.2 can be de-
signed, without affecting the proof technique for the performance guarantee. One useful
variant is to allow the algorithm to increase the dual variable of a set which does not need
to be hit. More precisely, suppose we also add to the linear programming relaxation the
constraints

∑

e∈Ti

xe ≥ 1

i = p+1, . . . ,q, for a collection {Tp+1, . . . ,Tq} of sets. This clearly may affect the value
of the relaxation. Assume we now use the primal-dual algorithm by increasing the dual
variable corresponding to any set Ti , where i now runs from 1 to q. Thus, in step 4 of
Figure 4.2, a solution A is considered feasible if it hits every set Ti for i = 1, . . . ,q. How-
ever, in the reverse delete step 9, A only needs to hit every Ti for i = 1, . . . , p. Although
the addition of sets Ti ’s has made the relaxation invalid, we can still use the dual solution

4.3 THE PRIMAL-DUAL METHOD FOR APPROXIMATION ALGORITHMS 157

we have constructed. Indeed,
∑p

i=1 yi is still a lower bound on the optimum value, and, as
before, it can be compared to the cost

∑q
i=1 |A∩Ti |yi of the output solution A. The proof

technique we have developed for Theorem 4.1 still applies, provided we can guarantee
that A∩ Ti = ∅ for i = p+1, . . . ,q. In this case, the performance guarantee will again
be β as given by (4.5). As an application, assume that in the minimum-cost arborescence
problem, we also include the constraints corresponding to sets S containing the root (this
would constitute a formulation for the strongly connected subgraph problem). Then, as
long as A does not induce a strongly connected graph, we increase the dual variable cor-
responding to any strongly connected component with no arc incoming to it (whether
or not it contains r). This step is thus independent of the root. It is only in the reverse
delete step that we use knowledge of the root. This algorithm still outputs the optimum
arborescence (for any specific root r) since it is easy to see that any arc incoming to a
strongly connected component containing r and selected by the algorithm will be deleted
in the reverse delete step. The algorithm therefore constructs a single dual solution prov-
ing optimality for any root. This observation was made by Edmonds [Edm67]. Another
application of this variant of the primal-dual algorithm will be discussed in Section 4.5.

Our final design rule comes from considering the minimum spanning tree problem
and the associated greedy algorithm due to Kruskal [Kru56]. In the case of the min-
imum spanning tree problem, the violation oracle with minimal violated set rule can
be implemented by first computing the connected components of (V, A) and, if there
are k components where k > 1, by selecting any such component, say S. It is easy to
see that any minimal augmentation of A must induce a spanning tree if we separately
shrink every connected component of (V, A) to a supervertex. The resulting algorithm
has a bad performance guarantee since a minimal augmentation of A could therefore
have as many as k− 1 edges incident to S. Recall that Kruskal’s greedy algorithm re-
peatedly chooses the minimum-cost edge spanning two distinct connected components.
This choice of edge is equivalent to simultaneously increasing the dual variables corre-
sponding to all connected components of (V, A), until the dual constraint for an edge
becomes tight.

To see this, consider the notion of time as introduced for the shortest path problem.
As in that context, we let the addition time a(e) of an edge e to be the time at which this
edge would be added to A if the collection of minimal violated sets were not to change.
Initially, the addition time of e is ce/2 (since the duals are increased on both endpoints
of e), and it will remain so as long as both ends are in different connected components of
(V, A). The next edge to be added to A is the one with smallest addition time and is thus
the minimum-cost edge between two components of (V, A). Thus, the algorithm mimics
Kruskal’s algorithm.

This suggests that we should revise our primal-dual algorithm and increase simulta-
neously and at the same speed the dual variables corresponding to several violated sets.
We refer to this rule as the uniform increase rule. This is formalized in Figure 4.3, in
which the oracle VIOLATION returns a collection of violated sets whose dual variables
will be increased. In the case of network design problems, the study of the minimum
spanning tree problem further suggests that the oracle VIOLATION should return all
minimal violated sets. In the context of approximation algorithms for network design
problems, this uniform increase rule on minimal violated sets was first used by Agrawal,
Klein, and Ravi [AKR95] without reference to linear programming; its use was broad-
ened and the linear programming made explicit in a paper of the authors [GW95a]. The

158 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

1 y← 0
2 A←∅
3 l← 0
4 While A is not feasible
5 l← l+1
6 V← VIOLATION(A)
7 Increase yk uniformly for all Tk ∈ V until ∃el /∈ A :

∑
i:el∈Ti

yi = cel

8 A← A∪{el}
9 For j← l downto 1

10 if A−{e j } is feasible then A← A−{e j }
11 Output A (and y)

FIGURE 4.3

Primal-dual algorithm with uniform increase rule
and reverse delete step.

algorithm of Agrawal et al. can be considered the first highly sophisticated use of the
primal-dual method in the design of approximation algorithms.

The analysis of the performance guarantee can be done in a similar way as for the
primal-dual algorithm of Figure 4.2. Remember we compared the cost of the solution
output A f , which can be written as

∑p
i=1 |A f ∩ Ti |yi , to the value

∑p
i=1 yi of the dual

solution. However, instead of comparing the two summations term by term, we may take
advantage of the fact that several dual variables are being increased at the same time. Let
V j denote the collection of violated sets returned by the oracle VIOLATION in the j th
iteration of our primal-dual algorithm of Figure 4.3 and let ε j denote the increase of the
dual variables corresponding to V j in iteration j . Thus, yi =∑ j :Ti∈V j

ε j . We can rewrite
the value of the dual solution as

p∑

i=1
yi =

l∑

j=1
|V j |ε j ,

and the cost of A f as:

p∑

i=1
|A f ∩ Ti |yi =

p∑

i=1
|A f ∩ Ti |

∑

j :Ti∈V j

ε j =
l∑

j=1

∑

Ti∈V j

|A f ∩ Ti |

ε j .

From these expressions (comparing them term by term), it is clear that the cost of A f is
at most the value of the dual solution times γ if, for all j = 1, . . . , l,

∑

Ti∈V j

|A f ∩ Ti | ≤ γ |V j |.

Again using the reverse delete step, we can replace A f , (which depends on the entire
algorithm in an intricate fashion) by any minimal augmentation B of the infeasible so-
lution at the start of iteration j . We have thus proved the following theorem.

THEOREM 4.2 The primal-dual algorithm described in Figure 4.3 delivers a feasible
solution of cost at most γ

∑p
i=1 yi ≤ γ zO PT , if γ satisfies that for any infeasible set A

4.3 THE PRIMAL-DUAL METHOD FOR APPROXIMATION ALGORITHMS 159

and any minimal augmentation B of A
∑

Ti∈V(A)
|B ∩ Ti | ≤ γ |V(A)|,

where V(A) denotes the collection of violated sets output by VIOLATION on input A.

Let us consider again the minimum spanning tree problem. For any set A, V(A)
denotes the set of connected components of A, and we know that any minimal augmen-
tation B of A must induce a spanning tree when shrinking all connected components.
Therefore,

∑
Ti∈V(A) |B ∩ Ti | corresponds to the sum of the degrees of a spanning tree

on a graph with k = |V(A)| supervertices, and is thus equal to 2k− 2, independent of
the spanning tree. The upper bound γ on the performance guarantee can thus be set to
2. Theorem 4.2 will be used repeatedly in the next sections to prove the performance
guarantee of approximation algorithms for many network design problems.

The reader may be surprised that we did not prove optimality of the spanning tree
produced since the algorithm reduces to Kruskal’s greedy algorithm. The reason is sim-
ply that our linear programming formulation of the minimum spanning tree problem is
not strong enough to prove optimality. Instead of increasing the dual variables corre-
sponding to all sets S ∈ V , we could also view the algorithm as increasing a single dual
variable corresponding to the aggregation of the inequalities for every S ∈ V . The result-
ing inequality

∑
S∈V

∑
e∈δ(S) xe ≥ |V| can in fact be strengthened to

∑

S∈V

∑

e∈δ(S)
xe ≥ 2|V|−2

since any connected graph on k vertices has at least k− 1 edges. The value of the dual
solution constructed this way is therefore greater, and with this stronger formulation, it is
easy to see that the proof technique developed earlier will prove the optimality of the tree
produced. The use of valid inequalities in this primal-dual framework is also considered
in Bertsimas and Teo [BT95].

We would like to point out that the bound given in Theorem 4.2 is tight in the
following sense. If there exists a set A and a minimal augmentation B of A for which

∑

Ti∈V(A)
|B ∩ Ti | = γ |V(A)|,

then the algorithm can return solutions of value equal to γ times the value
∑p

i=1 yi of the
dual solution constructed by the algorithm. For this, one simply needs to set the cost of
all elements of A to 0 and to set appropriately the cost of the elements in B− A so that
they would all be added to A at the same time during the execution of the algorithm.

As a final remark, we could also allow the oracle VIOLATION to return sets which
do not need to be hit, as we did in the case of the minimum-cost arborescence problem.
The performance guarantee is given in the following theorem. Its proof is similar to the
proof of Theorem 4.2 and is therefore omitted.

THEOREM 4.3 If the oracle VIOLATION may return sets which do not need to be hit
then the performance guarantee of the primal-dual algorithm described in Figure 4.3 is

160 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

γ , provided that for any infeasible set A and any minimal augmentation B of A
∑

Ti∈V(A)
|B∩ Ti | ≤ γ c,

where V(A) denotes the collection of sets output by VIOLATION, and c denotes the
number of sets in V(A) which need to be hit.

EXERCISE 4.2 Prove the correctness of Dijkstra’s algorithm by using Theorem 4.1.

EXERCISE 4.3 Find an instance of the minimum-cost arborescence problem where the
use of a non-reverse delete step leads to a non-optimal solution.

EXERCISE 4.4 Consider the minimum spanning tree problem on a complete graph
with all edge costs equal to 1. Given a set A of edges, write a restricted primal in the
spirit of Section 4.2. Show that the unique optimum solution to its dual is to set the dual
variables corresponding to all connected components of (V, A) to 0.5 and all other dual
variables to 0.

EXERCISE 4.5 Prove Theorem 4.3.

A MODEL OF NETWORK DESIGN PROBLEMS

4.4

With a primal-dual method for approximation algorithms in place, we show how to apply
it to various other network design problems. In this and following sections, we will
discuss various problems and prove that the design principles listed above lead to good
approximation algorithms for these problems.

Most of the network design problems we discuss have as input an undirected graph
G= (V,E)with nonnegative edge costs ce, and can be modelled by the following integer
program:

Min
∑

e∈E

cexe

subject to:
(I P)

∑

e∈δ(S)
xe ≥ f (S) ∅ 6= S ⊂ V

xe ∈ {0,1} e ∈ E .

This integer program is a variation on some of the hitting set problems discussed above,
parametrized by the function f : 2V → N: here, our ground set is the set of edges E
and a feasible solution must contain at least f (S) edges of any cut δ(S). Sometimes we
consider further variations of the problem in which the constraint xe ∈ {0,1} is replaced
by xe ∈ N; that is, we are allowed to take any number of copies of an edge e in order
to satisfy the constraints. If the function f has range {0,1}, then the integer program

4.4 A MODEL OF NETWORK DESIGN PROBLEMS 161

(I P) is a special case of the hitting set problem in which we must hit the sets δ(S) for
which f (S)= 1.

We have already seen that (I P) can be used to model two classical network design
problems. If we have two vertices s and t , and set f (S)= 1 when S contains s but not t ,
then edge-minimal solutions to (I P) model the undirected s− t shortest path problem.
If f (S)= 1 for all ∅ 6= S ⊂ V , then (I P) models the minimum spanning tree problem.

The integer program (I P) can also be used to model many other problems, which
we will discuss in subsequent sections. As an example, (I P) can be used to model
the survivable network design problem, sometimes also called the generalized Steiner
problem. In this problem we are given nonnegative integers r i j for each pair of vertices
i and j , and must find a minimum-cost subset of edges E ′ ⊂ E such that there are
at least ri j edge-disjoint paths for each i, j pair in the graph (V,E ′). This problem
can be modelled by (I P) with the function f (S) =maxi∈S, j /∈S ri j ; a min-cut/max-flow
argument shows that it is necessary and sufficient to select f (S) edges from δ(S) in order
for the subgraph to have at least ri j paths between i and j . The survivable network design
problem is used to model a problem in the design of fiber-optic telephone networks
[GMS94, Sto92]. It finds the minimum-cost network such that nodes i and j will still
be connected even if ri j −1 edges of the network fail.

The reader may notice that the two network design problems mentioned above are
special cases of the survivable network design problem: the undirected s − t shortest
path problem corresponds to the case in which rst = 1 and ri j = 0 for all other i, j , while
the minimum spanning tree problem corresponds to the case r i j = 1 for all pairs i, j .
Other well-known problems are also special cases. In the Steiner tree problem, we are
given a set of terminals T ⊆ V and must find a minimum-cost set of edges such that
all terminals are connected. This problem corresponds to the case in which r i j = 1 if
i, j ∈ T and ri j = 0 otherwise. In the generalized Steiner tree problem, we are given p
sets of terminals T1, . . . ,Tp, where Ti ⊆ V . We must find a minimum-cost set of edges
such that for each i , all the vertices in Ti are connected. This problem corresponds to
the survivable network design problem in which r i j = 1 if there exists some k such that
i, j ∈ Tk , and ri j = 0 otherwise. We will show how the primal-dual method can be applied
to these two special cases (and many others) in Section 4.6, and show how the method
can be applied to the survivable network design problem in general in Section 4.7.

It is not known how to derive good approximation algorithms for (I P) for any given
function f . Nevertheless, the primal-dual method can be used to derive good appro-
ximation algorithms for particular classes of functions that model interesting network
design problems, such as those given above. In the following sections we consider vari-
ous classes of functions f , and prove that the primal-dual method (with the design rules
of the previous section) gives good performance guarantees.

4.4.1 0-1 FUNCTIONS

First we focus our attention on the case in which the function f has range {0,1}. We often
refer to such functions as 0-1 functions. The shortest path, minimum spanning tree, and
(generalized) Steiner tree problems all fit in this case, as well as many other problems to
be discussed in the coming sections. For functions with range {0,1}, the integer program

162 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

(I P) reduces to

Min
∑

e∈E

cexe

subject to:
(I P)

∑

e∈δ(S)
xe ≥ 1 S : f (S)= 1

xe ∈ {0,1} e ∈ E,

and the dual of its LP relaxation is:

Max
∑

S: f (S)=1
yS

subject to: ∑

S:e∈δ(S)
yS ≤ ce e ∈ E

yS ≥ 0 S : f (S)= 1.

Observe that the edge-minimal solutions of (I P) are forests since one can remove
arbitrarily any edge from a cycle without destroying feasibility. In Figure 4.4, we have
specialized the algorithm of Figure 4.3 to this case, assuming the oracle VIOLATION
returns the minimal violated sets. As already mentioned in the previous section, we will
often stretch our terminology to say that a vertex set S is violated, instead of saying
that the associated cut T = δ(S) is violated. Let δA(S) = δ(S)∩ A. Then a set S ⊂ V
is violated when δA(S)= ∅ and f (S)= 1. We can restate Theorem 4.2 as follows.

THEOREM 4.4 The primal-dual algorithm described in Figure 4.4 delivers a feasible
solution of cost at most γ

∑
S: f (S)=1 yS ≤ γ zO PT , if γ satisfies that for any infeasible set

A and any minimal augmentation B of A
∑

S∈V(A)
|δB(S)| ≤ γ |V(A)|,

where V(A) denotes the collection of minimal violated sets.

1 y← 0
2 A←∅
3 l← 0
4 While A is not feasible
5 l← l+1
6 V← {minimal violated sets S}
7 Increase yS uniformly for all S ∈ V until ∃el ∈ δ(T),T ∈ V :

∑
S:el∈δ(S) yS = cel

8 A← A∪{el}
9 For j← l downto 1

10 if A−{e j } is feasible then A← A−{e j }
11 Output A (and y)

FIGURE 4.4

Primal-dual algorithm for (I P) with uniform increase rule
on minimal violated sets and reverse delete step.

4.4 A MODEL OF NETWORK DESIGN PROBLEMS 163

For general functions f with range {0,1}, there could be exponentially many sets S
for which f (S)= 1. As a result, we assume that f is implicitly given through an oracle
taking a set S as input and outputting its value f (S). But, for arbitrary 0-1 functions,
it might not be easy to check whether an edge set A is feasible, i.e. whether it hits all
cuts δ(S) for which f (S) = 1. Also, the minimal violated sets might not have any nice
structure as they do for the shortest path or minimum spanning tree problems. However,
consider the class of functions satisfying the maximality property:

• [Maximality] If A and B are disjoint, then f (A∪ B)≤max(f (A), f (B)).

For functions with range {0,1}, this can also be expressed as:

• [Maximality] If A and B are disjoint, then f (A) = f (B) = 0 implies
f (A∪ B)= 0.

This is equivalent to requiring that if f (S) = 1 then for any partition of S at least one
member of the partition has an f (.) value equal to 1. For this class of functions, the
following lemma shows how to check whether an edge set is feasible and, if it is not,
how to find the minimal violated sets.

LEMMA 4.1 Let f be a function with range {0,1} satisfying the maximality property.
Let A be any edge set. Then,

1. A is feasible for f if and only if every connected component C of (V, A) satisfies
f (C)= 0,

2. the minimal violated sets of A are the connected components C of (V, A) for
which f (C)= 1.

Proof. Consider a violated set S, i.e. a set S for which f (S)= 1 but δA(S)=∅. Clearly,
S must consist of the union of connected components of (V, A). But, by maximality, one
of these components, say C , must satisfy f (C)= 1, and is thus a violated set. Thus, only
connected components can correspond to minimal violated sets, and A is feasible only
if no such component has f (C)= 1.

In the case of functions satisfying the maximality property, the collection V(A) of
minimal violated sets can thus easily be updated by maintaining the collection C(A) of
connected components of (V, A). This is exploited in Figure 4.5, where we present a
more detailed implementation of the primal-dual algorithm of Figure 4.4 in the case of
functions satisfying maximality. When implementing the algorithm, there is no need to
keep track of the dual variables yS . Instead, in order to be able to decide which edge to
select next, we compute for every vertex i ∈ V the quantity d(i) defined by

∑
S:i∈S yS.

Initially, d(i) is 0 (lines 5-6) and it increases by ε whenever the dual variable corre-
sponding to the connected component containing i increases by ε (line 12). As long as
i and j are in different connected components C p and Cq (respectively), the quantity
(ce− d(i)− d(j))/(f (C p)+ f (Cq)) being minimized in line 10 represents the differ-
ence between the addition time of edge e = (i, j) and the current time. This explains
why the edge with the smallest such value is being added to A. When an edge is added
to A, the collection C of connected components of (V, A) is updated in line 15. We are
also maintaining and outputting the value L B of the dual solution, since this allows us to

164 CHAPTER 4 PRIMAL-DUAL METHOD FOR APPROXIMATION

1 A←∅
2 Comment: Implicitly set yS← 0 for all S ⊂ V
3 L B← 0
4 C← {{v} : v ∈ V }
5 For each i ∈ V
6 d(i)← 0
7 l← 0
8 While ∃C ∈ C : f (C)= 1
9 l← l+1

10 Find edge el = (i, j)with i ∈C p ∈C, j ∈Cq ∈ C, C p 6=Cq that minimizes ε= cel−d(i)−d(j)

f (Cp)+ f (Cq)

11 A← A∪{el}
12 For all k ∈ Cr ∈ C do d(k)← d(k)+ ε · f (Cr)

13 Comment: Implicitly set yC ← yC + ε · f (C) for all C ∈ C.
14 L B← L B+ ε∑C∈C f (C)
15 C← C∪{C p ∪Cq}−{C p}−{Cq}
16 For j← l downto 1
17 If all components C of A−{e j } satisfy f (C)= 0 then A← A−{e j }
18 Output A and L B

FIGURE 4.5

Primal-dual algorithm for (I P) for functions satisfying
the maximality property.

estimate the quality of the solution on any instance. The algorithm can be implemented
quite easily. The connected components can be maintained as a union-find structure of
vertices. Then all mergings take at most O(nα(n,n)) time overall, where α is the in-
verse Ackermann function and n is the number of vertices [Tar75]. To determine which
edge to add to A, we can maintain a priority queue of edges, where the key of an edge
is its addition time a(e). If two components C p and Cq merge, we only need to update
the keys of the edges incident to C p ∪Cq . Keeping only the smallest edge between two
components, one derives a running time of O(n2 logn) for all queue operations and this
is the overall running time of the algorithm. This is the original implementation as pro-
posed by the authors in [GW95a]. Faster implementations have been proposed by Klein
[Kle94] and Gabow, Goemans, and Williamson [GGW93].

Even for 0-1 functions obeying maximality, the parameter γ of Theorem 4.4 can be
arbitrarily large. For example, consider the problem of finding a tree of minimum cost
containing a given vertex s and having at least k vertices. This problem corresponds
to the function f (S) = 1 if s ∈ S and |S| < k, which satisfies maximality. However,
selecting A= ∅ and B a star rooted at s with k vertices, we observe that γ ≥ k−1. As a
result, for this problem, the primal-dual algorithm can output a solution of cost at least
k−1 times the value of the dual solution produced.

In the following two sections, we apply the primal-dual algorithm to some sub-
classes of 0-1 functions satisfying maximality. We show that, for these subclasses, the
primal-dual algorithm of Figures 4.4 and 4.5 is a 2-approximation algorithm by proving
that γ can be set to 2. Before defining these subclasses of functions, we reformulate γ in

4.5 DOWNWARDS MONOTONE FUNCTIONS 165

terms of the average degree of a forest. This explains why a performance guarantee of 2
naturally arises. To prove that γ = 2, we need to show that, for any infeasible set A and
any minimal augmentation B of A, we have

∑
S∈V(A) |δB(S)| ≤ 2|V(A)|. For functions

satisfying the maximality property, the collection V(A) of minimal violated sets con-
sists of the connected components of (V, A) whose f (.) value is 1 (Lemma 4.1). Now,
construct a graph H formed by taking the graph (V,B) and shrinking the connected com-
ponents of (V, A) to vertices. For simplicity, we refer to both the graph and its vertex set
as H . Because B is an edge-minimal augmentation, there will be a one-to-one correspon-
dence between the edges of B− A and the edges in H , and H is a forest. Each vertex v
of H corresponds to a connected component Sv ⊂ V of (V, A); let dv denote the degree
of v in H , so that dv = |δB(Sv)|. Let W be the set of vertices of H such that for w ∈W ,
f (Sw) = 1. Then, each of these vertices corresponds to a minimal violated set; that is,
V(A)= {Sw|w ∈W }. Thus, in order to prove the inequality

∑
S∈V(A) |δB(S)| ≤ 2|V(A)|,

we simply need to show that
∑

v∈W

dv ≤ 2|W |. (4.6)

In other words, the average degree of the vertices in H corresponding to the violated
sets is at most 2. In the next two sections, we show that equation (4.6) holds for two
subclasses of functions satisfying the maximality property.

EXERCISE 4.6 Show that the function f corresponding to the generalized Steiner tree
problem satisfies the maximality property.

DOWNWARDS MONOTONE FUNCTIONS

4.5

In this section, we consider the network design problems that can be modelled by the
integer program (I P) with functions f that are downwards monotone. We say that a
function is downwards monotone if f (S) ≤ f (T) for all S ⊇ T 6= ∅. Notice that any
downwards monotone function satisfies maximality and, as a result, the discussion of
the previous section applies. Later in the section, we will prove the following theorem.

THEOREM 4.5 The primal-dual algorithm described in Figure 4.5 gives a 2-approxi-
mation algorithm for the integer program (I P) with any downwards monotone function
f : 2V → {0,1}.

In fact, we will also show that applying the reverse delete procedure to the edges
of a minimum spanning tree is also a 2-approximation algorithm for the problem; see
Figure 4.6 for the algorithm. The advantage of the algorithm in Figure 4.6 is that its
running time is that of computing the minimum spanning tree and sorting its edges, rather
than O(n2 logn) time. Thus, the algorithm takes O(m+n logn) time in general graphs,
and O(n logn) time in Euclidean graphs.

