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We investigate the linear stability of a film flowing down a solid substrate in the
presence of soluble surfactants. The Navier–Stokes equations for the liquid motion
are considered, together with advection–diffusion equations for the concentrations of
the species involved, which include monomers dissolved in the bulk and adsorbed at
the liquid–air and at the liquid–substrate interfaces. The adsorption–desorption kinetics
of the surfactant at both interfaces is explicitly accounted for. An Orr–Sommerfeld
eigenvalue problem is formulated, and solved analytically in the limit of long-
wave disturbances and numerically for arbitrary wavelength using a finite element
method. An extensive parametric study is performed to reveal the role of surfactant
solubility and adsorption–desorption kinetics. The results quantify the stabilizing
effect of soluble surfactants due to the presence of Marangoni stresses, and indicate
that moderately soluble surfactants may be more effective than insoluble ones.
Disturbances of finite wavelength are stabilized by more than an order of magnitude,
and their detailed behaviour depends in a non-monotonic way on the amount of
surfactant and on its solubility and kinetics. The above predictions provide insights for
the interpretation of recent experimental findings on the primary instability and on the
ensuing unstable dynamics of liquid films doped with soluble surfactants.
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1. Introduction

The formation of waves in thin films flowing down inclined surfaces has attracted
the interest of many researchers in the past because of their importance in a broad
range of engineering applications. Extensive reviews on the rich dynamics of this
system and the main developments in the field are given in Chang (1994), Oron, Davis
& Bankoff (1997) and Craster & Matar (2009).

It is well known that interfacial instabilities can be significantly affected by the
presence of surface-active materials (surfactants). Wave formation in falling films is
no exception and this has been known since ancient times. Early experimental studies
(e.g. see Emmert & Pigford 1954; Stirba & Hurt 1955; Tailby & Portalski 1961)
showed that the addition of even small amounts of surfactant can have a stabilizing
influence on the flow, dampening the waves that would otherwise arise on a falling
liquid film. The first attempts to investigate the mechanisms that are responsible for
the stabilization of the flow were made by Benjamin (1964) and Whitaker (1964)
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following different routes. Whitaker (1964) treated the liquid–air interface as a two-
dimensional Newtonian fluid and examined the effect of various surface properties
such as the surface viscosity, surface elasticity and diffusion of surfactant at the
interface from the bulk. He presented numerical solutions of the Orr–Sommerfeld
equation, albeit using approximate boundary conditions, and concluded that elasticity,
which was due to surface tension gradients, was responsible for the stabilization of the
liquid film flowing down a vertical wall below a critical value of the Reynolds number,
in contrast to the case of clean liquids where the flow is unstable at all Reynolds
numbers. Whitaker & Jones (1966) and Lin (1970) later presented a perturbation
solution of the same problem in the limit of small wavenumbers. Benjamin (1964),
on the other hand, considered the interface as a two-dimensional viscoelastic fluid and
presented an analytical solution of the Orr–Sommerfeld equation assuming long-wave
disturbances. Despite the significant differences between the two approaches, in the
case of an insoluble surfactant the analytical prediction was found to be exactly the
same, providing an unambiguous confirmation that the elasticity is the mechanism
responsible for the stabilization of the flow. An asymptotic analysis for large values
of the elasticity parameter by Anshus & Acrivos (1967) confirmed the findings of the
previous works about the existence of a critical Reynolds number and also showed that
the presence of surfactants results in the decrease of the growth rate and increase of
the wavelength of the most unstable mode.

The theoretical results by Whitaker (1964) also suggested that the wave velocity
should increase with increasing elasticity of the interface. However, the experimental
work of Strobel & Whitaker (1969) indicated that the free-surface velocity actually
decreases for increased surfactant concentration and this was later confirmed
experimentally and theoretically by Cerro & Whitaker (1971). The latter work also
noted that surface velocity depends strongly on the surface elasticity and is only mildly
affected by surfactant diffusivity and interfacial mass transport.

More recently the linear stability for vertical film flows with diffusion to the surface
and desorption of the surfactant to the gas phase was also examined by Ji & Setterwall
(1994). They were mostly interested in cases where surface instabilities could be
enhanced by the presence of surfactants and, for the purposes of their analysis, they
chose to ignore the kinetics of adsorption and assumed that there is equilibrium at the
interface. Enhancement of instability was also shown by Yiantsios & Higgins (2010) to
be possible under conditions for evaporating thin films in the presence of non-volatile
soluble surfactants. Shkadov, Velarde & Shkadova (2004) used lubrication theory to
derive a reduced-order model and examined the linear stability of a similar system
taking into account the sorption kinetics at the interface. They were able to recognize
four new Marangoni-driven modes and it was shown that the observed modes depend
significantly on the sorption kinetics and much less on the equation of state for surface
tension.

The effect of insoluble surfactants on the linear stability of a film flowing down
a corrugated wall in the limit of vanishing Reynolds number was examined by
Pozrikidis (2003). Subsequently, Blyth & Pozrikidis (2004) presented a numerical
solution of the Orr–Sommerfeld eigenvalue problem for finite Reynolds numbers of
a film laden with insoluble surfactant flowing on an inclined plane and demonstrated
the occurrence of the usual interfacial mode along with a new mode associated with
the spatial variation of the surfactant concentration. The same problem was also
studied by Pereira & Kalliadasis (2008) who presented a systematic analysis of the
Orr–Sommerfeld problem of the full Navier–Stokes and concentration equations and
also investigated the nonlinear dynamics in the unstable regime.
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Despite the large number of studies on the role of surfactants on film flows and the

fact that this is a very old problem, it appears from the above review that the effects of

surfactant solubility and adsorption/desorption kinetics on the primary instability and

on the unstable dynamics have not yet been adequately addressed. In addition, there is

recent experimental activity that points to a non-trivial influence of these parameters.

For example, Georgantaki, Vlachogiannis & Bontozoglou (2012) performed a series

of experiments on inclined film flows to study the role of different agents that may

have an important effect on the interfacial tension of water. For the purposes of

their study, Georgantaki et al. used aqueous solutions of isopropanol (IP) and sodium

dodecyl sulphate (SDS) and found that these two agents exhibit a remarkably different

influence on the flow. More specifically, it was shown that, in the case of IP solutions,

the inlet disturbances turned into solitary humps preceded by capillary ripples, as

would be expected for a clean fluid with similar surface tension as the IP solution. On

the contrary, when SDS solutions were used, the dominant structures were sinusoidal

travelling waves of small amplitude. These structures were found to be extremely

stable for a wide range of frequencies and up to high Reynolds numbers. Also, with

respect to the primary instability, the same authors observed a strong stabilization of

water films by the addition of small amounts of SDS, whereas previous results with IP

solutions (Georgantaki et al. 2011) had shown no difference in the critical Reynolds

number from that of other clean liquids with the same Kapitza number (the definition

of Ka is given in § 3 below).

Substances IP and SDS have very different properties, and in a sense represent

two extreme examples of soluble agents that modify the surface properties of water.

IP is very soluble and decreases significantly the surface tension of its solutions.

However, it does not show any particular affinity for the liquid–air interface, and

thus may not formally be classified as a surfactant. In contrast, SDS exhibits strong

partitioning between the liquid–air interface and the bulk. The behaviour of these

two agents brackets a whole range of additives that are moderately soluble and show

an increasing affinity for the interface, and a theoretical treatment that recovers both

limits is evidently welcome. The mechanisms that are responsible for the transition

from the behaviour of IP to that of SDS are not fully understood, and it is speculated

that they may be an outcome of the different solubility and/or sorption kinetics.

The scope of our study is to reveal these mechanisms and to this end we examine in

detail the linear stability of a film laden with a non-volatile, soluble surfactant flowing

down an inclined plane. We perform a systematic analysis of the Orr–Sommerfeld

eigenvalue problem of the full Navier–Stokes and concentration equations, taking

into account mass exchange by diffusion and convection between the bulk and the

interfaces, as well as the effect of sorption kinetics along the liquid–air interface and

along the substrate. We focus on surfactant concentrations below the critical micelle

concentration (CMC) and as a result, we ignore for the moment possible effects of

intrinsic surface viscosity (Fruhner, Wantke & Lunkenheimer 1999), which might be

non-negligible at higher concentrations.

The paper is organized as follows. In §§ 2 and 3 we describe the details of our

model and the governing equations. The linear stability analysis is performed in § 4,

and consists of an analytical solution in the limit of disturbances with very small

wavenumber and a numerical solution for arbitrary wavenumbers. The results are

presented and discussed in § 5, followed by concluding remarks in § 6.
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FIGURE 1. Schematic of a falling film in the presence of soluble surfactants.

2. Problem formulation

We consider the dynamics of liquid films flowing along an infinite planar wall,
inclined at an angle α with the horizontal plane (see figure 1). The film is laden with
a soluble, non-volatile surfactant which may adsorb at the liquid–air interface altering
the surface tension, or it can exist in the bulk in the form of monomers or it may
adsorb at the liquid–solid interface. The fluid is Newtonian with density ρ, kinematic
viscosity ν and surface tension σ ; the density and kinematic viscosity are considered
constant whereas the surface tension depends on the interfacial concentration of the
surfactant.

In order to model two-dimensional dynamics, we use a Cartesian coordinate system
(x, z), with x pointing in the streamwise and z in the cross-stream direction. The
velocity field is u = (u,w), where u and w are the velocity components in the
streamwise and the cross-stream direction. The liquid–air interface is located at
z = h(x, t) and the liquid–solid interface at z = 0. The flow is incompressible and
governed by the momentum and mass conservation equations:

ut + u ·∇u +
1

ρ
∇p − ν∇2

u − g = 0, (2.1)

∇ ·u = 0, (2.2)

where p is the pressure, ∇ is the gradient operator and g = g(sinα,− cosα). Unless
stated otherwise, the subscripts denote partial differentiation with respect to x, z and
time t.

Solutions of (2.1) and (2.2) are obtained subject to the following boundary
conditions. Along the free surface, the velocity field satisfies the local force balance
between normal and viscous stresses in the liquid. Taking the components of this force
balance tangential and normal to the free surface (z = h(x, t)) we obtain

n · τ · t = t ·∇sσ, (2.3)

n · τ ·n = −pair + 2κσ, (2.4)
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where n = (−hx, 1)/(1 + h2
x)

1/2
and t = (1, hx)/(1 + h2

x)
1/2

denote respectively the
outward unit normal and unit tangential vectors on the interface; 2κ is the mean
curvature of the free surface and ∇s is the surface gradient operator, defined as

2κ = −∇s ·n, ∇s = (I − nn) ·∇, (2.5)

and τ is the total stress tensor,

τ = −pI + ρν(∇u + (∇u)T), (2.6)

where I is the identity tensor.
In addition, along the moving interface (z = h(x, t)) we impose the kinematic

boundary condition,

ht + uhx = w. (2.7)

At the liquid–solid interface (z = 0), the usual no-slip, no-penetration conditions are
imposed,

u = 0, w = 0. (2.8)

To account for the presence of soluble surfactants, we utilize the surfactant kinetic
model of Edmonstone, Craster & Matar (2006) and Karapetsas, Craster & Matar
(2011a,b) that allows in general for two surfactant species in the bulk (monomers
and micelle aggregates) and one at each interface. For the present study we consider
surfactant concentrations below the critical micelle concentration and thereby we will
not account for the presence of micelles but will only consider monomers that may
live in the bulk with concentration, c. The concentrations of surfactant adsorbed at the
liquid–air and liquid–solid interface are denoted respectively by ca and cs, and they
are connected to the local bulk concentration of monomer according to the following
kinetic laws:

Sa + c
k1
⇋
k2

ca, (2.9)

and

Ss + c
k3
⇋
k4

cs. (2.10)

The terms Si (i = a, s for the interface and the substrate) represent the fraction of the
respective area that is not covered with monomer, and is thus available for adsorption.
They are defined as

Si = 1 −
ci

ci∞

(i = a, s), (2.11)

where ci∞ (i = a, s) are respectively the surfactant concentrations at the liquid–air
interface and at the substrate at maximum packing. Note that each ‘reaction’ used for
this model is characterized by a rate constant ki, with i = 1, 2, 3, 4. The limitation
set by the above kinetic laws on the amount of monomer that can be adsorbed at
each boundary leads to Langmuir adsorption isotherms (Edwards, Brenner & Wasan
1991). Indeed, equating adsorption and desorption rates, and taking c as the bulk
concentration close to the respective interface, we obtain the following expressions for
the interfacial concentrations:

ca

ca∞

=
c

c + (k2ca∞/k1)
,

cs

cs∞

=
c

c + (k4cs∞/k3)
. (2.12)
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In the general case away from equilibrium, we use the above kinetic laws to
generate the following fluxes that determine how the surfactant transfers between the
different phases:

Jba = k1c|z=h

(

1 −
ca

ca∞

)

− k2ca, (2.13)

Jbs = k3c|z=0

(

1 −
cs

cs∞

)

− k4cs, (2.14)

where Jba and Jbs denote the flux of monomers from the bulk to the liquid–air and
liquid–solid interface, respectively.

The behaviour of the various surfactant species is modelled by the following
advection–diffusion equations:

ca,t + ∇s · (usca)+ ca (∇s ·n) (u ·n)= Da∇
2
s ca + Jba, (2.15)

ct + u ·∇c = Db∇
2c, (2.16)

cs,t = Ds∇
2
s cs + Jbs, (2.17)

where us is the tangential velocity at the interface defined as us = (I − nn) · u and
Di (i = a, b, s) denote the diffusion coefficients of the monomers at the liquid–air
interface, in the bulk and at the substrate, respectively.

For the monomers in the bulk we apply the following boundary conditions along the
interface and the substrate:

Jba = −Db(n ·∇c)z=h, (2.18)

Jbs = −Db(n ·∇c)z=0. (2.19)

To complete the description, a constitutive equation that describes the dependence of
the interfacial tension on the surfactant concentrations is required. To this end, we use
the Sheludko equation of state (Sheludko 1967; Gaver & Grotberg 1990):

σ = σc

(

1 +
ca

ca∞

[

(

σc

σm

)1/3

− 1

])−3

, (2.20)

where σc and σm are the surface tensions of a surfactant-free fluid and of maximal
surfactant concentration, respectively. This model is nonlinear and asymptotes to a
minimal surface tension, σm, at high concentrations of adsorbed surfactant, which
makes it appropriate for use at high surfactant concentrations, approaching the critical
micelle concentration.

The total mass of the surfactant added to the liquid film per unit width, Mtot, is a
conserved quantity, given by

∫ L

0

∫ h

0

c dz dx +

∫ L

0

ca dx +

∫ L

0

cs dx = Mtot, (2.21)

where L is the length of the falling film.

3. Scaling

The governing equations and boundary conditions are made dimensionless, using the
following scalings:

(x̃, z̃)= (x, z)/H, h̃ = h/H, t̃ = tU/H, ũ = u/U, (3.1)
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p = pair + ρgH sinαp̃, (c̃a, c̃s, c̃)=

(

ca

ca∞

,
cs

cs∞

,
c

ccmc

)

, (3.2)

(

J̃ba, J̃bs

)

=

(

Jba

ca∞

,
Jbs

cs∞

)

H

U
, σ̃ =

σ

σc

, M̃tot =
Mtot

HLccmc

, (3.3)

where H = (3νQ/(g sinα))1/3 is the height of the Nusselt flat film, Q is the imposed
flow rate, U is the corresponding interfacial velocity, U = gH2 sinα/(2ν), and ccmc is
the critical micelle concentration. The tildes denote dimensionless variables and are
henceforth suppressed. Using this scaling, three dimensionless numbers emerge: the
Reynolds, Weber and surface Péclet numbers, respectively defined

Re =
χ

2
sinα, We =

Ka

χ 2/3 sinα
, Pei = ReSci (i = a, s, b,m), (3.4)

where

χ =
gH3

ν2
, Ka =

σc

ρg1/3ν4/3
, Sci =

ν

Di

(i = a, b, s), (3.5)

correspond to a modified Reynolds number, the Kapitza number and the Schmidt
number, respectively. The parameterization shown in (3.5) is advantageous for the
study of our system since the modified Reynolds number, χ , is the only parameter in
(3.5) that depends on the film height, which is a measure of the flow rate, whereas
Ka and Sci (i = a, b, s) depend only on material properties. For a given liquid and
surfactant the only free parameters are χ and α while the rest remain constant. This
is very useful for our parametric study, and thus parameterization according to (3.5)
is preferred over that of (3.4), and will be used extensively in the discussion of the
results.

Substitution of these scalings into the momentum and mass conservation governing
equations yields

Re(ut + uux + wuz)+ 2px − uxx − uzz − 2 = 0, (3.6)

Re(wt + uwx + wwz)+ 2pz − wxx − wzz + 2 cotα = 0, (3.7)

ux + wz = 0. (3.8)

The behaviour of the surfactant monomers in the bulk is governed by the following
dimensionless equation:

ct + ucx + wcz = Pe−1
b (cxx + czz). (3.9)

The above set of equations is subject to the following boundary equations along the
interface (z = h(x, t)):

−4uxhx + (uz + wx)(1 − h2
x)= 2We σx

√

1 + h2
x, (3.10)

p +
ux(1 − h2

x)+ (uz + wx)hx

1 + h2
x

= −We σ
hxx

(1 + h2
x)

3/2
, (3.11)

ht + uhx = w, (3.12)

ca,t + uca,x +
ca

1 + h2
x

[(ux + hxwx)+ hx(uz + hxwz)]

=
1

Peca

√

1 + h2
x

[

ca,x
√

1 + h2
x

]

x

+ Jba, (3.13)
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hxcx − cz

Peb

√

1 + h2
x

= βaJba; (3.14)

and along the wall (z = 0)

u = w = 0, (3.15)

cs,t = Pe−1
cs cs,xx + Jbs, (3.16)

cz

Peb

= βsJbs. (3.17)

The dimensionless expressions for the fluxes are

Jba = ka(Rac|z=h(1 − ca)− ca), (3.18)

Jbs = ks(Rsc|z=0(1 − cs)− cs), (3.19)

where the dimensionless parameters βi, ki and Ri (i = a, s) are given by

βa =
ca∞

Hccmc

, βs =
cs∞

Hccmc

, (3.20)

ka =
k2H

U
, ks =

k4H

U
, Ra =

k1ccmc

k2ca∞

, Rs =
k3ccmc

k4cs∞

. (3.21)

The dimensionless form of the Sheludko equation of state for the surface tension is
given by

σ = [1 + ca(Σ
1/3 − 1)]

−3
, (3.22)

where Σ = σc/σm. One additional dimensionless parameter will appear in the next
section, as a result of the linearization of the equation of state around the base flow.
This parameter, the surface elasticity Eo, is related to the derivative of surface tension
along the interface (equation (3.10)) and is formally defined by (4.24).

At this point, it is instructive to attach physical significance to the various
dimensionless parameters just defined, and to draw attention to the ones that will
be used more extensively in the discussion of the results. Terms βi (i = a, s) are ratios
of maximum total amounts of surfactant in the different phases. More specifically,
they compare the maximum amount that can adsorb on each boundary to the
maximum amount that can reside in the bulk as monomer. Terms Ri (i = a, s) are
ratios of the maximum possible forward and backward reaction rates for each of the
adsorption processes. Their physical significance is further clarified by considering
local equilibrium: For example, setting the flux in (3.18) equal to zero, results in the
expression ca = Rac/(1 + Rac). For Ra 6 O(1), we observe that ca < 1 even when
c = 1, i.e. the interface remains unsaturated at the maximum possible concentration
of monomer in the bulk (remember that c is non-dimensionalized with ccmc, and ca

with ca∞). On the contrary, for Ra ≫ O(1) the interface is practically saturated at bulk
concentration well below the critical value for the formation of micelles.

Parameters βi and Ri may be combined as follows:

ξa = βaRa =
k1

Hk2

, ξs = βsRs =
k3

Hk4

. (3.23)

Terms ξi (i = a, s) are ratios of the kinetic constants of the forward and backward
reaction for each interface–bulk interaction, and thus provide a direct measure of
the surfactant solubility in the bulk liquid (Jensen & Grotberg 1993). For example,
ξa ≪ 1 signifies a highly soluble surfactant, whereas for ξa ≫ 1 the surfactant is
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virtually insoluble and is trapped at the interface. We note that most of the recent
theoretical literature refers to insoluble surfactants, and thus ξa ≫ 1 is a useful limit
for comparisons.

We will be making extensive use of the solubilities, ξi, in what follows, because
some important aspects of the system behaviour are not dictated by the parameters
βi and Ri independently, but only by their combination βiRi. This is notably the case
for the critical Reynolds number and for the concentration for maximum stability (see
(4.42) and (5.1) below).

Finally, parameters ki (i = a, s) are ratios of the time scale of convection to the
time scale of each of the reverse reactions. For example, ka ≪ 1 means that the
desorption reaction is slow compared to convection, and thus a temporary decrease
of the bulk concentration near the interface will not lead to significant desorption.
Similar comparison for the forward reaction (e.g. extent of adsorption resulting from
a temporary local increase in the bulk concentration) is accomplished using the
parameter kaβaRa = kaξa. Thus, an asymmetry in the adsorption–desorption tendency
may be dictated by the value of ξa, i.e. the solubility of the surfactant. For example,
a sparingly soluble surfactant could have ka < 1 and kaξa > 1, and as a result, a
temporary decrease of the bulk concentration near the interface will not lead to
significant desorption whereas a temporary increase will lead to significant adsorption.

4. Linear stability analysis

4.1. Base state

The set of dimensionless equations and boundary conditions, derived in the previous
section, has a trivial solution corresponding to a flat film with uniform surfactant
concentration. In the case of a clean fluid, this is also known as the Nusselt flat film
solution and its dimensionless form is

ho = 1, uo = 2z − z2, wo = 0, po = (1 − z) cotα. (4.1)

In order for the above solution to remain valid when a soluble surfactant is present, the
concentration of all the species should be uniform and at equilibrium

(ca, cs, c)= (cao, cso, co), (4.2)

where cao, cso, co denote the equilibrium values. The equilibrium surface tension of the
liquid–air interface,

σo = [1 + cao(Σ
1/3 − 1)]

−3
, (4.3)

is also uniform and any variation in concentration would result in surface tension
gradients which would drive additional flows. At equilibrium the fluxes should be
Jba = Jbs = 0. Thus using (3.18) and (3.19) we get

cio =
Rico

1 + Rico

(i = a, s). (4.4)

We also know that the total mass of the surfactant is given by the following equation:

co + βacao + βscso = Mtot, (4.5)

which can be solved numerically with respect to co for a given value of Mtot. Below,
we have derived an analytical solution for co and cao, assuming that there is no
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FIGURE 2. Dependence of monomer surfactant concentration at the interface (a) and in the
bulk (b) on the parameter ξa for various values of βa and Mtot. We assume that surfactant does
not adsorb at the substrate (βs = Rs = 0).

adsorption of surfactant at the substrate, cso = 0:

co =
−1 − ξa + Mtot ξa/βa +

√

4Mtot ξa/βa + (1 + ξa − Mtot ξa/βa)
2

2ξa/βa

, (4.6)

cao =
−1 − ξa + Mtot ξa/βa +

√

4Mtot ξa/βa + (1 + ξa − Mtot ξa/βa)
2

1 − ξa + Mtot ξa/βa +
√

4Mtot ξa/βa + (1 + ξa − Mtot ξa/βa)
2
. (4.7)

The above solution is shown graphically in figure 2 as a function of the solubility
parameter ξa and for various values of βa and Mtot. As expected, we find that for high
values of ξa (low solubility) most of the surfactant is at the interface whereas for low
values of ξa (high solubility) it prefers to be in the bulk.

In the case of an insoluble surfactant, we simply take

cao = M′
tot, (4.8)

where M′
tot = Mtot/βa and co is equal to zero.

4.2. Derivation of linearized equations and boundary conditions

We perform a linear stability analysis by perturbing the flow around the Nusselt flat
film solution. To this end we write all variables as the sum of the base state and a
small perturbation,

φ = φo + φ, (4.9)
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and linearize the governing equations assuming φ ≪ φo. We end up with the following
linearized disturbance equations:

Re(ut + (2z − z2)ux + 2(1 − z)w)+ 2px − uxx − uzz = 0, (4.10)

Re(wt + (2z − z2)wx)+ 2pz − wxx − wzz = 0, (4.11)

ux + wz = 0, (4.12)

ct + (2z − z2)cx = Pe−1
b (cxx + czz); (4.13)

and the following boundary conditions along the interface:

−2h + uz + wx = 2We σ x, (4.14)

p + ux − h cotα = −We hxxσo, (4.15)

ht + hx = w, (4.16)

ca,t + ca,x + caoux =
ca,xx

Peca

+ Jba, (4.17)

cz

Peb

= −βaJba; (4.18)

and along the wall
u = w = 0, (4.19)

cs,t =
cs,xx

Pecs

+ Jbs, (4.20)

cz

Peb

= βsJbs. (4.21)

The linearized perturbation fluxes are

Jba = ka[Ra(c|z=h(1 − cao)− coca)− ca], (4.22)

Jbs = ks[Rs(c|z=0(1 − cso)− cocs)− cs]. (4.23)

It is also worth noting the linearization of the equation of state for the surface
tension around the base state, σ − σo = (dσ/dca)cao

(ca − cao), or σ = (dσ/dca)cao
ca.

This derivative may be re-framed in terms of the definition of the dimensionless
surface elasticity (scaled with surface tension of a clean fluid, σc), E(ca),

Eo = E(cao)= −

(

dσ

d ln ca

)

cao

= −cao

(

dσ

dca

)

cao

, (4.24)

so that perturbations in surface tension are replaced by perturbations in surface
concentration:

σ = −
Eo

cao

ca, σ x = −
Eo

cao

ca,x. (4.25)

Using the dimensionless equation of state, surface elasticity is expressed in terms of
the surface concentration by

Eo =
3cao(Σ

1/3 − 1)

[1 + cao(Σ1/3 − 1)]
4
. (4.26)

Figures 3(a) and 3(b) show respectively the functions σ(cao) and E(cao) and their
dependence on the interfacial concentration, cao, and the total amount of surfactant,
Mtot. It is evident that the Sheludko equation of state exhibits a smooth approach to
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FIGURE 3. Dependence of (a) surface tension and (b) elasticity on the interfacial
concentration, cao, and the total amount of surfactant, Mtot, for βa = 0.01.

the limiting values for a clear and for a saturated interface, and that, in both these
limits, the surface elasticity increases smoothly until it saturates for high amounts of
surfactant.

The above set of equations is converted into the Orr–Sommerfeld problem of the
linearized Navier–Stokes and concentration equations by introducing the following
definition for the stream function:

u = ψ z, w = −ψ x, (4.27)

and seeking disturbances in the form of normal modes. To this end, we write all
variables in the following way:











ψ(x, z, t)

c(x, z, t)

ca(x, t)

cs(x, t)











=











Ψ (z)

C(z)

Ca

Cs











exp(λt + ikx), (4.28)

and end up with the following set of equations

Re[(λ+ ik(2z − z2))(Ψzz − k2Ψ )+ 2ikΨ ] = Ψzzzz − 2k2Ψzz + k4Ψ, (4.29)

Peb[λ+ ik(2z − z2)]C = Czz − k2C. (4.30)

These equations are subject to the following boundary conditions along the interface:

Ψzzz − 3k2Ψz − Re(λ+ ik)Ψz = ik
[

k2Weσo + cotα
]

[

Ψzz + k2Ψ + 2ikWe
Eo

cao

Ca

]

, (4.31)

(λ+ ik)

[

1

2

(

Ψzz + k2Ψ
)

+ ikWe
Eo

cao

Ca

]

+ ikΨ = 0, (4.32)

(

λ+ ik +
k2

Peca

)

Ca = −ikcaoΨz + ka [Ra (C(1 − cao)− coCa)− Ca] , (4.33)

Cz

Peb

= −βaka [Ra (C(1 − cao)− coCa)− Ca] ; (4.34)
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and along the wall

Ψz = 0, (4.35)

Ψ = 0, (4.36)
(

λ+
k2

Pecs

)

Cs = ks [Rs (C(1 − cso)− coCs)− Cs] , (4.37)

Cz

Peb

= βsks [Rs (C(1 − cso)− coCs)− Cs] . (4.38)

For the case of an insoluble surfactant (ξa ≫ 1) that does not adsorb to the substrate,
the above system readily reduces to the equations presented by Pereira & Kalliadasis
(2008).

4.3. Analytic predictions by a long-wave expansion

For the case of a soluble surfactant and for no adsorption of the surfactant at the
substrate, it is possible to perform a long-wave expansion of the above set of equations
for k → 0. To this end, we follow a similar procedure as in Pereira & Kalliadasis
(2008) and seek a solution of the form







Ψ

C

Ca






=







Ψ 0

C0

C0
a






λ0 +







Ψ 1

C1

C1
a






λ1ik +







Ψ 2

C2

C2
a






λ2k2 + O(k3). (4.39)

Substituting in (4.29)-(4.38) and assuming Cs = βs = ks = Rs = 0, we expand the
resulting equations in series of k and derive the following expression for the
eigenvalue of the most unstable mode:

λ= −2ik +

(

8

15
Re − 6Ma

ξa(cao − 1)2

3ξa(cao − 1)2 + 4
−

2

3
cotα

)

k2, (4.40)

where Ma is the Marangoni number defined as

Ma = EoWe = −cao

(

dσ

dca

)

cao

We =
3cao

(

Σ1/3 − 1
)

[

1 + cao

(

Σ1/3 − 1
)]4

Ka

χ 2/3 sinα
. (4.41)

The imaginary part of (4.40) gives the expected result that long-wave disturbances
travel with phase speed equal to twice the free surface velocity. The real part of
(4.40) indicates that the onset of instability occurs when the coefficient of k2 vanishes.
Therefore the critical Reynolds number is given by the following expression:

Rec =
5

4
cotα +

15

4
Ma

3ξa(cao − 1)2

3ξa(cao − 1)2 + 4
, (4.42)

where cao is given by (4.7). We note that (4.42) is implicit in Rec or χc, because of
the appearance of these dimensionless numbers in the definition of Ma in (4.41). An
explicit expression may be derived only for a vertical film, and is as follows:

χc = 2Rec =

[

15

2
EoKa

3ξa(cao − 1)2

3ξa(cao − 1)2 + 4

]3/5

. (4.43)

In the limit of an insoluble surfactant (ξa = βaRa ≫ 1), (4.42) reduces to

Rec = 5

4
cotα + 15

4
Ma, (4.44)
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in agreement with the expression given by Pereira & Kalliadasis (2008). For a clean
liquid, Ma = 0, both equations lead to Rec = (5/4) cotα, the well known prediction for
a Newtonian falling film (Benjamin 1957; Yih 1963). It is interesting to note that this
prediction is also recovered in the limit of an interface saturated with a mildly soluble
surfactant (ca0 → 1, ξa finite), as well as in the limit of a very soluble surfactant
(ξa ≪ 1). The latter prediction is in agreement with the data of Georgantaki et al.

(2012), who performed experiments with the highly soluble isopropanol and observed
a behaviour representative of a clean liquid with reduced surface tension.

4.4. Numerical method for arbitrary wavelength

The Orr–Sommerfeld eigenvalue problem, which consists of (4.29)–(4.38), cannot be
solved analytically for arbitrary wavenumbers. The discretization of the governing
equations is performed using a finite-element/Galerkin method, and we approximate all
the variables through the use of quadratic Lagrangian basis functions φi. Applying the
divergence theorem, the weak form of the governing equations becomes

∫ 1

0

[

[Re[(λ+ ik(2y − y2))(Φy − k2Ψ )+ 2ikΨ ] + 2k2Φy − k4Ψ ]φi

+Φy

dφi

dy

]

dy −
[

Φyφi

]1

0
= 0, (4.45)

∫ 1

0

(

Φφi + Ψy

dφi

dy

)

dy −
[

Ψyφi

]1

0
= 0, (4.46)

∫ 1

0

[

(

Peb

[

λ+ ik
(

2y − y2
)]

+ k2
)

Cφi + Cy

dφi

dy

]

dy −
[

Cyφi

]1

0
= 0. (4.47)

Note that the fourth-order partial differential equation for Ψ has been decomposed
into two second-order differential equations by introducing a new variable, Φ = Ψyy.
At the edge nodes we impose the boundary conditions that are given by (4.31)–(4.38).
The resulting system of algebraic equations is solved numerically with the help of the
LAPACK library. The computational domain is discretized using 50 elements in all
the computations presented in this paper; numerical checks showed that increasing the
number of elements further led to negligible changes.

5. Discussion

5.1. The hydrodynamic instability mode

In the present section, we will examine the effect of various parameters contained
in our model of a soluble surfactant. Thus, we will identify the range of physical
phenomena that may be described by this model. In particular, we wish to set the
present flow in perspective with the two limiting cases of: (a) a clean liquid; and (b)
a liquid doped with an insoluble surfactant. The latter appears to have attracted most
of the attention in the recent theoretical literature on film flow with surfactants, and as
a result the extent and significance of differences caused by surfactant solubility are
presently unclear.

The effect of inertia on the stability of surfactant-laden falling films is demonstrated
in figure 4. The values of parameters used are mentioned in the caption, and constitute
a reasonable base case. In particular, we assume that the surfactant adsorbs only at the
liquid–air interface and not on the solid substrate. Shown in figure 4 is the dispersion
relation for increasing values of the modified Reynolds number, χ . Beyond a certain
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FIGURE 5. Dependence of (a) the wavenumber and (b) the growth rate of the most dangerous
mode on χ . The rest of the parameters remain the same as in figure 4.

threshold, χc, the flow becomes unstable; below this threshold all modes are stable.
For the case shown, the critical χ is equal to 3.74.

It is evident from figure 4 that the instability is a long-wave one, and that, for each
unstable χ , a wavenumber with maximum growth rate (the most dangerous mode) may
be identified. The variation with χ of the wavenumber and the growth rate of the most
dangerous mode at neutral stability is shown respectively for various inclinations in
figures 5(a) and 5(b). The conclusion that the instability is a long-wave one magnifies
the significance of the analytic result, (4.42). Thus, we will be making frequent use of
it in the subsequent discussion. However, the behaviour of higher wavenumbers is still
very important, because these harmonics enter into mode interactions that dictate the
nonlinear evolution of the interface.
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FIGURE 6. (a) Neutral curves for various inclination angles. (b) Dependence of critical Re
on the inclination angle; comparison of analytical solution (equation (4.42)) and numerical
results for k = 10−4. The rest of the parameters remain the same as in figure 4.

To further examine the effect of inclination angle, we present in figure 6(a) neutral
stability curves for various inclinations. As expected the most unstable case is for
α = 90◦. For low values of α the flow remains stable up to rather high values of the
modified Reynolds number, χ , and the critical χ increases abruptly with decreasing
wavelength of the perturbations. Figure 6(b) presents the dependence of the critical
Re on inclination for k = 10−4. The agreement with the analytical prediction, (4.42),
serves as a check of the accuracy of the numerical solution. Also shown in figure 6(b)
is the prediction for a clean liquid. With decreasing inclination, differences between
the two liquids gradually decrease, because the term (5/4) cotα grows in significance
compared to the Marangoni correction. Thus, from here on we concentrate on the most
interesting case of a vertical film.

5.2. Parametric behaviour of the critical conditions

We start by considering the critical conditions, which correspond to the onset of long-
wave disturbances, i.e. k → 0. A question of evident interest is the effect on stability
of the total amount of surfactant contained per unit area of the channel. To this end,
we present in figure 7(a) the critical χc as a function of Mtot, for three different values
of the solubility parameter, ξa. The lines in this figure depict the analytical solution
(equation (4.42)) while the points depict the numerical solution, which is in very good
agreement with the analytical solution, testifying thus once again to its accuracy.

It is notable that the dependence on Mtot is not monotonic, exhibiting maximum
stabilization at an intermediate value Mtot,max, below the CMC. For very small, as
well as for large values of Mtot, the critical χc approaches the limit of the clean
fluid. This is somewhat counter-intuitive because one would expect that the more
surfactant is present in the system the more stable the system would be. However,
we should keep in mind that it is not the amount of surfactant that stabilizes the
flow, but actually the Marangoni stresses, which are related to the elasticity of the
interface. When the surfactant exhibits significant solubility, the behaviour is further
complicated because of two competing effects; with increasing amount of surfactant,
the dimensionless elasticity, Eo, grows as depicted in figure 3. At the same time, the
growth in bulk concentration provides higher driving force for mass transfer with the
interface, leading to the attenuation of surface tension gradients. As a result, when the
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FIGURE 7. (a) Dependence of critical χ on Mtot; comparison of analytical solution (equation
(4.42)) (lines) and numerical results (symbols) for α = 90◦, βa = 0.01 and k = 10−4. (b)
Evaluation of M′

tot,max and cao,max for maximum stability of the flow as a function of ξa, using

the analytical solution (equation (4.42)) for α = 90◦. (c) Evaluation of χc,max for maximum
stability of the flow as a function of ξa, using the analytical solution (equation (4.42)) for
α = 90◦. The rest of the parameters remain the same as in figure 4.

adsorbed surfactant at the liquid–air interface approaches saturation, surface tension
gradients decrease and therefore the Marangoni effects become less significant. This is
also reflected in (4.42) where the second term on the right-hand side is proportional
to cao − 1; for an interface saturated with a soluble surfactant (ξa not very large), the
expression for the critical Reynolds reduces to the Newtonian limit.

The parametric variation of the curves in figure 7(a) with ξa motivates investigation
of two complementary issues: how does the location and how does the magnitude of
the maximum in the critical conditions depend on surfactant solubility. Thus, in the
following, we study Mtot,max and χc,max as a function of ξa. Starting with the former,
we note that the value of Mtot,max can be easily determined by solving the equation
dχc/dMtot = 0, which for α = 90◦ and after some manipulation results in the following
expression:

8Eo + (cao − 1)
[

3ξa(cao − 1)2 + 4
] dEo

dcao

= 0. (5.1)

The solution of (5.1) provides the surface concentration, cao,max, that results in
maximum stabilization, for a surfactant with solubility ξa. It is noteworthy that cao,max

depends solely on ξa, and not independently on βa and Ra. According to the model
adopted for surface elasticity, (4.26), Eo is a function of cao and Σ , so (5.1) needs to
be solved numerically.
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The variation of the value of cao,max with surfactant solubility is shown in figure 7(b).
For an insoluble surfactant (ξa → ∞), the flow is most stable with a saturated interface
(cao → 1). This is readily explained by (4.44), in combination with the monotonic
dependence of Eo on cao. However, with increasing surfactant solubility, mass transfer
between the bulk and the interface (leading to attenuation of surface tension gradients)
grows in significance, and, as a result, maximum stabilization is achieved at lower
values of cao,max. For a highly soluble surfactant (ξa → 0), the most stable interfacial
concentration reaches a plateau cao,max ≈ 0.28.

An alternative way of plotting the above result, also shown in figure 7(b), is in
terms of the rescaled total amount of surfactant, M′

tot,max = Mtot,max/βa. This rescaling
makes all data for different values of βa collapse onto the single curve shown. We note
that Mtot and M′

tot represent the total amount of surfactant, scaled respectively with the
maximum capacity of the bulk and of the interface. An interesting observation from
figure 7(b) is that the amount of surfactant, M′

tot,max, corresponding to χc,max is not a
monotonic function of the solubility ξa; a minimum arises for moderate values of ξa,
which indicates that optimum results may be achieved with smaller quantities of a
slightly soluble surfactant than with an insoluble one.

The variation in the magnitude of the maximum, χc,max, with surfactant solubility is
shown in figure 7(c) for three different values of parameter Σ , which is a measure
of the strength of the surfactant and its ability to decrease the surface tension of
the liquid–air interface. We note that χc,max represents the optimum stabilization of
the flow that can be achieved with surfactant of solubility ξa, and corresponds to the
addition of amount Mtot,max. It is observed that, for soluble surfactants, χc,max increases
with the decrease in solubility. However, below a moderate solubility, the curves reach
an asymptotic limit, indicating that slightly soluble surfactants are equally efficient as
insoluble ones.

An interesting observation from figure 7(c) is that there is a maximum stabilization
that may be achieved, irrespective of the increase in Σ , which in the present case (and
for Ka = 3000) is approximately χc,max 6 200. This conclusion depends on the specific
model used for surface tension variation. The stability problem for insoluble surfactant
and a vertical film may be solved analytically with the present model, and gives the
result

χc,insoluble =

[

(

45

2

)

Ka
Σ1/3 − 1

[

1 +
(

Σ1/3 − 1
)]4

]3/5

for 1<Σ < 64/27, (5.2a)

and

χc,insoluble =
(

1215

512
Ka
)3/5

for Σ > 64/27. (5.2b)

The above equations may be considered a special case of the general result for an
insoluble surfactant (Whitaker 1964; Anshus & Acrivos 1967),

χc,insoluble =
(

15

2
Ka Eo

)3/5
. (5.3)

The aforementioned discussion, and the observation that the curves in figure 7(a)
intersect, indicates that, for a specific total amount of surfactant, the dependence of
critical conditions on surfactant solubility may be non-monotonic. Indeed, figure 8(a)
shows the critical χ as a function of ξa for different values of Ra and for Mtot = 0.1. In
all shown cases, χc exhibits a strong maximum at moderate values of ξa. Therefore, for
a specific amount of surfactant, the moderately soluble one appears more efficient in
stabilizing the flow than the insoluble one. Figure 8(b) shows again the dependence of
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FIGURE 8. Dependence of critical value of χ on the solubility parameter ξa as predicted by
the analytical solution (equation (4.42)) for different values of Ra and for α = 90◦, Mtot = 0.1.
The rest of the parameters remain the same as in figure 4, except for βa in figure 8(a) which
varies as ξa/Ra, and for Ra in figure 8(b) which varies as ξa/βa.

critical χ on ξa, now varying the value of βa. For small values of βa, we observe again
a non-monotonic dependence, whereas for larger values of βa the critical χ reaches
a plateau in the limit of high ξa. This should come as no surprise because for large
values of βa the capacity of the interface to adsorb monomers is very large and for
the specific value of Mtot the resulting interfacial concentration is very small (see also
figure 2). The non-monotonic behaviour is recovered again when considering higher
values of Mtot.

5.3. Parametric behaviour for disturbances of finite wavelength

Having analysed the limit k → 0, we now focus on the behaviour of disturbances
of finite wavelength. The addition of one more length scale complicates significantly
the dynamics. Among other effects, sorption kinetics – which is included in the
modelling but did not appear in the limit of infinite wavelength – now becomes
potentially important. Given the complexity of behaviour, we first perform an extensive
parametric study and describe the results purely phenomenologically. Then, we sketch
the key physical mechanisms that we believe determine the dynamics, and attempt
some qualitative comparisons with available experimental observations.

5.3.1. Effect of the total amount of surfactant
Figure 9(a,b) shows the critical modified Reynolds number, χ , as function of

disturbance wavenumber for different amounts of surfactant, Mtot. Figure 9(a) is
a magnification of figure 9(b) at small values of χ and k. It is evident that the
addition of a small amount of surfactant results in drastic stabilization of practically all
disturbances of finite length.

In the small-wavenumber range, and with increasing amount of surfactant, the
neutral curves in figure 9(a,b) tend to accumulate around a rough asymptote with
slope ≈ 104. The variation at higher wavenumbers is more complex, and eventually
becomes non-monotonic. More specifically, an inflection point appears, which above
Mtot = 0.3 leads to a local maximum in χ ; a possible mechanism for this behaviour is
described in § 5.4, below. Further increase in the amount of surfactant renders higher
wavenumbers progressively less stable.
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FIGURE 9. (a,b) Neutral curves for different values of Mtot; comparison with analytical
solution for a clean fluid (Rec = 5(cotα + Wek2)/4 or equivalently χc = 5((cotα +
Wek2)/ sinα)/2); (a) is a zoom of (b) for 0 < k < 0.01. (c) Dispersion curves for different
values of Mtot and for χ = 50. (d) Wave velocity of the marginally unstable mode at neutral
stability as a function of the wavenumber, k, for different values of Mtot. The rest of the
parameters remain the same as in figure 4.

Figure 9(c) presents the dispersion curves for the same values of Mtot as in
figure 9(a,b) and for a specific value of χ = 50. We observe that the addition
of relatively small amounts of surfactant affects drastically the stability of the film,
decreasing significantly the growth rate of the disturbances, as well as the range of the
unstable modes. This result indicates that, in the presence of surfactants, instabilities
will need considerably longer time to develop. The non-monotonic effect of Mtot that
was discussed in figure 7 is also apparent here. For the given value of χ , the growth
rate of the disturbances (and in particular the most dangerous one) decreases for small
values of Mtot, reaches a minimum around Mtot = 0.5 and increases again for larger
values of Mtot. The behaviour of the wavenumbers of the most dangerous mode and of
the cut-off is also similar.

Finally, figure 9(d) presents the wave velocity of the marginally unstable mode
at neutral stability as a function of the wavenumber and for different amounts of
surfactant. In agreement with previous experimental and theoretical studies (Strobel
& Whitaker 1969; Cerro & Whitaker 1971), we find that the addition of surfactant
decreases the wave velocity, and more so the higher the wavenumber. It is also notable
that the variation with Mtot is strictly monotonic, reaching an asymptotic limit for high
surfactant concentrations. Therefore, the wave velocity appears to depend directly on
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FIGURE 10. (a) Neutral curves and (b) dependence of the wave velocity on the wavenumber
for different values of Σ . The rest of the parameters remain the same as in figure 4.

the surface concentration of the soluble surfactant, and not on the surface elasticity,
as determined by the combination of stretching and diffusion/convection, which was
discussed extensively in relation to figures 7 and 8.

5.3.2. Effect of surface tension and surfactant strength
In figure 10(a) neutral curves are presented for various values of Σ to examine

the effect of Marangoni stresses. This parameter can be seen as a measure of the
strength of the surfactant. Increasing Σ , while keeping Ka (i.e. σc) constant, means
that the difference σc −σm increases and therefore the surface tension gradients become
stronger. The increase of the elasticity of the interface due to the induced Marangoni
stresses stabilizes the flow and the critical χc increases. For low and moderate values
of Σ , χc increases monotonically with the wavenumber of the disturbance. We find,
though, that for large Σ this is not always the case. Figure 10(b) shows the phase
velocity of the marginally unstable mode, and indicates that it decreases drastically
with the increase of Σ . In combination with figure 9(d), we conclude that the amount
and the strength of the surfactant have a similar effect on the phase speed of the
disturbances.

Figure 11 shows the effect of Kapitza number for a surfactant-laden liquid, along
with the corresponding neutral curves of a clean liquid. Though the values of Ka

plotted are high (and thus the effect of capillary forces on the stabilization of finite-
wavenumber disturbances in a clean liquid is significant), we note that, with the
addition of surfactant, the critical χ rises by more than an order of magnitude. Another
interesting observation is that the dependence of critical χ on Ka persists even for
k = 0 (see the insert of figure 11 for a zoom close to zero k), although it is well
known that for a clean fluid and for k = 0 the critical Reynolds number is independent
of Ka (Rec = 5 cotα/4). This observation is in agreement with the analytic result, see
(4.42). One way to see why the value of Ka has such a strong impact on the stability
of the surfactant-laden flow is by considering that increasing Kapitza number is like
increasing the surface tension of the clean fluid, σc. For a given value of Σ (in our
case Σ = 2) this would mean that the difference in surface tension between a clean
interface and a fully contaminated one would increase proportionally and therefore
the Marangoni effects would become more important. This trend is in agreement with
theoretical studies in the literature for insoluble surfactants (Blyth & Pozrikidis 2004;
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Pereira & Kalliadasis 2008) where it was shown that the critical Reynolds number is
proportional to the Marangoni number.

5.3.3. Effect of surfactant solubility

In figures 7 and 8, we have examined the role of surfactant solubility, ξa, in the
limit k → 0. Now, we want to examine its effect for non-zero wavenumbers. To this
end, we keep constant the total amount of surfactant (Mtot = 0.1) and the value of
βa, which is a measure of the amount of surfactant that can be adsorbed at the
interface, and vary the value of ξa to examine the effect of surfactant solubility. For
βa = 0.01 (shown in figure 12a), the effect of ξa on critical χ appears to be rather
complex for finite wavelengths. More specifically, we observe that for the lowest value
of ξa = 0.001 (Ra = 0.1), the critical χ remains fairly constant for a wide range of
wavenumbers, apart from a small region close to k = 0. Increasing the value of ξa

to 0.01 (Ra = 1) the flow significantly stabilizes for short-wavelength disturbances.
Further increase of ξa may lead to situations where the system can be more stable to
large-wavelength disturbances and at the same time less stable to short wavelengths
(e.g. compare neutral curves for ξa = 0.01 and ξa = 0.1). For even higher values of
the solubility parameter, ξa, the critical χ decreases significantly and for the highest
value of ξa the system behaves as a clean liquid; the neutral curves for ξa = 100 and
that of a clean fluid coincide, for the range of wavenumbers shown in the figure, but
are not shown here for clarity. This happens because for ξa = 100 (and for the specific
amount of surfactant, Mtot = 0.1) the interface becomes saturated with surfactant (see
also figure 2) and therefore the induced surface tension gradients are not important;
this result is in agreement with the predictions of our analytical expression in the limit
of k → 0 (see (4.42) and relevant discussion above). For βa = 1 (shown in figure 12b)
the picture is somewhat simpler, because the dependence of critical χ on ξa is in this
range monotonic. Nevertheless, we should note that the non-monotonic dependence is
recovered again for higher values of Mtot.
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5.3.4. Effect of sorption kinetics at the liquid–air interface

Next, we consider the role of sorption kinetics at the liquid–air interface, which is
potentially of central importance, and which has typically been neglected in simplified
treatments of the problem. Thus, in figure 13 we examine the parametric effect of ka

on the curves of neutral stability for the reference case of figure 4. It is expected that
for long-wave perturbations (k ≪ 1) the kinetics will not be very important because
there will always be enough time for the different species to reach equilibrium around
the interface. Indeed, as can be seen in figure 13, for k = 0 the critical χ is the same
for all values of ka. This result is in direct agreement with the analytical expression
that has been derived in the limit of k → 0 (see (4.42)), where there is no dependence
of the critical Re on the value of ka.
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However, we see that, for disturbances with larger wavenumbers, this is clearly not
the case. In particular, we plot in figure 13 the result for an insoluble surfactant,
and observe that, for the lowest value of ka shown, the neutral curve for the soluble
surfactant follows it very closely, for all wavenumbers except for a very narrow range
around zero. We should note at this point that to enable such a comparison between
a soluble and an insoluble surfactant we have selected two cases with identical levels
of interfacial concentration, cao. The similarity between the case of a soluble and an
insoluble surfactant for large wavenumbers may be readily understood by considering
that, when the kinetics are relatively slow and the disturbances have short wavelength,
there will not be enough time for the species to approach equilibrium, and the system
will behave as though the monomers that have been adsorbed at the liquid–air interface
are isolated from the monomers in the bulk. The general trend with faster kinetics
is for the soluble surfactant to become less stabilizing than the insoluble one for
all wavenumbers. It is noteworthy, however, that there exists a range of moderate
kinetics for which high-wavenumber disturbances are stabilized more efficiently with
the soluble than with the insoluble surfactant (see ka = 0.01 and k > 0.03).

5.3.5. Effect of surfactant adsorption at the solid substrate
Next we examine how the adsorption of surfactant at the solid substrate may affect

the stability of the flow. To this end, we vary the relevant parameters that control
the behaviour of the substrate. The effect of soprtion kinetics, ks, is examined in
figure 14(a) and shown to be negligible. On the contrary, the variation of βs, which is
shown in figure 14(b), appears to have a significant impact on the flow stability. These
two figures indicate that the substrate acts as a surfactant reservoir, and its dynamics
are relatively unimportant.

For the specific parameters that have been used in figure 14(b), increasing the
value of βs (i.e. increasing the capacity of the substrate to adsorb surfactant) leads to
stabilization of the flow. This behaviour may be understood by considering that the
surfactant that adsorbs at the substrate is subtracted from the total amount residing in
the bulk and at the liquid–gas interface. We already know, however, that in the absence
of adsorption at the substrate, the stability of our system depends non-monotonically
on the total amount of surfactant (see figure 7 and the relevant discussion for the
effect of Mtot). Since this total amount of surfactant varies with the adsorbability of
the substrate, we deduce that different substrates may also affect the flow stability in a
non-monotonic way.

This is confirmed in figure 14(c), where we have plotted the critical χ as a function
of the parameter βs. For all values of ξs (which expresses the relative solubility in the
bulk with respect to adsorption on the substrate), the flow acquires maximum stability
for intermediate values of βs. For low values of βs, critical χ tends to the limit of no
adsorption at the substrate, whereas for high βs the capacity of the substrate to adsorb
surfactant increases drastically and this leads to a decrease of χc as a large amount
of surfactant is essentially removed from the system. It is noted in particular, that the
decline of χc occurs at roughly constant βs (βs ≈ 10−1), and is steeper the higher the
value of ξs. These observations indicate that, when surfactants are to be used in order
to stabilize the flow in various applications, it is also very important to pay special
attention to the affinity of the selected surfactant with the substrate in hand.

5.3.6. Effect of surfactant diffusivity
Finally, figure 15 presents neutral curves for various values of the Schmidt number

Sca and Scb. It is evident that the effect of diffusion does not play any important role
in the stability of the flow.
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parameters remain the same as in figure 4.

5.4. Postulation of mechanisms and interpretation of experiments

We conclude the above presentation of the effect of various system parameters with a
discussion of possible mechanisms that operate in the case of soluble surfactants. Then,
we attempt to interpret recent experimental observations that motivated this study, in
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the light of the present findings. With respect to potential mechanisms, we identify
four key components: (i) The effect of solubility in enhancing mass exchange between

the interface and the bulk. It appears that this mechanism determines the critical
conditions that correspond to very long waves, and may lead to optimal behaviour of
moderately soluble surfactants. (ii) The direct effect of disturbance wavenumber. With
increasing wavenumber, gradients in surface concentration of surfactant are expected to
intensify, because variations take place on a shorter length scale. In addition to this,
mass exchange – which mitigates gradients according to (i) – is weakened, because
there is less time for the approach to equilibrium. (iii) The effect of disturbance phase

velocity. We have observed that surfactant decreases drastically the phase velocity at
high wavenumbers. Though we do not have a full understanding of the mechanism
by which the flow stabilizes, we may plausibly assume that, as the wave moves
downstream, it continuously sweeps surfactant by convection, thus inducing stabilizing
surface tension gradients. This effect is expected to weaken with the decrease in phase
velocity. The above components (ii) and (iii), that operate at high wavenumbers, have
a competing effect, and their interplay could be responsible for the non-monotonic
dependence of the critical conditions on wavenumber, which was observed at high
amount/strength of surfactant (see figures 9b and 10a). (iv) The effect of phase shift

between disturbances at the interface. An understanding of the interaction between
disturbances in height, velocity, surface concentration and shear stress would probably
help unify the above components and delineate the complete stabilization mechanism.
Work will be undertaken in this direction, following the approach of Smith (1990).

Returning to the experiments by Georgantaki et al. (2011, 2012), and in particular
to the effect of soluble surfactant SDS, we note the following: strong stabilization
of liquid film flow was observed with the addition of small amounts of SDS, and
the effect maximized at concentrations of the order of 10 % of the critical micelle
concentration, and then gradually reduced. This behaviour agrees qualitatively with the
prediction for the critical conditions of a moderately soluble surfactant, as exhibited
for example by figure 7(a).

The dominant structures observed, even deep in the unstable regime, were sinusoidal
travelling waves of small amplitude. Only at very high Re in combination with
very low-frequency inlet forcing, were non-sinusoidal structures observed, and these
differed in shape from the solitary waves encountered in clean liquids. These
observations are in accord with the predictions of the present study. In particular,
it was shown that small amounts of soluble surfactant decrease drastically both the
range and the growth rate of unstable wavenumbers (figure 9a,c). Smaller growth
rate means that energy input from the mean flow to the unstable wavenumbers
will be slower. This effect will further intensify, as the experimental inlet frequency
remains constant while the cut-off frequency decreases. In addition, higher harmonics
(which are sustained by energy input from the dominant mode through nonlinear
coupling, and which contribute to the shape of the final free-surface structures) have
typical amplitudes of order inversely proportional to their damping rates. Thus, with
the displacement of the entire dispersion curve to lower values, the magnitude of
higher harmonics declines as well. The combination of all these effects explains the
experimentally observed persistence of nearly sinusoidal waves.

6. Conclusions

We have investigated the linear stability of a film flowing down a solid substrate
in the presence of a soluble surfactant. We used a detailed surfactant model, which
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considers monomers dissolved in the bulk and adsorbed with Langmuir kinetics at
the gas/liquid and the solid/liquid interfaces. The Navier–Stokes equations for the
liquid motion and the advection–diffusion equations for surfactant concentrations were
linearized around the base flow, resulting in an Orr–Sommerfeld eigenvalue problem
that was solved analytically in the limit of long-wave disturbances, and numerically for
arbitrary wavelength using a finite element method.

The instability was shown to be a long-wave one, and the derived analytic solution
for k → 0 indicated that, among all the model parameters, critical conditions depend
only on the solubility of the surfactant and on its interfacial concentration. An
interesting finding was that, for a given total amount of surfactant, a moderately
soluble one may produce stronger stabilization than the insoluble one. Optimum
conditions were also found to vary with solubility, the insoluble surfactant maximizing
its performance at the tightest interfacial packing, whereas the soluble one did so
at a fraction of it. These observations were explained by the competing effect of
mass exchange between the interface and the bulk, which short-circuits surface tension
gradients, and thus attenuates Marangoni stresses.

Disturbances of finite wavelength were considered next, and the additional length
scale was observed to cause an escalation in complexity. Small amounts of soluble
surfactant stabilize drastically the entire spectrum by shrinking the unstable range of
wavenumbers, and by decreasing their growth rate and phase velocity. However, the
effect maximizes at intermediate amounts and then drops again. For a fixed amount
of surfactant, the role of solubility was shown to be highly non-trivial, and to depend
strongly on the relative capacity of the interface and the bulk, βa. Sorption kinetics at
the gas–liquid interface was found to play a key role at finite wavelengths, with very
slow kinetics leading to a virtually frozen interface and an insoluble-like behaviour.
Finally, it was shown that the adsorption capacity of the solid substrate may also have
a significant effect.

In an attempt towards mechanistic understanding of the stabilization offered by a
soluble surfactant, some factors contributing to the magnitude of interfacial gradients
of surfactant concentration were proposed. These include mass exchange with the
bulk, and wavelength and phase velocity of travelling disturbances. Finally, predictions
by the present study appear to interpret convincingly some recent experimental
observations on the effect of the soluble surfactant SDS.
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