
mathematics of computation
volume 57, number 196
october 1991, pages 839-848

THE PRIME FACTORS OF WENDT'S
BINOMIAL CIRCULANT DETERMINANT

GREG FEE AND ANDREW GRANVILLE

Abstract. Wendt's binomial circulant determinant, W„ , is the determinant of

an m by m circulant matrix of integers, with {i, ;')th entry (i,™.i) whenever

2 divides m but 3 does not. We explain how we found the prime factors of

Wm for each even m < 200 by implementing a new method for computations

in algebraic number fields that uses only modular arithmetic. As a consequence

we prove that if p and q = mp + l are odd primes, 3 does not divide m , and

m < 200, then the first case of Fermat's Last Theorem is true for exponent p .

X. INTRODUCTION

For a given positive even integer m, define Wm to be the determinant of

the m by m circulant matrix with top row (a0, ax, ... , am_x), where

m-\ [ (X + X )m - Xm    if 6 does not divide m,
g(X) := Y aX' := { (X + X)m - Xm    ., , .. .,
*mv   i      L^   i ] i—-—'.-   if 6 divides m.

<=° {   (X2 + X+X)

When 6 does not divide m, the (i, j)th entry is L™.,), and this matrix is

given the name in the title. There are a variety of applications of Wm in

number theory, in particular to Fermat's Last Theorem. In this paper we will

explain how we computed the prime factors of Wm for each even m < 200,

and as a consequence have the following result:

Theorem. // p and q = mp + X are odd primes with m < 200, then the first

case of Fermais Last Theorem is true for exponent p if 6 does not divide m,

and for exponent p   if 6 does divide m.

Previous results of this type have had the restriction that 6 does not divide m

(which we remove as a consequence of [10]). Such a theorem has been proved

for all m < 110 in [4], and Wm has been computed as far as m = 50 in [6].

In [1], Boyd did an analytic investigation of the size of Wm and showed that

if 6 does not divide m , then

(l.i) xo~xßxml <\w\< 101/3>lm\
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840 GREG FEE AND ANDREW GRANVILLE

where XogX := \ f0n' log(2cosö)d8 (« 0.323...). (Alternatively, we can de-

fine logA := (3v/3/4tt)L(2 , %), where L(s, x) is the Dirichlet L-function for

the quadratic character x(') of conductor 3.)

2. Our computational method

There are many ways to determine the value of Wm . The most obvious is

to simply compute the determinant of the matrix above; unfortunately, this is

extremely costly for, say, m = 100.

A beautiful theorem of Stern [17] states that the determinant of a circulant

matrix with top row (b0, bx, ... , bm_x) is equal to the resultant of Xm - X

with the polynomial b(X) := Y,7=o b,Xl ■ Thus,

(2.1) ^=nuo,
r=i

and it is this formula that forms the basis for our computational method. Now

gm(X) = X\(X + X - ÇX), where the product is over all wth roots of unity Ç,

except primitive cube roots of unity. Combining this with (2.1), we see that the

set of prime divisors of Wm is given by the set of prime divisors of

(2.2) N( X + (' + CJ)   with 0 < i, j < m - 1 and i ¿ m/3 or 2w/3,

where Ç := exo(2in/m) and N(-) is the norm taken over the field extension

Q(OIQ- We shall compute these norms.

There are a few different ways to compute such norms in algebraic number

fields. The first is to approximate the complex numbers (1 + Ç + ÇJ) to many

significant digits and then to multiply them together, being careful with rounding

errors. As the product (that is, the norm) is an integer, we need only enough

significant digits to ensure that we can determine which integer it is. This

approach will be very costly for large m .

A second approach is to treat complex numbers in Z[C] (= Z[X]/</>m(X))

as polynomials in X, where we may replace X to any power (say p) greater

than m , by Xp~m . Thus, as we multiply together conjugates, we work with

m-vectors of integers and so avoid rounding errors. However, the necessary

vector manipulations now become quite costly when m is large.

Our approach borrows the idea of 'single point evaluation' from the methods

of symbolic computation [2], to compute these norms rather more efficiently.

The main idea that we use is summed up by

Proposition 1. Let N be the norm of X + C + CJ over Q(C)|Q • // t is a positive

integer with \N\ <<j)m(t)/2 (where <j>m(X) is the mth cyclotomic polynomial),

then N is the least residue, in absolute value, of

m

(2.3) A:=    H    (X + tik + tjk)   modulo <t>m(t).

k=i
{k,m)=l

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



WENDT'S binomial circulant determinant 841

Note that
m

(2.4) N(x + C + Ó=   n   (i+£'* + £"*) •
fe=l

{k,m)=i

As ICI = 1, thus 11 + Cik + Cjk\ < 3 , and so \N\ < 3<p(m) ; therefore, we can take

/ = 4 in Proposition 1. Actually one can usually take t = 2 :

Proposition 2. If a and ß are primitive ath and bth roots of unity with a, ß

and aß ± X, and m = [a, b]  (= Xcm[a, b]), then

(2.5) ¡AQ(C)|Q(l + a + /?)|<0w(2)/2

except if X + a + ß is a conjugate or multiple of one of X + Ç3 + C6, 1 + C4 +

Cg, X + Ç25+ C10, 1 + í4 + Ç6, 1 + C72 + C14, 1 + C6 + C18, 1 + C6 + Cio- where

Cn = exp(2i7i/n).

Thus, to compute N, we had only to compute the product in (2.3) (with

t = 2), in modular arithmetic, a relatively inexpensive task with a multi- or

arbitrary precision package (we used 'C'): Not much is lost here (in terms of

the number of digits) as we know that 'on average' (multiplicatively) our norms

are exponential in tp(m) by (1.1).

The method used here is applicable to a wide range of computations in al-

gebraic number fields (as may be discerned from the proof of Proposition 1

below); for instance, the same idea was used in [7] to compute the class num-

bers of prime cyclotomic fields, for all primes up to 3000.

In our computations we went up to m = 200, although we could have gone

much further (the modulus in (2.3) has no more than 1 + [ç?(m)log2/log 10] <

29 digits for m < 200). The difficulty in our method (or indeed any method),

as m grows large, is the factorization of the norms: up to m = 200 we used

Pollard's p - 1 algorithm [15] and Morrison and Brillhart's continued fraction
algorithm [14], but for m = 1000, say, no known factoring algorithm would

help!

Proof of Proposition X. By comparing the terms of the products in (2.3) and

(2.4) we see that N = A, modulo the ideal (t - Q of the ring Z[C]. However,

N and A are both integers, by definition. Therefore, as t-Ç divides N-A (in

Z[C]), thus each conjugate of t - Ç does, and so their product, 4>m(t), divides

N-A.

Now |A| < (j)m(t)/2 and N = A (mod<fim(t)), and so can only be the least

residue, in absolute value, of A  (mod(j)m(t)).   D

3. Some results and heuristics

We present, in Table I, a sample of our computations. We give the number

of primes dividing each Wm (other than the prime factors of m itself) and the

largest of these primes.
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842 GREG FEE AND ANDREW GRANVILLE

Table 1

Some statistics on the prime divisors of Wendt determinants

Number of primes Largest prime

m          dividing Wm dividing Wm

10                   3 31

20                   4 61

30                   7 331

40                  11 61681

50                  17 6101

60                  17 4561

80                  32 4278255361

100                 40 8976001

120                 54 4562284561

140                  70 175480061

150                 86 1133836730401

160                 95 44479210368001

180                 114 183717901

200                122 31211252919601

The largest prime that we found was 618,970,019,642,690,137,449,562,111,
which divides WX1%. All but a few small prime divisors are = 1 (mod m),

in each case, which is why Pollard's p - X algorithm was an extremely effective

tool in factoring.

When examining the statistics in Table I we noticed that there seem to be

around ^w(m/<73(m))log m prime divisors of Wm , the largest of which is ex-

ponential in <p(m). We now give some rough heuristic arguments to support

these observations.

For each m , define Vm := \[(X + £' + Ç;), where ( = exn(2in/m) and the

product is over values of i and j with 0 < i, j < m - X and (i, j, m) = X.

Clearly,  Wm = \\^m Vd, and so  Vm = Udlm W^mld) for each m.  By (1.1)

we see that V   = Xm ̂ "im  ~ , where x(m) denotes the number of
m
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WENDT'S binomial circulant determinant 843

divisors of m. We also note that Vm is the product of niTJ ,(X + X/p) norms.

Now as each such norm is < 3<pl-m), and their multiplicative average is > X9^ ,

we see that some positive proportion of them is > X^m ' . Thus, if we admit

that a randomly chosen integer n is prime with probability 1 /log n , then we

should expect

»Ln(,+i)| ' >(«y¡¿\      Pjj9(m)      \(p(m))

of these 'large' norms to be prime.

Now Hardy and Ramanujan [11] showed that almost all integers n have

{1+0(1) }log log n distinct prime factors. So, if we admit that our 'large' norms

behave like randomly chosen integers, then we can deduce that their product

has

smn(, + i),og.og(A*"2)^(^5)logm

distinct prime factors (where the notation x x y means that x = 0(y) and

y = o(x)).
Both heuristics essentially support our observations.

4. The first case of Fermat's Last Theorem

Fermat's Last Theorem is the following conjecture: For any integer n > 3,

there do not exist nonzero integers x, y, z for which

(4.1) xn+yn = z"   with gcd(x, y, z) = X.

(4.1) is known to have no solutions for any n < 150,000 [18]; and only finitely

many solutions for any given n [5], The first case of Fermat's Last Theorem

for exponent n (FLTI)n is said to be true if gcd(«, xyz) > X in any integer

solution of (4.1).  (FLTI)^ is known to be true for any n < 7.57 x 1017 [3].

In 1823, Sophie Germain [13] showed that if (4.1) has solutions and q =

mn + X is prime, where m = 2 or 4 (mod 6), then either gcd(«, xyz) > X

or q divides (mm - X)Wm. Various authors have modified Sophie Germain's

criteria and, most recently, the following result was given in [10] for prime

power exponents in (4.1):

Lemma 1. If p and q = mp + X are odd primes, q does not divide Wm, and

p does not divide m, then the first case of Fermat's Last Theorem is true for

exponent p if 6 \ m, and for exponent p   if 6|m.

We computed the prime divisors of Wm for each even m < 200 and verified

that, for all exponents p for which p divides m or q divides Wm , (FLTI)

is true (by using Wieferich's Theorem [20]—if p does not divide 2P - 2 then

(FLTI)   is true). Thus, we obtained the theorem in §1. Notice that, in many
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844 GREG FEE AND ANDREW GRANVILLE

cases, this theorem provides an easily verified criterion to prove that the first

case of Fermat's Last Theorem is true for exponent p .

5. Bounding the values taken by cyclotomic polynomials

Define the power series

<¡>(X) = l[(l-Xttfn),
«>i

which is easily shown to converge absolutely for \X\ < 1. This power series can

be seen to be related to any given cyclotomic polynomial from the well-known

formula

(5.1) <Pm(X) = \\(Xd-xfmld),

d\m

which may be rewritten as

l[(X-(Xm/r)nfn)'

n\r

where r is the largest squarefree divisor of m . We shall prove

Proposition 3. For any x > 2, X - X/x and 0(l/x) are, respectively, the in-

fimum and supremum of the set of values taken by (4>m(x)lx,pi'm))li('n) with m

squarefree and > 2.

We can easily deduce

Corollary 1. For any positive integer m and real number x, with m, \x\ > 2,

(5.2) |log|4>m(x)| - <p(m)Xog\x\\ < log(|x|/(|x| - 1)).

Proof of Proposition 3. We start by noting the inequality

(5-3) G„(x):=ni-^>l-4r,
d>n X X

which holds for any n > X and x > 2 (this is easily proved by taking logarithms

of both sides and comparing terms).

Let p and q be the smallest primes that do/do not divide m , respectively.

Then, by (5.1) and (5.3),

^iy(m)-u(x i v(rf' o-i/*)c,(*)   i
x^J       '¡¿Y    xd) 1-1/x"      -       x-

Thus, X - X/x is a lower bound on our set of values; that it is the infimum

comes from noting that if m = p is prime, then

4>m(x)Y{m)      X-X/x       .      X
-\—w^l'x as^°°-
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On the other hand,

{<t>m{x)/x*(m)fm)   ird   iy^.i-1/^..

by (5.3). Thus, 3>(l/x) is an upper bound; we see that it is the supremum by

taking m to be the product of the first k primes, so that, by (5.3),

(Ó (x)/x9(m))ß{m] 1
m  l!n,  x -> G„  Ax) > 1 - —-r ^ X

<P(l/x) -   «-'v  ;-       xq-x

as q «-» co (that is, as k <-+ co).   D

Proof of Corollary X. By taking n = X in (5.3) we find that 4>(l/x) < 1 for
any x > 2, and so (5.2) holds for x > 2 and m squarefree, by Proposition

3. Now, if r is the largest squarefree divisor of m , then <j)m(x) = (j>r(xm'r) by

(5.1), and so (5.2) follows for m from (5.2) for r. Finally, note that for any

x , 4>m(x) = </,2m(_x) f°r m oc*d and 4>m(x) = 4>m(-x) if m is divisible by 4

by (5.1), so (5.2) for x < -2 follows from (5.2) for x> 2.   D

Remark. The power series

0(X) = X - X + X2 + X5 - X6 + 2X1 - X8 + X9

+ XXX+XX3 + 2XX6-XX1 + 2XX* + X20 + -..

may well prove of further interest because of its close connection to cyclotomic

polynomials. The growth of the coefficients of the cyclotomic polynomials has

received much attention; we observe here that the coefficient of X" in Q>(X) is

bounded above by p(n), the number of partitions of n , as Q>(X) is majorized

by the power series T[n>l(X - X")~x. It would be interesting to obtain a better

bound.

6. Bounding the sum of three roots of unity

In this section we show how to obtain strong bounds on N(X+a + ß), where

N is the norm over the field extension Q(Cm)|Q, and prove Proposition 2. Pre-

vious authors have considered improving the (trivial) bound N < 3^m' given

in the introduction—the best bound to date is Krasner's N < 3m/4 for m = 2

or 4 (mod 6), except in finitely many cases, which was obtained by considera-

tion of circulants [12]. We shall improve Krasner's bound—for instance we will

show that N < 3<p(-m'' except when a, ß , or aß is a primitive 6th or 10th root

of unity, and a finite number of other exceptional pairs (a, ß). These bounds

may not be improved by too much—by ( 1.1 ) we see that a large number of such

norms must be > (X - e) as m —» co , and we can easily construct a few

norms > ¿3 ' : If a is a primitive 6th root of unity and ß a primitive

oth root of unity with b = 4 or 8 (mod 12), so that m = [a, b] = 3b, then

|A(1 +a + ß)\ = 4>m/2(3), which is > \39{m)l2 by Corollary 1.   (Note that

am/2+X =a and ßm/2+X = -ß , and (1 + a + ß)(X +a - ß) = 3a - ß2 . Thus,
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846 GREG FEE AND ANDREW GRANVILLE

N(X + a + ß)2 = N(3 - äß2) = <\>mß(3)2 , as äß2 is a primitive (w/2)th root

of unity.)

Our starting point is a result of Denes [4, equation (10)].

Proposition 4. Suppose a, ß, and y = aß are given primitive a, b, and cth

roots of unity, respectively. Let m = [a, b]. Then

(6.1) lAíl+a + ̂ I^^II^^r^V^-^l'^l^í-^l1^.

Our derivation of (6.1) is rather different from that of Denes: We start from

the identity

(6.2) |2 + a|2|2 + ß\2\2 + y\2 = \X - a\2\X - ß\2\X - y\2 + 9|1 + a + ßf.

(This is easily proved by noting that the right-hand side of (6.2) is the difference

of the two squares (3(1 + a + ß)(X +ä + ~ß))2 - ((X - a)(X -~ß)(X - y))2 , and

the corresponding factors are (2 + a)(2 + ß)(2 + y) and its conjugate.)

We now exclude the first term of the right-hand side of (6.2) and take the

norm (in Q(Cm)|Q) of both sides, obtaining the inequality in (6.1).

As an immediate consequence of Proposition 4 and Corollary 1 we can obtain

Corollary 2. Let a, ß , y, a, b, c, and m be as in Proposition 4. For any fixed

e > 0, if X/(p(a) + X/tp(b) + X/<p(c) <log(l +e)/log2, then

\N(X+a + ß)\<(S(X+e)/3)*'(m)/2.

For instance, this holds if a, b, c > (41og2/e)   and e < 5 .

Taking e = | in Corollary 2 gives |A| < 3i'(m)/ except if at least one of

a, b, and c is small. Now, rearrange a, ß , and y so that <p(a) < rp(b) < tp(c).

Then, if |A| > 3<f(m)'2, we see that

2    >    1     |     1    >log(9/8)        1
<p(b)     <p(b)     <p(c)        log2        ç»(fl)'

which can occur in only finitely many cases (as c is determined by a and 0)

unless the right-hand side is < 0. But then q>(a) < log2/log| < 6, and so

a = X, 2, 3, 4, 5, 6, 8, 10, or 12, and we can use (6.1) to further eliminate

values of a.

In certain special cases we can improve somewhat on Corollary 2. For in-

stance, we can show that for any e > 0, we have |A| < ((y/5 + X)/2 + e)

provided that a is sufficiently large and that there is a sufficiently large prime

dividing m that does not divide a.

A sketch of the proof of Proposition 2. We shall show that there are only finitely

many possible values of a and 0 for which (2.5) fails; it thus requires a small

amount of computation (for instance, by using Proposition 1 with t = 4) to

verify the result (alternatively, one can use a lengthy case analysis; see [9] for

details).
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So suppose (2.5) fails, that is \N\ > 4>m(2)/2. Let y = aß be a primitive cth

root of unity, and reorder a, ß , and y (taking their conjugates if necessary)

so that

(6.3) l^í-^r^^l^í-^l1^^^^)!1^.

(Note that N(X + a + ß) = N(X + ä + y) = N(X + ~ß + y).) Then, by Corollary

1, Proposition 4, and (6.3), we have

(2,(m)-2)2/,(«) < (0M(2)/2)2/'(m)

<ilJa(-2)|1Mfl)|^(-2)|1/i>(*Vc(-2)|1Mc)

(6.4) < \\*¿-2)\XI«%b{-l)\lim

(<i3\<t,a(-2)\x/*{a)(29{b)+X)2Mb))

(6.5) <i|(73a(-2)|3Mû)<I(2,'(<2)+1)3Ma).

Now a and b both divide m, so that X/tp(a) and X/q>(b) are both > X/tp(m).

Therefore, by (6.5),
3 < 23/i»(û)+4/i»(m) < 2'/9W

and so <p(a) < 71og2/log \ , which gives a finite number of possibilities for a.

Then by (6.4),

3l\è (-2)|1^(a) < 24/ç,(m)+2/?l(ft) < 26/,,(Ä)

and so, as |</>a(-2)| < 3(p{a) for a > X (by Corollary 1),

<p(b) < 61og2/ |log3 - J-^log|0a(-2)|} ,

which gives a finite number of possibilities for b .   D
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