THE PRIME RADICAL IN A JORDAN RING

CHESTER TSAI

There are several definitions of radicals for general nonassociative rings given in literature, e.g. [1], [2], and [5]. The u-prime radical of Brown-McCoy which is given in [2], is similar to the prime radical in an associative ring. However, it depends on the particular chosen element u. The purpose of this paper is to give a definition for the Brown-McCoy type prime radical for Jordan rings so that the radical will be independent from the element chosen.

Let J be a Jordan ring, x be an element in J; the operator U_{x} is a mapping on J such that $y U_{x}=2 x \cdot(x \cdot y)-x^{2} \cdot y$ for all y in J, or, equivalently, $U_{x}=2 R_{x}^{2}-R_{x}^{2}$. If A, B are subsets of $J, A U_{B}$ is the set of all finite sums of elements of the form $a U_{b}$, where a is in A and b is in B.

Lemma 1. Let P be a two sided ideal in J. Then the following three statements are equivalent.
(a) If A, B are ideals in J and $A U_{B} \subseteq P$, then either $A \subseteq P$ or $B \subseteq P$.
(b) If A, B are ideals in J with $A \cap c(P) \neq 0$ and $B \cap c(P) \neq 0$, then $A U_{B} \cap c(P) \neq 0$, where $c(P)$ is the complement of P.
(c) If a, b are in $c(P)$, then $[a] U_{[b]} \cap c(P) \neq \varnothing$, where $[x]$ denotes the principal ideal in J generated by x.

Proof. Obviously (a) and (b) are equivalent.
If (b) holds and $a, b \in c(P)$, then $[a] \cap c(P) \neq \varnothing$ and $[b] \cap c(P) \neq \varnothing$. Thus, $[a] U_{[b]} \cap c(P) \neq \varnothing$, i.e. (c) holds.

If (c) holds and A, B are ideals in J such that $A \cap c(P) \neq \varnothing$ and $B \cap c(P) \neq \varnothing$, then there exists $a \in A \cap c(P)$ and $b \in B \cap c(P)$. Thus $[a] U_{[b]} \cap c(P) \neq \varnothing$. But $[a] \subseteq A$ and $[b] \subseteq B$, so $A U_{B} \cap c(P)$ $\supseteq[a] U_{[b]} \cap c(P) \neq \varnothing$, i.e. (b) holds.

Definition 1. An ideal P in J is called a prime ideal if it satisfies any one of the statements in the Lemma 1. A nonempty subset M of J is called a Q-system if whenever A, B are ideals in J such that $A \cap M \neq \varnothing$ and $B \cap M \neq \varnothing$ then $A U_{B} \cap M \neq \varnothing$.

If P is an ideal in J, then $c(P)=M$ is a Q-system if, and only if P is a prime ideal.

Definition 2. Let A be an ideal in J, then $A^{Q}=\{r \in J \mid$ any Q system in J containing r meets $A\}$ is called the Q-radical of A.

Theorem 1. If A is an ideal in J, then A^{e} is the intersection of all the prime ideals P^{*} in J which contain A.

[^0]Proof. If $b \in A^{Q}$ and P^{*} is any prime ideal which contains A, then $b \in P^{*}$; otherwise, there exists a Q-system $c\left(P^{*}\right)$ containing b which does not meet A, thus $b \notin A^{Q}$. Thus $A^{Q} \subseteq \cap P^{*}$.

Conversely, if $b \notin A^{Q}$, there exists a Q-system M such that $b \in M$ and $M \cap A=\varnothing$. Applying Zorn's lemma to the family of all ideals in J which contains A but does not meet M, one finds a maximal element P (partial ordering being taken as the usual set inclusion). Since b is in M, b is not in P. Thus it remains to show that P is a prime ideal.

If B, C are ideals in J such that $B \subseteq P$ and $C \subseteq P$ then both $B+P$, and $C+P$ meet M. Thus $(P+B) U_{(P+C)}$ meets M. But $(P+B) U_{(P+C)}$ $\subseteq B U_{c}+P$, thus $B U_{c} \subseteq P$. Hence P is prime.

Definition 3. An ideal P in J is a semiprime ideal if for any ideal A in $J, A U_{A} \subseteq P$ implies $A \subseteq P$. A nonempty subset M of J is called a $S Q$-system if for any ideal A in J such that $A \cap M \neq \varnothing$, then $A U_{A} \cap M$ $\neq \varnothing$.

The proof of Lemma 1 can be easily applied here to show an ideal P in J is semiprime if, and only if, one of the following statements holds.
(a) If A is an ideal such that $A \cap c(P) \neq \varnothing$, then $A U_{A} \cap c(P) \neq \varnothing$.
(b) If $a \in c(P)$ then $[a] U_{[a]} \cap c(P) \neq \varnothing$.

If P is an ideal in J, then $c(P)$ is a $S Q$-system if, and only if, P is semiprime.

Definition 4. Let A be an ideal in J, the set $A_{Q}=\{r \in J \mid$ any $S Q$ system containing r meets $A\}$ is called the $S Q$-radical of A.

Theorem 2. Let A be an ideal in J, then the following statements hold
(a) $A_{Q}=\cap P_{*}$, where P_{*} are taken from all semiprime ideals in J which contain A.
(b) A_{Q} is a semiprime ideal.
(c) A is semiprime if, and only if, $A=A_{\boldsymbol{Q}}$.

Proof. (a) If $x \in A_{Q}$ and P_{*} is a semiprime ideal in J containing A, then $x \in P_{*}$; otherwise, $c\left(P_{*}\right)$ is a $S Q$-system, contains x but does not meet A, so $x \notin A_{Q}$. Thus $A_{Q} \subseteq \cap P_{*}$. Conversely, if $x \notin A_{Q}$, then there exists a $S Q$-system M such that $x \in M$ and $M \cap A \neq \varnothing$. Applying Zorn's lemma to the family of ideals in J containing x but disjoint from M, one finds a maximal ideal P_{*}. It remains to show that P_{*} is semiprime.

If B is an ideal in J such that $B \nsubseteq P_{*}$, then $P_{*}+B$ meets M. But M is a $S Q$-system, thus $\left(P_{*}+B\right) U_{\left(P_{*}+B\right)}$ meets M. On the other hand, $\left(P_{*}+B\right) U_{\left(P_{*+B}\right)} \subseteq B U_{B}+P_{*}$, so $B U_{B} \subseteq P_{*}$.
(b) It follows from (a) that A_{Q} is an ideal in J. If B is an ideal in J such that $B U_{B} \subseteq A_{Q}=\cap P_{*}$, then $B \subseteq P_{*}$ for all semiprime ideals P_{*} containing A. Hence $B \subseteq \cap P_{*}=A_{\mathbf{Q}}$. Thus A_{Q} is a semiprime.
(c) Since A_{Q} is a semiprime ideal, it is the smallest semiprime ideal in J containing A. Thus A is semiprime if, and only if, $A=A_{\boldsymbol{Q}}$.

Lemma 2. Let a be an element in J and S is a $S Q$-system in J containing a. Then there exists a Q-system M such that a is in M and $M \subseteq S$.

Proof. We first construct a sequence $M=\left\{a_{1}, a_{2}, \cdots, a_{n}, \cdots\right\}$ of elements of J where $a_{1}=a, a_{2} \in\left[a_{1}\right] U_{\left[a_{1}\right]} \cap S, \cdots, a_{k+1} \in\left[a_{k}\right] U_{\left[a_{k}\right]}$ $\cap S, \cdots$. Clearly, $a \in M$ and $M \subseteq S$. It remains to show that M is a Q-system, i.e. $\left[a_{i}\right] U_{\left[a_{j}\right]} \cap S \neq \varnothing$, for all i, j.

Note that $a_{i+1} \in\left[a_{i}\right]$, so $\left[a_{i+1}\right] \subseteq\left[a_{i}\right]$ and hence $\left[a_{j}\right] \subseteq\left[a_{i}\right]$ if $j \geqq i$. If we let K be the larger of i and j then $a_{k+1} \in\left[a_{k}\right] U_{\left[a_{k}\right]} \cap S \subseteq\left[a_{i}\right] U_{\left[a_{j}\right]} \cap S$.

Theorem 3. For any ideal A in $J, A^{Q}=A_{Q} . A^{Q}$ is called the prime radical of the ideal A.

Proof. Since every prime ideal is a semiprime ideal, it is clear that $A^{Q}=\cap P^{*} \supseteq \cap P_{*}=A_{Q}$.

Conversely, if $x \in A^{Q}$, and S is a $S Q$-system containing x, then by Lemma 2, there exists a Q-system M such that $x \in M$ and $M \subseteq S$ since M meets A, S meets A also.

Definition 5. The prime radical, $R(J)$, of a Jordan ring J is the prime radical of the zero ideal in J. A Jordan ring is Q-semisimple if and only if $R(J)=(0)$.

Theorem 4. Let J be a Jordan ring and $R(J)$ be the prime radical of J, then $R(J / R(J))=(0)$, i.e. $J / R(J)$ is a Q-semisimple ring.

Proof. Let $\theta: a \rightarrow \bar{a}$ be the natural homomorphism from J onto $J / R(J)=\bar{J}$. It is easy to check that the image of any prime ideal in J is a prime ideal in \bar{J}. Let $\bar{a} \in R(\bar{J})$ and P be any prime ideal in J. Then $\bar{a} \in \bar{P}=P / R(J)$. Hence, $a \in \theta^{-1}(\bar{P})=P$, so $a \in \cap P=R(J)$ and $\bar{a}=0$.

Definition 6. A ring J is a prime ring if, and only if, (0) is a prime ideal in J.

Thus, a prime ring must be Q-semisimple, and an ideal P in J is prime if, and only if, J / P is a prime ring.

As in the case of associative rings, one can easily prove the following two assertions.
(a) A ring R is a subdirect sum of $S_{i}, i \in I$ if, and only if, for each $i \in I$, there exists a homomorphism ϕ_{i} from R onto S_{i} and that $0 \neq r \in R$ implies $\phi_{i}(r) \neq 0$ for at least one $i \in I$.
(b) A ring is a subdirect sum of rings $S_{i}, i \in I$, if, and only if, for each $i \in I$ there exists a two sided ideal K_{i} in R such that $R / K_{i} \cong S_{i}$ and $\cap K_{i}=(0)$.

We obtain the following two theorems. The proof is similar to that in the associative case.

Theorem 5. A necessary and sufficient condition that a Jordan ring be isomorphic to a subdirect sum of prime rings is that J is Q-semisimple.

In the presence of the descending chain condition on ideals in J, one may choose a finite subset of prime ideals $\left\{P_{i} \mid i=1, \cdots, n\right\}$ in J such that $\cap P_{i}=0$ and $\bigcap_{i \neq j} P_{i} \neq 0$ for any $j=1,2, \cdots, n$.

Theorem 6. If J is a Jordan ring with descending chain condition on prime ideals then J is Q-semisimple if, and only if, Q is a full direct sum of finite numbers of prime ideals in J.

Theorem 7. Let A be an ideal in Jordan ring J and $r \in A_{Q}$, then there exists a positive integer k such that $r^{k} \in A$.

Proof. It is sufficient to show that if $r \in A_{\mathbf{Q}}$, then the set M $=\left\{r, r^{3}, r^{r^{2}}, \cdots, r^{r^{k}}, \cdots\right\}$ is a $S Q$-system.
Suppose C is an ideal in J and $r^{3^{3}} \in C \cap M$, then $r^{r^{i+1}} \in C U_{C} \cap M$. Thus M is a $S Q$-system.

Corollary. The prime radical of a Jordan ring J is a nilideal in J.
Proof. If $r \in R(J)$, then $r^{k} \in(0)$.
In a general nonassociative ring R, the nil radical $N(R)$ is the maximal nilideal in $R[1]$. As a consequence of the corollary, the prime radical of a Jordan ring is contained in the nil radical $N(J)$.

If J is a finite dimensional Jordan algebra, every nilideal is a nilpotent ideal. Thus, $R(J)$ is contained in the classical radical $S(J)$, which is the maximal nilpotent ideal in J.

On the other hand, in the next theorem, any nilpotent ideal in J is contained in $R(J)$. Thus, in this case, two definitions coincide. However, we are not sure whether in general this is also the case.

Lemma 3. Let A be an ideal in J. Then A^{3} is an ideal of J and $A^{3}=A U_{A}$.

Proof. The first assertion is a direct consequence of the linearized form of the Jordan identity: $[(a \cdot b) \cdot c] \cdot x=(a \cdot b) \cdot(c \cdot x)+(a \cdot c) \cdot(b \cdot x)$ $+(b \cdot c) \cdot(a \cdot x)-[(a \cdot x) \cdot c] \cdot b-[(b \cdot x) \cdot c] \cdot a$. The second assertion is obtained from $4(x \cdot y) \cdot z=2 x U_{(y, z)}+2 y U_{(x, z)}=y U_{(x+z)}-y U_{x}-y U_{z}$ $+x U_{(\nu+z)}-x U_{y}-x U_{z} \in A U_{A}$.

Theorem 8. A Jordan ring J is Q-semisimple if and only if it contains no nonzero nilpotent ideal.

Proof. By definition S and part (c) of Theorem 2, J is Q-semisimple if and only if $(0)=(0)_{Q}$. Thus J being Q-semisimple is equivalent to the ideal (0) being semiprime. If J contains a nonzero nilpotent
ideal M of nilindex t, then there exists a positive integer t such that $M^{3^{t}}=0$ and $M^{3^{t-1}} \neq 0$. Thus (0) is not semiprime.

Conversely, if J contains no nonzero nilpotent ideal and if (0) is not semiprime, then there exists a nonzero ideal A such that $A U_{A} \subseteq 0$. Thus $A^{3}=0$ which is impossible.

Corollary. The Q-radical $R(J)$ of a Jordan ring J contains all the nilpotent ideals in J.

Proof. If M is a nilpotent ideal in J, \bar{M} is the image of M under the natural homomorphism from J onto $J / R(J)$. Since \bar{M} is a nilpotent ideal in $\bar{J},(\overline{0})$ is not a semiprime ideal in \bar{J}. If \bar{A} is a nonzero ideal in \bar{J} such that $\bar{A}^{3}=\bar{A} U_{\bar{A}}=(\overline{0})$, then $A U_{A} \subseteq R(J)$. But $R(J)$ is semiprime, so $A \subseteq R(J)$ and $\bar{A}=(\overline{0})$ which is a contradiction.

The following theorem is due to the referee.
Theorem 9. If a Jordan ring J contains a maximal nilpotent ideal $S(J)$ then $R(J)=S(J)$.

Proof. Clearly $R(J) \supseteq S(J)$ by the corollary of Theorem 8. In the ring $\bar{J}=J / S(J)$ there are no nonzero nilpotent ideals by the maximality of $S(J)$. So \bar{J} is Q-semisimple by Theorem 8 .

If $r \in R(J)=\cap P^{*}$ then $r \in S(J)$. If $r \notin S(J)$, its image in \bar{J} under the natural homomorphism would be $\bar{r} \neq \overline{0}$, so $\bar{r} \notin(\overline{0})=R(\bar{J})=\cap \bar{P}^{*}$ and $\bar{r} \notin \bar{P}^{*}$ for some prime ideal \bar{P}^{*} in J. Let P^{*} be the inverse image of \bar{P}^{*} in J; then $\bar{r} \notin \bar{P}^{*}$ implies $r \notin P^{*}$. Since r is in all prime ideals in J, P^{*} cannot be prime. Thus there exists ideals A, B in J with $A \nsubseteq P^{*}$ and $B \subseteq P^{*}$ but $A U_{B} \subseteq P^{*}$. Passing to the homomorphic image $\bar{A} \subseteq \bar{P}^{*}, \bar{B} \subseteq \bar{P}^{*}$ but $\bar{A} U_{\bar{B}} \subseteq \bar{P}^{*}$. This contradicts the primeness of \bar{P}^{*}.

References

1. E. A. Behrens, Nichtassoziative Ringe, Math. Ann. 127 (1954), 441-452.
2. B. Brown and N. McCoy, Prime ideals in nonassociative rings, Trans. Amer. Math. Soc. 89 (1958), 245-255.
3. N. Jacobson, A coordinatization theorem for Jordan algebras, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 1154-1160.
4. -, Structure theory for a class of Jordan algebras, Proc. Nat. Acad. Sci. U.S.A. 55 (1966).
5. M. F. Smiley, Application of a radical of Brown and McCoy to non-associative rings, Amer. J. Math. 72 (1950), 93-100.
[^1]
[^0]: Received by the editors March 3, 1967 and, in revised form, May 16, 1967.

[^1]: Michigan State University

