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There are several definitions of radicals for general nonassociative

rings given in literature, e.g. [l], [2], and [5]. The M-prime radical of

Brown-McCoy which is given in [2], is similar to the prime radical

in an associative ring. However, it depends on the particular chosen

element u. The purpose of this paper is to give a definition for the

Brown-McCoy type prime radical for Jordan rings so that the radical

will be independent from the element chosen.

Let / be a Jordan ring, x be an element in J; the operator Ux is a

mapping on J such that yUx — 2x- (x-y)— x2-y for all y in J, or,

equivalently, UX = 2R\ — R\. If A, B are subsets of J, A UB is the set

of all finite sums of elements of the form aUt, where a is in A and ft is

in B.

Lemma 1. Let P be a two sided ideal in J. Then the following three

statements are equivalent.

(a) If A, B are ideals in J and A UbQP, then either A CP or BQP.

(b) If A, B are ideals in J with AC\c(P)^0 and BC\c(P)^0, then

A Ub<^c(P)9£0, where c(P) is the complement of P.

(c) If a, b are in c(P), then [a] U[ViC\c(P) 9^0, where [x] denotes the

principal ideal in J generated by x.

Proof. Obviously (a) and (b) are equivalent.

If (b) holds and a, ft Ec(P), then [a]r\c(P)^0 and [b]C\c(P)^0.

Thus, [a]Umr\c(P)j*0, i.e. (c) holds.
If (c) holds and A, B are ideals in J such that AC\c(P)t&0 and

BC\c(P)^0, then there exists aEAC\c(P) and bEBr\c(P).

Thus [a]Umr\c(P)^0. But [a]QA and [b]CB, so AUBr\c(P)

2 [a] Umr\c(P) 5* 0, i.e. (b) holds.
Definition 1. An ideal P in J is called a prime ideal if it satisfies

any one of the statements in the Lemma 1. A nonempty subset M of

J is called a Q-system if whenever A, B are ideals in J such that

AC\M^0 and BC\M^0 then AUBC\M^0.
If P is an ideal in J, then c(P) = 717 is a <2-system if, and only if P

is a prime ideal.

Definition 2. Let A be an ideal in /, then AQ= {rEJ\ any Q-

system in J containing r meets A } is called the ^-radical of A.

Theorem 1. 7/^4 is an ideal in J, then AQ is the intersection of all the

prime ideals P* in J which contain A.
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Proof. If b(EAQ and F* is any prime ideal which contains A, then

bEP*; otherwise, there exists a ^-system c(P*) containing b which

does not meet A, thus b^A^. Thus A^Qf]P*.

Conversely, if b$zAQ, there exists a ()-system M such that bEM

and M(~\A = 0. Applying Zorn's lemma to the family of all ideals in

J which contains A but does not meet M, one finds a maximal element

F (partial ordering being taken as the usual set inclusion). Since b is

in M, b is not in P. Thus it remains to show that P is a prime ideal.

If B, C are ideals in / such that FCCF and CQP then both B+P,

and C+P meet M. Thus (P+B)U(P+C) meets M. But (P+B)U(P+C)

QBUc+P, thus BUC%P. Hence P is prime.

Definition 3. An ideal P in J is a semiprime ideal if for any ideal

A in J, A UaQP implies A CP. A nonempty subset M of / is called a

SQ-system if for any ideal A in /such that AC\M^ 0, then vl UAC^M

*0.
The proof of Lemma 1 can be easily applied here to show an ideal

F in / is semiprime if, and only if, one of the following statements

holds.
(a) If A is an ideal such that AC\c(P)^0, then AUAC\c(P)^0.

(b) If aEc(P) then [a] U[a]r\c(P) ¥-0.

If P is an ideal in /, then c(P) is a S()-system if, and only if, P is

semiprime.

Definition 4. Let A be an ideal in /, the set Aq= {rEJ\ any SQ-

system containing r meets A } is called the SQ-radical of A.

Theorem 2. Let A be an ideal in J, then the following statements hold

(a) Aq = OF*, where F* are taken from all semiprime ideals in J

which contain A.

(b) Aq is a semiprime ideal.

(c) A is semiprime if, and only if, A =Aq.

Proof, (a) If xEAq and F* is a semiprime ideal in / containing

A, then xEP*; otherwise, c(P^) is a SQ-system, contains x but does

not meet A, sox(£A0. Thus AqQDP*. Conversely, if x^AQ, then there

exists a SQ-system M such that xEM and MC\At£0. Applying

Zorn's lemma to the family of ideals in J containing x but disjoint

from M, one finds a maximal ideal F*. It remains to show that F* is

semiprime.

If B is an ideal in J such that FC]:F*, then P*+B meets M. But M

is a SQ-system, thus (F*+F) U(pt+B) meets M. On the other hand,

(F*+F) U(Pt+B)^BUB+P*, so BUB%P*.

(b) It follows from (a) that A0 is an ideal in J. If B is an ideal in /

such that BUBQAQ = r\P*, then FCF* for all semiprime ideals F*

containing A. Hence FCflF* =AQ. Thus AQ is a semiprime.
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(c) Since AQ is a semiprime ideal, it is the smallest semiprime ideal

in J containing A. Thus A is semiprime if, and only if, A =AQ.

Lemma 2. Let a be an element in J and S is a SQ-system in J contain-

ing a. Then there exists a Q-system M such that a is in M and MQS.

Proof. We first construct a sequence M= {alt a2, • ■ ■ , an, • • ■ }

of elements of J where ai=a, a2G [ai]Uiai]r\S, ■ ■ ■ , ak+xE [ak\U[ajt]

C\S, ■ • • . Clearly, aEM and ikfCS. It remains to show that M is a

£)-system, i.e. [ai\Uiajir\S?£0, for all i, j.

Note that al+iG[a.], so [a,-+i]cz [a,-] and hence [o^-jc^] if j^.i.

Ii we let K be the larger of i and j then ak+1E [a-k] U\ak](^\SC [a,]<7[(lj.]P\S.

Theorem 3. For any ideal A in J, AQ = AQ. AQ is called the prime

radical of the ideal A.

Proof. Since every prime ideal is a semiprime ideal, it is clear that

AQ = f[P*^r\P*=AQ.
Conversely, if xG^4Q, and 5 is a S(?-system containing x, then by

Lemma 2, there exists a (2-system Msuch that xEM and MQS since

M meets A, S meets A also.

Definition 5. The prime radical, R(J), of a Jordan ring / is the

prime radical of the zero ideal in J. A Jordan ring is @-semisimple if

and only if R (7) = (0).

Theorem 4. Let J be a Jordan ring and R(J) be the prime radical of

J, then R(J/R(J)) = (0), i.e. J/R(J) is a Q-semisimple ring.

Proof. Let 0: a-*a be the natural homomorphism from J onto

J/R(J) =7. It is easy to check that the image of any prime ideal in J

is a prime ideal in /. Let dER(J) and P be any prime ideal in J. Then

dEP = P/R(J). Hence, aE6~l(P)=P, so aEdP=R(J) and a = 0.
Definition 6. A ring 7 is a prime ring if, and only if, (0) is a prime

ideal in J.

Thus, a prime ring must be Q-semisimple, and an ideal P in / is

prime if, and only if, J/P is a prime ring.

As in the case of associative rings, one can easily prove the following

two assertions.

(a) A ring R is a subdirect sum of Si, iEI if, and only if, for each

*G7, there exists a homomorphism <pi from R onto Si and that

Op^rER implies 0i(r)?^O for at least one iEI-

(b) A ring is a subdirect sum of rings Si, iEI, if, and only if, for

each iEI there exists a two sided ideal 7C» in R such that R/K~i~Si

and f)K~i=(0).

We obtain the following two theorems. The proof is similar to that

in the associative case.
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Theorem 5. A necessary and sufficient condition that a Jordan ring

be isomorphic to a subdirect sum of prime rings is that J is Q-semisimple.

In the presence of the descending chain condition on ideals in /,

one may choose a finite subset of prime ideals {P,-|« = l, • • ■ , re] in

Jsuch that nF, = 0 and ritV;Fi5^0 for anyj = 1, 2, • • • , re.

Theorem 6. If J is a Jordan ring with descending chain condition on

prime ideals then J is Q-semisimple if, and only if, Q is a full direct sum

of finite numbers of prime ideals in J.

Theorem 7. Let A be an ideal in Jordan ring J and rEAQ, then

there exists a positive integer k such that rkEA.

Proof. It is sufficient to show that if rEAQ, then the set M

= {r,r3,rl, ■ ■ ■ , r3, • ■ • } is a SQ-system.

Suppose C is an ideal in / and r3' ECC\M, then r3' ECUcC\M.

Thus M is a SQ-system.

Corollary. The prime radical of a Jordan ring J is a nilideal in J.

Proof. If rER(J), then rkE(0).

In a general nonassociative ring R, the nil radical N(R) is the

maximal nilideal in P[l]. As a consequence of the corollary, the

prime radical of a Jordan ring is contained in the nil radical N(J).

If / is a finite dimensional Jordan algebra, every nilideal is a nil-

potent ideal. Thus, R(J) is contained in the classical radical S(J),

which is the maximal nilpotent ideal in J.

On the other hand, in the next theorem, any nilpotent ideal in /

is contained in R(J). Thus, in this case, two definitions coincide.

However, we are not sure whether in general this is also the case.

Lemma 3. Let A be an ideal in J. Then A3 is an ideal of J and

A3 = AUA.

Proof. The first assertion is a direct consequence of the linearized

form of the Jordan identity: [(a-b)-c]-x=(a-b)-(c-x) + (a-c)-(b-x)

-\-(b-c) ■ (a-x) — [(a-x) -c] -b — [(b-x) -c] -a. The second assertion is

obtained from 4(x-y) ■z = 2xU(V,z)-L-2yU(X,z)=yUix+l)— yUx—yU^

+xU{y+z)—xUy—xUzEAUA-

Theorem 8. A Jordan ring J is Q-semisimple if and only if it con-

tains no nonzero nilpotent ideal.

Proof. By definition 5 and part (c) of Theorem 2, / is Q-semi-

simple if and only if (0) = (0)Q. Thus / being Q-semisimple is equiva-

lent to the ideal (0) being semiprime. If /contains a nonzero nilpotent
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ideal M of nilindex t, then there exists a positive integer t such that

M3 =0 and Mz    5*0. Thus (0) is not semiprime.

Conversely, if J contains no nonzero nilpotent ideal and if (0) is

not semiprime, then there exists a nonzero ideal A such that A UaQO.

Thus ^43 = 0 which is impossible.

Corollary. The Q-radical R(J) of a Jordan ring J contains all the

nilpotent ideals in J.

Proof. If M is a nilpotent ideal in /, M is the image of M under

the natural homomorphism from J onto J/R(J). Since M is a nil-

potent ideal in /, (0) is not a semiprime ideal in 7. If A is a nonzero

ideal in 7 such that A3 = AUj=(0), then A UAQR(J). But R(J)
is semiprime, so A C.R(J) and A = (0) which is a contradiction.

The following theorem is due to the referee.

Theorem 9. If a Jordan ring J contains a maximal nilpotent ideal

5(7) thenR(J)=S(J).

Proof. Clearly R(J)~DS(J) by the corollary of Theorem 8. In the

ring J = J/S(J) there are no nonzero nilpotent ideals by the maximal-

ly of S(J). So J is <2-semisimple by Theorem 8.

If rER(J) =f)P* then rES(J). If r $5(7), its image in 7 under the

natural homomorphism would be f?^0, so f^(0) =R(J) —f)P* and

r($zP* for some prime ideal P* in 7. Let P* be the inverse image of

P* in J; then r(£P* implies r(£P*. Since r is in all prime ideals in

7, P* cannot be prime. Thus there exists ideals A, Bin J with A CEP*

and 75CT.P* but AUb^P*. Passing to the homomorphic image

IC?*, BCZP* but AUbQP*. This contradicts the primeness of P*.
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